On the Expressive Power of Programming Languages for
Generative Design

The Case of Higher-Order Functions

Anténio Leitdo’, Sara Proenca’
L2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
L2 fantonio.menezes.leitao|sara.proenca}@ist.utl.pt

The expressive power of a language measures the breadth of ideas that can be
described in that language and is strongly dependent on the constructs provided
by the language. In the programming language area, one of the constructs that
increases the expressive power is the concept of higher-order function (HOF). A
HOF is a function that accepts functions as arguments and/or returns functions as
results. HOF can drastically simplify the programming activity, reducing the
development effort, and allowing for more adaptable programs. In this paper we
explain the concept of HOF's and its use for Generative Design. We then compare

the support for HOF in the most used programming languages in the GD field
and we discuss the pedagogy of HOFs.

Keywords: Generative Design, Higher-Order Functions, Programming

Languages

INTRODUCTION
Generative Design (GD) involves the use of algo-
rithms that compute designs (McCormack 2004, Ter-
dizis 2003). In order to take advantage of comput-
ers, these algorithms must be implemented in a pro-
gramming language. There are two important con-
cepts concerning programming languages: compu-
tational power, which measures the complexity of
the problems that can be described using the lan-
guage, and expressive power, which measures the
breadth of ideas that can be described using the lan-
guage. The expressive power is directly related to
the human effort needed to describe those ideas in
a given programming language.

It is a known fact that any non-trivial program-

ming language is Turing-complete, meaning that
almost all programming languages have the same
computational power. In what regards their expres-
sive power, however, they can be very different. A
given programming language can be textual, visual,
or both but, in any case, it must be expressive enough
to allow the description of a large range of algo-
rithms.

Expressiveness is intuitively used to measure
how easy it is for a programming language to im-
plement complex ideas. There are studies (Felleisen,
1991) that showed that it is possible to rank lan-
guages according to a formal definition of expres-
sive power that captures the intuitive meaning of
the term. In this ranking, a language that supports,

Design Tool 1 - Volume 1 - eCAADe 32 | 257

for example, user-defined functions, (e.g.,, FORTRAN),
is more expressive than one that does not supports
them (e.g., BASIC). This does not mean that there is a
problem solvable in FORTRAN that cannot be solved
in BASIC. What it does mean is that there are prob-
lems that require larger implementation efforts from
a BASIC programmer than from a FORTRAN program-
mer.

In this paper, we claim that higher-order func-
tions (HOFs) are an important and powerful program-
ming language feature for GD. HOFs increase the ex-
pressiveness of a language, reducing the program-
mer's effort and improving code reusability.

In the next sections we describe the expressive
power allowed by HOFs, we illustrate the advantages
of its use in GD, and we analyse the level of support
provided by the programming languages currently
being used for GD. Finally, we describe a pedagogic
approach for teaching HOFs in the realm of GD prob-
lems.

HIGHER-ORDER FUNCTIONS
A HOF is a function that accepts functions as argu-
ments and/or computes functions as results. As an
example, consider the derivative operator D(f), that
accepts a function as argument, such as x — x2 +
3z, and computes another function as result, in this
case, t — 2z + 3. This fact can be written as
D(z — 2% 4+ 3z) = = — 2z + 3. Note that the
functions that we used as argument and result of
the derivative operator did not have a name. These
unnamed function are known as anonymous func-
tions and there is an alternative notation for them:
Az.2x + 3. This notation was proposed by the A-
Calculus (Barendregt 1984) and, as we will see, it is
adopted by several programming languages. Note,
however, that from the point of view of the deriva-
tive operator, there is no difference between anony-
mous functions and named ones. For example, it is
well-known that the derivative of the sine function is
the cosine function, a fact that we can express using
named functions, namely: D(sin) = cos.

For a different example, consider a typical

258 | eCAADe 32 - Design Tool 1 -Volume 1

summation:

10

> =1+449+16+...+814+100 (1)

i=1
Although rarely presented as such, summation is a
HOF: it accepts a function (in the previous example,
disguised as the expression 2) and the limits of a
numeric sequence (in the example, 1 and 10), and
computes the sum of the applications of the func-
tion to all the elements of the sequence. Using the
appropriate mathematical notation, the example be-
comes Y12 (i — i2), where it is now obvious that
the summation function accepts another function as
argument. This is also visible in the formal definition
of the summation operation:

b 0 a>b
= 2
2.1 {f(a)+ZZ+1f a<b @

a

Note, in the above definition, that the parameter f is
used as a function, in f(a).

