
489Shape Studies - Volume 1 - eCAADe 30 |

GRAMATICA

A general 3D shape grammar interpreter targeting the mass
customization of housing

Rodrigo Correia1, José Duarte2, António Leitão3

1,3IST - UTL Portugal, 2FA - UTL Portugal.
1rodrigo.correia@ist.utl.pt, 2jduarte@fa.utl.pt, 3antonio.menezes.leitao@ist.utl.pt

Abstract. This paper presents a general 3D shape grammar interpreter named
GRAMATICA and illustrates its use for the implementation of several shape
grammars, including the one used in the design module of a specific shape grammar
for mass-customized housing, called DESIGNA. The underlying shape representation,
generation and control are discussed. The resulting shape grammar interpreter tries to
support designers’ ways of thinking and working by acting as a bridge between shape
grammars, the formalism that captures a design process, and a CAD application, for
post-processing the computed design. This bridge is implemented by Rosetta, which
ensures portability among different CAD applications.
Keywords. Grammar interpreters; mass customization; housing; Malagueira; Siza.

INTRODUCTION
Shape grammars are generative systems based
on rules that allow capturing, creating, and under-
standing designs. They are based on the produc-
tion systems of Emil Post (1943) and the generative
grammars of Noam Chomsky (1957). Shape gram-
mars work directly with shape computations rather
than through symbolic computations (Knight 2000),
where a shape is conceived as a finite collection of
maximal lines (Stiny 1980). Designs are created by
recursively applying a set of rules to an initial shape
until a design is completed or no more rules can be
applied. In general, several rules can be applied to
any given shape, thus producing many different de-
signs.

Parametric shape grammars can generate an even
greater variety of designs by allowing the shapes
to which rules are applied to have parameters. Even
though this increases flexibility, it entails a more
complex implementation mainly because the num-
ber of design solutions that a system can produce
becomes extremely large, if not infinite.

Emergence is the ability to recognize and, more
importantly, to operate on shapes that are not pre-
defined in a grammar but emerge, or are formed,
from any parts of shapes generated through rule ap-
plications (Knight 2000).

Shape grammars were developed by Stiny and
Gips (1972). From this original work that illustrates

490 | eCAADe 30 - Volume 1 - Shape Studies

the application of shape grammars for interpreting
and evaluating works of art (Knight 2000) spawned
a broader range of shape grammar theory and ap-
plications. Parametric shape grammars (Stiny 1980),
color grammars (Knight 1989), grammars with
weights (Stiny 1992), description grammars (Stiny
1981), structure grammars (Carlson et al. 1991), at-
tributed grammars (Brown et al. 1994), and paral-
lel grammars (Stiny 1991) are examples of research
studies in the field of shape grammars. Shape gram-
mars have been applied in areas, such as, Architec-
ture, Engineering, and Product Design. Examples of
applications include Queen Anne houses (Flemming
1987), Marrakech Medina urban form (Duarte et al.
2007) and coffee makers (Agarwal and Cagan 1998).

To automate the application of shape rules,
researchers have concentrated their efforts on de-
veloping shape grammar interpreters. Previous
summaries (Gips 1999; Chau et al. 2004) show that
these researchers have focused on representations
of shapes and algorithms for subshape detection
and emergence, user interaction, and integration
into the design process. Examples of shape gram-
mar interpreters include the works of Gips (1975),
Krishnamurti (1982), Flemming (1987), Chase (1989),
Heisserman (1991), Tapia (1999), and Jowers and Earl
(2010), among others.

GRAMATICA
Because current computer systems are implicitly
symbolic, a shape grammar interpreter that is imple-
mented in these systems needs to represent a shape
symbolically. This section describes (1) the underly-
ing data structures which GRAMATICA uses to rep-
resent shapes and labels, (2) the mechanisms used
to control the application of rules to shapes, (3) and
how the system generates and decides what rules to
apply at a given time. Finally, GRAMATICA is evalu-
ated as a means to implement several shape gram-
mars and we show how a designer can use GRAMAT-
ICA in his creative process.

Shape representation
In order to represent a shape, GRAMATICA explores

the work of Heisserman (1991) regarding logical
reasoning about solids using first-order logic. Heis-
serman uses a split-edge data structure to represent
solids which is a graph-based boundary representa-
tion. This representation allows the specification of
clauses for matching on conditions of solid models
and the generation of modifications to those solids.

