
PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

TEACHING COMPUTER SCIENCE WITH GEOMETRIC MODELING

António M. Leitão, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

antonio.menezes.leitao@ist.utl.pt

ABSTRACT

Computer Science is becoming a mandatory subject in many high schools and

universities. In order to convince students of the actual usefulness of the subject, it is

important to teach it in the context of their main interests. In this paper we describe a

Computer Science course tailored for students of Architecture. The course was designed

to address several architectural needs that were previously identified as good examples

for the application of Computer Science and it places a strong emphasis in the use of

geometric concepts, particularly, three-dimensional geometric modeling. During the

course, students solve a set of architectonic problems using algorithms, which they

implement in Racket, a pedagogic programming language. This approach allows students

to learn and explore Computer Science as an important tool for architecture and design.

INTRODUCTION

As it happened with other disciplines, such

as Mathematics and Physics, Computer

Science is becoming a mandatory subject

in many high schools and universities.

Unfortunately, making a subject mandatory

does not necessarily mean that students

will enjoy it. In order to convince students

of the actual usefulness of the subject, it is

important to teach it in the context of their

main interests.

In this paper we describe a Computer

Science course tailored for students of

Architecture which we have been

developing in the last seven years. Before

designing the course, we interviewed

several architects and students of

architecture and we studied their activities.

This allowed us to identify a set of tasks

where we could demonstrate the

usefulness of Computer Science for

Architecture.

Using the identified tasks as input, we

developed the course in such way that

several of those tasks ended up becoming

the starting point for the explanation of the

subject matter.

Given the architectural context, it should

not be surprising that the course places a

strong emphasis in the use of geometric

concepts, particularly, three-dimensional

geometric modeling, as motivating topics

for the exploration of Computer Science.

For example, coordinates and coordinate

systems are used to explain data

abstraction. The Doric order motivates

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

functional abstraction. Stairs, step

pyramids, corbeled arches, and fractals are

good examples for the explanation of

recursion. City modeling allow us to

explore state-based computation and

randomness. Trusses and space-frames

are good applications of data-structures.

Several different architectural examples,

including the columns of the Sagrada

Familia and the shells of the Sydney Opera

House, are used to explain constructive-

solid geometry and shape transformation.

Finally, parametric curves and surfaces

provide good use-cases for higher-order

functions. The course covers a significant

fraction of both a Computer Science

course and a Geometric Modeling course,

and provides students with the necessary

programming skills for solving a large

range of design problems.

COMPUTER SCIENCE COURSES

Nowadays, there are several architecture

courses that include computer science

techniques. The Massachusetts Institute

of Technology, for example, offers several

different courses in this area, including

Introduction to Computation in Architectural

Design and Design Scripting. The first one

teaches building information modeling,

generative methods, prototyping, shape

calculation and simulation, focusing on the

use of Revit. In the final part of the course,

students learn shape grammars in the

context of AutoCAD. The second course

teaches basic programming concepts and

representation of formal design knowledge,

including parameterized objects,

procedural representation of form, typology

and architectural grammar, and related

topics. This course is divided into two

parts, one where students learn

RhinoScript in order to work with

Rhinoceros 3D, and the other where they

learn Processing.

In most cases, these courses take

advantage of the programming languages

that are available in most CAD tools,

namely RhinoScript and Grasshopper for

Rhinoceros 3D, VBA and AutoLISP for

AutoCAD, MEL for Maya, GDL for

ArchiCAD, etc. This has the obvious

advantage of providing a working

environment that is directly attached to a

tool that, supposedly, they know how to

use. On the other hand, this is also the

cause of two important problems that affect

all these courses: (1) students learn how to

program for a specific CAD tool but, in

general, it is very difficult for them to

program for a different CAD tool, and (2),

the programming languages that are

available in those CAD tools are, in

general, not well suited for the pedagogic

teaching of computer science.

In order to avoid the first problem, some

schools teach more than one programming

language or CAD tool. The University of

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

Campinas, for example, is currently

experimenting teaching both VBA and

Grasshopper [1]. The University of East

London teaches NetLogo 3D, VBA,

RhinoScript, AutoLISP, and MEL.

Unfortunately, this requires additional

teaching time or, alternatively, less

teaching material related to computer

science. This leads us to consider a

different approach: teach just one

language, but make it independent of any

particular CAD tool by focusing on the

generic geometric modeling operations that

are available in all CAD tools.

In order to solve the second problem, we

must select a programming language with

good pedagogic qualities. According to

several studies [2, 3, 4], the Scheme family

of programming languages is considered

one of the best options for introductory

Computer Science courses. Racket is a

recent and prominent member of that

family that places a strong emphasis on

the pedagogic aspects of the learning

process. For these reasons, we selected

Racket as the programming language to

use during the course.

The structure of the course was inspired by

the famous textbook “Structure and

Interpretation of Computer Programs”, by

Sussman and Abelson [5], but the content

is almost exclusively devoted to the

solution of architectural problems. In the

next sections we explain the main topics of

the course.

