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Abstract. This paper presents a general 3D shape grammar interpreter named 
GRAMATICA and illustrates its use for the implementation of several shape 
grammars, including the one used in the design module of a specific shape grammar 
for mass-customized housing, called DESIGNA. The underlying shape representation, 
generation and control are discussed. The resulting shape grammar interpreter tries to 
support designers’ ways of thinking and working by acting as a bridge between shape 
grammars, the formalism that captures a design process, and a CAD application, for 
post-processing the computed design. This bridge is implemented by Rosetta, which 
ensures portability among different CAD applications. 
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INTRODUCTION 
Shape grammars are generative systems based 
on rules that allow capturing, creating, and under-
standing designs. They are based on the produc-
tion systems of Emil Post (1943) and the generative 
grammars of Noam Chomsky (1957). Shape gram-
mars work directly with shape computations rather 
than through symbolic computations (Knight 2000), 
where a shape is conceived as a finite collection of 
maximal lines (Stiny 1980). Designs are created by 
recursively applying a set of rules to an initial shape 
until a design is completed or no more rules can be 
applied. In general, several rules can be applied to 
any given shape, thus producing many different de-
signs.

Parametric shape grammars can generate an even 
greater variety of designs by allowing the shapes 
to which rules are applied to have parameters. Even 
though this increases flexibility, it entails a more 
complex implementation mainly because the num-
ber of design solutions that a system can produce 
becomes extremely large, if not infinite.

Emergence is the ability to recognize and, more 
importantly, to operate on shapes that are not pre-
defined in a grammar but emerge, or are formed, 
from any parts of shapes generated through rule ap-
plications (Knight 2000).

Shape grammars were developed by Stiny and 
Gips (1972). From this original work that illustrates 
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the application of shape grammars for interpreting 
and evaluating works of art (Knight 2000) spawned 
a broader range of shape grammar theory and ap-
plications. Parametric shape grammars (Stiny 1980), 
color grammars (Knight 1989), grammars with 
weights (Stiny 1992), description grammars (Stiny 
1981), structure grammars (Carlson et al. 1991), at-
tributed grammars (Brown et al. 1994), and paral-
lel grammars (Stiny 1991) are examples of research 
studies in the field of shape grammars. Shape gram-
mars have been applied in areas, such as, Architec-
ture, Engineering, and Product Design. Examples of 
applications include Queen Anne houses (Flemming 
1987), Marrakech Medina urban form (Duarte et al. 
2007) and coffee makers (Agarwal and Cagan 1998).

To automate the application of shape rules, 
researchers have concentrated their efforts on de-
veloping shape grammar interpreters. Previous 
summaries (Gips 1999; Chau et al. 2004) show that 
these researchers have focused on representations 
of shapes and algorithms for subshape detection 
and emergence, user interaction, and integration 
into the design process. Examples of shape gram-
mar interpreters include the works of Gips (1975), 
Krishnamurti (1982), Flemming (1987), Chase (1989), 
Heisserman (1991), Tapia (1999), and Jowers and Earl 
(2010), among others.

GRAMATICA
Because current computer systems are implicitly 
symbolic, a shape grammar interpreter that is imple-
mented in these systems needs to represent a shape 
symbolically. This section describes (1) the underly-
ing data structures which GRAMATICA uses to rep-
resent shapes and labels, (2) the mechanisms used 
to control the application of rules to shapes, (3) and 
how the system generates and decides what rules to 
apply at a given time. Finally, GRAMATICA is evalu-
ated as a means to implement several shape gram-
mars and we show how a designer can use GRAMAT-
ICA in his creative process.

Shape representation
In order to represent a shape, GRAMATICA explores 

the work of Heisserman (1991) regarding logical 
reasoning about solids using first-order logic. Heis-
serman uses a split-edge data structure to represent 
solids which is a graph-based boundary representa-
tion. This representation allows the specification of 
clauses for matching on conditions of solid models 
and the generation of modifications to those solids.

The split-edge data structure is a variation of the 
winged edge structure to represent polyhedrons 
(Baumgart 1972). With split-edge, each edge is sepa-
rated in two edge-half structures. One face and one 
vertex are associated with each edge-half, and each 
edge-half is associated with its other half.
In GRAMATICA, shapes are represented using the 
halfedge data structure provided by CGAL [1], a 
library for efficient and reliable computational ge-
ometry algorithms and data structures used in the 
academia and industry.

