
An Implementation of Python for Racket

Pedro Palma Ramos
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

pedropramos@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

antonio.menezes.leitao@tecnico.ulisboa.pt

ABSTRACT
Racket is a descendent of Scheme that is widely used as a
first language for teaching computer science. To this end,
Racket provides DrRacket, a simple but pedagogic IDE. On
the other hand, Python is becoming increasingly popular
in a variety of areas, most notably among novice program-
mers. This paper presents an implementation of Python
for Racket which allows programmers to use DrRacket with
Python code, as well as adding Python support for other Dr-
Racket based tools. Our implementation also allows Racket
programs to take advantage of Python libraries, thus signif-
icantly enlarging the number of usable libraries in Racket.

Our proposed solution involves compiling Python code into
semantically equivalent Racket source code. For the run-
time implementation, we present two different strategies:
(1) using a foreign function interface to directly access the
Python virtual machine, therefore borrowing its data types
and primitives or (2) implementing all of Python’s data
model purely over Racket data types.

The first strategy provides immediate support for Python’s
standard library and existing third-party libraries. The sec-
ond strategy requires a Racket-based reimplementation of
all of Python’s features, but provides native interoperability
between Python and Racket code.

Our experimental results show that the second strategy far
outmatches the first in terms of speed. Furthermore, it is
more portable since it has no dependencies on Python’s vir-
tual machine.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

General Terms
Languages

Keywords
Python; Racket; Language implementations; Compilers

1. INTRODUCTION
The Racket programming language is a descendent of Scheme,
a language that is well-known for its use in introductory
programming courses. Racket comes with DrRacket, a ped-
agogic IDE [2], used in many schools around the world, as
it provides a simple and straightforward interface aimed at
inexperienced programmers. Racket provides different lan-
guage levels, each one supporting more advanced features,
that are used in different phases of the courses, allowing
students to benefit from a smoother learning curve. Fur-
thermore, Racket and DrRacket support the development of
additional programming languages [13].

More recently, the Python programming language is being
promoted as a good replacement for Scheme (and Racket)
in computer science courses. Python is a high-level, dynam-
ically typed programming language [16, p. 3]. It supports
the functional, imperative and object-oriented programming
paradigms and features automatic memory management.
It is mostly used for scripting, but it can also be used to
build large scale applications. Its reference implementation,
CPython, is written in C and it is maintained by the Python
Software Foundation. There are also alternative implemen-
tations such as Jython (written in Java) and IronPython
(written in C#).

According to Peter Norvig [11], Python is an excellent lan-
guage for pedagogical purposes and is easier to read than
Lisp for someone with no experience in either language. He
describes Python as a dialect of Lisp with infix syntax, as
it supports all of Lisp’s essential features except macros.
Python’s greatest downside is its performance. Compared
to, e.g., Common Lisp, Python is around 3 to 85 times slower
for most tasks.

Despite its slow performance, Python is becoming an in-
creasingly popular programming language on many areas,
due to its large standard library, expressive syntax and fo-
cus on code readability.

In order to allow programmers to easily move between Racket
and Python, we are developing an implementation of Python
for Racket, that preserves the pedagogic advantages of Dr-
Racket’s IDE and provides access to the countless Python
libraries.

72 ELS 2014



As a practical application of this implementation, we are
developing Rosetta [8], a DrRacket-based IDE, aimed at ar-
chitects and designers, that promotes a programming-based
approach for modelling three-dimensional structures. Al-
though Rosetta’s modelling primitives are defined in Racket,
Rosetta integrates multiple programming languages, includ-
ing Racket, JavaScript, and AutoLISP, with multiple compu-
ter-aided design applications, including AutoCAD and Rhi-
noceros 3D.

Our implementation adds Python support for Rosetta, al-
lowing Rosetta users to program in Python. Therefore,
this implementation must support calling Racket code from
Python, using Racket as an interoperability platform. Being
able to call Python code from Racket is also an interesting
feature for Racket developers, by allowing them to benefit
from the vast pool of existing Python libraries.

In the next sections, we will briefly examine the strengths
and weaknesses of other Python implementations, describe
the approaches we took for our own implementation and
showcase the results we have obtained so far.

2. RELATED WORK
There are a number of Python implementations that are
good sources of ideas for our own implementation. In this
section we describe the most relevant ones.

