
Generative and Parametric Design - eCAADe 29 549

Programming Languages for Generative design

Visual or Textual?

António Leitão1, Luís Santos2

1Instituto Superior Técnico/INESC-ID, Portugal, 2IHSIS - Institute for Humane Studies and
Intelligent Sciences, Portugal
1antonio.menezes.leitao@ist.utl.pt, 2luis.sds82@gmail.com

Abstract. In this paper we compare visual and textual programming languages for generative
design. We argue that, in the past, this comparison has been flawed and that it is now time to
reconsider the potential of the textual programming paradigm but using modern programming
languages and development environments specifically targeted to the generative design
domain. We present VisualScheme as a prime example of such language and we compare it
with the most used visual programming language in the generative design field.
Keywords. Generative design; Visual Programming Languages; Textual Programming
Languages; Interactive Development Environments.

INTRODUCTION
Nowadays, digital tools to architectural design are
increasingly used as “generative tools for the deriva-
tion of form and its transformation” (Kolarevic, 2000)
and it is common to hear about parametric, algo-
rithmic, and generative design. Through parametric
design one can manipulate a design or its parts with
variable parameters while the algorithmic approach
allows the designer to describe an architectural
shape by the application of rules and constraints
or a coherent combination of procedures. The gen-
eration of shapes through the application of any of
these techniques is described as generative design.

It is true that some of those concepts are not
new and were applied in architecture even before
the invention of digital computers, as is visible, for
example, in the architecture of Antoni Gaudí (Katz,
2010) but the use of computers popularized them by
facilitating its description and application.

In order to implement a concept in a computer
one must first translate the thought process into a

formal language that the computer understands:
a Programming Language (PL). The increasing use
of programming in the design field had an impact
on architecture praxis and theory in such a way that
some announced the emergence of a new architec-
tural style, the Parametricism, as representative of
avant-garde tendencies with the digital generative
approach as a common ground [1].

This paper discusses the use of PL in generative
design, distinguishing between Textual PLs (TPLs)
and Visual PLs (VPLs). TPLs and VPLs are defined,
compared and analyzed in terms of their advantag-
es, disadvantages, development environments and
fitness to the specific domain of generative design.

Because of its increasing popularity, we will con-
sider Grasshopper (version 0.8.0010) as the VPL of ref-
erence within the generative design domain. On the
other hand, due to its wide availability in common
CAD tools, we will focus on VBScript and its descend-
ants as representative TPLs for generative design.

550 eCAADe 29 - Generative and Parametric Design

We will argue that comparing state-of-the-art
VPLs with old general purpose TPLs is not appropri-
ate. Instead, the comparison should be made with
modern TPLs. We will use VisualScheme (Leitão et al,
2010) as a case study to show that TPLs can be more
productive than VPLs, particularly, when the com-
plexity of the design problem increases.

PROGRAMMING LANGUAGES: VISUAL
AND TEXTUAL
A programming language is a formal medium for ex-
pressing ideas and not just a way to get a computer
to perform operations. This means that program-
ming languages should match the human think-
ing process, which includes the ability to combine
simple ideas to form compound ones and the ability
to abstract complex ideas so that they become more
general (Locke, 1690).

Every programming language that follows these
principles is made of three important concepts: (1)
primitive elements, (2) combination mechanisms,
and (3) abstraction mechanisms. General-purpose
languages provide few pre-defined abstractions,
while domain-specific languages provide abstrac-
tions tailored to a given domain.

A visual programming language (VPL) allows the
description of programs in a bidimensional represen-
tation consisting of iconic elements that can be inter-
actively manipulated by the user according to some
spacial grammar (Myers 1990). Figure 1 shows a small
visual program (designed in Grasshopper) that com-
putes a sequence of points belonging to a conic spiral.

In a textual programming language (TPL),
programs are described using a linear sequence
of characters. The major difference between a VPL
and a TPL is, thus, on the number of dimensions:
TPLs are one-dimensional while VPLs are, at least,
bi-dimensional.

