
Generative Design for Building InformationModeling

Bruno Ferreira1, António Leitão2
1,2INESC-ID/Instituto Superior Técnico
1bruno.b.ferreira@tecnico.ulisboa.pt
2antonio.menezes.leitao@ist.utl.pt

Generative Design (GD) is a programming-based approach for Architecture that
is becoming increasingly popular amongst architects. However, most Generative
Design approaches were thought for traditional Computer Aided Design (CAD)
tools and are not adequate for the Building Information Modeling (BIM)
paradigm. This paper proposes a solution that extends GD to be used with BIM
applications while preserving and taking advantage of its ideas. The solution will
be evaluated by developing a connection between Revit, a well-known BIM tool,
and Rosetta, a programming environment for GD, and by implementing the
necessary programming language features that allows GD to be used in the
context of BIM tool.

Keywords: Generative Design, BIM, Revit, Rosetta, Racket, Programming
Languages

INTRODUCTION
Computer Aided Design (CAD) applications in-
creased the efficiency of design activities and al-
lowed architects to produce more accurate and
precise drawings that could be more easily edited
without the need of manually erasing and redrawing
parts of the original design.

Nevertheless, modeling complex and creative
geometry can still be a challenge in a CAD tool and
changing the model continues to present some diffi-
culties as the degree of flexibility provided by these
tools is not sufficient. Generative Design (GD) is used
as a solution to these problems (McCormack et al.
2004).

GD can be described as form creation through
algorithms (Terdizis 2003). This approach allows the
generationof different solutions just by changing the
constraints and the requirements implemented in a

givenprogram. Theseprogramscan include complex
algorithms that generate geometry that is very diffi-
cult to create by manual means.

Recognising the advantages of theGDapproach,
many toolswere developed that allow the creation of
GDprograms. These toolswere also tailored for archi-
tects with basic programming experience, reducing
the programming skills needed to use them.

Rosetta is one of those tools. It provides a pro-
gramming environment for GD, allowing the devel-
opment of scripts using different programming lan-
guages. These scripts can then be used to generate
models in different CAD tools.

Nowadays, Building Information Model (BIM)
tools are replacing the traditional CAD tools. Firstly,
because they offer a set of features that go beyond
CAD, and, secondly, because many governments are
making the use of BIM obligatory in projects.

BIM - Early Design - Volume 1 - eCAADe 33 | 635



Unfortunately, tools like Rosettawere developed
for CAD applications, and thus, are not adequate for
the BIM paradigm.

This happens because CAD tools only deal with
geometry while BIM objects are far more than that.
They are definedby theparametric rules they contain
as well as by their properties like materials, finishes,
manufacturer specifications and even price.

These properties allow BIM tools to detect prob-
lems in the design, such as a pipe that is placed in the
same location as a window. The parametric rules al-
low the object to adapt to its usage when inserted in
a project.

Finally, all the information about the project life
cycle is stored in theseobjects andcanbeused to cre-
ate documents related to fabrication, cost estimation
and even building management.

CAD tools do not require this information but
BIM does. This fact alone changes the way users in-
teract with BIM and also changes how GD programs
have to bewritten. GD tools that only work with CAD
toolsmust allowall these features inorder to commu-
nicate with a BIM tool but most of them do not have
the proper support for that.

Developing a GD program for BIM is a problem
that exists nowadays and the solution offered by BIM
tools, like Revit, is an Application Programming Inter-
face (API). The API provides a way to use BIM with
a programming approach. Unfortunately, the use
of the API requires knowledge of programming lan-
guages, like C# or C++, and computer science con-
cepts, such as transactions andpolymorphism,which
assumes considerable programming experience.

The objective of this paper is to present a solu-
tion that allows novice programmers towriteGDpro-
grams for BIM applications.

RELATEDWORK
Several tools were analysed to guide us in the devel-
opment of our solution. The main focus was on tools
that allow users to write GD programs for BIM appli-
cations. This includes tools that are already available
in BIM applications as well as plug-ins developed for

the same purpose.