2.1 CPython
CPython, written in the C programming language, has been
the reference implementation of Python since its first release.
It parses Python source code (from .py files or interactive
mode) and compiles it to bytecode, which is then interpreted
on a virtual machine.

The Python standard library is implemented both in Python
and C. In fact, CPython makes it easy to write third-party
module extensions in C to be used in Python code. The
inverse is also possible: one can embed Python functionality
in C code, using the Python/C API [15].

CPython’s virtual machine is a simple stack-based machine,
where the byte codes operate on a stack of PyObject point-
ers [14]. At runtime, every Python object has a correspond-
ing PyObject instance. A PyObject contains a reference
counter, used for garbage collection, and a pointer to a Py-

TypeObject, which specifies the object’s type (and is also
a PyObject). In order for every value to be treated as a
PyObject, each built-in type is declared as a structure con-
taining these two fields, plus any additional fields specific to
that type. This means that everything is allocated on the
heap, even basic types.

To avoid relying too much on expensive dynamic memory
allocation, CPython makes use of memory pools for small
memory requests. Additionally, it also pre-allocates com-
monly used immutable objects (such as the integers from -5
to 256), so that new references will point to these instances
instead of allocating new ones.

Garbage collection in CPython is performed through refer-
ence counting. Whenever a new Python object is allocated
or whenever a new reference to it is made, its reference

counter is incremented. When a reference to an object is
discarded, its reference counter is decremented. When it
reaches zero, the object’s finalizer is called and the space is
reclaimed.

Reference counting, however, does not work well with ref-
erence cycles [17, ch. 3.1]. Consider the example of a list
containing itself. When its last reference goes out of scope,
its counter is decremented, however the circular reference
inside the list is still present, so the reference counter will
never reach zero and the list will not be garbage collected,
even though it is already unreachable.

2.2 Jython and IronPython
Jython is an alternative Python implementation, written in
Java and first released in 2000. Similarly to how CPython
compiles Python source-code to bytecode that can be run on
its virtual machine, Jython compiles Python source-code to
Java bytecode, which can then be run on the Java Virtual
Machine (JVM).

Jython programs cannot use extension modules written for
CPython, but they can import Java classes, using the same
syntax that is used for importing Python modules. It is
worth mentioning that since Clojure targets the JVM, Jython
makes it possible to import and use Clojure libraries from
Python and vice-versa [5]. There is also work being done by
a third-party [12] to integrate CPython module extensions
with Jython, through the use of the Python/C API. This
would allow popular C-based libraries such as NumPy and
SciPy to be used with Jython.

Garbage collection in Jython is performed by the JVM and
does not suffer from the issues with reference cycles that
plague CPython [7, p. 57]. In terms of speed, Jython claims
to be approximately as fast as CPython. Some libraries are
known to be slower because they are currently implemented
in Python instead of Java (in CPython these are written in
C). Jython’s performance is also deeply tied to performance
gains in the Java Virtual Machine.

IronPython is another alternative implementation of Python,
this one for Microsoft’s Common Language Infrastructure
(CLI). It is written in C# and was first released in 2006.
Similarly to what Jython does for the JVM, IronPython
compiles Python source-code to CLI bytecode, which can
be run on the .NET framework. It claims to be 1.8 times
faster than CPython on pystone, a Python benchmark for
showcasing Python’s features.

IronPython provides support for importing .NET libraries
and using them with Python code [10]. There is also work
being done by a third-party in order to integrate CPython
module extensions with IronPython [6].

2.3 CLPython
CLPython (not to be confused with CPython, described
above) is yet another Python implementation, written in
Common Lisp. Its development was first started in 2006,
but stopped in 2013. It supports six Common Lisp imple-
mentations: Allegro CL, Clozure CL, CMU Common Lisp,
ECL, LispWorks and SBCL [1]. Its main goal was to bridge
Python and Common Lisp development, by allowing access

ELS 2014 73



to Python libraries from Lisp, access to Lisp libraries from
Python and mixing Python and Lisp code.

CLPython compiles Python source-code to Common Lisp
code, i.e. a sequence of s-expressions. These s-expressions
can be interpreted or compiled to .fasl files, depending on
the Common Lisp implementation used. Python objects are
represented by equivalent Common Lisp values, whenever
possible, and CLOS instances otherwise.

