
139

Programming Languages
For Generative Design:
A Comparative Study
António Leitão, Luís Santos, and José Lopes

issue 01, volume 10international journal of architectural computing

140

Programming Languages For Generative Design:
A Comparative Study
António Leitão, Luís Santos, and José Lopes

Abstract

In the field of Generative Design (GD),Visual Programming Languages
(VPLs), such as Grasshopper, are becoming increasingly popular
compared to the traditional Textual Programming Languages (TPLs)
provided by CAD applications, such as RhinoScript.This reaction is
explained by the relative obsolescence of these TPLs and the faster
learning curve of VPLs. However, modern TPLs offer a variety of
linguistic features designed to overcome the limitations of traditional
TPLs, making them hypothetical competitors to VPLs. In this paper, we
reconsider the role of TPLs in the design process and we present a
comparative study of VPLs and modern TPLs. Our findings show that
modern TPLs can be more productive than VPLs, especially, for large-
scale and complex design tasks. Finally, we identify some problems of
modern TPLs related to portability and sharing of programs and we
propose a solution.

1. INTRODUCTION

Throughout architecture history, coding has been a means of expressing
rules, constraints and systems that are relevant for the architectural design
process.Among other meanings (e.g., statutory, representation and
production codes), coding in architectural design can be understood as the
representation of algorithmic processes that express architectural concepts
or solve architectural problems.

Even before the invention of digital computers, algorithms were applied
and incorporated in the design process, as documented in Alberti’s De re
aedificatoria [1].

Computers popularized and extended the notion of coding in
architecture [2] by simplifying the implementation and computation of
algorithmic processes.As a result, increasingly more architects and designers
are aware of digital applications and programming techniques, and are
adopting these methods as generative tools for the derivation of form [3].
Even though the improvements of direct manipulation in CAD applications
led many to believe that programming was unnecessary, the work of Maeda
shows the exact opposite [4].

Computational design methods allow automation of the design process
and extension of the standard features of CAD applications [5], thus
transcending their limitations [6].Therefore, CAD software shifts from a
representation tool to a medium for algorithmic computation, from which
architecture can emerge.To apply computational methods, one must first
translate the thought process into a computer program by means of a
Programming Language (PL).

This paper discusses the most used PLs for Generative Design (GD),
dividing them in two groups:Visual Programming Languages (VPLs) and
Textual Programming Languages (TPLs).VPLs and TPLs are defined,
compared and analyzed in terms of their advantages and fitness to the GD
domain.We consider GenerativeComponents for MicroStation, Hypergraph
for Maya, and Grasshopper for Rhinoceros3D as representative of VPLs.We
consider RhinoScript, Haskell, Python, and Scheme as representatives of
TPLs.

Given that comparing state-of-the-art VPLs, such as Grasshopper, with
old general purpose TPLs, such as RhinoScript, is inadequate, we choose
Grasshopper and VisualScheme [7] for a comparative study.VisualScheme is
a programming environment for AutoCAD that uses Scheme for
pedagogical reasons. In spite of its qualities, Scheme is relatively unknown in
the GD community, which motivated us to develop Rosetta, a descendant of
VisualScheme that allows the use of additional languages, such as AutoLISP
and JavaScript, and additional CAD tools, such as Rhinoceros3D.

141Programming Languages For Generative Design:
A Comparative Study

1.1. Overview

Sections 2, 3 and 4 compare TPLs and VPLs from different perspectives: (1)
comparative examples showing different programming approaches to GD
and theoretical differences between TPLs and VPLs; (2) a practical
experiment using Grasshopper and VisualScheme users; and (3) an
evaluation of the linguistic dimensions.

2. PROGRAMMING LANGUAGES

A programming language is more than just a means for instructing a
computer to perform tasks [8]: it is a formal medium for expressing ideas.
Therefore, languages should match the human thinking process, including the
ability to combine simple ideas and abstract complex ones. Languages
conforming to these principles provide (1) primitive elements, (2)
combination mechanisms, and (3) abstraction mechanisms.

2.1.Visual and Textual Programming Languages

In a VPL, programs consist of iconic elements that can be interactively
manipulated according to some spatial grammar [9].

Figure 1 shows a Grasshopper program that computes a sequence of
points of a conical spiral.

In a TPL, programs are a linear sequence of characters.The major difference
between VPLs and TPLs is the number of dimensions:TPLs are one-
dimensional while VPLs are, at least, two-dimensional.

The following RhinoScript program computes a sequence of points
identical to the previous Grasshopper example:

� Figure 1: Grasshopper program for

computing the points of a conical

spiral with corresponding output in

Rhinoceros3D.