Grasshopper 3D and Lyrebird
Grasshopper 3D is a graphical programming lan-
guage developed for architects as a plug-in for
Rhinoceros 3D CAD.

Programs written in this language represent a
data flow graph that consists of a group of compo-
nents and the connections between them. These
components can be selected from a series of menus
and dragged to the working environment. The com-
ponents can represent functions, parameters or even
geometry and they are connected with lines. This al-
lows the users to create complex algorithms by com-
bining components with the connectors.

It is important to notice that the components are
not the onlyway touseGrasshopper's functionalities.
They can also be extendedby using scripting compo-
nents to write code using VB.NET, C# or Python pro-
gramming languages (Payne and Issa 2009).

Because it is a graphical language, Grasshopper
is easier to learn and start using, which made it pop-
ular amongst architects. However, the graphical as-
pect of the language is also a disadvantage because,
as programs grow, the amount of connections be-
tween components makes the program difficult to
understand and even features such as sliders stop
working as intended due to performance issues. Fig-
ure 1 shows a complex program that illustrates the
problems mentioned.

Figure 1
An example of a
complex parametric
model in
Grasshopper.
Retrieved from [3]
on June 2015.

636 | eCAADe 33 - BIM - Early Design - Volume 1



AlthoughGrasshopper was designed to be used only
with Rhinoceros, it can also be extended with plug-
ins. This feature allowed the development of plug-
ins, such as Lyrebird, that made possible the usage of
the language with other applications, including BIM
tools.

Lyrebird is a plug-in developed by LMN Archi-
tects as an interoperability tool between Grasshop-
per 3D and Revit. This plug-in enables the usage of
Grasshopper to structure the information needed to
produce the desiredmodel in Revit. This information
is then used to identify and instanciate the correct
families with the correct rules and parameters.

As a result, Lyrebird is more focused on sending
the correct data between the applications, instead of
translating the geometry between them [1]. There is
onlyonecomponenton theGrasshopper side that re-
ceives the information and then sends it to the Revit
side. There, a command is selected to add a new ob-
ject or manage an existing one.

For example, to create a column, a line is used
as input. Next, on the output of the component, the
family to use in Revit is specified. On the Revit side,
the information is received and the user confirms the
creation of the new element. A column of the speci-
fied family is then created, using the line as input. The
line is used as abstract information that, combined
with the family of the BIM object, allows the creation
of the actual object.

DesignScript
DesignScript is a programming language that is
heavily influenced by design principles. It was cre-
ated by Robert Aish to be, not only a production
modeling tool, but also a full-fledged programming
language and a pedagogical tool (Aish 2012).

As a programming language, DesignScript is
seen as an associative language as it maintains a
graph of dependencies between the variables used
in a program. Any change in one of the variables
is propagated throughout the program. This means
that if we have a variable a, and if b is defined as a +
1, a change in awill also modify the value of b. This is

a change-propagationmechanism, similar to the up-
date mechanisms available in associative CAD tools.
The language is also a domain-specific language as it
contains primitives for design and geometry.

As a modeling tool, DesignScript tries to intro-
duce concepts that are easily understood by users
that are not accustomed to design with the help of a
programming language. This is achieved by allowing
the developers to use its logical framework in order
to produce the design models, and also facilitating
an exploratory approach to the tool involving refac-
toring of the produced models (Aish 2012).

Finally, DesignScript aims to be a pedagogical
tool, as it allows the evolution of the programming
skills of its users. Users unfamiliar with programming
are able to use a direct approach with a graph node
diagramming interface that is simple and requires lit-
tle to no understanding of programming concepts
(Aish 2013). Figure 2 shows a program created with
the graph approach. However, as their design be-
comes more complex, users might feel the need to
learn more advanced programming concepts. The
node-to-code functionality of DesignScript allows a
transition between the graph representation and a
script that initially presents a logic very similar to the
original graph. For users that desire to producemore
complex programs, this scriptmight be changed into
a normal script.

Figure 2
An example of a
program created in
DesignScript.
Retrieved from [4]
on December 2014.

