
Extending Processing to CAD Applications

Hugo Correia1, António Leitão2
1,2INESC-ID, Técnico Lisboa
1,2{hugo.f.correia|antonio.menezes.leitao}@tecnico.ulisboa.pt

The Processing language was created to teach programming to the design,
architecture, and electronic arts communities. Despite its success, Processing has
limited applicability in the architectural realm, as no CAD (Computer-Aided
Design) or BIM (Building Information Modeling) application supports
Processing. As a result, architects that have learnt Processing are unable to use
the language in the context of modern, script-based, architectural work. This
work joins Processing with the world of CAD or BIM applications, creating a
solution that allows architects to prototype new designs using Processing and
generate results in a CAD or BIM application. To achieve this, we developed an
implementation of Processing for the Rosetta programming environment,
allowing Processing scripts to generate 2D and 3D models in a variety of CAD or
BIM applications, such as AutoCAD, Rhinoceros3D, SketchUp, and Revit.

Keywords: Processing Language, Processing Script, Generative Design, 3D
Modeling

INTRODUCTION
Many technological solutions have influenced areas,
such as design and architecture, where they have ex-
plored different tools to aid the creation of new de-
signs. With thehelpofpowerful Computer-AidedDe-
sign (CAD) and Building Information Modeling (BIM)
environments, these communities have been able
to develop increasingly complex and innovative de-
signs in a more productive manner. However, in
some cases, a manual design process in a CAD tool
is not sufficient, as trivial geometry that is constantly
repeated in a design could be easily generated us-
ing automated mechanisms. For this reason, these
systems quickly found the need to provide Applica-
tion Program Interfaces (APIs) to their users; allow-
ing them to explore programming in the context of
a CAD or BIM application. For example, AutoCAD

offers an API usable from C++, AutoLisp, and VBA;
while Rhinoceros 3D supports RhinoScript, Python,
and Grasshopper.

A novel approach that has been increasingly ex-
plored is Generative Design (GD), which takes advan-
tage of programming solutions to enhance the de-
sign creation process (McCormack et al. 2004). Using
GD, artists, designers, and architects can test differ-
ent design combinations, fostering their capacity for
innovation and creativity, and, at the same time, pro-
viding a low-cost solution to explore different design
prototypes. Due to this phenomenon, several pro-
gramming languages and Interactive Development
Environments (IDEs) have been adapted, or specifi-
cally developed, to fulfil the needs of these artistic
communities. A well-known example is Processing,
created to provide a pedagogical and highly visual

Design Tools - Concepts - Volume 1 - eCAADe 33 | 159



approach to programming.
Processing is oneof themost successful efforts to

bring programming into the realm of design, art, and
architecture. There are numerous examples of the
use of Processing in digitally-generated paintings,
tapestries, photographs, installations, choreogra-
phies, visualizations, simulations, sculptures, music,
games, etc. Unfortunately, in architecture, Process-
ing is much less used than other programming lan-
guages such as AutoLISP, VisualBasic, RhinoScript,
Grasshopper, Ruby, or Python, as none of the pro-
fessional CAD tools that are typically used by archi-
tects (e.g. AutoCAD, Rhinoceros 3D, ArchiCAD, etc.)
include Processing as one of its scripting languages.

In this paper, we present a solution that allows
Processing to be used in the context of a CAD or BIM
application. Our solution makes the following con-
tributions: (1) we allow Processing to be used in the
context of a CAD or BIM environment, extending the
language with 2D and 3D modeling primitives that
are adequate for architectural work; (2) we allow Pro-
cessing scripts to take advantage of modules and li-
braries in other languages developed for architec-
tural work; finally, (3) we provide a development en-
vironment equippedwith an interactive evaluator for
Processing that is suitable for experimental design
work. Our solution is based on an implementation
of Processing for Rosetta, an IDE for GD that supports
programming in a variety of languages, includingAu-
toLISP, Racket, JavaScript, and Python, while allow-
ing the generation of architectural models in a vari-
ety of CAD tools, including AutoCAD, Rhinoceros 3D,
and SketchUp.