142 António Leitão, Luís Santos, and José Lopes

Function ConicSpiralPts(Length,N)
Dim points()
ReDim points(N-1)
Dim t
Dim i
For i=0 To N-1

t=i*Length/N
points(i)=Pt(t*Cos(5*t),t*Sin(5*t),t)

Next
ConicSpiralPts=points

End Function

Several studies comparing VPLs and TPLs show that there is no conclusive
evidence regarding their relative advantages [10]. However, it is generally
admitted that VPLs are more productive and motivating for beginners. On
the other hand,TPLs are considerably more productive for dealing with
large-scale and complex problems and, in fact, most languages are TPLs and
most programs are textual.

Nevertheless, traditional TPLs require mastering a large set of concepts
that, in many cases, are just limitations of the language. For example, to
understand just the first three lines of the previous RhinoScript example the
reader must know (1) function syntax, (2) zero-based index arrays, (3) array
declaration, and (4) redimension of non-statically sized arrays.Additional
knowledge is required to understand the complete example. On the other
hand, the Grasshopper example only contains the elements that are relevant
to the design task, namely, input sliders, range components, functions that
map over sequences of values, and wires establishing dataflow between
components.

This example shows several advantages of a modern VPL over an old
TPL: (1) less background knowledge; (2) presentation of all language
elements in the Interactive Development Environment (IDE); and (3)
immediate visual feedback, facilitating defect detection and adjustment of
input parameters, and allowing incremental/interactive development.

Most TPLs have additional drawbacks: (1) the absence of a (good) IDE
requires users to either remember the functionality or read extensive
documentation; and (2) an iterative write-compile-execute cycle results in
non-interactive development.

Nevertheless,VPLs also have problems: (1) VPL programs scale poorly
with the complexity of the design task [11], for example, as programs grow
it becomes increasingly difficult to understand what they do; and (2) the
absence of (sophisticated) abstraction mechanisms forces users to rely
extensively on copy/paste, introducing redundancy. In turn, redundancy leads
to maintenance problems because modifications in duplicated components
must be manually propagated to all instances.These problems might explain

143Programming Languages For Generative Design:
A Comparative Study

the small size and throwaway nature of the majority of visual programs
when compared to the size and longevity of textual programs.

2.2. Hybrid Programming Languages

In addition to the predefined components, Grasshopper provides custom
components for advanced tasks, which are textually scripted by the user,
making it an example of a hybrid VPL/TPL.This section presents three
additional VPL/TPL hybrids: GenerativeComponents [12], CityEngine CGA
[13] and Maya Hypergraph [14].

GenerativeComponents (GC) is a parametric and associative design
system that provides three forms of user interaction: (1) direct manipulation
of geometry; (2) definition of relationships among geometric elements; and
(3) textually scripted algorithms.These forms of interaction correspond to
different but synchronized views of a single model.The recommended
learning path for GC is made of three steps: (1) design using the interactive
Graphical User Interface (GUI); (2) write simple scripts using the formula
bar and GCScript; and (3) develop complex programs through the C#
programming language, a TPL mainly used for large-scale software
production.This shows that, similarly to Grasshopper, for complex design
tasks, users need to become proficient in a TPL. It is generally admitted,
though, that this need comes later in Grasshopper than in GC, which might
explain why Grasshopper is considered easier to learn and use.

CityEngine is a modeling application for buildings and cities. It features a
Python Scripting Interface and a dedicated programming language for
procedural modeling: the CGA (Computer Graphics Architecture).This
language allows the definition of shape grammars using derivation rules,
parameters and attributes, and it can be considered a VPL/TPL hybrid because
the built-in editor supports both textual and visual interaction (Figure 2).

� Figure 2: CityEngine CGA editor

showing both textual and visual

representations of a shape grammar

that generates a city.

144 António Leitão, Luís Santos, and José Lopes

Similarly to Grasshopper, the visual representation used in CGA results in
readability and maintenance problems for large and complex programs.
Moreover, the single paradigm used in CGA (shape grammar) makes the
language too restrictive for GD in general.

Maya is a popular 3D modeling application with a built-in scripting
editor. Programs can be written in MEL and Python.When users interact
with Maya, via a script or the GUI, a history of interactions is constructed.
This history can then be visualized and manipulated via editors such as
Outliner and Hypergraph. Hypergraph provides two editable views: (1) the
hierarchy graph displays scene items according to their parent-child
relationships; and (2) the dependency graph represents model construction
history. However, unlike GC and CityEngine CGA, the relationship between
textual scripts and the visual editors is unidirectional: changes in these
editors are not reflected in the textual program. Despite the visual editing
features of Hypergraph, a TPL is still required for creating more complex
algorithms.