Although ubiquitous in many branches of math-
ematics, HOFs are unjustly considered a complex
topic that, as a result, is frequently not taught prop-
erly and is not fully supported in a large number of
programming languages. However, as we will show,
HOFs are an important tool for GD: they dramatically
simplify scripting (McCullough, 2006) and they are
a very convenient representation for parameterized
geometry (Park and Holt, 2010). Programming using
HOFs is known as higher-order programming.

As an example, consider a balcony in a build-
ing. During the (generative) design process, a de-
signer might be more concerned about the shape
of the building than about the shape of the balcony
and, as a result, he might decide to implement a sim-
plified balcony. This means that the formalization
of the design in a programming language includes
a parametrized definition for the building that de-
pends on the parametrized definition of the balcony,
as follows:

balcony(...) =

building(...) =
wall(...)
slab(...)
égicony(...)

Later, when the designer turns his attention to the
balcony, he might want to experiment several differ-
entdesigns. In less expressive languages, his only op-
tion is to redefine the balcony definition for each ex-
periment. In more expressive languages that support
HOFs, a better solution is to transform the balcony
into a parameter of the building definition, which
then becomes a HOF, as follows:

building(...,balcony,...) =
wall(...)
slab(...)
‘r-)iaicony(. L)

It is now possible to simultaneously define different
balcony functions expressing different balcony de-
signs and treat them as plug-ins for the function that
represents the building.

Although it might seem that there is little differ-
ence between these two approaches, only the sec-
ond approach allows the designer to easily create a
building containing different balcony designs. More-
over, both the function that represents the building
as well as the functions that represent the balconies
are now less dependent from each other and can be
reused in different contexts.

In this paper, we claim that, besides balconies,
many other aspects of a design can be transformed
into (functional) parameters of HOFs. We illustrate
our claim by describing the design of a complex
building, more specifically, the Market Hall (Boranyak
2010), represented by functions that accept, as argu-
ments, functions describing the overall shape of the
building, functions for the different elements (posts,

facade, etc.), functions describing sequences of ele-
ments, etc. This representation allows us to gener-
ate not only a building that is identical to the original
concept, but also an infinite number of variations, ex-
pressing different choices for all the function param-
eters, including those that represent other functions.

HIGHER-ORDER FUNCTIONS IN GENERA-

TIVE DESIGN

In spite of the simplicity of the idea of HOFs, a (gen-
erative) designer still needs to think about the best
strategy for its use, which is strongly dependent on
the current design goals. Returning to the previous
example, it is clear that it is not enough to say that
the function that creates the balcony is a functional
parameter of the function that creates the building;
we also need to specify the communication protocol
between both functions, namely, which information
is expected by the balcony function and which infor-
mation does it return to the building function. De-
pending on the programming language being used,
the designer might decide to provide part or the en-
tirety of the expected information as arguments to
the function. Additional information might be pro-
vided in global variables or using other language-
specific mechanisms. For illustration purposes, we
will consider that the balcony function expects the
spatial location of a corner of the balcony and the di-
mensions of the intended balcony. We will assume
that the building function provides this information
each time it calls the balcony function.

Regarding the design of the balcony, the de-
signer might want to experiment different mathe-
matical functions for its shape. This means that it
should be possible to define another (higher-order)
function that accepts the shape function and that
computes a specialized balcony function that follows
that shape. We will now assume the existence of
this function and we will only consider the different
shape functions that the designer might want to ex-
periment.

