
87Collaborative Design - Volume 2 - eCAADe 30 |

INTRODUCTION
Architecture is a creative discipline that depends on
the specificities of the program, site, social and eco-
nomical circumstances, historical and political back-
ground, and the concerns of each architect or design
team. Therefore, an architectural project is always
unique in its design requirements. However, in some
cases, commercial CAD packages are not enough to
tackle effectively and efficiently the specificities of
each design. As a result, increasingly more design-
ers and architectural practices use programming
to conceive specialized digital tools tailored to the
given design tasks. The use of programming in de-
sign allows (1) design task automation, (2) exten-
sion of CAD application features, (3) customization
and procedural generation of parametric models, (4)
algorithmic exploration of different design options,
(5) 3D printing optimization, (6) implementation of

digital fabrication protocols, (7) deal with complex
models, and (8) pursue exhaustive design explora-
tion through the manipulation of scripted para-
metric models. Unfortunately, programming is still
limited to a small number of architects and design
teams.

It has been suggested that architecture stu-
dents should learn programming (Leitão et al., 2010;
Burry, 1997) and, in fact, several architecture cur-
ricula already follow this recommendation. Learn-
ing programming requires learning a programming
language, and it is only reasonable that architecture
curricula adopt languages that can be directly appli-
cable in the production of digital design. As a result,
most curricula teach languages that are provided
by CAD applications, for example, AutoLisp, Rhino-
Script, and Grasshopper.

Collaborative Digital Design

When the architect meets the software engineer

Luís Santos1, José Lopes2, António Leitão3

1IHSIS (Institute for Humane Studies and Intelligent Sciences), Portugal, 2,3Instituto Supe-
rior Técnico, Technical University of Lisbon, Portugal, 3INESC-ID, Portugal
2http://fenix.ist.utl.pt/homepage/ist158612, 3http://fenix.ist.utl.pt/homepage/ist13451
1luis.sds82@gmail.com, 2jose.lopes@ist.utl.pt, 3antonio.menezes.leitao@ist.utl.pt

Abstract. Increasingly more architects use programming as a means for form finding
and design exploration, a tendency that is expected to continue. Even though significant
progress has been made in the simplification of programming languages, complex design
tasks might still require large coding efforts. We do not think it is wise to force architects
to also become experts in programming languages and software engineering. Instead,
similarly to what happened with other design and building disciplines, we think that the
future of digital design lies in the collaborative effort of architects and software engineers.
In this paper we analyze different situations where such collaboration increases
productivity and frees the architect to more creative tasks.
Keywords. Architecture; Software Engineering; Design; Collaborative process; CAD
tools.

88 | eCAADe 30 - Volume 2 - Collaborative Design

Even though these languages allow a smooth tran-
sition from theory to practice, they have two major
problems, namely, (1) most of these languages lack
fundamental pedagogical qualities, and (2) profes-
sionals become locked-in to specific CAD languages
and tools not only because it is difficult to reuse
programs written in different languages and to mi-
grate to different CAD tools (Lopes, 2011), but also
because professionals find it difficult to learn and
adapt to new systems.

In order to avoid these problems, one would
think that students should learn several program-
ming languages. This strategy is actually followed in
several software engineering curricula, with courses
requiring different programming languages. Unfor-
tunately, this approach is impractical for architecture
students due to the extremely small number of pro-
gramming courses available in typical architecture
curricula. On the other hand, increasing the number
of programming courses is not a viable solution be-
cause it is not wise to try to convert architects into
programming experts (Boeykens and Neuckermans,
2009).

In practice, although some architects may spe-
cialize in programming, the majority will only mas-
ter programming up to a certain level. As a result,
with increasingly complex design tasks, there is a
moment when an architect feels the programming
challenge he faces is so large that the necessary
effort to accomplish it will not pay off. At that mo-
ment, it is more productive to invite software engi-
neers to participate in the process.