Although there are many VPL alternatives for GD, Grasshopper is the
most used one.This can be explained in part by the simplicity and
attractiveness of its programming model and GUI. Moreover, there is a
general perception among designers that VPLs are more productive than
TPLs.We claim that this perception is a natural response to two problems:
(1) traditional TPLs lack domain-specific concepts and (2) they make it
difficult for the user to define them.

2.3. Modern Textual Programming Languages

Modern TPLs provide several abstractions and provide mechanisms for
users to define new ones tailored to specific domains, drastically simplifying
program development.

For example, consider list comprehensions, a syntactic abstraction
influenced by the set-builder notation used in mathematics.The following
Haskell program shows a definition of the conical spiral using list
comprehensions:
ConicSpiralPts length n =

[(t*(cos 5*t), t*(sin 5*t), t) | t<-range length n]
where range d n = [i*d/n | i<-[0..n]]

A comparison between this example and the RhinoScript example in
Section 2.1 clearly shows the amount of background knowledge that is
required in each case and provides anecdotal evidence that modern TPLs
can be significantly easier to understand.

Several other modern TPLs provide similar concepts. For example, in
Python we can rewrite the same definition as:

145Programming Languages For Generative Design:
A Comparative Study

def frange (l, n):
return [float(i)*l/n for i in range(n+1)]

def conic_spiral_pts (length, n):
return [[t*cos(5*t), t*sin(5*t), t]

for t in frange(length, n)]

Compared to Haskell or Python, RhinoScript seems archaic, to say the least.
However, it should be noted that while Haskell and Python were developed
in 1990 and 1991, respectively, RhinoScript is a descendant of a long line of
BASIC dialects that started much earlier, in 1964.Although there are now
several differences between modern dialects of BASIC (e.g.,VisualBasic and
VBScript) and their ancestors, the language could not evolve as freely as
possible because it was necessary to provide an easy migration path to
users of older dialects.This problem occurs with several PLs for GD,
including GDL for ArchiCAD and MEL for Maya.The end result is that
traditional TPLs, such as Rhinoscript, can never be favorably compared with
state-of-the-art VPLs, such as Grasshopper.

In this paper, we argue that it is possible and, in fact, advantageous to use
TPLs instead of VPLs as long as we restrict ourselves to modern languages
that target the GD domain.We support our argument using examples of
modern programming techniques.We choose Scheme for its pedagogical
qualities but identical examples could be provided in Haskell, Python,
Javascript and many modern TPLs.

2.4.VisualScheme

VisualScheme is a research project integrated in the architecture curriculum
that explores the advantages of VPLs and TPLs for GD, including domain-
specific constructs, immediate feedback, visual widgets, and CAD
integration. Following a series of pedagogical studies [15-17],VisualScheme
relies on Scheme as a teaching tool for an audience without a background
in Computer Science.The rest of this section describes several features of
VisualScheme.
The first example computes the points of a conical spiral:
(define (conic-spiral-points length n ϕ)

(for/list ([i (in-range 0 n)])
(let ([t (/ (* i length) n]))

(cyl t (* ϕ t) t))))

There are two noteworthy differences between this example and the
Haskell and Python examples: (1) the fully parenthesized prefix notation
typical of Lisp dialects; and (2) the use of the cylindrical coordinate system
(via the cyl function), which reduces the need for trigonometric expressions.

146 António Leitão, Luís Santos, and José Lopes

VisualScheme implements not only the traditional Cartesian coordinate
system but also the polar, cylindrical, and spherical systems.

This example follows the same approach used in the Grasshopper
example in Section 2.1. However, a more parametric approach can be used:
(define (conic-spiral-pts r ϕ z ∆r ∆ϕ ∆z n)

(if (= n 0)
(list)
(cons (cyl r ϕ z)

(conic-spiral-pts (+ z ∆z)
(+ r ∆r)
(+ j ∆ϕ)
∆r ∆ϕ ∆z
(- n 1)))))

This example illustrates a recursive definition (i.e., a function defined in
terms of itself) using the starting radius (r), angle (ϕ), and height (z), the
respective increments (∆r, ∆ϕ, ∆z), and the number of points (n).

Note that this example cannot be directly encoded in Grasshopper
using the standard components. Instead, custom components must be
scripted using a TPL, thus contradicting the visual paradigm. In this particular
case, it is possible to find different encodings that produce the same result,
but in the general case this can be a serious limitation.

As a final example, consider the following definition that provides the
coefficients a and b that affect the rate at which the spiral grows in the
radial and vertical directions:
(define (conic-spiral-pts α β length n)

(map (λ (t) (cyl (* α t) t (* β t)))
(range length n)))

This definition uses the higher-order function map, which computes the
mathematical image of a function over a domain.This function receives an
anonymous function as argument (via λ), i.e., a function that is not explicitly
named. Due to their expressive power, higher-order and anonymous
functions are common in modern TPLs.