The split-edge data structure is a variation of the
winged edge structure to represent polyhedrons
(Baumgart 1972). With split-edge, each edge is sepa-
rated in two edge-half structures. One face and one
vertex are associated with each edge-half, and each
edge-half is associated with its other half.
In GRAMATICA, shapes are represented using the
halfedge data structure provided by CGAL [1], a
library for efficient and reliable computational ge-
ometry algorithms and data structures used in the
academia and industry.

Similarly to Heisserman, GRAMATICA shapes are
represented as a set of vertices, edges, facets, and
incident relations between them. This means that,
in both data structures, topology is represented as
a graph where the nodes are topological elements
and the arcs represent the adjacencies between ele-
ments.

Contrary to the split-edge data structure, where
an edge is split in two, halfedge breaks an edge in
two opposing halfedges. One halfedge is associated
with its incident vertex and facet, and also with its
next, previous, and opposite halfedges. All these
incident relations allow the shape to be queried ef-
ficiently and easily.

Also similarly to Heisserman, GRAMATICA uses
euler operators (Baumgart 1975) to ensure a valid
topological construction, thus avoiding invalid to-
pologies, for example, a facet with a hanging edge.

However, unlike Heisserman, GRAMATICA uses
multiple representations for numbers and geomet-
ric calculations, allowing users to choose between
different degrees of precision and speed. With the
highest numerical precision, GRAMATICA avoids
common problems associated with rounding errors.
However, GRAMATICA always uses exact queries,
meaning that geometric tests are always correct. For

491Shape Studies - Volume 1 - eCAADe 30 |

example, checking if a point lays on one side or the
other of a plane will not be affected by numerical
imprecision. This means that numbers are tailored
for speed, but all geometric queries sacrifice execu-
tion time and storage space over exactness.

Given the graph representation of a shape and
its geometry, labels are directly implemented in the
elements of a shape by means of a hashtable, asso-
ciating key-value pairs. In general, labels are used
to distinguish elements of a shape by associating
non-geometric data with any topological elements
of shapes. Labels could also be used to restrict rule
applications by imposing specific conditions on the
shape generation.

In summary, a shape in GRAMATICA is represent-
ed as a stack of layers where (1) the bottom layer
contains topological information relating facets,
halfedges, and vertices with each other, followed by
(2) the layer of geometric information that is associ-
ated to each vertex, and, finally, (3) the layer of labels
where non-geometric information is associated to
the topological elements of a shape. All these layers
are managed by Rosetta (Lopes and Leitão 2011),
that abstracts the use of CGAL and allows the visu-
alization of the designs in different CAD tools.

Shape generation and rule representation
Using a rule system to implement a shape gram-
mar interpreter poses several issues mainly how
to control the order in which rules are applied. For
example, a designer who uses the interpreter to im-
plement a given grammar will end up using specific
mechanisms of the rule system, such as, labels or
the salience property, to tune the application order,
even though these mechanisms were not devel-
oped to this end.

GRAMATICA takes a different approach by look-
ing at the shape grammar as a state-space: each
state encodes a particular design and each shape
grammar rule is encoded as a transition operator
that moves from one state to another. The applica-
tion of the shape grammar to a given design can
then be seen as a search in the state-space for a path
that connects the initial state to some goal state.

This path encodes the sequence of shape grammar
rules that, starting from that initial design, leads to
the final design.

In general, the specification of the initial state is
direct, as there is usually an initial design available.
However, the specification of the goal state is much
more abstract as, in general, we know some of the
properties that it must possess, but not its actual
shape. This means that, in practice, the goal state is
described by a predicate that is true only when all
the properties of the intended final design are satis-
fied.

There are several different strategies for finding
a path in the state-space that connects the initial
and final states. In order to understand these strate-
gies, it is important to realize that, in most cases, it
is impossible to actually generate the entire state-
space because the application of shape grammar
rules is a combinatorial problem with an enormous
number of possibilities. In fact, for the majority of
problems, the number of states grows exponen-
tially with the number of transitions and, due to
memory limitations, this means that searching the
space-state must be done incrementally, by gen-
erating the space-state as the search proceeds. In
order to do this, the transition operator becomes a
generator: its application to a given state generates
the “next” state, that is, the state that represents the
design that results from the application of the corre-
sponding shape grammar rule. The application of all
possible transition operators to a given state is then
called the expansion of that state.