For comparison, the following textual frag-
ment (written in RhinoScript) computes the same
sequence of points of a conic spiral:

Function ConicSpiral(Length,N)
 Dim points()
 ReDim points(N-1)
 Dim t, i
 For i=0 To N-1
 t=i*Length/N
 points(i)=Pt(t*Cos(5*t),
 t*Sin(5*t),
 t)
 Next
 ConicSpiral=points
End Function

In spite of the large number of studies compar-
ing VPLs with TPLs, there is no conclusive evidence
regarding their relative advantages (Menzies, 2002).
It is generally admitted, though, that VPLs are more
motivating for beginners, allowing them to become
productive sooner. On the other hand, TPLs are con-
siderably more productive for dealing with complex
problems and, in fact, most of the existent program-
ming languages are TPLs.

Figure 1
A Grasshopper program for
computing points of a conic
spiral: values ranging from 0
to some length and their map-
pings using f(x)=x*cos(5*x)
and g(x)=x*sin(5*x) become
the point coordinates.

Generative and Parametric Design - eCAADe 29 551

One of the drawbacks of a traditional TPL is that
it requires the user to master a relatively large set of
concepts that, in many cases, are related not to the
problem the user wants to solve but, instead, to im-
plementation details of the language. For example,
to understand just the first three lines of the previ-
ous RhinoScript example, the reader has to know (1)
the syntax of functions, (2) the concept of array, (3)
that arrays require declaration, (4) that non-statically
sized arrays require a redimension operation, and (5)
that arrays indexes start from zero. Additional knowl-
edge is necessary to understand the full fragment.
This shows the first significant advantage of a mod-
ern VPL over an old TPL: the amount of background
knowledge required is smaller.

The second advantage is that, as a result of their
iconic nature, the development environment of a
VPL can present the user with all the language ele-
ments that can be used. TPLs, when used without a
good development environment, usually require the
programmer to either remember the functionality or
to read extensive documentation.

The third one is the instant feedback provided
by some VPLs: the effect of each element can be im-
mediately visualized. This facilitates the detection of
mistakes and the adjustment of the input parameters.
It also permits an incremental development process,
where each element added to the program can be im-
mediately tested. In spite of a few exceptions, such as
Fluxus (Griffiths, 2007), most TPLs do not support this
type of development. Instead, the user is forced to go
through a write-compile-execute iterative cycle that
does not promote incremental development.

Unfortunately, VPLs also have some drawbacks:
they do not scale well with the complexity of the de-
sign task and, in many cases, the majority of users rely
on extensive copy and paste, creating future mainte-
nance problems. Moreover, as programs grow larger,
it becomes increasingly difficult to understand what
they do. This might explain the size and throwaway
nature of the majority of visual programs when com-
pared with the multi-million lines of code and longev-
ity of the large textual programs.

In spite of its disadvantages, there is a general
perception among generative designers that VPLs
are more productive than the textual alternatives.
This perception is caused by two factors: the textual
alternatives lack domain-specific concepts and they
make it difficult to define them. Moreover, we will
show that modern TPLs provide additional advan-
tages over VPLs and, thus, should be considered as
better alternatives for solving large scale problems.

MODERN PROGRAMMING LANGUAGES
A modern PL is designed to be unobtrusive to the program-
mer. To this end, it usually provides syntactic features that
drastically simplify the development of programs.

To illustrate this point, we will consider one
important abstraction applicable to our previous
example: list comprehensions, a specialized syntax
heavily influenced by the set-builder notation used
in mathematics. For example, in the Haskell lan-
guage (Hudak et all, 2007), the conic spiral becomes:

conicSpiral length n =
 [(t*(cos 5*t), t*(sin 5*t), t) |
 t <- [i*length/n | i <- [0..n]]]

The comparison between Haskell and Rhino-
Script shows the amount of knowledge that is re-
quired in each case and provides anecdotal evidence
that modern TPLs can be significantly easier to use.
Haskell is a prime example of a modern language
but many other recent languages (e.g., Python)
could be used with identical results.