A software engineer can contribute to the de-
sign process in a number of ways, including, cus-
tom modeling and analysis tools, management and
optimization of scripts made by architects or other
professionals, mediation or translation of programs
written in a variety of languages, and support to the
development of complex programs and algorithms
when necessary. As a result, while software engi-
neers are concerned with the programming side of
design tasks, architects can focus on the architec-
tural side of those tasks.

In general, the benefit of multidisciplinary teams
comprising both architects and software engineers
can be translated in the ability of the design team to
(1) exhaustively explore the design solution space;
(2) make informed decisions from the feedback pro-
vided by performance analysis; (3) study, design,
and optimize, the fabrication of complex building
components; and (4) quickly and economically in-
corporate changes and variations into complex de-
signs.

Even though the concept of multidisciplinary
teams is not new, the fact is that this deeply inte-
grated, collaborative effort between architects, de-
signers, and software engineers, is still exceptional.
In practice, only large design offices are currently
investing in the formation of these multidisciplinary
teams. However, this does not mean that smaller de-
sign offices cannot take advantage of this collabo-
ration: outsourcing their specialized programming
needs can be a valid solution.

In the following sections, we present examples
of well-known cases of multidisciplinary teams and
we show practical cases where this collaboration is
beneficial for the design process.

RELATED WORK
The eighteenth century was a turning point where
architecture and engineering became separate fields.
Since then, architects have always worked collabora-
tively with other experts, therefore, it is not surprising
that the effective use of programming in the design
process also requires the collaboration of software
engineers.

Some well-established architectural and engi-
neering practices present interesting case-studies of
these recent collaborative design teams, namely, Spe-
cialist Modelling Group (SMG) of Foster and Partners
(Peters and DeKestellier, 2006), Advanced Geometry
Unit (AGU) of Arup (Walker, 2004), Computational De-
sign & Research (CDR) and the Advanced Modelling
Group (AMG) of Aedas, and BlackBox Studio of Skid-
more, Owings & Merrill (SOM). These are examples of
multidisciplinary teams comprising architects, math-
ematicians, engineers, and programmers.

89Collaborative Design - Volume 2 - eCAADe 30 |

For example, SMG is a specialized group with the
purpose of developing project-driven research and
design workflow consulting (Whitehead, 2011).
SMG lead architect, Hugh Whitehead, says the work
at SMG can be divided in two major areas, namely,
(1) development of procedures for data transfer and
exchange, and (2) development of data analysis
mechanisms to support decision making in the de-
sign process.

Team members at SMG are called “architects
plus”. They are professionals originally trained as ar-
chitects that specialize in digital techniques, such as,
3D modeling, scripting, and digital analysis tools. For
SMG, this kind of organization provides a better sup-
port to design teams because team members have
a designer mindset and, as result, they have a clear
understanding of the design brief and its actual re-
quirements. This approach aims at improving the
workflow of the design process, not only by conceiv-
ing tailored tools for specific problems on demand,
but also by giving advice to designers so they can
devise better strategies and choose adequate pa-
rameters and procedures.

The specificity of each design and the unique-
ness of every design team result in avoiding formula
solutions. As a result, the collaborative process fo-
cuses more on the applicability of digital technology
to inform design workflow, to select the correct type
of information which, then, becomes a stimulus to
design (Whitehead, 2011). Design teams make use
of the tools provided by SMG and provide feedback,
which is used to improve those tools. As a result, de-
sign teams are more motivated to participate in this
process, where not only they learn how to use those
tools but they also become actively involved in their
development.

Moreover, the fact that younger generations of
architects are more aware of programming is ben-
eficial to SMG because they require less training and
can pursue more individual work, thus relieving the
group which, in the end, has more time for research
(Whitehead, 2011). As a result, the role of SMG be-
comes one of mediating different design teams and
external consultants, reinforcing the idea of a multi-

disciplinary environment where different expertise,
experiences, and points of view, are focused on find-
ing the answer to multi-criteria problems.