The following sections describe the Processing
programming language and our Processing imple-
mentation developed for Rosetta. We explain our
proposed extensions that make Processing suitable
for architectural work in a CAD or BIM application,
and evaluate examples that illustrate the use of Pro-
cessing in the context of script-based architectural
work.

THE PROCESSING LANGUAGE
The Processing language (Reas and Fry 2007) was
developed at MIT Media Labs and was heavily in-
spired by the Design by Numbers project (Maeda
1999), with the goal to teach computer science to
artists and designers with no previous programming
experience. The language has grown over the years
with the support of an academic community, which
has written several educational materials demon-
strating how programming can be used in the visual
arts. Processing is based on the Java programming
language, being statically typed and sharing Java's
object-oriented capabilities. This design decision
was due to Java being a mainstream language used
by a large community of developers. Moreover, as
Processingwas developed to promote programming
literacy in design and architecture, its syntax enables
users to easily migrate to other languages that share
Java's syntax, such as C, C++, C#, or JavaScript.

Notwithstanding, as Java is a fully featuredmulti-
purpose programming language, it requires users to
grasp a considerable amount of knowledge which
can be irrelevant for users that want to develop sim-
ple scripts for visual purposes. As a result, several sim-
plifying features were introduced in Processing that
allow users to quickly test their design ideas without
requiring extensive knowledge of the Java language.
For instance, to execute code, Java requires users
to define a public class and a public main method.
Processing simplifies this by removing these require-
ments, allowing users towrite simple scripts (i.e. sim-
ple sequences of statements) that produce designs
without the boilerplate code that is needed in Java.

Fundamentally, Processing enables users to
gradually introduce more complex tools to their
programming toolbox. Users start by learning to
develop simple scripts, quickly visualizing their de-
signs. After some time, as there is so much one can
achieve using simple scripts, they shift into using
higher levels of abstraction, such as functions and
classes, which enable them to create more complex
designs in an easier way. Finally, they can shift into
a full Java style mode of programming taking advan-

160 | eCAADe 33 - Design Tools - Concepts - Volume 1



tage of its object-oriented features, allowing the use
of libraries andcapabilities that the Javaenvironment
provides.

On top of being a programming language, Pro-
cessing offers the Processing Development Environ-
ment (PDE), an IDE for the Processing language. In
the PDE (illustrated in figure 1), users can develop
their scripts using a simple and straightforward envi-
ronment, which is equippedwith a tabbededitor and
IDE services, such as syntax highlighting and code
formatting. Moreover, Processing users can create
custom libraries and tools that extend the PDE with
additional functionality, such as networking, PDF
rendering support, color pickers, sketch archivers,
etc.

Themain advantage of Processing is its ability to
help users quickly test and visualize their creations,
incrementally evolving them. This is possible due
to Processing's rendering system, which is based on
OpenGL, thus allowing designers to rapidly render
complex and computationally intensive designs that
would take the typical CAD system much longer to
produce. Furthermore, Processing offers users a set
of modeling tools that are specially tailored for vi-
sual artists, namely 2D primitives, and a set of built-in
classes specifically created for design. These primi-
tives demonstrate the advantages of using Process-

ing as a tool for testing and developing design pro-
totypes.

Unfortunately, Processing fails to provide a con-
nection with CAD or BIM applications. The Process-
ing community is therefore limited to Processing's
rendering system, that is based on OpenGL, lacking
the CAD modeling features which are used by archi-
tects in their day-to-daywork. Our solution joinsboth
worlds, allowing architects and designers to proto-
type newdesigns using Processing; while generating
the results in a CAD or BIM environment. Therefore, a
wide community of artistic programmers can explore
the modeling capabilities of a CAD environment us-
ing the Processing language. Moreover, by connect-
ing Processing to CADapplications, architects that al-
ready use CAD in their day-to-day work can take ad-
vantage of a pedagogic programming language in a
CAD application and explore its wide range of exam-
ples and educational materials.