One possibility is the use of a sinusoidal shape.
To this end, the designer might define a function-

Design Tool 1 - Volume 1 - eCAADe 32 | 259

producing function (again, a HOF), that accepts the
amplitude, frequency, and phase of the sinusoidal
curve:

sinusoidal(a, w, @) = ¢ — asin (wz + ¢) (3)

The balcony produced using the previous function is
visible in figure 1, on the left. So far, this is not very
different from what he could achieve using only first-
order functions. In fact, the advantages of higher-
order functions only become clear when we experi-
ment with different functions. For example, an expo-
nential decay describes a process whose output de-
creases at a rate proportional to its current value, a
fact that can be modeled by the following function:

decay(8) =z — e~ *)

The designer can now multiply the decay function
with the sinusoidal function to produce a function
that describes a decaying sinusoid. To this end, he
needs to define the product ® of functions, as an HOF
that, given two functions f and g, computes a third
function that is f®g:

®(f,9) =z — f(z) X g(x) ®)
As a concrete example, the formula

®(decay(0.1), sinusoid(—2, 2, 0)) (6)
describes the shape of the balcony presented in the
center of figure 1.

Many other higher-order operators can be simi-
larly defined. For example, the composition of func-

260 | eCAADe 32 - Design Tool 1 -Volume 1

tions fog can be formally defined as:

o(f,9) == — f(g(2)))

Another example is the clamping function, that limits
its input to a given range of values:

clamp(inf, sup) = & — min (max (z, inf), sup)
(8)

Using these HOFs, the designer can experiment other
kinds of balconies, like the one represented in figure
1, on the right, that corresponds to the clamped sinu-
soid o(clamp(—0.7,0.7), sinusoid(1, 1, 7/2)).

This previous example illustrates the use of HOFs
for a very simple case. The concepts, however, scale
to much bigger cases, as can be seen in figure 2,
which shows a 3D model of the Market Hall building
that was fully generated using programming, partic-
ularly, HOFs. The complete program is implemented
by 332 functions, including 32 HOFs that are used
in 143 different places of the program. An analysis
of these HOFs reveals that these are used not only
to describe an abstract building, in which many of
the building elements are functional parameters, but
also to implement the sampling of parametric func-
tions, i.e., to compute the values of parametric func-
tions for different values of their domain, and to im-
plement mappings of functions over collections, i.e.,
the application of a function to each element of a col-
lection, producing a collection of results.

Itis important to note that the generation of the
Market Hall 3D model depends on several HOFs, each
one implementing a particular part of the design.
There are functions that implement the overal shape,

Figure 1

Balconies
generated using
higher-order
functions. From left
to right, a sinusoidal
function, the
product of decaying
and sinusoidal
functions, and the
composition of a
clamping and
sinusoidal function.

Figure 2

The Market Hall
building, entirely
generated using
programming.

Figure 3

A different instance
of the Market Hall
building.

functions that implement balconies, functions that
implement elements of balconies, etc. Arbitrary com-
binations of these functions can then be created to
implement different variations of the main design.

Figure 3 shows the "same" Market Hall building,
in the sense that it is the result of the same HOF that
was used to produce the model in figure 2, but where
we provided different functions as arguments, in par-
ticular, to describe the overall shape of the building,
thus producing a significant variation. While the orig-
inal building has a shape whose longitudinal evolu-
tion is described by a linear function, the variation il-
lustrated in figure 3 shows, among other differences,
the use of a sinusoidal function to describe this evo-
lution.

HIGHER-ORDER FUNCTIONS IN PRO-
GRAMMING LANGUAGES FOR GENERA-
TIVE DESIGN

Given the usefulness of HOFs, it is not surprising to
see them supported in a large number of modern
programming languages. There are, however, differ-
ent levels of support among the different program-
ming languages and even among different versions

of the same language. The Java programming lan-
guage, for example, was released in 1995 but its
implementation of anonymous functions appeared
only in version 8, released almost 20 years later.
The Python programming language did not provide
HOFs in its initial implementation, in the late 80's, but
the first official release, in 1994, included anonymous
functions and some list-processing HOFs. Haskell
provides considerable support for HOFs, including
automatic partial application but forces the user
to work in the less conventional lazy-evaluation
paradigm (Hughes, 1989). Finally, there are lan-
guages, such as the original BASIC language, that do
not event support HOFs.

In this paper, we are particularly concerned with
the support for HOFs that is provided by program-
ming languages used in the GD field. The lan-
guages that we will discuss are Python, AutoLisp, VB-
Script, and Grasshopper, but we will also comment
on some additional languages used for GD, such as
GDL, MAXScript, Processing, PLASM, and Racket.