In this paper, we will argue that it is possible
and, in fact, advantageous, to use TPLs in place of
VPLs as long as we restrict ourselves to modern
implementations targeting the generative design
domain.

VISUAL SCHEME
VisualScheme (Leitão et al, 2010) is a research proj-
ect based on PLT Scheme (Findler et al, 2002) that
combines a modern TPL with a pedagogical inter-
active development environment (IDE) focused on

552 eCAADe 29 - Generative and Parametric Design

generative design programs. VisualScheme aims at
exploring the advantages of TPLs, in particular, to
handle the complexity of large programs, with some
of the advantages of VPLs, including domain-specific
constructs and IDE that provides auto completion,
immediate feedback, visual widgets for input, and
visualization of the results in the most used CAD
applications.

As a first example, the following definition com-
putes the set of points of the conic spiral that was
computed in our previous examples:

(define (conic-spiral length n φ)
 (for/list ([i (in-range 0 n)])
 (let ([t (/ (* i length) n]))
 (cyl t (* φ t) t))))

There are two noteworthy differences be-
tween this example and the Haskell example.
The first one is the use of the fully parenthesized
prefix notation that is typical of Lisp dialects. This
notation might seem strange at the beginning
but our teaching experience shows that it can be
quickly mastered. The second one is the use of
coordinate systems: in order to better match the
generative design domain, VisualScheme imple-
ments the traditional Cartesian, polar, cylindrical,
and spherical coordinate systems. As can be seen
in this example, where the cylindrical coordinate
system is being used, an adequate choice of coor-
dinate system reduces the need for trigonomet-
ric expressions.

The definition we have just presented replicates
the corresponding Grasshopper example that we
provided in the beginning of the paper but it is not
a typical VisualScheme definition. The typical im-
plementation is, usually, more parametric, as can be
seen in the following example:

(define (conic-spiral r φ z dr dφ dz n)
 (if (= n 0)
 (list)
 (cons (cyl r φ z)
 (conic-spiral (+ z dz)
 (+ r dr)
 (+ φ dφ)
 dr dφ dz
 (- n 1)))))

This second example illustrates a recursive
definition, where the function is defined in terms of
itself. In this case, the conic spiral is parameterized
by the starting radius, rotation, and height; by their
successive increments, and, finally, by the number of
incremental steps. Note that this example cannot be
directly encoded in Grasshopper (without using spe-
cial scripting components) because it currently lacks
the ability to do recursion. In this particular case, this
is not as bad as it looks because it is possible to find
different encodings that produce the same results.
In the general case, however, this can be a serious
limitation.

If, instead of the linear behaviour allowed by the
recursive definition, one prefers different kinds of
spirals, where, for example, the radius changes non
linearly with the height of the spiral, then it might be
preferable to use an approach where that variation
is explicitly described. One hypothesis is to define
each different variation in the range [a,b] as a func-
tion over the domain [0,1]1:

(define (linear a b)
 (λ (t)
 (+ a (* t (- b a)))))

Note that each call to the linear function com-
putes another function as a result, making it one
example of a higher-order function. This capability is

1 For reasons of space, the following function definitions will use short names for parameters. It should be noted that normal Visu-
alScheme programs use longer and clearer names

Generative and Parametric Design - eCAADe 29 553

rare in older PLs but common in modern ones.
As an example of a non-linear variation, consider the

following function that implements a sinusoidal variation
in the interval [a,b], with amplitude d and frequency f:

(define (sinusoidal a b d f)
 (λ (t)
 (+ a
 (* t (- b a))
 (* d (sin (* f 2 pi t))))))

Using this approach, many different variations
can be easily implemented. In order to to compute
the actual variation, we need to generate the func-
tion domain as a sequence of values in the interval
[0,1] . The image of the function over that domain is
obtained by mapping it over the sequence of values:

(define (variation f n)
 (map f (range 1 n)))

The conic spiral is then just the mapping of

cylindrical coordinates over three linear variations of
the radius, angle, and height. A more interesting ex-
ample is the spiral whose radius shows a sinusoidal
variation along the height:

(define (spiral r0 r1 φ0 φ1 h d f n)
 (map cil
 (variation
 (sinusoidal r0 r1 d f) n)
 (variation
 (linear φ0 φ1) n)
 (variation
 (linear 0 h) n)))

Much more complex geometries can be defined
just by combining functions. For example, we can cre-
ate a tower by placing a (linear or otherwise) sequence
of spirals around a circle. We can also simplify its use by
including higher-level parameters, such as the number
of spirals s and the number of turns t of each spiral:

Figure 2
The VisualScheme IDE run-
ning on top of AutoCAD.
The sliders window allows
quick experimentation of the
function parameters, by re-
generating the corresponding
geometry in real time. It was
generated by the code frag-
ment visible at the bottom of
the editor.

554 eCAADe 29 - Generative and Parametric Design

(define (spirals r0 r1 h d f s t n)
 (map (λ (φ)
 (spiral r0 r1 φ
 (+ φ (* 2 pi t))
 h d f n))
 (variation
 (linear 0 (* 2 pi))
 s)))

In order to create a mesh of spirals that turn
in opposite directions we combine two calls of the
previous function, one of them with a symmetrical
number of turns:

(define (spirals-mesh r0 r1 h d f s t n)
 (append
 (spirals r0 r1 h d f s t n)
 (spirals r0 r1 h d f s (- t) n)))

The points produced by the previous function
can now be used to define a surface or a set of curves.

Figure 2 shows VisualScheme running along-
side with AutoCAD which is used to visualize the re-
sulting geometry. Also visible in the image is a small
window with sliders that allows the user to quickly
experiment different values for the function param-
eters just by moving the sliders. In order to generate
the set of sliders, it is only necessary to write a small
code fragment that references the function to test
and the names and ranges of the parameters.

EVALUATION
The previous section described VisualScheme, a re-
search project whose main goal is the production of
a pedagogical IDE for generative design. To compare
VisualScheme with a VPL, we will use Grasshopper as
reference and we will consider the three fundamen-
tal dimensions of a PL: primitives, combinations, and
abstractions.

In what regards primitives, we can conclude
that Grasshopper is currently in a very good posi-
tion: it implements a huge set of primitive elements,

some of them with a high degree of sophistication,
allowing an important reduction in the implemen-
tation effort, a significant advantage over VisualS-
cheme that currently does not implement as many
primitives as Grasshopper.

In what regards the combination mechanisms,
Grasshopper relies on an extremely simple meta-
phor: primitives can be combined by connecting
the output of a primitive to the input of another.
The connections allow data to flow from primitive to
primitive, until it reaches the end of the graph, usu-
ally, in primitives that create geometric models. The
problem with this metaphor is that it makes it diffi-
cult to express some control structures, such as itera-
tion or recursion. In other dataflow languages, these
control structures require either dedicated mecha-
nisms or the ability to create cycles in the graph of
primitives. In Grasshopper, most components im-
plicitly map their operations over sequences of val-
ues, obviating the need for many cases of iteration
and recursion but, in the general case, it might be
difficult or impossible to describe a computational
process without textually scripting a specialized
component, thus contradicting the visual nature of
the language.

In the case of VisualScheme, the available com-
bination mechanisms are the ones provided by the
Scheme language which includes the ability to form
complex expressions from simpler ones and several
control and data structuring mechanisms, allow-
ing many different programming paradigms. In our
opinion, this is strictly more powerful than the single
metaphor provided by the VPL side of Grasshopper.