This mediation and interpretative role are shift-
ing the workflow concerns of SMG to code manage-
ment, sharing, and reuse. In this case, a software
engineer is particularly important because, by being
an expert in programming, he is capable of improv-
ing code in order to make it more modular, abstract,
and flexible, so it can be reused and adapted to dif-
ferent design tasks.

AGU of Arup is another example of a multidis-
ciplinary team. Arup is a large and well-established
engineering office and AGU is a research and con-
sulting group that provides internal and external
consulting. The group, lead by architect and en-
gineer Charles Walker, has a set of skills that com-
prehend engineering, architecture, mathematics,
physics, and programming. The main goal of AGU is
to find new or less conventional solutions by explor-
ing different strategies, such as, algorithms, genera-
tive systems (e.g. fractals), and non-linear structures
(Walker, 2004), and to systematically apply these
strategies to design geometrically complex forms
and structures. Similarly to SMG, AGU faces each de-
sign as a unique problem, thus providing project de-
pendent consulting. As a result, AGU comprehends
a small number of permanent team members and
according to the requirements, size, and complexity,
of each project, a larger ad-hoc team is assembled
for the duration of one or more stages of design for
that project.

Even though current software is enough for
most problems, there are some tasks that require
custom software (Walker, 2004). In this case, AGU
will try to extend (whenever possible) existing CAD
and structural analysis software with additional
components that target specifically those tasks.
If this is not possible, then AGU will develop new
tools. This shows that AGU focuses not on develop-
ing new technology but instead on reusing software
as much as possible, with the objective of accelerat-
ing the design process. The unusual composition of
team members at AGU and the application of inno-

90 | eCAADe 30 - Volume 2 - Collaborative Design

vative digital tools in the design process suggest a
new organic structure, which independent architec-
tural practices can adopt to remain competitive in
the race to tackle complex and large projects.

SMG and AGU are successful examples of mul-
tidisciplinary teams comprising architectural and
software engineering skills, showing that this collab-
orative effort is a promising organizational decision
from which we can expect better, more effective,
and more efficient design processes. It is our un-
derstanding that, due to the complexity of custom
digital tools, algorithms, parametric models, and
the growing need of code reuse and optimization in
digital supported design, the role of software engi-
neer within design teams and the communication
between designers and software engineers are be-
coming critical.

COLLABORATIVE DIGITAL DESIGN
Collaboration between architects and software
engineers must be supported by a common vo-
cabulary. Architects without programming notions
cannot effectively describe their design ideas to a
software engineer. Conversely, software engineers
without architecture notions cannot understand
architectural requirements. More specifically, we be-
lieve that software engineers that want to collabo-
rate with architects should learn geometry, repre-
sentation techniques, and 3D modeling.

In spite of the initial knowledge each must have
about the work of the other, there is a natural ten-
dency for this knowledge to grow: the collaborative
experience becomes also a learning experience.
With time, the software engineer specializes in archi-
tectural problems and the architect becomes more
aware of the capabilities and limitations of program-
ming.

We will now describe a range of situations that
we have been experiencing in the last few years,
where the complexity of the programming task re-
quired collaboration between design teams and
programming experts.