Python
Python is a programming language that is currently
enjoying a considerable momentum in the GD com-
munity, particularly, due to fact that it is one of the
scripting languages of Rhinoceros 3D. Python pro-
vides some pre-defined higher-order functions and
also allows user-defined ones. As an example, the fol-
lowing function implements the exact same summa-
tion function that was described by formula 2:
def summation(f, a, b):
if a > b:
return O
else:
return f(a) + summation(f, a+1, Db)

Similarly, in Python it is possible to provide anony-
mous functions as arguments, using lambda expres-
sions. For example, the expression >°1° (i — i2)
becomes:

summation(lambda x: x**2, 1, 10)

The summation function is an example of an HOF that
accepts a function as an argument. The composition

Design Tool 1 - Volume 1 - eCAADe 32| 261

of functions is more interesting, as it also returns a
function as result. Its definition, in Python, becomes:

def compose(f, g):
return lambda x: f(g(x))

There is one restriction regarding anonymous func-
tions in Python: they can only contain one expres-
sion, which means that it is not possible to include
statements in the body of the anonymous function.
In practice, this is not a serious limitation, as it is pos-
sible to locally define a named function and use it as if
it was anonymous. Moreover, many of the program-
ming patterns related to the use of anonymous func-
tions, such as mapping, filtering, and reducing lists
can be replaced by list comprehensions.

In practice, this means that Python provides
good support for programming with HOFs and, thus,
can be easily used to implement the GD example that
we described.

AutoLISP
AutoLISP is one of the scripting languages of Auto-
CAD. AutoLISP is a member of the LISP family of lan-
guages (and, thus, provides HOFs) and a widely used
language for GD, with a huge amount of scripts avail-
able on the internet. A cursory look at some of those
scripts show that authors were acquainted with some
of AutoLISP pre-defined HOFs, particularly, the map-
car function.

AutoLISP also allows user-defined HOFs. For ex-
ample, the summation function becomes:

(defun summation (f a b)

(if (> a b)
0
(+ (£ a)

(summation f (1+ a) b))))

Unfortunately, AutoCAD is a dynamically scoped lan-
guage, and this means that user-defined higher-
order functions can cause hard-to-debug problems,
particularly, the infamous downward funarg and up-
ward funarg problems (Moses, 1970). The downward
funarg problem occurs when a function provided as
argument has a free variable that is shadowed by

262 | eCAADe 32 - Design Tool 1 -Volume 1

some variable of the HOF. As an example, consider
a function that compute a sum of powers b from 1 to
n. Its definition in AutoLISP might be:

(defun sum-of-powers (n b)
(summation (lambda (x) (expt x b))
1 n))

Unfortunately, if we try any computation involving
the previous function, we will discover that it does
not compute the correct result, because the expo-
nent b used in the anonymous function is shadowed
by the upper limit b of the HOF. This is a serious prob-
lem that can be mitigated but never entirely solved
using some name-mangling techniques that prevent
name collisions.

The second problem, the upward funarg, is more
serious and much more difficult to solve. It occurs
when a HOF returns a function as a result, as it hap-
pens with the function o(f, g). Its definition, in Au-
toLISP, would look like:

(defun compose (f g)
(lambda (x)
(f (g x))))

Unfortunately, when the returned function has free
variables that were bound by the HOF, these vari-
ables will lose their current value, thus making the re-
turned function useless. This means that the names
f and g that are used in the anonymous function re-
turned by the function compose will not be correctly
bound and will cause errors. This is a serious limita-
tion of AutoLISP that restricts the expressive power of
the language.

Visual Basic

Visual Basic can be considered a family of languages.
There are two main dialects that are used as script-
ing languages: VBA (Visual Basic for Applications)
and VBScript. VBA is a restricted version of Visual Ba-
sic that is used, for example, in AutoCAD. VBScript
is an even more restricted version that is used in
Rhinoceros 3D, under the name RhinoScript. Most of
the restrictions are related to the execution environ-
ment and are not relevant to our analysis but there

Figure 4

A Grasshopper
program that
computes the sum
of squares of
integers from 1 to
10.