Unlike other Python implementations, there is no official
performance comparison with a state-of-the-art implemen-
tation. Our tests (using SBCL with Lisp code compila-
tion) show that CLPython is around 2 times slower than
CPython on the pystone benchmark. However it outper-
forms CPython on handling recursive function calls, as shown
by a benchmark with the Ackermann function.

2.4 PLT Spy
PLT Spy is an experimental Python implementation written
in PLT Scheme and C, first released in 2003. It parses and
compiles Python source-code into equivalent PLT Scheme
code [9].

PLT Spy’s runtime library is written in C and extended to
Scheme via the PLT Scheme C API. It implements Python’s
built-in types and operations by mapping them to CPython’s
virtual machine, through the use of the Python/C API. This
allows PLT Spy to support every library that CPython sup-
ports (including NumPy and SciPy).

This extended support has a big trade-off in portability,
though, as it led to a strong dependence on the 2.3 version
of the Python/C API library and does not seem to work
out-of-the-box with newer versions. More importantly, the
repetitive use of Python/C API calls and conversions be-
tween Python and Scheme types severely limited PLT Spy’s
performance. PLT Spy’s authors use anecdotal evidence to
claim that it is around three orders of magnitude slower than
CPython.

2.5 Comparison
Table 1 displays a rough comparison between the imple-
mentations discussed above.

Platform(s)

targeted

Speedup

(vs. CPython)

Std. library

support

CPython CPython’s VM 1× Full

Jython JVM ∼ 1× Most

IronPython CLI ∼ 1.8× Most

CLPython Common Lisp ∼ 0.5× Most

PLT Spy Scheme ∼ 0.001× Full

Table 1: Comparison between implementations

PLT Spy can interface Python code with Scheme code and
is the only alternative implementation which can effortlessly
support all of CPython’s standard library and third-party
modules extensions, through its use of the Python/C API.
Unfortunately, there is a considerable performance cost that
results from the repeated conversion of data from Scheme’s
internal representation to CPython’s internal representation.

On the other hand, Jython, IronPython and CLPython show
us that it is possible to implement Python’s semantics over
high-level languages, with very acceptable performances and
still providing the means for importing that language’s func-
tionality into Python programs. However, Python’s stan-
dard library needs to be manually ported.

Taking this into consideration, we developed a Python im-
plementation for Racket that we present in the next section.

3. SOLUTION
Our proposed solution consists of two compilation phases:
(1) Python source-code is compiled to Racket source-code
and (2) Racket source-code is compiled to Racket bytecode.

In phase 1, the Python source code is parsed into a list of
abstract syntax trees, which are then expanded into seman-
tically equivalent Racket code.

In phase 2, the Racket source-code generated above is fed to
a bytecode compiler which performs a series of optimizations
(including constant propagation, constant folding, inlining,
and dead-code removal). This bytecode is interpreted on
the Racket VM, where it may be further optimized by a JIT
compiler.

Note that phase 2 is automatically performed by Racket,
therefore our implementation effort relies only on a source-
to-source compiler from Python to Racket.

3.1 General Architecture
Fig. 1 summarises the dependencies between the different
Racket modules of the proposed solution. The next para-
graphs provide a more detailed explanation of these mod-
ules.

Figure 1: Dependencies between modules. The ar-
rows indicate that a module uses functionality that
is defined on the module it points to.

74 ELS 2014



3.1.1 Racket Interfacing
A Racket file usually starts with the line #lang <language>

to specify which language is being used (in our case, it will be
#lang python). The entry-point for a #lang is at the reader
module, visible at the top of Fig. 1. This module must
provide the functions read and read-syntax [4, ch. 17.2].

The read-syntax function takes the name of the source file
and an input port as arguments and returns a list of syntax
objects, which correspond to the Racket code compiled from
the input port. It uses the parse and compile modules to
do so.

Syntax objects [4, ch. 16.2.1] are Racket’s built-in data type
for representing code. They contain the quoted form of
the code (an s-expression), source location information (line
number, column number and span) and lexical-binding in-
formation. By keeping the original source location infor-
mation on every syntax object generated by the compiler,
DrRacket can map each compiled s-expression to its corre-
sponding Python code. This way, DrRacket’s features for
Racket code will also work for Python. Such features in-
clude the syntax checker, debugger, displaying source loca-
tion for errors, tacking and untacking arrows for bindings
and renaming variables.