In general, all search strategies are based on the
recursive expansion of states, from the initial to the
goal state, and the order in which the states are ex-
panded determines the search strategy. However,
when the goal state is reached, it might be neces-
sary to know which path was followed. To this end,
each state is enriched with additional information,
namely, which state and which transition operator
were used to generate it. This enriched state is called
a node and the exploration of the state-space entails
the corresponding enlargement of the graph con-
necting these nodes. In this graph, the edges corre-

492 | eCAADe 30 - Volume 1 - Shape Studies

spond to the transition operators (i.e., shape gram-
mar rules) that were applied to a node to produce its
descendants. Expanding a node entails expanding
the corresponding state followed by the creation of
a node for each generated state.

GRAMATICA follows the approach we have just
described. In GRAMATICA, each shape grammar rule
is encoded as an expansion operator that represents
the transformation of a design. Each operator has
two parts, known as antecedent and consequent.
The antecedent describes the design to which the
operator applies, while the consequent describes
the design that results from the application of the
operator. In practice, to minimize the number of
operators that must be written, each operator uses,
instead of a consequent, a set of consequents, i. e.,
a set of possible designs. Given that this set is com-
puted during the search of the state-space, it is pos-
sible for this set to be empty, meaning that the spe-
cific operator could not make the transition from a
given state. Other operators, however, might be able
to compute such transitions.

For illustrative purposes consider the follow-
ing example (see figure 1). The shape grammar rule
states: if in a given design there is a shape that re-
sembles a rectangle then this shape can be trans-
formed into a different design where the rectangle
is divided in two parts, where one of the parts has
a height that is 1, 2, or 3. In GRAMATICA, we encode
this rule by defining a transition operator whose
antecedent checks that a rectangle is present and
whose consequent is a set of three designs, one for
each possible height.

Figure 2 presents a different example where the
shape grammar rule states: if a facet is found in a
given design, transform this facet into a pyramid
with the apex at some perpendicular distance from
the centroid of the facet.

One possible design from recursively applying
this rule to a given facet in a tetrahedron is present-
ed in figure 3.

Figure 1

Shape grammar rule vs.

GRAMATICA operator.

Figure 2

Simple 3D shape grammar

rule.

Figure 3

Application of a shape gram-

mar rule.

Figure 4

Sequence of shape grammar

rule application with param-

eter variation.

493Shape Studies - Volume 1 - eCAADe 30 |

Figure 4 presents the sequence from initial shape,
a tetrahedron, to the final design after applying the
rule of figure 2 to all the facets of current shape and
changing the parameter d at each application of the
rule.

Given that different search strategies can be
used and that their success (or failure) depends on
the specific problem one is trying to solve, GRAMAT-
ICA does not force a particular search strategy and,
instead, it provides three different ones: depth-first,
breadth-first, and A*. Depth-first search explores a
complete path of the state-space graph before ex-
ploring another path. Breadth-first search explores
all paths with length n before advancing to length
n+1. A* search ranks paths according to the cost
from the initial state to the current state, and the es-
timated cost decides the best state to expand based
on a function that adds the cost how close a state is
to the goal plus the cost of getting from the initial
state to the current state.

In fact, GRAMATICA allows designers to define
their own search strategies or, alternatively, to speci-
fy a particular order of rule application. This is shown
in the next section.

EVALUATION
The main focus of this section is the implementation
of a shape grammar for mass customization of hous-
ing. However, we will start by describing a much
simpler grammar that generates ice-rays, as a dem-

onstration of the features of GRAMATICA, namely,
maximal lines representation, emergent shapes, and
order of applicable rules.

Ice-ray grammar
Ice-ray grammars were first formalized by Stiny
(1977) using a shape grammar (see figure 5) as a
means to describe the design of Chinese lattice.

Figure 6 shows the result of the above shape
grammar for ice-ray, a rectangle as the initial shape,
and the sequence 3, 2, 4, 3, 4 for the application of
rules. This example shows that GRAMATICA is han-
dling a shape representation as maximal lines. For
example, the shape detected as F (see figure 6) the
right edge is composed by the segment of line a
and b and not only the segment of line a or b. An-
other interesting feature is the capability of shape
recognition as showed again with shape F that was
matched with rule 3. For this to happen, the rule
needed to encode not only the topological infor-
mation but also the geometric information, such as,
edge length and the angle between edges.

Mass customization of housing
Mass-customization allows high-quality housing
at affordable costs by relying on computer-aided
design and manufacturing that does not depend
on exhaustive repetition. This approach overcomes
a common problem faced by designers of dealing
with the design of large developments, for example,
the difficulty of designing several different houses in
a common style and the cost of building them with-
out benefiting from economies of scale.