Situation 1: Automation
There are tasks that are repetitive by nature. For ex-
ample, consider the creation of a 3D model for an
urban fabric based on building boundaries and el-
evation points (Figures 1 and 2). Most architects that
accomplished this task consider it annoying and
time-consuming because, for each building, the ar-
chitect has to visually locate the elevation point con-
tained in its boundary and then extrude the bound-
ary up to this elevation. This sequence of operations
must be repeated a large number of times, being
an excellent candidate for automation. Automat-
ing an extrusion operation is an easy task that most
architects with a modicum of training in scripting
languages for CAD applications quickly accomplish.
However, instructing a computer to visually locate
points inside polygons might not be straightforward
for an architect, although it should be easy for a soft-
ware engineer acquainted with computer graph-
ics algorithms. The algorithm relies on testing the
containment relation between a polygon and point,
which can be implemented by a predicate, i.e., a
function that returns true if the point is contained
in the polygon and false otherwise. To this end, we
can use the algorithm presented in Figure 3. Then,
for each polygon, the set of points must be filtered
according to the containment predicate and three
situations can occur: (1) the resulting set of points
is empty, meaning that the polygon does not con-
tain any points; (2) the resulting set contains a single
point, meaning that the point describes the eleva-
tion of the polygon; and (3) the set contains more
than one point, meaning that there are different el-
evation possibilities.

At this moment, the software engineer con-
sults with the architect to understand what should
be done in each case. The answer might be that
he should not be concerned with cases (1) and (3)
because the architect guarantees that they do not
occur in practice, or it might be that the program
should report an error for these cases, or report an
error for the first one and use some kind of eleva-
tion average for the third; or any other possibility. In
any case, given that it is the architect that decides

91Collaborative Design - Volume 2 - eCAADe 30 |

the course of action, either the software engineer
implements the architect’s choice or, even better, he
implements all options and a way for each architect
to provide their own choice.

This is an example of a real situation where the
final result was an AutoLisp script written by a soft-
ware engineer for an architect that then was used
by many other architects, saving them enormous
amounts of time.

Figure 1

Plan of urban fabric with

elevation points.

Figure 2

The 3D model of the urban

fabric.

Figure 3

Testing if a point is inside a

polygon: compute a ray that

starts on the point and count

the number of intersections

with the polygon edges. If the

number is odd, the point is

inside the polygon, otherwise

it is outside the polygon.

92 | eCAADe 30 - Volume 2 - Collaborative Design

Situation 2: Translation of algorithms
Many programming tasks can be solved by reusing
existing algorithms. Unfortunately, in many cases,
these algorithms are written in programming lan-
guages which are not commonly used by designers,
such as C or Fortran, and significant effort might be
required to learn such languages just to translate
those algorithms. On the other hand, translation of
algorithms between languages is an ordinary task
for a software engineer.

As a real example, consider the creation of
meshes from sets of points, an activity that is fre-
quent in 3D modeling but not directly supported
by all CAD tools. An architect that needs to produce
such mesh might search the literature or the inter-
net for an adequate algorithm, and he will prob-
ably find the Delaunay algorithm. However, it is
very unlikely that he finds the algorithm written in
a language that is ready to be executed in the CAD
tool he is using. Most probably, the algorithm will
be written in some of the most used programming
languages, such as C, Java, or C++. However, these

are not the languages that most architects learn. In-
stead, they learn CAD scripting languages, such as
AutoLisp or RhinoScript, and without previous ex-
perience, it can be difficult to understand other lan-
guages, which have very different syntax, semantics,
and pragmatics. Moreover, given the effort needed
to learn just a single language, it is not surprising
that programmers tend to become addicted to the
first language they learn and do not think it is worth-
while to learn a new one just to be able to translate
some algorithm.

This is another situation where collaboration
with a software engineer can be a serious time saver.
Software engineers should know several program-
ming languages and, more importantly, they should
be able to learn new ones when necessary. This
means that the necessary effort for a software engi-
neer to learn an algorithm written in a “foreign” lan-
guage and rewrite it in the language required by the
CAD tool used by the architect should be consider-
ably smaller than the equivalent effort required for
the majority architects for the same task. The same
can be said for the translation of scripts from one
CAD tool to another.

Figure 4

C++ program for computing

the convex hull of a set of

points.