3.1.2 Parse and Compile Modules
The lex+yacc module defines a set of Lex and Yacc rules for
parsing Python code, using the parser-tools library. This
outputs a list of abstract syntax trees (ASTs), which are de-
fined in the ast-node module. These nodes are implemented
as Racket objects. Each subclass of an AST node defines its
own to-racket method, responsible for generating a syntax
object with the compiled code and respective source loca-
tion. A call to to-racket works in a top-down recursive
manner, as each node will eventually call to-racket on its
children.

The parse module simply defines a practical interface of
functions for converting the Python code from an input
port into a list of ASTs, using the functionality from the
lex+yacc module. In a similar way, the compile module
defines a practical interface for converting lists of ASTs into
syntax objects with the compiled code, by calling the to-

racket method on each AST.

3.1.3 Runtime Modules
The libpython module defines a foreign function interface
to the functions provided by the Python/C API. Its use will
be explained in detail on the next section.

Compiled code contains references to Racket functions and
macros, as well as some additional functions which imple-
ment Python’s primitives. For instance, we define py-add

as the function which implements the semantics of Python’s
+ operator. These primitive functions are defined in the
runtime module.

Finally, the python module simply provides everything de-
fined at the runtime module, along with all the bindings
from the racket language. Thus, every identifier needed for
the compiled code is provided by the python module.

3.2 Runtime Implementation using FFI
For the runtime, we started by following a similar approach
to PLT Spy, by mapping Python’s data types and primitive
functions to the Python/C API. The way we interact with
this API, however, is radically different.

On PLT Spy, this was done via the PLT Scheme C API, and
therefore the runtime is implemented in C. This entails con-
verting Scheme values into Python objects and vice-versa for
each runtime call. Besides the performance issue (described
on the Related Work section), this method lacks portability
and is somewhat cumbersome for development, since it re-
quires compiling the runtime module with a platform specific
C compiler, and to do so each time this module is modified.

Instead, we used the Racket Foreign Function Interface (FFI)
to directly interact with the foreign data types created by
the Python/C API, therefore our runtime is implemented in
Racket. These foreign functions are defined on the libpython
modules, according to their C signatures, and are called by
the functions and macros defined on the runtime module.

The values passed around correspond to pointers to objects
in CPython’s virtual machine, but there is sometimes the
need to convert them back to Racket data types, so they
can be used as conditions in flow control forms like ifs and
conds.

As with PLT Spy, this approach only requires implement-
ing the Python language constructs, because the standard
library and other libraries installed on CPython’s implemen-
tation are readily accessible.

Unfortunately, as we will show in the Performance section,
the repetitive use of these foreign functions introduces a sig-
nificant overhead on our primitive operators, resulting in a
very slow implementation.

Another issue is that the Python objects allocated on CPy-
thon’s VM must have their reference counters explicitly decre-
mented or they will not be garbage collected. This issue
can be solved by attaching a Racket finalizer to every FFI
function that returns a new reference to a Python object.
This finalizer will decrement the object’s reference counter
whenever Racket’s GC proves that there are no more live
references to the Python object. On the other hand, this
introduces another significant performance overhead.

3.3 Runtime Implementation using Racket
Our second approach is a pure Racket implementation of
Python’s data model. Comparing it to the FFI approach,
this one entails implementing all of Python’s standard li-
brary in Racket, but, on the other hand, it is a much faster
implementation and provides reliable memory management
of Python’s objects, since it does not need to coordinate
with another virtual machine.

3.3.1 Object Model
In Python, every object has an associated type-object (where
every type-object’s type is the type type-object). A type-
object contains a list of base types and a hash table which
maps operation names (strings) to the functions that type
supports (function pointers, in CPython).

ELS 2014 75



As a practical example, in the expression obj1 + obj2, the
behaviour of the plus operator depends on the type of its
operands. If obj1 is a number this will be the addition oper-
ator. If it is a string, this will be a string concatenation. Ad-
ditionally, a user-defined class can specify another behaviour
for the plus operator by defining the method __add__. This
is typically done inside a class definition, but can also be
done after the class is defined, through reflection.