Finally, in what regards the abstraction mecha-
nisms, Grasshopper implements a special compo-
nent, the cluster, which allows the user to select a
graph of components (including other clusters) and
to treat it as a single component. This can make a
huge difference in the clarity of programs and im-
proves the reuse of its parts. Unfortunately, this ca-
pability has not been always available. In this regard,
VisualScheme provides several different forms of ab-
straction. In this paper we only presented examples

Generative and Parametric Design - eCAADe 29 555

of procedural abstraction but the language also pro-
vides data and control abstraction.

In order to better evaluate VisualScheme, we
have been working on a small number of parametric
design exercises that we implemented both in Visu-
alScheme and in Grasshopper. In a previous paper
(Leitão et al, 2010), we reported our findings for a
moderately complex task. Although the experiment
was not representative, it showed that VisualScheme
could be more productive than Grasshopper for that
particular task. In this paper we focus on a simpler

task but we are more exhaustive by comparing the
previous VisualScheme program with different solu-
tions that were developed by four Grasshopper users
that have different degrees of expertise, from begin-
ner to advanced.

The task used in the experiment was a simpli-
fied version of the mesh of conic spirals discussed
previously: the users only had to implement a cylin-
drical tower based on the same concept of intersect-
ing spirals. This tower is visible in the top left part of
Figure 2.

Figure 3
The Grasshopper programs
encoded by four different
designers for the mesh of
conic spirals. Above: one of
the Grasshopper definitions
and its result in Rhinoceros.
Below: the four Grasshopper
programs produced (for rea-
sons of space the images were
reduced).

556 eCAADe 29 - Generative and Parametric Design

In what regards the Grasshopper implementa-
tions, it was observed that the design brief was easily
accomplished, although, as expected, each designer
followed a different approach and implemented a
different program. Figure 2 shows the different solu-
tions produced.

Comparing the VisualScheme program,
showed previously, with the Grasshopper solu-
tions, it is clear that, although not as aesthetically
pleasing, the VisualScheme program is more syn-
thetic, simpler, and easier to understand than the
complex wire amalgam of the Grasshopper visual
programs. Another clear advantage for VisualS-
cheme is the freedom provided by the different
data and control structures available, particularly,
recursion. Without being able to use the general
expressiveness of recursive definitions, Grass-
hopper users were frequently seen searching for
a strategy that would allow them to achieve the
same results.

The use of higher-order functions in VisualS-
cheme made another important difference, as it
allowed very quick experimentation of alternative
designs. Grasshopper also allows the user to quickly
changes the program inputs but to implement varia-
tions of a particular algorithm the user must design a
different program, manually connecting and discon-
necting the data flow wires from/to different compo-
nents, a task that is much more time consuming and
error prone.

Finally, the most relevant finding is the fact
that the task was completed by the experienced
VisualScheme user in a quarter of the time needed
by the experienced Grasshopper user. As expected,
the less experienced Grasshopper users needed
even more time to complete the job. The analysis
of the causes for the time gap shows that a signifi-
cant fraction is due to the time consuming tasks of
component placement, wire connection, data visu-
alization, and commenting, that are required by the
VPL. Modern TPLs, on the contrary, have very little
requirements, allowing programmers to be much
more productive.

CONCLUSION
This paper focused on the two different scripting
approaches towards generative design: Textual,
through a TPL, and Visual, through a VPL.

Given the obsolescent state of the majority of
TPLs available for generative design, it is clear that
a modern VPL offers a more attractive approach.
However, it is inadequate to compare state-of-the
art, domain-specific VPLs, such as Grasshopper, with
old and general-purpose TPLs, such as VBScript. In-
stead, the comparison should use modern, domain-
specific, TPLs.

Our findings show that Grasshopper does not
scale well with the complexity of the tasks, due, in
part, to its shortcomings in abstraction mechanisms
and generic control structures and, in other part,
to the time-consuming programming construction
based on the manipulation of wires and boxes. It also
was noticed that more complex programs become
considerably harder to understand, a problem that
can only be mitigated with extensive annotations.