Despite the identified advantages there are three important drawbacks
in VisualScheme: (1) users have to spend time learning a TPL (Scheme) that
is relatively unknown in the GD community; (2) it becomes difficult to share
and reuse programs written in different languages; and (3) similarly to most
PLs for GD,VisualScheme forces the use of a particular CAD package,
contributing to a known problem of current CAAD-education [18]:
students become experts in a single CAD application.

147Programming Languages For Generative Design:
A Comparative Study

2.5. Rosetta

Rosetta [19] is a programming environment designed to address the
problems of VisualScheme.To this end, Rosetta allows the use of different
languages (front-ends) and interoperates with different CAD applications
(back-ends): (1) it is possible to write programs not only in Scheme but also
in AutoLISP, JavaScript, and Racket; and (2) programs can generate output in
AutoCAD and Rhinoceros3D.We plan to implement additional front-ends,
such as, Processing and Python, and back-ends, such as, Revit, MicroStation
and ArchiCAD.

With Rosetta, users leverage the effort spent learning a specific language
because they can use that language with different CAD tools (Figure 3 and
Figure 4).

� Figure 3. Left: Rosetta showing a Racket program that creates a pipe structure that follows a random orthogonal walk

bounded by a virtual box. Right:The output of the program in Rhinoceros3D.

148 António Leitão, Luís Santos, and José Lopes

Figure 5 illustrates the program sharing capabilities of Rosetta: a Racket
library (on the right) defines an L-System library that is imported into a
JavaScript program (on the left) that uses the provided functions to produce
the Arabesque in Figure 6.

� Figure 4. Left: JavaScript program that creates a surface tessellation. Right:The output of the program in AutoCAD.

� Figure 5. Left: JavaScript program that uses an L-System (repeat-apply-rules) to produce Figure 6. Right:A Racket

program that defines the L-System.

149Programming Languages For Generative Design:
A Comparative Study

The next section presents a practical experiment comparing VPLs and TPLs.
Although Rosetta would have allowed us to run the experiment using any of
the supported TPLs, for simplicity reasons we used VisualScheme.

3. EXPERIMENT

The objectives of this experiment were: (1) compare properties of VPL and
TPL programs, such as, parametric degree and modifiability; (2) assess
whether textual programming experience has an influence on visual
program design; and (3) measure the time needed for implementing VPL and
TPL solutions.

Six designers were invited to this experiment and divided in two groups:
group A consisted of three Grasshopper users with no knowledge of TPLs -
subjects 1, 2 and 3; and group B consisted of three Grasshopper users with
experience in TPLs - subjects 4, 5 and 6.Table 1 summarizes subject
expertise in VPLs and TPLs.

Group Subjects TPL Expertise (Any language) VPL Expertise (Grasshopper)

1 None Beginner

A 2 None Intermediate

3 None Advanced

4 Intermediate Advanced

B 5 Intermediate Intermediate

6 Advanced Beginner

The challenge consisted of two phases: (1) implementation of a parametric
algorithm to create a tower made of cylindrical spirals (Figure 7); and (2)
modification of the original algorithms to create a variation of the cylindrical

� Figure 6:Arabesque produced by

the L-System presented in Figure 5.

� Table 1: Subject expertise in

TPLs and VPLs.

150 António Leitão, Luís Santos, and José Lopes

spirals (Figure 8). Phase 2 was presented to the subjects only after finishing
phase 1.All subjects were asked to measure the time spent to complete the
challenge.

3.1. Phase 1 - Grasshopper solutions

Discrepancies in individual times are expected because solutions differ in
accuracy and parametric degree. Moreover, unpredictable mistakes during

� Figure 7: Cylindrical spiral towers.

� Figure 8: Conical and sinusoidal

spiral towers.

151Programming Languages For Generative Design:
A Comparative Study

implementation may have a strong impact on results because the total
number of subjects is small. Finally, each user spends a different amount of
time in component placement, wire connection, data visualization, and
comments. For these reasons we decided to round the times to the nearest
5 minute interval and to show group times instead of individual ones.Table
2 shows the minimum, average and maximum times (in minutes) for groups
A and B to complete phase 1 of the challenge.

Groups Minimum Average Maximum

A 50 94 140

B 25 37 50

From the analysis of Table 2, it is clear that the times of group B are
considerably smaller than those of group A, which suggests that experience
in TPLs reduces the time needed to design a visual program.The rest of this
section analyzes the most relevant solutions.