In this paper, we focus on solving this design
problem using a discursive grammar, a rigorous
mathematical model for the generation of forms ac-
cording to a housing brief. From a technical point
of view, a discursive grammar (Duarte 2005) is com-
posed of a description grammar, a shape grammar,
and a set of heuristics. For each rule in the shape
grammar, there is a corresponding rule in the de-
scriptive grammar, so that the shape evolves by rule
application and its design description is continuous-
ly updated. Heuristics are used to guide the applica-

Figure 5

Original (simplified) ice-ray

shape grammar rules.

Figure 6

One possible sequence of

ice-ray shape grammar rules

application in GRAMATICA.

494 | eCAADe 30 - Volume 1 - Shape Studies

tion of rules, for example, to select or limit the rules
that can be applied at each step of the generation
or to evaluate and select the entities that are closer
to some pre-established goal. This allows discursive
grammars to generate designs that are not only for-
mally valid but are also semantically correct.

From the operational point of view, the discur-
sive grammar is formed by two independent, but
compatible, grammars, linked in sequence. The for-
mer is a programming grammar, already discussed
in Duarte and Correia (2006) that is encoded as a de-
scription grammar, formulating a housing brief con-
strained by user input and a set of regulations. The
housing brief is then used as input to the designing
grammar exemplified bellow, which is encoded as
a description grammar and a shape grammar tied
together. These grammars compute a house design
so that its description matches the housing brief.
For experimentation and evaluation purposes, we
use realistic grammars: the programming grammar
follows the rules of PAHP - the Portuguese housing
program and evaluation system, while the design-
ing grammar encodes the rules laid out by the ar-
chitect Álvaro Siza for the design of the Malagueira
houses, an award-winning project that is under con-
struction since 1977.

For illustrative purposes, we will only describe two
simplified rules layed out by Duarte (2005), which
divides the lot into different spaces. Figure 7 shows
such rules.

Each of these shape grammar rules was encod-
ed in GRAMATICA and, starting from an initial lot, a
search process finds different solutions for its divi-
sion into spaces. This search process is illustrated in
Figure 8 where one can see the different transitions
that connect designs and possible designs with only
two different rules.

CONCLUSION AND FUTURE WORK
In spite of several decades of research, there is still
a lack of shape grammar interpreters, particularly,
those that can handle three-dimensional shapes.
By using a sophisticated and extensible geometric
kernel to represent shapes in combination with cus-
tomizable precise numeric operations and correct
shape predicates, we provide GRAMATICA, a very
flexible and generic shape grammar interpreter.

Figure 8

Derivation tree, applying rules

of figure 7 to an initial lot.

Figure 7

Original (simplified) mass

customization shape gram-

mar rule.

495Shape Studies - Volume 1 - eCAADe 30 |

In this paper, we described the most significant
research related to shape grammars, and we pre-
sented the fundamental features of GRAMATICA,
demonstrating its usefulness in dealing with differ-
ent problems, both in two dimensions, as well as in
three dimensions.

Emergence is still a hot topic of research, par-
ticularly, for shape grammars. In general, emergence
can be very empirical and it is up to the designer to
tell what and how the system recognizes as emer-
gent. In the end, GRAMATICA provides the basic
tools and some techniques to implement emer-
gence of shapes. There are plans for linking CGAL
to a graph transformation system and thus simplify
the description of rules and allow better support to
emergence.

In summary, while there’s still work to be done,
e.g. user interfaces, emergence, GRAMATICA pro-
vides the means (shape representation) and the
tools (shape generation, search control, and visuali-
zation) to develop shape grammars.

ACKNOWLEDGEMENTS
This work was partially supported by national funds
through FCT – Fundação para a Ciência e a Tecnolo-
gia, under project PEst-OE/EEI/LA0021/2011.

REFERENCES
Agarwal, M and Cagan, J 1998, ‘A Blend of Different Tastes:

The Language of CoffeeMakers’, Environment and Plan-
ning B: Planning and Design, 25(2), pp. 205-226.

Baumgart, B 1972, ‘Winged Edge Polyhedron Representation’,
Technical Report, Stanford University.

Baumgart, B 1975, ‘A polyhedron representation for com-
puter vision’, Proceedings of the May 19-22, 1975, Na-
tional Computer Conference and Exposition, ACM, Ana-
heim, California, pp. 589-596.

Brown, KN, McMahon, CA and Williams, JHS 1994, ‘A Formal
Language for the Design of Manufacturable Objects’,
Proceedings of the IFIP TC5/WG5.2 Workshop on Formal
Design Methods for CAD, Elsevier Science Inc., pp. 135-
155.