FUNDAMENTAL CONCEPTS

We begin by teaching the use of algorithms

for the rigorous description of processes

and the use of programming languages as

the medium for such descriptions. We then

explain the syntax and semantics of

programming languages and, particularly,

of Racket.

Throughout the course, we place a strong

emphasis on presenting the programming

language as a syntactical variation of

mathematics. To this end, we focus on the

functional programming paradigms, and we

minimize the use of concepts that do not

have a simple equivalent in mathematics.

This approach takes advantage of the fact

that students already have several years of

experience in the use of mathematics, thus

simplifying the learning process.

DATA ABSTRACTION

After the introduction of the fundamental

concepts, we move on to data structures

and data abstraction. This is an important

topic that paves the way for an explanation

of coordinates and coordinate systems.

Students learn how to describe locations in

space and how to operate them in

geometric terms, using rectangular, polar,

cylindrical and spherical coordinate

systems. It is also in this part of the course

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

that we explain basic modeling operations,

first in two dimensions (lines, circles,

rectangles, etc.) and then in three

dimensions (spheres, boxes, cylinders,

etc.). Instead of discussing the specific

operations of a particular cad tool, such as

AutoCAD, we work with abstract versions

of these operations that are applicable to

most CAD tools. This allows us to gain

independence from any particular CAD tool

and simplifies the transition to other CAD

tools.

FUNCTIONAL ABSTRACTION

This topic explains parameterized

functions, using the Doric order as a

motivating example: students learn how to

parameterize shapes and how to establish

dependencies between parameters so that

a particular architectural canon is

achieved.

In this part of the course, the only control

structures that we teach are function calls,

conditional expressions, and recursion.

Note that we postpone teaching while-,

repeat-, and for-loops, because they break

the mathematical properties of the

programs, thus making it more difficult for

students to informally prove the

correctness of their programs. In fact,

recursion is strictly more powerful and, in

many cases, easier to use that any specific

looping construct, so that is what our

students learn.

STATE AND RANDOMNESS

Immediately after recursion, we teach

computational state, in the sense of named

values that affect a computation but that

are also affected by that computation. This

requires assignment but we restrict its use

to functions that really benefit from it, such

as random number generators.

We also teach students to hide the

assignment operations behind abstraction

barriers so that they can forget that they

are being used. As usual, students

experiment these concepts in the context

of some architectural problem. In this case,

we ask them to model a simplified city,

exemplified in Figure 1.

Figure 1 –Recursive and randomized generation of

cities.

In this modeling exercise, students

combine several levels of recursion with

the use of randomness, so that no two

buildings are exactly identical.

Besides learning how to use randomness,

our students also learn how to control

randomness. This is also visible in Figure

1: only a predefined fraction of the

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

buildings are cylindrical towers, and the

height of each building, in spite of being a

random value, is capped by a Gaussian

distribution.

RECURSIVE DATA STRUCTURES

After acquiring some practice in the use of

recursion, students learn recursive data

structures, such as lists. We place a strong

emphasis in the use of lists for separating

the generation of geometrical coordinates

from its use for some particular purpose.

As examples, students are asked to

implement sinusoidal curves and space

frames, such as the one presented in

Figure 2, where both concepts are used.

Figure 2 –A space frame with a circular arc whose

radius follows a sinusoidal function.

CONSTRUCTIVE SOLID GEOMETRY

The next topic in the course is Constructive

Solid Geometry (CSG). Instead of

explaining the specific operations provided

by the CAD tool being used, we

concentrate our efforts in describing a solid

as an (infinite) set of points in space, so

that modeling operations can be explained

in terms of set operations such as union,

intersection and subtraction.

In order to allow a mathematical treatment

of the subject matter, we also introduce the

concepts of empty set and universal set, as

identity elements of the set operations. We

also demonstrate that without these special

elements, that do not have

correspondence in any CAD tool, it

becomes more difficult to define CSG

operations over sequences of shapes.

This approach makes it clear to the

students that algorithmic descriptions

become easier to develop when we follow

a mathematically correct approach instead

of just using what is provided by the

scripting languages of the CAD tools being

used. Figure 3 shows an example of the

use of the CSG operations for modeling a

shelter.

Figure 3 –A shelter made using cylinders, a sphere, and

CSG operations.

Besides the basic CSG operations, we also

introduce shape forming operations such

as revolving, extrusion, sweeping, and

lofting, and geometric transformations,

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

such as, translation, rotation, scaling, and

mirroring, as always, by teaching functional

abstractions of the actual operations

provided by the CAD tool and by providing

actual architectural examples, such as the

columns idealized by Gaudi for the

Sagrada Familia cathedral or the shells

conceived by Jørn Utzon for the Sydney

Opera House.

HIGHER-ORDER FUNCTIONS

At this point of the course, students have

already acquired a strong set of modeling

approaches and they have been practicing

them in the laboratories. It is then time to

teach more advanced programming

techniques, particularly, those that depend

on the use of higher-order functions. These

are functions that accept other functions as

arguments and/or return other functions as

results.

To illustrate this powerful idea we design a

building modeled using a higher-order

function that accepts as argument the

function that defines the shape of the

balcony.