BIM - Early Design - Volume 1 - eCAADe 33 | 637



Dynamo
Dynamo is a plug-in for Revit that is strongly influ-
enced by graphical programming languages such as
Grasshopper for Rhino.

Just as Grasshopper, users create a workflow by
introducing nodes that are connected to each other
through wires associated with the ports that each
node contains. A port from an element can only
be connected to another port of a matching type.
Thismeans that the input and output portmust have
compatible types.

Nodes can represent several Revit elements,
such as lines, or functions, such as mathematical
functions. Users can also define custom nodes in or-
der to extend the functionality provided by Dynamo.

Figure 3 shows a programwritten with Dynamo
nodes and its result.

Dynamo also supports the use of code blocks,
which are elements containing small scripts written
in a textual programming language, such as Python.
These code blocks allow the creation of small algo-
rithms that introduce more complex functionalities
that are not possible to create with the other nodes.

Geometric Description Language
Geometric Description Language (GDL) is a paramet-
ric programming language for ArchiCAD that allows
the creation of scripts that describe objects, which
are called library parts.

This language, similar to BASIC, requires the
definition of several scripts that include the model
description and the parameters of the new object
(Nicholson-Cole 2004).

Each object is describedwith a sequence of com-
mands that describe its geometry. In similarity to
OpenGL, a matrix stack implements transformations
like translations, rotations and scales. The transfor-
mations currently in the stack when creating a shape
are the ones that are going to influence it.

Figure 4 shows a program written in GDL. The
editor shows the sequence of commands that pro-
duces the result, visible on the top left corner of the
image.

Figure 3
A program written
with Dynamo and
its result. Retrieved
from [5] on
December 2014.

Figure 4
A GDL program that
creates a bed
canopy. Retrieved
from [6] on May
2015.

However, GDL only allows the creation of simple ge-
ometry and does not take advantage of the BIM func-
tionalities of ArchiCAD.

GenerativeComponents
GenerativeComponents (GC) is a parametric and as-
sociative system developed for Bentley's Microsta-
tion.

This system is propagation-based so the user has
to determine the rules, relationships and parameters
that define the desired geometry. This propagation-
based system consists of an acyclic directed graph
that is generated by two algorithms: one that is re-
sponsible for ordering the graph and the other that
propagates values through it (Aish and Woodbury
2005).

638 | eCAADe 33 - BIM - Early Design - Volume 1



GC has several ways of user interaction, taking
into consideration his skills. The first one is a Graph-
ical User Interface (GUI) that allows direct manipula-
tion of geometry. The second one is by defining re-
lationships among objects with simple scripts in GC-
Script. The third and final one, is by writing programs
in C#, allowing the definition of complex algorithms.

GC shows that a graphical language might be
easier to learn but as the user wants to producemore
complex models, he will start to produce scripts in a
textual programming language.

GENERATIVE DESIGN FOR BIM
Most of the tools analysed in the previous sections
have disadvantages. The major one is the fact that
they are associated with a specific application. The
programs created with them are not portable, which
is something that wewant to solve with our solution.

Another disadvantage is the programming lan-
guage that they use. Lyrebird and Dynamo, for ex-
ample, primarily use Graphical Programming Lan-
guages. These languages, although easy to learn, do
not scale well with the program complexity.

A Textual Programming Language is more flexi-
ble butmight introduce a barrier for newcomers. The
chosen languagemust be easy to learn and fit for be-
ginners. GC, for example, usesC#which is a very com-
plex language, and GDL uses a language similar to
BASIC which is obsolete. This is something that we
address in our approach.

In the following subsections our proposed solu-
tion is described. It aims to give an approach that
allows users to write portable GD programs for BIM
tools.

The primary components of the solution are an
Integrated Development Environment (IDE), an ab-
straction layer anda communication component. We
will now discuss these components.

Integrated Development Environment
Our solution uses a programmatic approach based
on textual programming languages since they are
more flexible and scale betterwith the programcom-

plexity. For this reason users need an editor in which
they write their code.