#include <iostream>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
int main()
{
Point_2 points[5] = { Point_2(1,0), Point_2(7,2),
Point_2(9,1), Point_2(6,5),
Point_2(4,1), Point_2(3,9) };
Point_2 result[5];
Point_2 *ptr = CGAL::convex_hull_2(points, points+5, result);
std::cout << ptr - result << “ Convex hull” << std::endl;
return 0;
}

93Collaborative Design - Volume 2 - eCAADe 30 |

Situation 3: Using libraries
Certain design tasks require an entire software library.
For example, the Computational Geometry Algo-
rithms Library (CGAL) is a free, open-source library
that provides a large number of algorithms and data
structures for solving complex geometric problems,
such as computing convex hulls or Voronoi diagrams.
However, the library is written in C++ and makes ex-
tensive use of its complex template system, being
almost hermetic to non-software engineers. Figure 4
presents a small C++ program using CGAL for com-
puting the convex hull of a set of 2D points. Although
this task has a lot in common with situation 2 and it
would be possible to translate the convex hull algo-
rithm written in C++ to the AutoLisp language, the
effort needed to do that might be considerable be-
cause CGAL is a huge library, with many interdepend-
encies that make the translation effort highly non-
cost effective. So, in this situation, we recommend
a different approach that, once again, is doable by a
software engineer but might represent a tremendous
effort for an architect: create bindings between the
library and the architect preferred language. These
bindings allow architects to use the data types and
program constructs of their preferred language to in-
teract with the library, effectively hiding it and, as Fig-
ure 5 illustrates, making it much easier to deal with it.

There are several technological approaches for
implementing these bindings, including foreign func-
tion interfaces, sockets, COM, and others, depending
on the support provided by the languages and librar-
ies, and we have explored some of these approaches
in the past, e.g., to connect CGAL to the Racket lan-
guage and to allow AutoLisp to be used as scripting
language for Rhino 3D. As an interesting side-effect
of this effort, we have been noticing that after the ini-
tial development work, some architects start to look
at the actual binding implementation and some of
them even make improvements to the bindings, ex-
tending them and/or correcting bugs.

Situation 4: Interaction between
applications
Analysis and performance simulation tools are be-
coming increasingly important to provide data into
to the design process as means to support decisions
and evaluate solutions. Therefore, an extremely im-
portant case of collaboration between software en-
gineers and design teams occurs when interaction
between a CAD system and other applications, such
as, building energy simulators or structural analysis
tools, is necessary. For example, associating perfor-
mance data to parametric models is necessary to
assess the impact of variable and parameter modi-
fications in the overall performance. And associat-
ing different systems requires software engineers
to implement specialized connection components,
and the integrated design data helps designers in
decision making.

The interaction between applications can also
be useful in goal-oriented design where a genera-
tive system iteratively produces, analyses, and com-
pares, different solutions to find the one that maxi-
mizes the objective set for a specific performance
behavior. In most cases, goal-oriented systems are
composed of (1) a modeling application that pro-
duces geometry, (2) simulation software that runs
performance based analysis, and (3) an optimization
algorithm that guides the search process. Because
these components must communicate between
them, software engineers have to conceive and
implement communication protocols, sometimes
reusing existing technologies, such as, foreign func-
tion interfaces, ActiveX, and remote procedure calls.
These techniques are commonly taught in the soft-
ware engineering curricula and they are in the scope
of software engineering tasks, but not in the usual
concerns and skills of an architect.

A fine example that illustrates this situation is
the collaboration between Kristina Shea, a mechani-
cal engineer, and Robert Aish, a software engineer

Figure 5

AutoLisp program for compu-

ting the convex hull of a set

of points.