CPython stores each object’s type as a pointer in the Py-

Object structure. Since an object’s type is not known at
compile-time, method dispatching must be done at runtime,
by obtaining obj1’s type-object and looking up the function
that is mapped by the string __add__ on its hash table. If
there is no such entry, the search continues on that type-
object’s base types.

While the same mechanics would work in Racket, there
is room for optimization. In Racket, one can recognize a
value’s type through its predicate (number?, string?, etc.).
In Python, a built-in object’s type is not allowed to change,
so we can directly map basic Racket types into Python’s
basic types. Their types are computed through a pattern
matching function, which returns the most appropriate type-
object, according to the predicates that value satisfies. Com-
plex built-in types are still implemented through Racket
structures (which include a reference to the corresponding
type-object).

This way, we avoid the overhead from constantly wrapping
and unwrapping frequently used values from the structures
that hold them. Interoperability with Racket data types is
also greatly simplified, eliminating the need to wrap/unwrap
values when using them as arguments or return values from
functions imported from Racket.

There is also an optimization in place concerning method
dispatching. Despite the ability to add new behaviour for
operators in user-defined classes, a typical Python program
will mostly use these operators for numbers (and strings, in
some cases). Therefore, each operator implements an early
dispatch mechanism for the most typical argument types,
which skips the heavier dispatching mechanism described
above. For instance, the plus operator is implemented as
such:

(define (py-add x y)
(cond
[(and (number? x) (number? y)) (+ x y)]
[(and (string? x) (string? y)) (string-append x y)]
[else (py-method-call x "__add__" y)]))

3.3.2 Importing Modules
In Python, files can be imported as modules, which contain
bindings for defined functions, defined classes and global as-
signments. Unlike in Racket, Python modules are first-class
citizens. There are 3 ways to import modules in Python:
(1) the import <module> syntax, which imports <module>
as a module object whose bindings are accessible as at-
tributes; (2) the from <module> import <binding> syntax,
which only imports the declared <binding> from <mod-
ule>; (3) the from <module> import * syntax, which im-
ports all bindings from <module>.

To implement the first syntax, we make use of module-

>exports to get a list of the bindings provided by a module
and dynamic-require to import each one of them and store
them in a new module object. The other two syntaxes are
semantically similar to Racket’s importing model and, there-
fore, are implemented with require forms.

This implementation of the import system was designed to
allow importing both Python and Racket modules. We have
come up with a slightly different syntax for referring to
Racket modules. They are specified as a string literal con-
taining a Racket module path (following the syntax used for
a require form [3, ch. 3.2]).

This way we support importing bindings from the Racket
library, Racket files or packages hosted on PLaneT (Racket’s
centralized package distribution system), using any of the
Python importing syntaxes mentioned above. The following
example shows a way to access the Racket functions cons,
car and cdr in a Python program.

1 #lang python
2 import "racket" as racket
3
4 def add_cons(c):
5 return racket.car(c) + racket.cdr(c)
6
7 c1 = racket.cons(2, 3)
8 c2 = racket.cons("abc", "def")

> add_cons(c1)
5
> add_cons(c2)
"abcdef"

Since the second and third syntaxes above map to require

forms (which are evaluated before macro expansion), it is
also possible to use Racket-defined macros with Python code.

Predictably, importing Python modules into Racket pro-
grams is also possible and straightforward. Function defi-
nitions, class definitions and top-level assignments are de-

fine’d and provide’d in the compiled Racket code, therefore
they can be require’d in Racket.

3.3.3 Class Definitions
A class definition in Python is just syntactic sugar for defin-
ing a new type-object. Its hash table will contain the vari-
ables and methods defined within the class definition. There-
fore, an instance of a class is an object like any other, whose
type-object is its class. The main distinction is that an in-
stance of a class also contains its own hash table, where its
attributes are mapped to their values.

3.3.4 Exception Handling
Both Python and Racket support exceptions in a similar
way. In Python, one can only raise objects whose type de-
rives from BaseException, while in Racket, any value can
be raised and caught.