The language of the editor must be fit for a be-
ginner. For example, the Python language is very
popular and is being used to teach beginners how
to program. Also, languages like Python have an
IDE that help users write and debug their programs.
These features are very important for beginners since
they have difficulties writing their first programs and
these IDEs help them overcome some initial barriers.

Abstraction Layer
Towrite GD programs, users need functions that give
access to BIM functionality. These functions must al-
low users to instantiate BIM objects and define all the
information needed in order to produce an accurate
project.

For example, to produce a wall with a door in it,
theremust be a function that createswalls. This func-
tion might receive the height, length, position and
the type of wall in order to create the correct BIM ob-
ject. Then, a function that creates the door is used
and it must receive, not only the position, height and
type of door but also the wall that will serve as host
of this object.

In addition to this, to indicate positions and cre-
ate lines and arcs, abstractions for these concepts are
needed as well as functions that allow their creation
and usage.

All these functions as well as others that create
and manipulate BIM objects are included in an ab-
straction layer, so that they can be used in all sup-
ported BIM tools.

However, some features are unique to certain
BIM tools, so we will offer them as functions that will
be available only to that specific BIM. The user can
choose to use them, giving up the portability of their
programs, but gaining the ability to take advantage
of the specific features the tool has to offer.

BIM Communication
Finally, in order to execute the user programs and
generate the result in the desired BIM tool, a compo-
nent that communicates with the tool is needed.

BIM - Early Design - Volume 1 - eCAADe 33 | 639



Since most of the BIM tools have an API that ex-
poses their features in a programatic way, this com-
ponent can be a plug-in for the tools writtenwith the
aid of that API.

All the functions of the abstraction layer have a
correspondent one in this component. When one of
them is used, the needed information is sent to this
component and then the correspondent function is
executed. Taking advantage of the API, these func-
tions will then produce their results in the BIM tool.

Figure 5 shows all the components of our solu-
tion and how they are related.

EVALUATION
In this section, we perform an evaluation of our so-
lution resorting to an implementation that uses Re-
vit. This implementation takes advantage of Rosetta
and Revit connecting the two of them and introduc-
ing the latter as a new back-end for Rosetta.

Rosetta Programming Environment
Rosetta already has a development environment de-
signed for beginners and provides many concepts
that architects already use on a day to day basis.

By using Rosetta, users are able to choose the
language in which they want to program. Racket,
Python, Javascript and Processing are some exam-
ples of languages that are already available. This

helps users to overcome the need of learning a new
programming language if they already know one
that is available. If they have yet to learn how to
program they can choose any of the languages avail-
able since most of them are pedagogical languages.
The Rosetta IDE also supports debugging and syntax
highlighting for all the languages available as front-
ends.

Also, by using Rosetta, we can take advan-
tage of many functionalities without the need of re-
implementing them. One example are the coordi-
nate systems.

Of course, in order to add a BIM, such as Revit,
as a back-end, new functions and abstractions must
be created in Rosetta since the current ones were de-
veloped for CAD tools. These new functions and ab-
stractions must be included in an abstraction layer
explained in the following section.

Abstraction Layer
This layer contains all the functions and abstractions
that can be used to produce results in BIMs, in this
case Revit. All these were created taking into consid-
eration the way architects do their work in order to
facilitate their understanding and usage when writ-
ing their programs.

Since Revit can produce Project and Family doc-
uments, we created different functions that can be
used in each one.

Figure 5
Overview of the
architecture of the
solution.

640 | eCAADe 33 - BIM - Early Design - Volume 1



For Family documents, we have functions that
create simple geometry. These functions are very
similar to the ones available for CAD tools in Rosetta.
This allows users to port some of their algorithms di-
rectly to the new back-end and produce their com-
plex geometry in it. This geometry can then be used
to define new families and family instances that can
be used in Project files.

Figure 6 shows a program that was originally
written for a CAD, now being used with Revit. To do
this we simply re-implemented the geometry func-
tions to work with BIM tools.

The functions and abstractions for Project files
are where the main differences between BIM and
CAD are felt. In these files the user creates instances
of families and uses them to develop their project. So
these are BIM objects and not simple geometry.