Figure 9 shows a solution from a Grasshopper beginner with no
knowledge of TPLs.The user approached the problem in a visual fashion,
creating stacks of rotated circles, dividing them in equal parts, and using the
division points in a sequential manner to create the spiral curves.Although
some copy/paste was used, the resulting program is clear and concise.

� Table 2: Minimum, average and

maximum times (in minutes) for

groups A and B to complete

phase 1 of the challenge.

� Figure 9: Grasshopper solution of

the cylindrical spiral tower based on a

set of geometrical transformations.

152 António Leitão, Luís Santos, and José Lopes

Figure 10 shows the solution from an expert in Grasshopper with no
knowledge of TPLs.This solution shows a more mathematical approach
where the spiral points are computed using Cartesian coordinates.
However, there is redundancy resultant of extensive copy/paste and the
amalgam of wire connections makes the code difficult to understand, leading
to future maintenance problems [20].
Figure 11 shows the solution from an advanced Grasshopper user with
some experience in TPLs.

This solution uses the same approach as the previous one. Even though
this solution is more concise and easier to read, it is also less parametric,
because the height and radius are not provided as parameters.

Finally, Figure 12 presents the most abstract and parametric definition.The
program is not only more compact but also easier to read and to maintain.
This program was developed by a beginner in Grasshopper but expert in
TPLs.

� Figure 10: Grasshopper solution of the cylindrical spiral tower based on the conical spiral Cartesian definition.

� Figure 11: Grasshopper solution of the cylindrical spiral tower based on a less parametric conical spiral Cartesian definition.

153Programming Languages For Generative Design:
A Comparative Study

� Figure 12: Grasshopper solution of the cylindrical spiral tower using cylindrical coordinates.

3.2. Phase 1 - VisualScheme solution

This section describes a VisualScheme solution developed in 20 minutes by
an advanced TPL user.The tower was modeled as two sets of spirals, with
opposite turning directions, described by cylindrical coordinates.To achieve
a parametric solution, each spiral was defined as three linear variations of
the cylindrical components, i.e., the radius, the angle and the height.

VisualScheme does not provide a predefined concept of linear variation.
Therefore, the user is responsible for defining it.A linear variation in the
range [a,b] was defined as a function over the domain [0,1]:
(define (linear a b)

(λ (t)
(+ a (* t (- b a)))))

This approach uses higher-order functions, allowing many different variations
to be easily implemented.The map and range functions helped computing
the actual values defined in the variation:
(define (variation f n)

(map f (range 1 n)))

The conic spiral is then the mapping of cylindrical coordinates over three
linear variations of the radius, angle, and height:
(define (spiral-points r0 r1 ϕ0 ϕ1 h n)

(map cyl
(variation (linear r0 r1) n)
(variation (linear ϕ0 ϕ1) n)
(variation (linear 0 h) n)))

To create one set of spirals, the concept of linear variation was reused to
provide a sequence of starting angles between 0 and 2π, according to the
intended number of spirals s and to the number of turns t that each spiral
should follow:
(define (spirals r0 r1 h s t n)

(map (λ (ϕ)
(spiral-points r0 r1 ϕ (+ ϕ (* 2 pi t)) h n))

(variation (linear 0 (* 2 pi)) s)))

In order to create a mesh of opposing spirals, two calls to the previous
function were combined, the second one with a symmetrical number of
turns:
(define (spirals-mesh r0 r1 h d f s t n)

(append (spirals r0 r1 h d f s t n)
(spirals r0 r1 h d f s (- t) n)))

154 António Leitão, Luís Santos, and José Lopes

Comparing the solutions, it is clear that, although not as aesthetically
pleasing, this program is more analytic and modular than the Grasshopper
programs. One advantage of VisualScheme (and modern TPLs in general) is
that concepts that are independent of particular problems, such as the
linear variation, can be reused in different contexts.This is more difficult to
do in Grasshopper because every component is necessarily connected to
another.

3.3. Phase 2 - Grasshopper solutions

In GD, programs must be easily adaptable to changing requirements.To
measure adaptability in VPLs and TPLs, subjects were asked to adapt the
previous solutions to create the conical and sinusoidal towers illustrated in
Figure 8.Table 3 shows the minimum, average and maximum times (in
minutes) for groups A and B to complete phase 2 of the challenge in
Grasshopper.

Groups Minimum Average Maximum

A 20 37 60

B 20 23 25

Despite the differences in expertise within the groups,Table 3 shows that
group A needed more time on average than group B.

Figure 13 shows the modified version of the solution presented in Figure
10, where conical and sinusoidal variations were incorporated.

� Table 3: Minimum, average and

maximum times (in minutes) for

groups A and B to complete

phase 2 of the challenge.

� Figure 13: Modified version of the program presented in Figure 10, with changes marked in orange.