EXTENDING PROCESSING TO CAD APPLI-
CATIONS
TomakeProcessingmoreuseful for the large commu-
nity of designers and architects that have learned the
language, we extended Rosetta to support the Pro-
cessing language. Rosetta (Lopes and Leitão 2011)
is an IDE for GD, implemented using the Racket lan-

Figure 1
The Processing
Development
Environment

Design Tools - Concepts - Volume 1 - eCAADe 33 | 161



guage (Flatt 2012) and taking advantage of the ped-
agogical capabilities of the DrRacket programming
environment (Findler et al. 2002). Compared to
other development environments, such as Grasshop-
per, the main advantage of Rosetta is the empha-
sis on choice and portability; scripts can be writ-
ten using one of the different supported languages
(currently, AutoLisp, JavaScript, Scheme, Racket, and
Python) and generate identical models in any of
the supportedCADapplications (currently, AutoCAD,
Rhinoceros 3D, SketchUp, and Revit). This means
that, by connecting Processing to Rosetta, it be-
comes possible for architects that have learned the
language to use it in the context of modern, script-
based, architectural work.

Our implementation is based on a traditional
compiler pipeline composed by: tokenization, pars-
ing, static analysis (including lexical scope analy-
sis and type-checking) and, finally, code generation
phases. Our approach was to develop Processing as
a new Racket language module (Tobin-Hochstadt et
al. 2011), extending Rosetta with Processing and in-
tegrating Processing with DrRacket - Racket's peda-
gogic IDE.

Firstly, the compilation process starts by read-
ing Processing source code and transforming it into
tokens. Subsequently, these tokens are given to
the parser that generates an intermediated repre-
sentation of the original Processing source code in
the form of an Abstract Syntax Tree (AST). This was
accomplished by developing lexical and syntacti-
cal specifications that adhere to Processing's syntax
rules.

Secondly, the generated AST is analyzed, taking
into consideration the language definitions of both
Processing and Racket, particularly, its scoping and
typing rules. We start by making a scope analysis
of the AST, by identifying when definitions (i.e. vari-
ables, functions, classes) are created, adding them
to a custom scoping mechanism that saves the type
declarations provided in the definitions. After this
process, we check the types of each node of the AST,
until the full AST is traversed. Each node is tested for

type correctness and, when necessary, its type is pro-
moted. In the event that types do not match, a type
error is produced, informing the user of the location
of the type error.

Finally, after the AST is fully analyzed and type-
checked, semantically equivalent Racket code is gen-
erated and loaded into Racket's virtual machine,
where it is executed.

PROCESSING FOR ARCHITECTURALWORK
Besides supporting the traditional syntax and seman-
tics of the Processing language, our implementation
extends Processing to: 1) support awider set ofmod-
eling primitives, 2) access libraries that are written in
other programming languages, and 3) take advan-
tage of an IDE tailored for the Processing language
that offers interactive evaluation.

Extensions for 3Dmodeling are essential for Pro-
cessing to be used in the context of professional CAD
tools. The original Processing language only pro-
vides very basic primitives for 3D modeling, namely,
a box, and a sphere (with variable resolution). Users
that need tomodel other complex shapes have to ex-
plicitly create them using beginShape and endShape
primitive operations. These operations require the
user to explicitly define the set of vertexes that de-
scribe each surface of the shape and how they are
connected (e.g. using lines, triangles, or quadrangu-
lar strips).

Unfortunately, this modeling process is very un-
natural for designers and architects. Therefore, as
the current Processing environment is rather poor in
these modeling operations, we augmented it with a
large set of primitive shapes (e.g., cylinder, cone and
cone frustum, regular pyramid, torus, etc), boolean
operations (e.g., union, intersection, and difference),
and many more (e.g., extrusion, sweeping, and loft-
ing). These primitive shapes and operations signifi-
cantly reduce the effort needed to generate complex
designs.

Moreover, although Processing provides some
abstractions, such as PVector to abstract the use of
vectors, it does not have an appropriate abstraction

162 | eCAADe 33 - Design Tools - Concepts - Volume 1



for coordinates. Usually, users solve this issue by
passing points around in a array or even by passing
each coordinate point information individually, re-
sulting in long function headers and additional ver-
bosity in the program. On the other hand, Rosetta
has custom mechanisms to abstract coordinate sys-
tems, namely cartesian (xyz), polar (pol), and cylin-
drical (cyl) which can be used and combined inter-
changeably. As a result, these abstractions (xyz, pol,
and cyl) are made available in our system, so that
users can take advantage of them in their designs,
enabling them to use an intuitive and simple mecha-
nism to manipulate and build their models.