Figure 5

A Grasshopper
component that
abstracts the
summation
function.

are important restrictions that directly affect the abil-
ity to define and use HOFs. One is that VBA does not
consider functions as first-class entities, and, as a re-
sult, they cannot be passed around just like other val-
ues, such as numbers and strings. However, VBA pro-
vides a way for calling functions whose name is de-
scribed by a string. This is not possible in VBScript
but, starting from version 5.0, it is possible to do dy-
namic code evaluation using the functions Eval (for
evaluating expressions) and Execute (for executing
statements). In both cases, the code to evaluate must
be contained in a string.

To illustrate the definition of a pseudo-HOF, the
following VBScript function mimics the mathemati-
cal definition of the > function:

Function Summation(expr, a, b)
If a > b Then

Summation = 0
Else
Summation = Eval(expr) + _
Summation(expr, a + 1, b)
End If

End Function

Differently from the previous languages, where func-
tions were provided as arguments, in the case of VB-
Script, the function requires a string describe the ex-
pression to evaluate:

summation("a*a", 1, 10)

Note also that the expression has to explicitly refer
the variable of the Summation function that contains
the correct value to use, which is a serious violation
of the encapsulation principle. Moreover, by repre-
senting functions with strings, it becomes very dif-
ficult to combine functions as this requires the con-
struction of a string that, according to the syntax and
semantics of the programming language, represents
the intended combination of the expressions. In the
general case, this implies writing a compiler. In prac-
tice, both the VBA and the VBScript dialects cannot
be considered adequate languages for the definition
and use of higher-order functions.

Grasshopper

All the languages described previously belong to
the category of textual programming languages,
meaning that programs are written using a one-
dimensional sequence of characters. On the other
hand, in visual programming languages (VPLs), pro-
grams are "written" in a bi-dimensional representa-
tion consisting of iconic components that can be in-
teractively manipulated by the user. Grasshopper is
one of the most popular VPLs for GD and some of its
components can be used for higher-order program-
ming.

Figure 4 shows a Grasshopper program using
the Evaluate component, that accepts a formula de-
scribed as a string and a value or sequence of val-
ues, and computes the evaluation of the formula for
each value received. By changing the string that rep-
resents the formula it becomes possible to compute
different behaviors, just like was done, e.g., in the VB-
Script example.

Recent Grasshopper versions can even abstract a set
of components into a cluster, allowing the definition
of "functions". Figure 5 shows the same Grasshop-
per program that is presented in figure 4 but where a
cluster was used to abstract the definition of the sum-
mation function.

Unfortunately, by using strings as representations of
formulas, we end up finding the same limitations that
were discussed for VBScript, making it very cumber-

Design Tool 1 - Volume 1 - eCAADe 32 | 263

some to use expressions with free variables or to im-
plement HOFs that return functions as results.

Additional Languages

The previous sections analysed the most used pro-
gramming languages in the GD field. However, there
are several other, less used, languages that could
have been included. In this section we briefly review
some of them.

GDL. GDL (Watson, 2009) is the scripting language of
ArchiCAD, a popular CAD application. GDL is a de-
scendant of BASIC but contrary toits siblings, such as,
VisualBasic, GDL did not evolve and has many short-
commings. In particular, subroutines cannot define
local variables, receive parameters, or return values,
thus making the language completely unsuitable for
higher-order programming.

MAXScript. MAXScript (Autodesk, 2006) is the script-
ing language of Autodesk's 3dsMax. In MAXScript,
functions are first-class values and can be provided as
arguments or returned as values to/from other func-
tions. As a result, it is trivial to define HOFs and the
standard library already implements some. Given
that GD scripts tend to have frequent use of mapping
operations over collections of values, MAXScript al-
lows the automatic definition of mapped versions of
normal functions. In spite of using lexical scope, thus
solving the downward funarg problem, each scope
is discarded as soon as the execution flow leaves the
scope, thus suffering from the upward funarg prob-
lem.

Processing. Processing (Reas & Fry, 2010) is a popular
programming language specialized for the produc-
tion ofimages and animations. The language is a sim-
plified version of Java that suffers from the same lim-
itations of Java for functional programming, namely
forcing the use of some basic design patterns, such as
the Command, for providing first-class status to func-
tions, and the verbosity required for the definition of
even for the most simple higher-order operations.