In Python, exceptions are raised with the raise statement
and caught with the try...except statement (with optional

76 ELS 2014



else and finally clauses). Their semantics can be imple-
mented with Racket’s raise and with-handlers forms, re-
spectively. The latter expects an arbitrary number of pairs
of predicate and procedure. Each predicate is responsible
for recognizing a specific exception type and the procedure
is responsible for handling it.

The exceptions themselves can be implemented as Racket
exceptions. In fact, some of Python’s built-in exceptions
can be defined as their equivalents in Racket, for added in-
teroperability. For instance, Python’s ZeroDivisionError

can be mapped to Racket’s exn:fail:contract:divide-

by-zero and Python’s NameError is mapped to Racket’s
exn:fail:contract:variable.

4. EXAMPLES
In this section we provide some examples of the current state
of the translation between Python and Racket. Note that
this is still a work in progress and, therefore, the compilation
results of these examples may change in the future.

4.1 Ackermann
Consider the following program in Racket which implements
the Ackermann function and calls it with arguments m = 3
and n = 9:

1 (define (ackermann m n)
2 (cond
3 [(= m 0) (+ n 1)]
4 [(and (> m 0) (= n 0)) (ackermann (- m 1) 1)]
5 [else (ackermann (- m 1) (ackermann m (- n 1)))]))
6
7 (ackermann 3 9)

Its equivalent in Python would be:

1 def ackermann(m,n):
2 if m == 0: return n+1
3 elif m > 0 and n == 0: return ackermann(m-1,1)
4 else: return ackermann(m-1, ackermann(m,n-1))
5
6 print ackermann(3,9)

Currently, this code is compiled to:

1 (provide :ackermann)
2 (define-py-function :ackermann with-params (m n)
3 (lambda (:m :n)
4 (cond
5 [(py-truth (py-eq :m 0))
6 (py-add :n 1)]
7 [(py-truth (py-and (py-gt :m 0) (py-eq :n 0)))
8 (py-call :ackermann (py-sub :m 1) 1)]
9 [else
10 (py-call
11 :ackermann
12 (py-sub :m 1)
13 (py-call :ackermann :m (py-sub :n 1)))])))
14
15 (py-print (py-call :ackermann 3 9))

The first thing one might notice is the colon prefixing the
identifiers ackermann, m and n. This has no syntactic mean-
ing in Racket; it is simply a name mangling technique to
avoid replacing Racket’s bindings with bindings defined in

Python. For example, one might set a variable cond in
Python, which would then be compiled to :cond and there-
fore would not interfere with Racket’s built-in cond.

The (define-py-function ... with-params ...) macro
builds a function structure, which is essentially a wrapper
for a lambda and a list of the argument names. The need
to store a function’s argument names arises from the fact
that in Python a function can be called both with positional
or keyword arguments. A function call without keyword
arguments is handled by the py-call macro, which simply
expands to a traditional Racket function call. If the function
is called with keyword arguments, this is handled by py-

call/keywords, which rearranges the arguments’ order at
runtime.

This way, we can use the same syntax for calling both Python
user-defined functions and Racket functions. On the other
hand, since the argument names are only stored with Python
user-defined functions, it is not possible to use keyword ar-
guments for calling Racket functions.

The functions/macros py-eq, py-and, py-gt, py-add and
py-sub are defined on the runtime module and implement
the semantics of the Python operators ==, and, >, +, -, re-
spectively.

The function py-truth takes a Python object as argument
and returns a Racket boolean value, #t or #f, according to
Python’s semantics for boolean values. This conversion is
necessary because, in Racket, only #f is treated as false,
while, in Python, the boolean value false, zero, the empty
list and the empty dictionary, among others, are all treated
as false when used on the condition of an if, for or while

statement. Finally, the function py-print implements the
semantics of the print statement.

4.2 Mandelbrot
Consider now a Racket program which defines and calls a
function that computes the number of iterations needed to
determine if a complex number c belongs to the Mandelbrot
set, given a limited number of limit iterations.