155Programming Languages For Generative Design:
A Comparative Study

Figure 14 highlights the modifications made to the program in Figure 12 to
accommodate the requested variations.

Figure 13 and Figure 14 show that both users were able to extend their
initial definitions by introducing an isolated group of components. However,
this was not consistently observed: Figure 15 and Figure16 show how a
relatively simple solution for phase 1 becomes very difficult to understand
after the changes needed for phase 2.

156 António Leitão, Luís Santos, and José Lopes

� Figure 14: Modified version of the

program presented in Figure 12 with

modifications in orange.

� Figure 15: Solution provided by an

intermediated user of Grasshopper

and TPLs to the phase 1 challenge.

Although Grasshopper allows quick changes in inputs, we observed that
behavioral changes imply manual manipulation of dataflow wires from/to
different components, a time consuming and error prone task.This means
that even though the visual interface and dataflow paradigm are easier for
novices, they can introduce readability and maintenance problems with
increasingly complex design tasks.

3.4. Phase 2 - VisualScheme solution

Regarding VisualScheme, the original solution was already parametric enough
to handle the conical variation.Therefore, it was only necessary to
implement the changes needed for the sinusoidal variation, which were
implemented in less than 10 minutes by reusing the previous concept of
variation:
(define (sinusoidal d ω)

(λ (t)
(* d (sin (* 2 pi ω t)))))

To superimpose the sinusoidal variation with the linear one, we can
calculate the function that adds the values computed by the respective
functions for the same inputs:
(define (+fx f g)

(λ (x)
(+ (f x) (g x))))

Finally, the spiral whose radius shows a linear-plus-sinusoidal variation along
the height is:

� Figure 16: Modified version of the

program presented in Figure 15 with

modifications in orange.

157Programming Languages For Generative Design:
A Comparative Study

(define (spiral-points r0 r1 ϕ0 ϕ1 h d ω n)
(map cyl

(variation (+fx (linear r0 r1)(sinusoidal d ω)) n)
(variation (linear ϕ0 ϕ1) n)
(variation (linear 0 h) n)))

An important advantage of this approach is that each additional definition
has an applicability that transcends the actual problem it is addressing, thus
promoting code reuse. Higher-order functions also contribute to code
maintainability by facilitating the implementation of alternative behaviors.

Figure 17 shows the VisualScheme IDE with the sinusoidal tower
program generated in AutoCAD.Also visible is a panel of sliders for
interactive manipulation of the function parameters.

� Figure 17:The VisualScheme IDE

running on top of AutoCAD.The

sliders window allows quick

experimentation of the function

parameters by regenerating the

corresponding geometry in real time.

158 António Leitão, Luís Santos, and José Lopes

4. EVALUATION

In the previous sections we presented different programming languages with
a strong emphasis on Grasshopper as representative of VPLs and
VisualScheme as representative of TPLs.We also discussed several
advantages and disadvantages of each.

In this section, we start by comparing them according to the three
fundamental dimensions of programming languages [8]: primitives,
combinations, and abstractions.

In what regards primitives, Grasshopper is in a very good position: it
implements a large set of primitive components, such as ranges, mappings,

and geometric operations, some of them with a high degree of
sophistication, allowing an effective reduction in the implementation effort, a
significant advantage over VisualScheme that currently does not implement
as many primitives as Grasshopper.

In what regards the combination mechanisms, Grasshopper relies on an
extremely simple metaphor: primitives can be combined by connecting the
output of a component to the input of another.The connections allow
dataflow from primitive to primitive, until it reaches the end of the graph,
usually, in primitives that create geometric models. Unfortunately, this
metaphor is too restrictive, making it difficult to express some control
structures, such as iteration or recursion, a complaint expressed by most
TPL users involved in the experiment. In some cases, this is not a serious
problem because most components implicitly map operations over
sequences of values. However, it has been repeatedly reported [21-23] that
it might be difficult or impossible to describe an algorithm without textually
scripting a specialized component, thus contradicting the visual nature of the
language. Moreover, Grasshopper programs scale poorly with the
complexity of the design task, resulting in readability and maintainability
problems.

In VisualScheme and Rosetta, the available combination mechanisms are
provided by the underlying languages, which include expression composition
and several control and data structures. Moreover, a variety of programming
paradigms are provided, such as functional, imperative, and object-oriented,
as opposed to Grasshopper which forces a single paradigm. Moreover, the
set of paradigms can be extended.The net result is that VisualScheme and
Rosetta are more expressive in the sense that they address a broader
spectrum of design tasks.