PLASM. PLaSM (Paoluzzi & Sansoni, 1992) is a func-
tional programming language created for GD with a

264 | eCAADe 32 - Design Tool 1-Volume 1

strong emphasis in higher-order programming, pro-
viding many pre-defined operators for function com-
bination. PLaSM uses a rather dense mathematical
notation which can be hard to grasp. Recently, a
Python front-end for PLaSM was developed, allowing
the use of PLaSM operators in a more familiar setting.
In spite of allowing the visualization of the generated
designs using some well-known standards, such as
VRML or SVG, it cannot be directly used with CAD ap-
plications.

Racket. Racket (Tobin-Hochstadt 2011) is a modern
member of the LISP family of languages, designed
for pedagogical and practical purposes. Racket is
also one of the languages supported by Rosetta
(Lopes 2011), a programming environment pro-
viding multiple programming languages, such as
Javascript and AutoLISP, and multiple CAD applica-
tions, such as AutoCAD and Rhinoceros 3D. Racket
provides strong support for higher-order program-
ming, with many pre-defined HOFs and unrestricted
user-defined HOFs.

TEACHING HIGHER-ORDER FUNCTIONS
In the last several years we have been teaching a one-
semester computer science course for students of ar-
chitecture that do not have any prior programming
experience. Given the increased expressive power
provided by HOFs, it was our goal from the begin-
ning to explore the topic during the course. In or-
der to present the concept using ideas that the stu-
dents can quickly grasp, we explore the summation
function as a motivating example, but always using
named functions as arguments. When we feel that
students have a good understanding of the concept,
we explain anonymous functions as simplified func-
tions that are created just for an ephemerous use and
then we explain the relation between named and un-
named functions. In order to keep the students inter-
ested in the topic we also solve simple architectonic
problems, such as designing buildings with shapes
defined by functions or computing curves and sur-
faces from their parametric definitions.

In our experience, students can easily under-

Table 1
Programming
language support
for higher-order-
programming in
the GD area. A solid
circle means that
there is effective
support. A
half-circle means
that there is some
support but it
might require
additional efforts
from the
programmer. A
cross means that
there is no support.

stand the concept of HOF. There is, however, a se-
rious problem in the use of those concepts in pro-
gramming languages that were not designed to sup-
port them. This was the case in the first years, when
we had to teach computer science using AutoLISP
(Leitdo 2010). AutoLISP is a language that is easy
to learn but, as we explained before, it is severely
limited in its support for HOFs, both downward (i.e.,
functions that accept functions as arguments) and
upward ones (i.e., functions that return functions as
results). This forced us not only to avoid talking
about upward HOFs but also to waste some time ex-
plaining name-mangling techniques that would pre-
vent the name collisions that, otherwise, would in-
evitable occur with downward HOFs. However, stu-
dents never really understood these limitations as,
from their point of view, there was nothing problem-
atic with HOFs.

In order to improve the learning process, the
only option is to use a programming language where
HOFs are as natural as normal functions. For this rea-
son, in the last few years we decided to stop teach-
ing using AutoLISP and we now teach using Racket.
This move tremendously simplified the explanation
of HOFs, as they now can be presented without any
caveats and students can use them without any limi-
tations.

CONCLUSIONS
The expressive power of a language measures the
breadth of ideas that can be described. Through-
out the history of mankind, we have invented numer-
ous ways of increasing the expressive power of our
languages. The concept of HOF is one of those in-
ventions that had a transformative effect in our abil-
ity to describe nature and, as a result, have been
used in many different areas, including genetic pro-
gramming (Binard 2008), constructive solid geome-
try (Davy 1995), and shape grammars (Lewis et al.
2004).

In this paper we explained the expressive power
of HOFs and the potential of its use in GD. We illus-
trated that potential by presenting a 3D model of The

Market Hall entirely generated by a GD program. This
program was developed by one student and it exten-
sively explores the concept of HOF, allowing the sim-
plification of the code and reducing the necessary ef-
fort to produce it.

In order to take advantage of HOFs, it is nec-
essary to know the strengths and limitations of
programming languages, particularly, regarding the
support for HOFs. Otherwise, the effort to overcome
the language limitations not only distracts from the
main programming goals but might also overcome
the benefits of the use of HOFs. The support for
HOFs and the increased expressiveness they allow
are, thus, strongly dependent on the specific pro-
gramming language that is being used. In this pa-
per, we considered the most used programming lan-
guages in the GD field and we analyzed their sup-
port for higher-order programming. Table 1 synthe-
sizes our findings, showing that Phyton, PLASM, and
Racket are the languages that better support higher-
order programming.