1 (define (mandelbrot limit c)
2 (let loop ([i 0]
3 [z 0+0i])
4 (cond
5 [(> i limit) i]
6 [(> (magnitude z) 2) i]
7 [else (loop (add1 i)
8 (+ (* z z) c))])))
9
10 (mandelbrot 1000000 .2+.3i)

Its Python equivalent could be implemented like such:

1 def mandelbrot(limit, c):
2 z = 0+0j
3 for i in range(limit+1):
4 if abs(z) > 2:
5 return i
6 z = z*z + c
7 return i+1
8
9 print mandelbrot(1000000, .2+.3j)

ELS 2014 77



This program demonstrates some features which are not
straightforward to map in Racket. For example, in Python
we can assign new local variables anywhere, as shown in line
2, while in Racket they become parameters of a named let

form.

Another feature, present in most programming languages
but not in Racket, is the return keyword, which immedi-
ately returns to the point where the function was called,
with a given value. On the former example, all returns were
tail statements, while on this one we have an early return,
on line 5.

The program is compiled to:

1 (provide :mandelbrot)
2 (define-py-function :mandelbrot with-params (limit c)
3 (lambda (:limit :c)
4 (let ([:i (void)]
5 [:z (void)])
6 (let/ec return9008
7 (set! :z (py-add 0 0))
8 (py-for continue9007
9 [:i (py-call :range (py-add :limit 1))]
10 (begin
11 (cond
12 [(py-truth (py-gt (py-call :abs :z) 2))
13 (return9008 :i)]
14 [else py-None])
15 (set! :z (py-add (py-mul :z :z) :c))))
16 (return9008 (py-add :i 1))))))
17
18 (py-print
19 (py-call :mandelbrot 1000000 (py-add 0.2 0+0.3i)))

You will notice the let form on lines 4-5. The variables
:i and :z are declared with a void value at the start of
the function definition, allowing us to simply map Python
assignments to set! forms.

Early returns are implemented as escape continuations, as
seen on line 6: there is a let/ec form (syntactic sugar for a
let and a call-with-escape-continuation) wrapping the
body of the function definition. With this approach, a re-
turn statement is as straightforward as calling the escape
continuation, as seen on line 13.

Finally, py-for is a macro which implements Python’s for
loop. It expands to a named let which updates the control
variables, evaluates the for’s body and recursively calls it-
self, repeating the cycle with the next iteration. Note that
calling this named let has the same semantics as a continue

statement.

In fact, although there was already a for form in Racket with
similar semantics as Python’s, the latter allows the use of
break and continue as flow control statements. The break

statement can be implemented as an escape continuation
and continue is implemented by calling the named let, thus
starting a new iteration of the loop.

5. PERFORMANCE
The charts on Fig. 2 compare the running time of these
examples for:

• (a) Racket code running on Racket;

• (b) Python code running on CPython;

• (c.1) Python code running on Racket with the FFI
runtime approach, without finalizers

• (c.2) Python code running on Racket with the FFI
runtime approach, with finalizers for garbage collecting
Python objects

• (d.1) Python code running on Racket with the pure
Racket runtime approach

• (d.2) Python code running on Racket with the pure
Racket runtime approach, using early dispatch for op-
erators

These benchmarks were performed on an Intel R© CoreTM i7
processor at 3.2GHz running under Windows 7. The times
below represent the minimum out of 3 samples.

Figure 2: Benchmarks of the Ackermann and Man-
delbrot examples

The Racket implementation of the Ackermann example is
about 28 times faster than Python’s implementation, but
the Mandelbrot example’s implementation happens to be
slightly slower than Python’s. This is most likely due to

78 ELS 2014



Racket’s lighter function calls and operators, since the Ack-
ermann example heavily depends on them.

Since the FFI based runtime uses CPython’s primitives, we
have to endure with sluggish foreign function calls for ev-
ery Python operation and we also cannot take advantage of
Racket’s lightweight mechanics, therefore the same Python
code runs about 20 times slower on our implementation than
in CPython, for both examples. This figure more than dou-
bles if we consider the use of finalizers, in order to avoid a
memory leak.

Moving to a pure Racket runtime yielded a great improve-
ment over the FFI runtime, since it eliminated the need for
foreign function calls, synchronizing garbage collection with
another virtual machine and type conversions. With this
transition, both examples run at around 3 to 4 times slower
than in CPython, which is very tolerable for our goals.

Optimizing the dispatching mechanism of operators for com-
mon types further led to huge gains in the Ackermann ex-
ample pushing it below the running time for CPython. The
Mandelbrot example is still slower than in CPython, but
nonetheless it has also benefited from this optimization.