(print (convex-hull ‘((1 0) (7 2) (9 1) (6 5) (4 1) (3 9))))

94 | eCAADe 30 - Volume 2 - Collaborative Design

(Shea, 2005). Together, they connected Bentley
Microstation and GenerativeComponents (GC) with
eifForm, a performance-based generative design
system for structural design (Sass, 2005). With this
integration, eifForm users can take advantage of
the richer modeling and visualization mechanisms
of Microstation, including the programming ca-
pabilities of GenerativeComponents. On the other
hand, Microstation users can take advantage of
performance or optimization analysis, for exam-
ple, to perform structural mass reduction on their
Microstation models. The interaction between these
applications was accomplished via XML. With this
technology, one of the applications serializes the
geometric models to XML format and the other ap-
plication executes the converse process. While archi-
tects are better prepared to make architectural and
design decisions, software engineers are well pre-
pared to choose an adequate technology for a given
programming problem or set of software require-
ments. For example, the choice of XML technology
suggests that one of the most important software
requirements is easy data sharing across different
applications.

Situation 5: Development of large scale
programs
In general, complex problems can only be solved by
complex programs. One of the fundamental goals of
software engineering is precisely to allow the devel-
opment of these programs in the most economical
way. To this end, many techniques have been pro-
posed and successfully used, for example, object-
oriented programming, design patterns, and model-
driven development. Due to time restrictions, these
techniques are hardly addressed in the architecture
curricula. As a result, architects spend unnecessary
efforts developing programs that could be much
more effectively developed by software engineers.

As an example, consider that a designer needs
a programming environment in which he can write
Generative Design programs that create geomet-
ric models in the most popular CAD applications.
Note that this designer does not want to be limited

to a specific CAD application. Instead, he wants to
be able to interoperate with multiple CAD applica-
tions because, for example, his work colleagues deal
with multiple tools. Conceiving such programming
environment entails designing adequate software
architecture, generalizing the functionality of CAD
applications, abstracting portable functionality and
emulating non-portable features, establishing con-
nections between different systems, serializing data,
and so on. These tasks are suitable for a software en-
gineer, but quite unusual for an architect.

At this moment, architects are not capable of
overcoming these problems by themselves because
they do not possess the necessary knowledge to
distinguish between problems that result from leg-
acy systems, language implementation details, and
inadequate programming approaches, from those
that are intrinsically complex from the computa-
tional point of view. Therefore, architects usually ap-
proach all problems in the same way: they write pro-
grams that implement a given task and at the same
time circumvent the limitations of CAD applications,
making them unnecessarily complicated. A software
engineer can propose solutions to overcome those
secondary problems, thus allowing designers to fo-
cus on their design task.

For example, a software engineer can select an
appropriate programming language and develop a
geometric algebra embedded in that language such
that the problem of arguments being consumed by
operations no longer applies. This requires under-
standing memory management and language eval-
uation models. He can also advise multiple dispatch,
a feature of object-oriented programming, as a
mechanism to implement generic operations, such
that operations, such as, union, intersection, and
subtraction, work for all geometric shapes. Finally,
the software engineer can also conceive procedures
for detecting special cases, such as, empty and uni-
versal regions, that typically fail in CAD applications,
and implement algebraic equivalence rules to find
valid combinations for operations.

Naturally, this process results from the collabo-
rative work of designers and software engineers. For

95Collaborative Design - Volume 2 - eCAADe 30 |

example, Rosetta (Lopes, 2011) is an example of a
system where problems, such as those presented in
this section, have been overcome. However, we are
constantly observing how architects work and col-
lecting feedback, so that we can identify more prob-
lems and implement solutions that aim at simplify-
ing the programming effort.

CONCLUSIONS
In this paper we discuss the utility of collaborative
work between architects and software engineers.
Despite the benefits of this collaboration, it is desir-
able that architects continue to learn programming
not only as an improvement of their own skills and
in the management of digital tools, but also as a
means to formulate and model problems that they
want to tackle in their designs. Moreover, the in-
crease of programming courses taught in architec-
ture curricula and the popularization of parametric
models and the implementation of algorithmic pro-
cedures in architectural praxis are relevant factors
that cannot be disregarded.