Carlson, C, McKelvey, R and Woodbury, R 1991, ‘An introduc-
tion to structures and structure grammars’, Environ-
ment and Planning B: Planning and Design 18(4), pp.
417-426.

Chase, S 1989, ‘Shapes and shape grammars: from math-
ematical model to computer implementation’, Environ-
ment and Planning B: Planning and Design 16(2), pp.
215-242.

Chau, H, Chen, X, McKay A, de Pennington, A 2004, ‘Evalua-
tion of a 3D shape grammar implementation’, Proceed-
ings of the First International Conference on Design Com-
puting and Cognition, pp. 357-376.

Chomsky, N 1957, ‘Syntactic structures’, Mouton, The Hague.
Duarte, JP 2005, ‘Towards the Mass Customization of Hous-

ing: the grammar of Siza’s houses at Malagueira’, Envi-
ronment and Planning B: Planning and Design, 32(3), pp.
347-380.

Duarte, JP and Correia, R 2006, ‘Implementing a Description
Grammar for Generating Housing Programs Online’,
Construction Innovation Journal on Information and
Knowledge Management in Construction, volume 6, no.
4, pp. 203-216.

Duarte, JP, Rocha, J and Ducla-Soares, G 2007, ‘Unveiling the
structure of the Marrakech Medina: A Shape Grammar
and an Interpreter for Generating Urban Form’, Artificial
Intelligence for Engineering Design, Analysis and Manu-
facturing, 21(4), pp. 317-349.

Flemming, U 1987, ‘More than the sum of parts: the gram-
mar of Queen Anne houses’, Environment and Planning
B: Planning and Design 14(3), pp. 323-350.

Gips, J 1975, ‘Shape Grammars and Their Uses: Artificial Per-
ception, Shape Generation and Computer Aesthetics’,
Birkhaüser, Basel, Switzerland.

Gips, J 1999, ‘Computer Implementation of Shape Gram-
mars’, Workshop on Shape Computation, MIT.

Heisserman, J 1991, ‘Generative Geometric Design and
Boundary Solid Grammars’, doctoral dissertation, Car-
negie Mellon University, Department of Architecture,
Pittsburgh.

Jowers, I and Earl, C 2010, ‘The construction of curved
shapes’, Environment and Planning B: Planning and De-
sign 37(1), pp. 42-58.

496 | eCAADe 30 - Volume 1 - Shape Studies

Knight, TW 1989, ‘Color grammars: designing with lines and
colors’ Environment and Planning B: Planning and De-
sign 16(4), pp. 417-449.

Knight, TW 2000, ‘Shape Grammars in Education and Prac-
tice: History and Prospects’, The Department of Architec-
ture School of Architecture and Planning, Massachu-
setts Institute of Technology, Cambridge, MA.

Krishnamurti, R 1982, ‘SGI: a shape grammar interpreter’, Re-
search report, Centre for Configurational Studies, The
Open University, Milton Keynes.

Lopes, J and Leitão, A 2011, ‘Portable Generative Design for
CAD Applications’, Proceedings of the 31st annual confer-
ence of the Association for Computer Aided Design in Ar-
chitecture, Banff, Alberta, Canada, pp. 196-203.

Post, E 1943, ‘Formal reductions of the general combinato-
rial decision problem’, American Journal of Mathemat-
ics, 65, pp. 197-215.

Stiny, G 1977, ‘Ice-ray: a note on the generation of Chinese
lattice designs’, Environment and Planning B 4(1), pp.
89-98.

Stiny, G and Gips, J 1972, ‘Shape Grammars and the Gen-
erative Specification of Painting and Sculpture’, in C. V.
Freiman (eds)., Information Processing, 71, (North Hol-
land, Amsterdam, 1972), pp. 1460-1465.

Stiny, G 1980, ‘Introduction to shape and shape grammars’,
Environment and Planning B 7(3), pp. 343-351.

Stiny, G 1981, ‘A note on the description of designs’, Environ-
ment and Planning B 8(3), pp. 257-267.

Stiny, G 1991, ‘The Algebras of Design’, Research in Engineer-
ing Design 2 (3), pp. 171-181.

Stiny, G 1992, ‘Weights’, Environment and Planning B: Plan-
ning and Design 19(4), pp. 413-430.

Tapia, M 1999, ‘A visual implementation of a shape gram-
mar system’, Environment and Planning B: Planning and
Design 26(1), pp. 59-73.

[1] www.cgal.org.