Finally, abstraction: the fundamental mechanism for dealing with problem
complexity.To this end, Grasshopper provides a special component, the
cluster, which allows the user to treat a subset of components (including
other clusters) as a single component.This can have a significant impact in
the clarity of programs and it improves the reuse of its parts. Unfortunately,
it still requires copy/paste operations and does not really represent an
abstraction: each cluster is independent from its copies, thus preventing
centralized definitions. In this regard, modern TPLs offer different forms of
procedural, data, and control abstraction, thus being significantly more
abstract than VPLs, such as Grasshopper.This might require a more
analytical effort from TPL users, but it has the significant advantage that it
greatly simplifies the solution and the resulting programs are usually easier
to adapt to changing requirements.

Besides the linguistic dimensions, there is a learning dimension that must
be considered. In this regard, they have a serious disadvantage because, in
most cases,TPLs have a longer learning curve than VPLs.While this seems
to suggest that learning Grasshopper is a better use of time, it is also

159Programming Languages For Generative Design:
A Comparative Study

important to note that complex programs tend to require much more time
to develop using VPLs than TPLs. In the end, the time spent learning a TPL is
quickly recovered once the complexity of the problem becomes sufficiently
large. Finally, as it is clear from the presented experiment, experience in
TPLs improved the productivity of VPL users, which suggests that GD
curricula should include exposure to TPLs.

5. CONCLUSION

Nowadays, within the GD community,VPLs, such as Grasshopper, are
becoming increasingly popular, which can be explained by the fact that they
are state-of-the-art, domain-specific languages while textual alternatives,
such as RhinoScript, are now considered obsolete languages.

Modern TPLs, such as Haskell, Python, or Scheme, were designed to be
easier to learn, use and extend.When coupled with domain-specific
primitives, they become better alternatives to current VPLs for GD.As an
example, we considered VisualScheme, a research project that takes
advantage of the pedagogical qualities of Scheme for teaching programming
to Architecture students.

In order to evaluate the adequacy of VisualScheme for the GD domain,
this paper presented an experiment comparing solutions to design problems
solved in Grasshopper and in VisualScheme.We plan to make more
extensive experiments in the near future but our preliminary findings show
that the visual paradigm of Grasshopper does not scale well with the
complexity of the design task, due to its shortcomings in abstraction and
control mechanisms, and to the time-consuming metaphor of program
construction based on the manipulation of wires and boxes.

Grasshopper is actually capable of overcoming its VPL limitations with
textually scripted components. However, these components force the user
to work at the TPL level, thus showing that even Grasshopper users might
need to learn and use a TPL.

Learning a TPL takes more time and effort than learning a VPL, but this
effort is quickly recovered when the complexity of the problems becomes
sufficiently large. Unfortunately, there is always a risk that the language we
are using now is not available in other CAD tools or is unknown by other
members of the design team.To overcome these problems, we presented
Rosetta, a descendant of VisualScheme that allows the simultaneous use of
different programming languages and different CAD applications.

ACKNOWLEDGEMENTS

This work was supported by FCT (INESC-ID multiannual funding) through
the PIDDAC Program funds.The authors would like to acknowledge the
contribution of Brimet Silva, Bruno Matos, Eduardo Castro e Costa, Paulo
Fontaínha and Susana Martins for participating in the experiment presented
in this paper.

160 António Leitão, Luís Santos, and José Lopes

References
1. Krüger, M., Duarte, J. P. and Coutinho, F., Decoding De re aedificatoria: Using

Grammars to Trace Alberti’s Influence on Portuguese Classical Architecture,
Nexus Network Journal, 2011, 13(1), 171-182.

2. Rocker, I.,When Code Matters, AD - Architectural Design, 2006, 76(4), 16-25.

3. Kolarevic, B., Eternity, Infinity and Virtuality in Architecture, in: Clayton, M. and
Velasco, G., eds., ACADIA 2000: Eternity, Infinity, and Virtuality in Architecture,
ACADIA-Association,Washington D.C., USA, 2000, 251-256.

4. Maeda, J., Design by Numbers, MIT Press, Cambridge, Massachusetts, USA, 1999.

5. Killian,A., Design innovation through constraint modeling, International Journal of
Architectural Computing, 2006, 4(1), 87-105.

6. Terzidis, K., Expressive Form:A conceptual approach to Computational Design, Spon
Press, London and New York, 2003.

7. Leitão,A., Cabecinhas, F. and Martins, S., Revisiting the Architecture Curriculum,
in: Schmitt, G., Hovestadt, L. and Gool, L., eds., ECAADe 2010 Conference: Future
Cities: Proceedings of the 28th Conference on Education in Computer Aided
Architectural Design in Europe,Verlag der Fachvereine Hochschulverlag AG an der
ETH Zurich, Zurich, Switzerland, 2010, 81–88.