Similarly to Heisserman, GRAMATICA shapes are 
represented as a set of vertices, edges, facets, and 
incident relations between them. This means that, 
in both data structures, topology is represented as 
a graph where the nodes are topological elements 
and the arcs represent the adjacencies between ele-
ments.

Contrary to the split-edge data structure, where 
an edge is split in two, halfedge breaks an edge in 
two opposing halfedges. One halfedge is associated 
with its incident vertex and facet, and also with its 
next, previous, and opposite halfedges. All these 
incident relations allow the shape to be queried ef-
ficiently and easily.

Also similarly to Heisserman, GRAMATICA uses 
euler operators (Baumgart 1975) to ensure a valid 
topological construction, thus avoiding invalid to-
pologies, for example, a facet with a hanging edge.

However, unlike Heisserman, GRAMATICA uses 
multiple representations for numbers and geomet-
ric calculations, allowing users to choose between 
different degrees of precision and speed. With the 
highest numerical precision, GRAMATICA avoids 
common problems associated with rounding errors. 
However, GRAMATICA always uses exact queries, 
meaning that geometric tests are always correct. For 
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example, checking if a point lays on one side or the 
other of a plane will not be affected by numerical 
imprecision. This means that numbers are tailored 
for speed, but all geometric queries sacrifice execu-
tion time and storage space over exactness.

Given the graph representation of a shape and 
its geometry, labels are directly implemented in the 
elements of a shape by means of a hashtable, asso-
ciating key-value pairs. In general, labels are used 
to distinguish elements of a shape by associating 
non-geometric data with any topological elements 
of shapes. Labels could also be used to restrict rule 
applications by imposing specific conditions on the 
shape generation.

In summary, a shape in GRAMATICA is represent-
ed as a stack of layers where (1) the bottom layer 
contains topological information relating facets, 
halfedges, and vertices with each other, followed by 
(2) the layer of geometric information that is associ-
ated to each vertex, and, finally, (3) the layer of labels 
where non-geometric information is associated to 
the topological elements of a shape. All these layers 
are managed by Rosetta (Lopes and Leitão 2011), 
that abstracts the use of CGAL and allows the visu-
alization of the designs in different CAD tools.

Shape generation and rule representation
Using a rule system to implement a shape gram-
mar interpreter poses several issues mainly how 
to control the order in which rules are applied. For 
example, a designer who uses the interpreter to im-
plement a given grammar will end up using specific 
mechanisms of the rule system, such as, labels or 
the salience property, to tune the application order, 
even though these mechanisms were not devel-
oped to this end.

GRAMATICA takes a different approach by look-
ing at the shape grammar as a state-space: each 
state encodes a particular design and each shape 
grammar rule is encoded as a transition operator 
that moves from one state to another. The applica-
tion of the shape grammar to a given design can 
then be seen as a search in the state-space for a path 
that connects the initial state to some goal state. 

This path encodes the sequence of shape grammar 
rules that, starting from that initial design, leads to 
the final design.

In general, the specification of the initial state is 
direct, as there is usually an initial design available. 
However, the specification of the goal state is much 
more abstract as, in general, we know some of the 
properties that it must possess, but not its actual 
shape. This means that, in practice, the goal state is 
described by a predicate that is true only when all 
the properties of the intended final design are satis-
fied.

There are several different strategies for finding 
a path in the state-space that connects the initial 
and final states. In order to understand these strate-
gies, it is important to realize that, in most cases, it 
is impossible to actually generate the entire state-
space because the application of shape grammar 
rules is a combinatorial problem with an enormous 
number of possibilities. In fact, for the majority of 
problems, the number of states grows exponen-
tially with the number of transitions and, due to 
memory limitations, this means that searching the 
space-state must be done incrementally, by gen-
erating the space-state as the search proceeds. In 
order to do this, the transition operator becomes a 
generator: its application to a given state generates 
the “next” state, that is, the state that represents the 
design that results from the application of the corre-
sponding shape grammar rule. The application of all 
possible transition operators to a given state is then 
called the expansion of that state.