Grasshopper

GDL
200 | MAXScript

AutoLISP
VBScript
Processing

Python

Paradigm
Functional
Imperative

Object oriented

Dataflow o
Scope

Lexical

Dynamic o
HOFs
Downward o (
oX
¢

Upward
Using Eval

In our teaching experience, the use of languages that
only provide partial support for HOFs, such as Au-

Design Tool 1 - Volume 1 - eCAADe 32 | 265

toLISP, forces the teacher to waste precious time ex-
plaining limitations that are difficult to understand
and accept by the students. We believe that higher-
order programming should be considered a natural
extension of programming with functions and, con-
sequently, teaching the definition and use of HOFs
should be a natural extension of teaching the defini-
tion and use of functions. This is only possible, how-
ever, when the programming language being used
fully supports HOFs, a consideration that made us
move from teaching with AutoLISP to teaching with
Racket, allowing us to drastically simplify the expla-
nation of HOFs and saving time for discussing more
interesting uses of HOFs.

ACKNOWLEDGEMENTS

We would like to thank the architect Rita Fernandes
for sharing with us the GD program for the Market
Hall project.

This work was partially supported by Portuguese
national funds through FCT under contract Pest-
OE/EEI/LA0021/2013 and by the Rosetta project un-
der contract PTDC/ATP-AQI/5224/2012.

REFERENCES

Barendregt, HP 1984, The Lambda Calculus, North-
Holland, Amsterdam

Binard, F and Felty, A 2008 'Genetic programming with
polymorphic types and higher-order functions, Pro-
ceedings of the 10th annual conference on Genetic and
evolutionary computation (GECCO '08), Atlanta, pp.
1187-1194

Boranyak, S 2010, 'Archetype’, ASCE, 80(2), pp. 76-79

Davy, J and Dew, P 1995, 'A polymorphic library for con-
structive solid geometry, Journal of Functional Pro-
gramming, 5, pp. 415-442

Felleisen, M 1991 'On the expressive power of program-
ming languages, Selected papers from the sympo-
sium on 3rd European symposium on programming
(ESOP '90), Amsterdam, pp. 35-75

Fry, B and Reas, C 2010, Getting Started with Processing,
O'Reilly Media

Hughes, J 1989, 'Why functional programming matters,
The computer journal, 32(2), pp. 98-107

Kalay, Y 2004, Architecture's New Media: Principles, The-
ories, and Methods of Computer-Aided Design, Mas-

266 | eCAADe 32 - Design Tool 1-Volume 1

sachusetts: The MIT Press, Cambridge

Leitdo, A, Cabecinhas, F and Martins, S 2010 'Revisiting
the Architecture Curriculum: The programming per-
spective), Proceedings of 28th eCAADe, Zurich, pp. 81-
88

Lewis, J, Rosenholtz, R, Fong, N and Neumann, U 2004 'Vi-
suallDs: automatic distinctive icons for desktop in-
terfaces, ACM SIGGRAPH 2004, New York, pp. 416-
423

Lopes, J and Leitdo, A 2011 'Portable Generative Design
for CAD Applications’, Proceedings of ACADIA 2011,
Alberta, pp. 196-203

McCormack, J, Dorin, A and Innocent, T 2004 'Generative
design: a paradigm for design research), Proceedings
of Futureground, Melbourne

Moses, J 1970 'The function of FUNCTION in LISP or why
the FUNARG problem should be called the environ-
ment problem’, ACM Sigsam Bulletin, pp. 13-27

Paoluzzi, A and Sansoni, C 1992, 'Programming lan-
guage for solid variational geometry, Computer-
AidedDesign, 24(7), pp. 349-366

Terdizis, K 2003, Expressive Form: A Conceptual Approach
to Computational Design, London and New York,
Spon Press

Tobin-Hochstadt, S 2011, 'Languages as libraries, ACM
SIGPLAN Notices, 46(6), pp. 132-141

Watson, A (eds) 2009, GDL handbook: A comprehensive
guide to creating powerful ArchiCAD objects, Cadim-
age Solutions, NewZealand