8. Abelson, H. and Sussman, G., Structure and interpretation of computer programs, MIT
Press, Cambridge, Massachusetts, USA, 1996.

9. Myers, B.A.,Taxonomies of Visual Programming and Program Visualization, Journal
of Visual Languages and Computing, 1990, 1(1), 97–123.

10. Menzies,T., Evaluation Issues for Visual Programming Languages, in: Chang, S. K.,
ed., Handbook of Software Engineering and Knowledge Engineering,Vol.2 Emerging
Tecnologies,World Scientific Publishing Co. Pte. Ltd., London, UK, 2002, 93-101.

11. Park, K. and Holt, N., Parametric Design Process of a Complex Building In
Practice Using Programmed Code As Master Model, International Journal of
Architectural Computing, 2010, 8(3), 359-376.

12. Aish, R. and Woodbury, R., Multi-Level Interaction in Parametric Design, in: Butz,
A., Krüger,A. and Olivier, P., eds., SG 2005 Conference Proceedings: International
Symposium on Smart Graphics, Springer, Berlin, Heidelberg, Germany, 2005, 151-
162.

13. Müller, P.,Wonka, P., Haegler, S., Ulmer,A. and Gool, L., Procedural modeling of
buildings, in: ACM SIGGRAPH 2006 Papers (SIGGRAPH ‘06),ACM, New York, NY,
USA, 614-623.

14. Wilkins, M. R. and Kazmier, C., MEL Scripting for MAYA Animators, Elsevier, Morgan
Kauffmann Publishers, San Francisco, California, USA, 2005.

15. Dingle,A. and Zander, C.,Assessing the ripple effect of CS1 language choice,
Journal of Computing Sciences in Colleges, 2001, 16(2), 85-93.

16. Findler, C., Flanagan, F., Krishnamurthi, S., and Felleisen, M., DrScheme:A
Programming Environment for Scheme, Journal of Functional Programming, 2002,
12(2), 159-182.

17. Felleisen, M., Findler, R., Flatt, M. and Krishnamurthi, S.,The TeachScheme! Project:
Computing and Programming for Every Student, Computer Science Education,
2004, 14(1), 55-77.

18. Pentillä, H.,Architectural-IT and Educational Curriculums – A European
Overview, International Journal of Architectural Computing, 2003, 1(1), 102-111.

19. Lopes, J. and Leitão,A., Portable Generative Design for CAD Applications, in:
Taron, J., Parlac,V., Kolarevic, B. and Johnson, J., eds., ACADIA 2011: Integration
through Computation: Proceedings of the 31st annual conference of the Association for

161Programming Languages For Generative Design:
A Comparative Study

Computer Aided Design in Architecture (ACADIA),ACADIA-Association, Banff,
Alberta, Canada, 2011, 196-203.

20. Davis, D., Burry, M. and Burry, J., Untangling Parametric Schemata: Enhancing
Collaboration Through Modular Programming, in: Leclercq, P., Heylighen,A. and
Martin, G., eds., Designing Together - CAAD Futures 2011, Les Editions de
l’Université de Liège, Liège, Belgium, 2011, 55-78.

21. Stouffs, R. and Chang,W.-T., Representational programming for design analysis, in:
Tizani,W., ed., Computing in Civil and Building Engineering: Proceedings of the
International Conference, Nottingham University Press, Notthingham, UK, 2010,
351-359.

22. Chok, K., Progressive Spheres of Innovation: Efficiency, communication and
collaboration, in:Taron, J., Parlac,V., Kolarevic, B. and Johnson, J., eds., ACADIA
2011: Integration through Computation: Proceedings of the 31st annual conference of
the Association for Computer Aided Design in Architecture (ACADIA),ACADIA-
Association, Banff,Alberta, Canada, 2011, 234-241.

23. Miller, N.,The Hangzhou Tennis Center - A Case Study in Integrated Parametric
Design, in: Cheon, J., Hardy, S. and Hemsath,T., eds., Proceedings of the 2011
Association for Computer Aided Design in Architecture (ACADIA) Regional Conference,
ACADIA-Association, Lincoln, Nebraska, USA, 2011.

162 António Leitão, Luís Santos, and José Lopes

António Leitão1, Luís Santos2, and José Lopes1

1Instituto Superior Técnico,Technical University of Lisbon/INESC-ID
Av. Rovisco Pais, 1
1049-001 Lisboa, Portugal

antonio.menezes.leitao@ist.utl.pt, jose.lopes@ist.utl.pt

2IHSIS - Institute for Humane Studies and Intelligent Sciences
Rua dos Freixos 9
2750-007 Cascais, Portugal

luis.sds82@gmail.com