To have BIM objects, concepts like walls, doors
and windows must be introduced. Also, the func-
tions thatdealwith these concepts aredefined taking
into consideration how these objects are created by
the user in the graphical interface. To create a simple

wall, for example, the user draws a line between two
points and awall of the selected type is created along
that line. So, the function that creates thewall is used
in a similar manner, receiving points that define the
line where the wall will be created.

Another significant difference between the CAD
and BIM tools is the restrictions and the relationships
between objects. When creating a wall with a door,
we know that they are related because of their place-
ment. In a CAD tool, the door is placed in a position
where the wall is but they are not related. When cre-
ating the GD program for CAD tools, we use restric-
tions that make everything fit in the right place but
these restrictions are only in the code and not in the
generated model. In BIM tools these relationships
are present in the generated objects. For example,
a door cannot be createdwithout a host. A wall must
be given as a host and the BIM tool will create and
modify the necessary properties for the door to fit
perfectly.

So all the operations take this into account and
require all the elements necessary to create these re-

Figure 6
A truss generated in
Revit with a GD
program.

BIM - Early Design - Volume 1 - eCAADe 33 | 641



lationships. To create a floor the user must indicate
in which level it will be placed. To create a door, he
must say in which wall it will be hosted.

Figure 7 shows a script on the left that creates a
tower with slabs and columns to support them. The
result in Revit can be seen on the right side of the im-
age.

This example uses functions included in the ab-
straction layer that create BIM objects. The levels are
created with the height specified by the user. After
that, the floors are created in those levels with a func-
tion that creates round slabs taking into account the
center of the slab and a radius. Finally, the columns
are created in a specified position and their height is
determined by the two levels indicated by the user.
The first level is where the base of the column is and
the other is on the top.

As seen in the example, all these functions have a
visual result in Revit. In order to achieve this, Rosetta
must comunicate with the desired BIM tool and send
all the information that is necessary to produce the
model. All the information is serialized using Google

Protocol Buffers and transmitted to the BIM tool via
sockets. This guarantees that all information is sent
in a format that can be easily reconstructed on the
other side. There, the information is used in a plug-in
thatwas developed for Revit, whichwewill explain in
detail in the following section.

Revit Plug-In
The plug-in was created using the RevitAPI made
available by Revit. This plug-in communicates with
Rosetta in order to receive all the information needed
to create the objects.

This plug-in is written in C# and was developed
using the Microsoft Visual Studio programming en-
vironment. The abstraction layer previously men-
tioned was developed to hide the complexity of the
API.

All the functions in Rosetta have a correspon-
dent one in the plug-in and these are the ones that
communicate directly with the BIM and create all
the needed elements. In order to produce these
elements, the information received from Rosetta

Figure 7
A tower generated
with BIM objects
with a GD program.

642 | eCAADe 33 - BIM - Early Design - Volume 1



must be read from the socket and deserialized with
the Protocol Buffers to reconstruct the information.
Then, this information is used as parameters for the
API functions that create theobjects in theBIM. These
functions return an identifier that is serialized and
sent to Rosetta allowing the user to reference those
objects in the future.

To create a more explorative interaction, this
plug-in is non-blocking which means that Revit will
not block while the user is executing his program.
This means that it is possible to interact with Revit
while the program is running, for example, to see
the results using a different perspective. However,
this comes with a penalty in performance. If the user
wishes better performance, a blocking mode can be
used that does not allow to interact with Revit until
the program finishes.

An important feature provided by Rosetta is the
Read-Eval-Print-Loop (REPL). This is an interactive
window visible in the bottom left of Figure 6, where
the user can test functions and see the results in the
BIM without the need of writing another script. The
REPL receives the user input, evaluates it and shows
the result to the user, then becoming ready to receive
another input. If the user wants to see how a certain
function works with a specific parameter, he can use
the REPL and quickly see if the function behaves as
he expects.

CONCLUSIONS
The GD approach created for CAD applications
proved very useful but nowadays these tools are be-
ing replaced with BIM. This paradigm is very differ-
ent from CAD, so the approach originally created no
longer fits.