Architects are becoming more proficient in the
use of programming as an additional approach to
automate, explore, and develop designs. Neverthe-
less, we believe that it is not necessary for archi-
tects to become programming experts. Computer
science is an independent field of knowledge with
a different culture, concerns, and objectives, than
architecture. Architects can master programming
techniques up to the level that is sufficient for their
immediate needs. However, there are programming
tasks that require a great amount of additional pro-
gramming techniques and the effort needed for
the architect to learn and master these techniques
might not pay off. For these tasks, a deeper collabo-
ration between architects and software engineers
can be highly useful.

As we discussed in this paper, this multidisci-
plinary, collaborative work is already a reality. Well-
known and established Architecture, Engineering
and Construction (AEC) firms have specialized mul-
tidisciplinary teams where the software engineer
or expert programmers put their expertise in the

development of digital tools suitable for the design
workflow. Designing in such a multidisciplinary en-
vironment becomes not only a collaborative effort,
where each party shares its knowledge and creativ-
ity in a complementary fashion, but also a learning
experience for all those engaged in the process.

This paper presented five situations where a col-
laborative effort between architects and software
engineers allowed a more productive design pro-
cess. These situations included automation of basic
design tasks, translation of algorithms, simplified
use of libraries, interaction between applications,
and development of large scale programs.

We believe this need for collaborative work will
increase in the future. Nevertheless, it will only pay
off if a strong culture of communication between
architects and software engineers is developed. Not
only must architects continue to obtain program-
ming skills but also software engineers should learn
about architectural culture and praxis in order to
understand the architectural design process and the
needs and concerns of architects.

ACKNOWLEDGMENTS
This work was partially supported by national funds
through FCT – Fundação para a Ciência e a Tecno-
logia, under the projects PEst-OE/EEI/LA0021/2011
and PTDC/AUR-AQI/103434/2008.

REFERENCES
Boeykens, S and Neuckermans, H 2009 'Visual Program-

ming in Architecture: Should Architects Be Trained As
Programmers?', Cultures et Visions – Proceedings of the
13th International CAAD Futures Conference, Université
de Montréal, Montréal, Canada, pp. 41–42.

Burry, M 1997 'Narrowing the Gap Between CAAD and
Computer Programming: A Re-Examination of the
Relationship Between Architects as Computer-Based
Designers and Software Engineers, Authors of the
CAAD Environment', Proceedings of the 2nd Conference
on Computer Aided Architectural Design Research in Asia
(CAADRIA), Hsinchu, Taiwan, pp. 491–498.

96 | eCAADe 30 - Volume 2 - Collaborative Design

Leitão, A and Cabecinhas, F and Martins, S 2010 'Revisit-
ing the architecture curriculum: The programming
perspective', Future Cities – 28th eCAADe Conference Pro-
ceedings, Switzerland, pp. 81–88.

Lopes, J and Leitão, A 2011 'Portable Generative Design for
CAD Applications', ACADIA 11: Integration through com-
putation – 31st ACADIA Conference Proceedings, Canada,
pp.193–203.

Peters, B and DeKestellier, X 2006 'The Work of Foster and
Partners Specialist Modelling Group', Bridges London
Conference Proceedings, University of London, London,
UK, pp. 9–12.

Sass, L and Shea, K and Powell, M 2005 'Design Production:
Constructing freeform designs with rapid prototyp-
ing', Digital Design: The Quest for New Paradigms – 23rd

eCAADe Conference Proceedings, Portugal, pp. 261–268.
Shea, K and Aish, R and Gourtovaia, M 2005 'Towards inte-

grated performance-driven generative design tools',
Automation in Construction, 14(2), pp. 253–264.

Walker, C 2004 ‘Emergence: Morphogenetic Design Strate-
gies’, Castle, H. (eds.), Architectural Design, 74(3), pp.
64–71.

Whitehead, H and de Kestelier, X and Gallou, I 2011 ‘Distrib-
uted Intelligence in Design’, Kocatürk, T and Medjdoub,
B. (eds.), John Wiley & Sons, UK, pp. 232–246.