Our work also has the advantage of allowing
users to explore librarieswritten in another language.
This ability not only allows designers and architects
to use previously created libraries for GD (are already
used with Rosetta); but also allows us to access li-
braries and frameworks of any language that Rosetta
supports (e.g. Racket, JavaScript, and Python), of-
fering an opportunity for users to explore other ap-
proaches to programming.

Finally, an important feature that is essential for
Processing users is the existence of IDE for the lan-
guage. Therefore, as Rosetta is integrated in DE (i.e.
DrRacket), we adapted it to support the Processing
language. As illustrate in figure 2, our system is
very similar to the PDE, sharing features such as syn-
tax highlighting, a tabbed editor, and code format-

ting. Additionally, we provide an interactive evalua-
tion mechanism which is unavailable in the original
Processing environment, allowing users to evaluate
small fragments of Processing programs in a Read-
Eval-Print-Loop (REPL). This is an important feature
for incremental development of programs, as it al-
lows quick experimentation and validation of scripts
that are being developed; which is particularly im-
portant for designers and architects that want to vi-
sualize the evolution of their design as the script is
being written.

EVALUATION
Themain reason for the development of our Process-
ing implementation was to promote its use in the
context of architectural problems. In this section, we
present a few examples that demonstrate this use.

Many of Processing's 2D primitives are directly
available in Rosetta, therefore primitives such as line,
ellipse, arc, rect, quad, and trianglewere easily imple-
mented, requiring only small adjustments. For ex-
ample, Processing's triangleprimitive is implemented
using Rosetta's polygon primitive (which receives a
list of points, creating a polygonal shape), that in this
case receives the triangle's three points.

As previously mentioned, Processing provides a
rather poor set of 3D modeling primitives, therefore
we augmented Processing's primitive set with addi-

Figure 2
The Processing
Development
Environment and
DrRacket using
Processing

Design Tools - Concepts - Volume 1 - eCAADe 33 | 163



tional of 3DmodelingprimitivesprovidedbyRosetta,
such as cylinder, cone, pyramid, or torus. Furthermore,
Processing offers users a set of transformation prim-
itives such as rotate, scale, and translate to transform
and manipulate their shapes. Using Rosetta, we can
expand this set of transformations with primitives
such as union, intersection, subtraction, loft, or sweep,
which are heavily used in architectural work. For in-
stance, figure 3 illustrates the use of the union, inter-
section, and subtraction primitives with a box and a
sphere.

Figure 3
union, intersection,
and subtraction of a
sphere with box

Furthermore, to illustrate the capabilities of our
implementation, consider the following Processing
code:

float da = PI/6, db = PI/5;

void tree(float x, float y,
float l, float a){

float x2 = x - l*cos(a),
y2 = y - l*sin(a);

line(x,y,x2,y2);
if (len < 10) {

ellipse(x2,y2,0.6,0.6);
} else {

tree(x2,y2,random(.7,.8)*l,a+da);
tree(x2,y2,random(.7,.8)*l,a-db);

}
}

This example generates a fractal tree that gradu-
ally reduces the length of each tree branch, using
Processing's line and ellipse primitives to create its
branches and leaves. Note that the rate by which the
length of each branch is controlled by a randomly
generated number.

Our goal was to use the same Processing code,
and, with it, generate the same drawing in different
CAD applications. Figure 4 illustrates this behaviour,

showing the use of tree in the original Processing en-
vironment, AutoCAD and Rhinoceros 3D. The only
changemade to the original Processing invocation of
tree was to specify which CAD back-end to use. This
is accomplished by executing the backend function,
that allows the architect to specify the CAD environ-
ment to use in his design. Note that the generated
drawings have slight variations, because of the ran-
dom function which is used to produce shorter tree
branches.