In general, all search strategies are based on the 
recursive expansion of states, from the initial to the 
goal state, and the order in which the states are ex-
panded determines the search strategy. However, 
when the goal state is reached, it might be neces-
sary to know which path was followed. To this end, 
each state is enriched with additional information, 
namely, which state and which transition operator 
were used to generate it. This enriched state is called 
a node and the exploration of the state-space entails 
the corresponding enlargement of the graph con-
necting these nodes. In this graph, the edges corre-
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spond to the transition operators (i.e., shape gram-
mar rules) that were applied to a node to produce its 
descendants. Expanding a node entails expanding 
the corresponding state followed by the creation of 
a node for each generated state.

GRAMATICA follows the approach we have just 
described. In GRAMATICA, each shape grammar rule 
is encoded as an expansion operator that represents 
the transformation of a design. Each operator has 
two parts, known as antecedent and consequent. 
The antecedent describes the design to which the 
operator applies, while the consequent describes 
the design that results from the application of the 
operator. In practice, to minimize the number of 
operators that must be written, each operator uses, 
instead of a consequent, a set of consequents, i. e., 
a set of possible designs. Given that this set is com-
puted during the search of the state-space, it is pos-
sible for this set to be empty, meaning that the spe-
cific operator could not make the transition from a 
given state. Other operators, however, might be able 
to compute such transitions.

For illustrative purposes consider the follow-
ing example (see figure 1). The shape grammar rule 
states: if in a given design there is a shape that re-
sembles a rectangle then this shape can be trans-
formed into a different design where the rectangle 
is divided in two parts, where one of the parts has 
a height that is 1, 2, or 3. In GRAMATICA, we encode 
this rule by defining a transition operator whose 
antecedent checks that a rectangle is present and 
whose consequent is a set of three designs, one for 
each possible height.

Figure 2 presents a different example where the 
shape grammar rule states: if a facet is found in a 
given design, transform this facet into a pyramid 
with the apex at some perpendicular distance from 
the centroid of the facet.

One possible design from recursively applying 
this rule to a given facet in a tetrahedron is present-
ed in figure 3.

Figure 1

Shape grammar rule vs. 

GRAMATICA operator.

Figure 2

Simple 3D shape grammar 

rule.

Figure 3

Application of a shape gram-

mar rule.

Figure 4

Sequence of shape grammar 

rule application with param-

eter variation.
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Figure 4 presents the sequence from initial shape, 
a tetrahedron, to the final design after applying the 
rule of figure 2 to all the facets of current shape and 
changing the parameter d at each application of the 
rule.

Given that different search strategies can be 
used and that their success (or failure) depends on 
the specific problem one is trying to solve, GRAMAT-
ICA does not force a particular search strategy and, 
instead, it provides three different ones: depth-first, 
breadth-first, and A*. Depth-first search explores a 
complete path of the state-space graph before ex-
ploring another path. Breadth-first search explores 
all paths with length n before advancing to length 
n+1. A* search ranks paths according to the cost 
from the initial state to the current state, and the es-
timated cost decides the best state to expand based 
on a function that adds the cost how close a state is 
to the goal plus the cost of getting from the initial 
state to the current state.

In fact, GRAMATICA allows designers to define 
their own search strategies or, alternatively, to speci-
fy a particular order of rule application. This is shown 
in the next section.

EVALUATION
The main focus of this section is the implementation 
of a shape grammar for mass customization of hous-
ing. However, we will start by describing a much 
simpler grammar that generates ice-rays, as a dem-

onstration of the features of GRAMATICA, namely, 
maximal lines representation, emergent shapes, and 
order of applicable rules.

Ice-ray grammar
Ice-ray grammars were first formalized by Stiny 
(1977) using a shape grammar (see figure 5) as a 
means to describe the design of Chinese lattice.

Figure 6 shows the result of the above shape 
grammar for ice-ray, a rectangle as the initial shape, 
and the sequence 3, 2, 4, 3, 4 for the application of 
rules. This example shows that GRAMATICA is han-
dling a shape representation as maximal lines. For 
example, the shape detected as F (see figure 6) the 
right edge is composed by the segment of line a 
and b and not only the segment of line a or b. An-
other interesting feature is the capability of shape 
recognition as showed again with shape F that was 
matched with rule 3. For this to happen, the rule 
needed to encode not only the topological infor-
mation but also the geometric information, such as, 
edge length and the angle between edges.