The fact that it is possible to extend the capabil-
ities of Grasshopper with textually scripted compo-
nents is an important and useful feature that allows
Grasshopper to transcend its limitations. However, it
also shows that advanced users will always need to
learn a TPL.

In this paper, we argued that modern TPLs with
user-friendly IDEs can be much easier to program
and understand than the older ones, and they can
surpass recent VPLs, especially in complex tasks.
These modern TPLs do not dispense learning their
syntax but what might seem as a steeper learning
curve quickly provides a good return on the invest-
ment. Unfortunately, most of these TPLs lack do-
main-specific primitives, a fact that can significantly
delay the scripting process because it forces the user
to define all needed functionality.

VisualScheme (Leitão et al, 2010) is our pro-
posal for applying the advantages of modern TPLs
to the generative design domain. Based on Dr-
Scheme, a modern pedagogical IDE, it extends the
Scheme programming language with predefined

Generative and Parametric Design - eCAADe 29 557

domain-specific primitives for the generative design
and provides a direct connection to AutoCAD.

This paper presented examples of VisualS-
cheme programs and compared them to equivalent
programs in Grasshopper. Based on the comparison
results, we argued that algorithms for generative
design can be easier to implement, understand, and
modify in VisualScheme than in Grasshopper.

Programming languages for generative design
are here to stay. However, in spite of their usefulness,
there is an important feature that is still absent in
most of them: portability. Currently, it is difficult to
port a generative design program between differ-
ent CAD tools and it is difficult to reuse generative
design libraries in different programming languages.
We plan to address this issue in the near future, by
allowing the same program to be executed in the
context of different CAD tools, such as AutoCAD and
Rhinoceros, and by allowing the combination of pro-
grams that were written in different languages, such
as Scheme and JavaScript.

ACKNOWLEDGMENTS
The authors are grateful to Brimet Silva and Susana
Martins for their participation in the Grasshopper ex-
perience and for their helpful comments.

REFERENCES
Findler, C, Flanagan, F, Krishnamurthi, S, Felleisen

2002, ‘DrScheme: A Programming Environment
for Scheme’, Journal of Functional Program-
ming, 12(2), pp. 159-182.

Griffiths 2007, ‘Game Pad Live Coding Performance’,
in Die Welt als virtuelles Environment: Birringer,
Dumke and Nicolai. TMA Hellerau, Dresden.

Hudak, P, Hughes, J, Peyton, S, Wadler, P 2007, ‘A his-
tory of Haskell: being lazy with class’, Proceed-
ings of the third ACM SIGPLAN conference on
History of programming languages (HOPL III):
pp. 12–1–12–55.

Katz, N 2010, ‘Algorithmic Modeling; Parametric
Thinking: Computational Solutions to Design
Problems’, 5th ASCAAD Conference Proceed-

ings, Fez, Morocco, pp. 19-36.
Kolarevic, B 2000, ‘Eternity, Infinity and Virtuality in

Architecture’, 22nd ACADIA Conference Pro-
ceedings, Washington D.C., USA, pp. 251-256.

Leitão, A, Cabecinhas, F and Martins, S 2010, ‘Revisit-
ing the Architecture Curriculum’, in Future Cit-
ies, 28th eCAADe Conference Proceedings, ETH
Zurich (Switzerland), pp. 81–88.

Locke, J 1690, ‘An Essay Concerning Human Under-
standing’, London.

Menzies, T 2002, ‘Evaluation Issues for Visual Pro-
gramming Languages‘, Handbook of Software
Engineering and Knowledge Engineering, vol.
2, pp. 93-101.

Myers, BA 1990, ‘Taxonomies of Visual Programming
and Program Visualization’, Journal of Visual
Languages and Computing, 1(1), pp. 97–123.

[1] www.patrikschumacher.com/Texts/Parametri-
cism as Style.htm