6. CONCLUSIONS
A Racket implementation of Python would benefit Racket
developers giving them access to Python’s huge standard li-
brary and the ever-growing universe of third-party libraries,
as well as Python developers by providing them with a ped-
agogic IDE in DrRacket. To be usable, this implementation
must allow interoperability between Racket and Python pro-
grams and should be as close as possible to other state-of-
the-art implementations in terms of performance.

Our solution tries to achieve these qualities by compiling
Python source-code to semantically equivalent Racket source-
code, using a traditional compiler’s approach: a pipeline of
scanner, parser and code generation. This Racket source-
code is then handled by Racket’s bytecode compiler, JIT
compiler and interpreter.

We have come up with two alternative solutions for imple-
menting Python’s runtime semantics in Racket. The first
one consists of using Racket’s Foreign Interface and the
Python/C API to manipulate Python objects in Python’s
virtual machine. This allows our implementation to effort-
lessly support all of Python’s standard library and even
third-party libraries written in C. On the other hand, it suf-
fers from bad performance (at least one order of magnitude
slower than CPython).

Our second approach consists of implementing Python’s data
model and standard library purely in Racket. This leads to
a greater implementation effort, but offers a greater per-
formance, currently standing at around the same speed as
CPython, depending on the application. Additionally, it al-
lows for a better integration with Racket code, since many
Python data types are directly mapped to Racket data types.

Our current strategy consists of implementing the language’s
essential features and core libraries using the second ap-
proach (for performance and interoperability). Future ef-

forts may include developing a mechanism to import mod-
ules from CPython through the FFI approach, in a way that
is compatible with our current data model.

7. ACKNOWLEDGMENTS
This work was partially supported by Portuguese national
funds through Fundação para a Ciência e a Tecnologia under
contract Pest-OE/EEI/LA0021/2013 and by the Rosetta
project under contract PTDC/ATP-AQI/5224/2012.

8. REFERENCES
[1] W. Broekema. CLPython - an implementation of

Python in Common Lisp.
http://common-lisp.net/project/clpython/.
[Online; retrieved on March 2014].

[2] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of functional programming, 12(2):159–182,
2002.

[3] M. Flatt. The Racket Reference, 2013.

[4] M. Flatt and R. B. Findler. The Racket Guide, 2013.

[5] E. Franchi. Interoperability: from Python to Clojure
and the other way round. In EuroPython 2011,
Florence, Italy, 2011.

[6] Ironclad - Resolver Systems. http:
//www.resolversystems.com/products/ironclad/.
[Online; retrieved on January 2014].

[7] J. Juneau, J. Baker, F. Wierzbicki, L. M. Soto, and
V. Ng. The definitive guide to Jython. Springer, 2010.

[8] J. Lopes and A. Leitão. Portable generative design for
CAD applications. In Proceedings of the 31st annual
conference of the Association for Computer Aided
Design in Architecture, pages 196–203, 2011.

[9] P. Meunier and D. Silva. From Python to PLT
Scheme. In Proceedings of the Fourth Workshop on
Scheme and Functional Programming, pages 24–29,
2003.

[10] Microsoft Corporation. IronPython .NET Integration
documentation.
http://ironpython.net/documentation/. [Online;
retrieved on January 2014].

[11] P. Norvig. Python for Lisp programmers.
http://norvig.com/python-lisp.html. [Online;
retrieved on March 2014].

[12] S. Richthofer. JyNI - using native CPython-extensions
in Jython. In EuroSciPi 2013, Brussels, Belgium, 2013.

[13] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper,
M. Flatt, and M. Felleisen. Languages as libraries.
ACM SIGPLAN Notices, 46(6):132–141, 2011.

[14] P. Tröger. Python 2.5 virtual machine. http:
//www.troeger.eu/files/teaching/pythonvm08.pdf,
April 2008. [Lecture at Blekinge Institute of
Technology].

[15] G. van Rossum and F. L. Drake. Extending and
embedding the Python interpreter. Centrum voor
Wiskunde en Informatica, 1995.

[16] G. van Rossum and F. L. Drake. An introduction to
Python. Network Theory Ltd., 2003.

[17] G. van Rossum and F. L. Drake. The Python Language
Reference. Python Software Foundation, 2010.

ELS 2014 79