Notwithstanding, these 2D illustrations have lim-
ited applicability for architectural work. They can
however be a base idea to explore in other designs.
For instance, consider the following Processing code:

float da = PI/4;
void tree3D(float x, float y, float z,

float l, float a, float r){

float x2 = x + l*cos(a)*sin(da),
y2 = y + l*sin(a)*cos(da),
z2 = z + l*cos(da),

float r2 = r * 0.55;

coneFrustum(xyz(x,y,z),r,
xyz(x2,y2,z2),r2);

if (l < 7) {
box(xyz(x2-3,y2-3,z2-0.5),6,6,1);

} else {
float l2 = l*0.7, a2 = a + PI;
tree(x2,y2,z2,l2,a2*1/4,da,r2);
tree(x2,y2,z2,l2,a2*3/4,da,r2);
tree(x2,y2,z2,l2,a2*5/4,da,r2);
tree(x2,y2,z2,l2,a2*7/4,da,r2);

}
}

The previous code, shows an example of howwe can
quickly migrate from a simple 2D drawing to a more
complex and architecturally useful creation. In this
case, the branchesweremodeled using the coneFrus-
tumprimitive, while the endingsweremodeledusing
a box, thus creating a tree inspired column. Note that
the coneFrustum primitive is another example of a
primitive that our implementation brings to Process-
ing's modeling set. Also note that coneFrustum and

164 | eCAADe 33 - Design Tools - Concepts - Volume 1



Figure 4
2D fractal tree
generated in
Processing,
AutoCAD, and
Rhinoceros 3D

box where adapted to support Rosetta's coordinates
abstractions (in this case, the xyz primitive). This al-
lows users to take advantage of a set of coordinate
abstractions which allows them to manipulate their
models efficiently.

Again, using the backend primitive, we can gen-
erate thesemodels in different CADapplications. Fig-
ure 5 shows the execution of tree (adapted for 3D) in
AutoCAD and Rhinoceros 3D, illustrating that, with
little effort, architects can run Processing scripts in
different CAD or BIM application.

Finally, we demonstrate in figure 6, another ex-
ample of our Processing implementation; but that
uses previously defined libraries that are written in
another language. To produce this example, our Pro-
cessing code accesses a library written in the Racket
language that is capable of generating highly para-

metric skyscrapers, allowing users to specify, in Pro-
cessing, the height, radius, rotating factor, etc. of
each skyscraper.

RELATEDWORK
The Processing language has been used in other con-
texts outside the original Processing environment.
Processing.js [1] is a JavaScript implementation of
Processing, where developers can use Processing's
approach to design 2D and 3D geometry in a HTML5
compatible browser. Similarly, P5.js [2] is a recent
JavaScript library that allows users to program in
the web using Processing's metaphors. Similarly,
Ruby-Processing [3] implements Processing graphi-
cal primitives in the context of the language Ruby,
while Processing.py [4] does the same for the Python
language. One important difference is that Process-

Figure 5
3D column tree
generated in
AutoCAD and
Rhinoceros 3D

Design Tools - Concepts - Volume 1 - eCAADe 33 | 165



Figure 6
Skyscrapers
rendered in
AutoCAD using
external libraries

ing.py is fully integrated within Processing's devel-
opment environment while Ruby-Processing does
not have a dedicated IDE. On the other hand, Ruby-
processing offers sketch watching (code is automati-
cally run when new changes are saved) and live cod-
ing (the sketch is updated during code changes).

Both Processing.js and P5.js have attempted to
bring Processing's power to the Web, while Ruby-
Processing and Processing.py are clear examples of
Processing reaching out to new languages. However,
none of them address the needs of architects that
want to work in the context of a typical professional
architectural tool, such as AutoCAD, Rhinoceros 3D,
or Revit.

Finally, OBJExport [5] is a library that export
meshes from Processing to OBJ or X3D files. It can
export color meshes with triangle and quadrangle
shaped faces as an OBJ or X3D with a PNG texture
map, that can then be imported into some CAD ap-
plications. However, using this approach, we lose the
interactivity of programming directly in a CAD appli-

cation, as users have to generate and import the OBJ
file each time the Processing script is changed, cre-
ating a cumbersome workflow. Moreover, as shapes
are transformed to meshes of triangles and points,
there is a considerable loss of information, as the se-
mantic notion of the shapes is lost.