Students also learn higher-order

operations over collections, such as

mappings, filterings, and reductions, a skill

that becomes very useful to understand

other languages, such as MEL or

Grasshopper, that provide operators

applicable both to scalars and collections.

As another application of higher-order

functions, we explain the automatic

generation of three-dimensional models

from site data, a task that, previously,

students had to painfully do by hand. One

example of the outcome of this process is

presented in Figure 4.

Figure 4 –Automatic generation of three-dimensional

models from site data.

PARAMETRIC CURVES AND SURFACES

The final topics of the course are

parametric curves and surfaces, which

become trivial applications of higher-order

functions: a function describing a

mathematical curve or surface is

repeatedly applied over a range of

coordinates.

Particular emphasis is placed in teaching

some useful mathematical curves and

surfaces used in architecture that are not

available in most CAD tools, such as the

catenary, or the hyperbolic paraboloid. We

also explain how to map functions over

these curves and surfaces to produce

more sophisticated shapes, such as the

ones exemplified in Figure 5.

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

Figure 5 –Shapes that result from mapping simpler

shapes over parametric surfaces.

EVALUATION

As was previously described, our approach

for teaching Computer Science to students

of Architecture is strongly based in the use

of computer science concepts for the

exploration of architectural examples. The

fact that a large number of those examples

have been provided by the students

themselves is a testimony of the perceived

usefulness of the course for their

profession.

The students are evaluated using a written

exam and a project that is implemented by

groups of two students. The project is,

usually, the implementation of a parametric

model of some well-known building and is

proposed by the students. These projects

include works of Santiago Calatrava

(Turning Torso, Ysios Winery), Richard

Rogers (T4 Terminal/Barajas), Norman

Foster (Millau Viaduct, Millenium Tower),

etc. Figure 6 shows one example of a

student’s project.

Figure 6 –Calatrava’s Turning Torso, generated by the

program of one of the students.

Every year, the course is evaluated by the

students themselves, which provides us

with valuable feedback. These evaluations

allow us to conclude that (1) the students

recognize the transformative potential of

the subject matter for the Architecture

profession, (2) the course is perceived as a

moderately difficult one, mainly due to the

limited amount of time available (just one

semester), and (3), the course demands a

considerable amount of work, particularly,

during the execution of the project.

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

We are currently trying to convince the

school that it would be in the best interest

of our students to extend the course

duration to two semesters and we believe

that this extension will be implemented in

the near future.

CONCLUSIONS

In the last years we have been teaching

(and evolving) the course described in the

previous sections. The course structure

was initially influenced by Sussman [5] but

we gave it an almost extreme bias towards

applications in architecture. This is also the

approach taken by Woodbury [6] but

whereas he prefers to embrace the

modeling techniques promoted by the CAD

tool being used (Generative Components),

we opt for a more formal treatment of

programming, with smaller emphasis on

the CAD tool capabilities.

With time, the course evolved to become

independent of specific CAD features,

liberating students from the typical

addiction to a particular CAD tool. We

believe we have succeeded in this goal:

some of our students are currently

developing programs that work with both

AutoCAD and Rhino [7].

The programming language used during

the course is Racket but we are also

looking for other languages with similar

pedagogic qualities. Currently, the Python

programming language seems to be a

strong candidate and we have plans to

provide the exact same course but using

Python instead. Due to the support for

Python that is provided by several CAD

tools, this change will allow our students to

more easily move between those tools.

ACKNOWLEDGMENTS

We thank our students by the invaluable

feedback they have given us since 2007

and, specially, Paulo Fontainha for letting

us present his work. The work reported in

this article was supported by national funds

through FCT under contract Pest-

OE/EEI/LA0021/2013 and by the Rosetta

project under contract PTDC/ATP-

AQI/5224/2012.

REFERENCES

[1] G. Celani, C. Vaz: Cad Scripting and Visual Programming Languages for Implementing
Computational Design Concepts: A Comparison From a Pedagogical Point of View, in
International Journal of Architectural Computing, 1(10), 122-137, 2012.
[2] N. Chen: High School Computing: The inside Story, in The Computing Teacher, 19(8),
51-52, 1992.

PAPER TEMPLATE FOR GEOMETRIAS’14 PRESENTATION

[3] A. Berman: Does Scheme enhance an introductory programming course? Some
preliminary empirical results, ACM SIGPLAN Notices, 29(2), 44-48, 1994.
[4] M. Felleisen, C. Findler, M. Flatt, S. Krishnamurthi: The Structure and Interpretation of
the Computer Science Curriculum, in Functional and Declarative Programming in
Education, 21-26, 2002.
[5] H. Abelson, G. Sussman: Structure and interpretation of computer programs, MIT
Press, 1985.
[6] R. Woodbury: Elements of parametric design. Routledge, 2010.
[7] J. Lopes, A. M. Leitão: Portable Generative Design for CAD Applications, in Integration
through Computation: Proceedings of the 31st Annual Conference of the Association for
Computer Aided Design in Architecture (ACADIA), 196-203, 2011.