Mass customization of housing
Mass-customization allows high-quality housing 
at affordable costs by relying on computer-aided 
design and manufacturing that does not depend 
on exhaustive repetition. This approach overcomes 
a common problem faced by designers of dealing 
with the design of large developments, for example, 
the difficulty of designing several different houses in 
a common style and the cost of building them with-
out benefiting from economies of scale. 

In this paper, we focus on solving this design 
problem using a discursive grammar, a rigorous 
mathematical model for the generation of forms ac-
cording to a housing brief. From a technical point 
of view, a discursive grammar (Duarte 2005) is com-
posed of a description grammar, a shape grammar, 
and a set of heuristics. For each rule in the shape 
grammar, there is a corresponding rule in the de-
scriptive grammar, so that the shape evolves by rule 
application and its design description is continuous-
ly updated. Heuristics are used to guide the applica-

Figure 5

Original (simplified) ice-ray 

shape grammar rules.

Figure 6

One possible sequence of 

ice-ray shape grammar rules 

application in GRAMATICA.
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tion of rules, for example, to select or limit the rules 
that can be applied at each step of the generation 
or to evaluate and select the entities that are closer 
to some pre-established goal. This allows discursive 
grammars to generate designs that are not only for-
mally valid but are also semantically correct.

From the operational point of view, the discur-
sive grammar is formed by two independent, but 
compatible, grammars, linked in sequence. The for-
mer is a programming grammar, already discussed 
in Duarte and Correia (2006) that is encoded as a de-
scription grammar, formulating a housing brief con-
strained by user input and a set of regulations. The 
housing brief is then used as input to the designing 
grammar exemplified bellow, which is encoded as 
a description grammar and a shape grammar tied 
together. These grammars compute a house design 
so that its description matches the housing brief. 
For experimentation and evaluation purposes, we 
use realistic grammars: the programming grammar 
follows the rules of PAHP - the Portuguese housing 
program and evaluation system, while the design-
ing grammar encodes the rules laid out by the ar-
chitect Álvaro Siza for the design of the Malagueira 
houses, an award-winning project that is under con-
struction since 1977.

For illustrative purposes, we will only describe two 
simplified rules layed out by Duarte (2005), which 
divides the lot into different spaces. Figure 7 shows 
such rules.

Each of these shape grammar rules was encod-
ed in GRAMATICA and, starting from an initial lot, a 
search process finds different solutions for its divi-
sion into spaces.  This search process is illustrated in 
Figure 8 where one can see the different transitions 
that connect designs and possible designs with only 
two different rules.

CONCLUSION AND FUTURE WORK
In spite of several decades of research, there is still 
a lack of shape grammar interpreters, particularly, 
those that can handle three-dimensional shapes. 
By using a sophisticated and extensible geometric 
kernel to represent shapes in combination with cus-
tomizable precise numeric operations and correct 
shape predicates, we provide GRAMATICA, a very 
flexible and generic shape grammar interpreter.

Figure 8

Derivation tree, applying rules 

of figure 7 to an initial lot.

Figure 7 

Original (simplified) mass 

customization shape gram-

mar rule.
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In this paper, we described the most significant 
research related to shape grammars, and we pre-
sented the fundamental features of GRAMATICA, 
demonstrating its usefulness in dealing with differ-
ent problems, both in two dimensions, as well as in 
three dimensions.

Emergence is still a hot topic of research, par-
ticularly, for shape grammars. In general, emergence 
can be very empirical and it is up to the designer to 
tell what and how the system recognizes as emer-
gent. In the end, GRAMATICA provides the basic 
tools and some techniques to implement emer-
gence of shapes. There are plans for linking CGAL 
to a graph transformation system and thus simplify 
the description of rules and allow better support to 
emergence.

In summary, while there’s still work to be done, 
e.g. user interfaces, emergence, GRAMATICA pro-
vides the means (shape representation) and the 
tools (shape generation, search control, and visuali-
zation) to develop shape grammars.
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