CONCLUSIONS
Implementing Processing for traditional CAD appli-
cations benefits architects and designers by allow-
ing them to take advantage of Processing's visual
capabilities. Augmenting Processing with new de-
sign paradigms and abstractions, namely 3D model-
ing primitives (torus, cone, cylinder, etc.) and trans-
formations (union, subtraction, loft, etc.), presents
a strong reason for the architecture community to
take advantage of our solution. Our implemen-
tation clearly empowers Processing's environment
with modeling features that help Processing users
create new designs using a more expressive mod-
eling approach. Moreover, architects can easily ac-

166 | eCAADe 33 - Design Tools - Concepts - Volume 1



cess and combine several modeling primitives, en-
abling the creation of new designs that would be
much harder to achieve in the original Processing en-
vironment.

Nowadays, the Processing language and de-
sign approach is also being explored with other
programming languages (e.g. Ruby, Python, and
JavaScript). Our implementation also encompasses
this feature, as it allows us to explore and combine
Processing with any of the different languages that
are provided by Rosetta, namely Scheme, Python,
JavaScript, Racket, and AutoLISP.

The PDE is an essential feature of the Process-
ing language, as it reduces beginners' programmin-
glearning curve. Our implementation offers a simi-
lar solution, by adapting DrRacket to support our im-
plementation, providing a simplified editor and de-
velopment environment, which is almost identical to
the PDE. Additionally, we provide an important addi-
tional feature, the REPL, which is unavailable to other
Processing implementations, providing users with a
mechanism to quickly and interactivity test out new
ideas.

Although still in the testing phase, our Process-
ing implementation already fulfils the basic needs of
architects, namely the ability to write scripts and the
visualization of the results in a professional CAD ap-
plication. Afterwards, our goal is to build-upon our
existing work, and progressively introduce more ad-
vanced mechanisms of the language, such as inheri-
tance and interfaces in classes.

Having Processing in Racket allows us to connect
with CAD applications, taking advantage of new 3D
modelling primitives tailored for architectural work
while using, at the same time, an IDE tailored for the
Processing language. Moreover, we have the ability
of accessing libraries that arewritten in any language
of the Racket ecosystem. For all the reasons men-
tioned above, our system offers compelling motives
for the architecture community to exploreour system
in their architectural endeavors.

ACKNOWLEDGEMENTS
This work was partially supported by national funds
through Fundação para a Ciência e a Tecnolo-
gia (FCT) with reference UID/CEC/50021/2013, and
by the Rosetta project under contract PTDC/ATP-
AQI/5224/2012.

REFERENCES
Findler, RB, Clements, J, Flanagan, C, Flatt, M, Krish-

namurthi, S, Steckler, P and Felleisen, M 2002,
'DrScheme: A programming environment for
Scheme', Journal of functional programming, 12(02),
pp. 159-182

Flatt, M 2012, 'Creating languages in Racket', Communi-
cations of the ACM, 55(1), pp. 48-56

Lopes, J and Leitão, A 2011 'Portable generative design
for CAD applications', Proceedings of the 31st annual
conference of the Association for Computer Aided De-
sign in Architecture, pp. 196-203

Maeda, J 1999, Design by Numbers, MIT Press, Cam-
bridge, MA, USA

McCormack, J, Dorin, A and Innocent, T 2004 'Genera-
tive design: a paradigm for design research', Future-
ground Conference Proceedings, Melbourne

Reas, C and Fry, B 2006, 'Processing: programming for
the media arts', AI & SOCIETY, 20(4), pp. 526-538

Tobin-Hochstadt, S, St-Amour, V, Culpepper, R, Flatt, M
and Felleisen, M 2011 'Languages as libraries', Pro-
ceedings of the 32ndACMSIGPLAN conference on Pro-
gramming language design and implementation, pp.
132-141

[1] http://processingjs.org/
[2] http://p5js.org/
[3] https://github.com/jashkenas/ruby-processing/wi

ki
[4] http://py.processing.org/
[5] http://n-e-r-v-o-u-s.com/tools/obj/

Design Tools - Concepts - Volume 1 - eCAADe 33 | 167