To solve this problemwe propose a solution that
allows users to create GD programs with a set of ab-
stractions designed for BIM tools. Our solution ex-
tends Rosetta, a IDE for GD. By taking advantage of
Rosetta, users have a development environment fit
for the needs of beginners. Due to the many front-
ends available, users can pick the programming lan-
guage they prefer. Also, since the abstraction layer

we implemented takes into consideration generic
BIM concepts and not the concepts that are exclusive
of a given tool, we expect that users will be able to
create portable programs that explore different BIM
tools.

We are currently evaluating our solution with a a
groupof architects that are alsonoviceprogrammers.
In futureworkweplan to expand this solution adding
more functionality to the BIM abstraction layer. Also,
we plan to support aditional BIM back-ends such as
theArchiCADback-end,which is alreadybeingdevel-
oped.

ACKNOWLEDGEMENTS
This work was partially supported by national funds
through Fundação para a Ciência e a Tecnolo-
gia (FCT) with reference UID/CEC/50021/2013, and
by the Rosetta project under contract PTDC/ATP-
AQI/5224/2012.

REFERENCES
Aish, R. 2012 'DesignScript: origins, explanation, illus-

tration.', Computational Design Modelling, Springer
Berlin Heidelberg, pp. 1-8

Aish, R. 2013 'DesignScript: Scalable Tools for Design
Computation', eCAADe 2013: Computation and Per-
formance–Proceedings of the 31st International Con-
ference on Education and research in Computer Aided
Architectural Design, Delft, The Netherlands, pp. 18-
20

Aish, R. andWoodbury, R. 2005 'Multi-level interaction in
parametric design', Smart Graphics, Springer Berlin
Heidelberg, pp. 151-162

Azhar, S., Hein, M. and Sketo, B. 2008 'Building Infor-
mation Modeling: Benefits, Risks and Challenges',
Proceedings of the 44th ASC National Conference,
Auburn, Alabama, USA

Eastman, C., Teicholz, P., Sacks, R. and Liston, K. 2008, BIM
Handbook: A Guide to Building InformationModeling
for Owners, Managers, Designers, Engineers and Con-
tractors, John Wiley & Sons, Hoboken, New Jersey

Ibrahim, M., Krawczyk, R. and Schipporeit, G. 2004, 'Two
Approaches to BIM: A comparative study', eCAADe
Conference, 22, pp. 610-616

Leitão, A., Santos, L. and Fernandes, R. 2014 'Pushing the
Envelope: Stretching the Limits of Generative De-

BIM - Early Design - Volume 1 - eCAADe 33 | 643



sign', Blucher Design Proceedings, pp. 235-238
Lopes, J. and Leitão, A. 2011 'Portable Generative Design

for CAD Applications', Proceedings of the 31st annual
conference of the Association for Computer Aided De-
sign in Architecture, pp. 196-203

McCormack, J., Dorin, A. and Innocent, T. 2004 'Gener-
ative design: a paradigm for design research', Pro-
ceedings of Futureground, Design Research Society,
Melbourne

Nicholson-Cole, D. 2004, Introduction to Object Making
with Archicad: GDL for Beginners, Graphisoft R&D

Payne, A. and Issa, R. 2009, The grasshopper primer. Zen
‘Edition, Robert McNeeI & Associates

Terzidis, K. 2003, Expressive form: a conceptual approach
to computational design, Spon Press, London and
New York

[1] http://lmnts.lmnarchitects.com/bim/superb-lyreb
ird/

[2] http://dynamobim.com/learn/
[3] https://11arch461.files.wordpress.com/2011/10/d

ef_extent.jpg
[4] http://through-the-interface.typepad.com/.a/6a0

0d83452464869e20192ac16a8d2970d- pi
[5] http://inthefold.autodesk.com/.a/6a017c3334c51a

970b019b01bc21de970c-pi
[6] http://helpcenter.graphisoft.com/guides/archica

d-18-int-reference-guide/user-interface-refer
ence/dialog-boxes/gdl-geometric-description-l
anguage/gdl-object-editor/

644 | eCAADe 33 - BIM - Early Design - Volume 1


