Portable Generative Design for CAD Applications

José Lopes
Instituto Superior Técnico

Anténio Leitao
Instituto Superior Técnico

196

ACADIA 2011 _PROCEEDINGS

ABSTRACT

Most CAD applications provide programming languages for automation and
generative design. However, programs written in these languages are not portable
because they execute only in the family of CAD applications for which they
were originally written. Consequently, users are locked-in to one family of CAD
applications and they cannot reuse programs written for other families.

In this paper, we propose a solution to this problem: Rosetta, a programming
environment that is compatible with several CAD applications. Rosetta is composed
of (1) an abstraction layer that allows portable and transparent access to several
different CAD applications; (2) back-ends that translate the abstraction layer
into different CAD applications; (3) front-end programming languages in which
users write the generative design programs; and (4) an intermediate programming
language that encompasses the language constructs essential for geometric
modeling and that is used as a compilation target for the front-ends.

Rosetta allows users to explore different front-ends and back-ends, in order to
find a combination that is most suitable for the problem at hand. As a result, users
have access to different programming languages, namely, visual and textual,
which can be used interchangeably to write generative design programs, without
breaking portability. Furthermore, Rosetta ensures that a single program can be
used to create identical geometric models in different CAD applications. This
approach promotes the development of programs that are portable across the
most used CAD applications, thus facilitating the dissemination of the programs
and of the underlying ideas.

INTEGRATION THROUGH COMPUTATION

1 Introduction

Portability is a software requirement of the utmost importance because it is a
key factor for software reuse. Software reuse is a common programming practice
that increases not only the productivity of the software development process, but
also the quality of the software itself. Moreover, software reuse is the key survival
factor for small and medium-sized programmer communities.

For example, the Perl programming language is supported by an online collection
of software and documentation called the Comprehensive Perl Archive Network
(CPAN). Through CPAN, Perl users have access to tens of thousands of
modules that cover practically every task they might think of. CPAN relies on the
contributions of the Perl community and it is one of the reasons for the success
of Perl. The AutoLISP community is another example: there are thousands of
AutoLISP scripts available on the Internet that AutoCAD users can use to speed
up their design tasks.

In addition, portability and reusability are qualities that allow software to adapt
to new environments. For example, consider the set of programs written in
RhinoScript, the programming language of Rhinoceros 3D. These programs might
become useless if Rhinoceros 3D replaces RhinoScript with another programming
language. In this scenario, users have two options: either discard the RhinoScript
programs or rewrite them in a supported programming language. Unfortunately,
both options are inadequate.

Even though there are many CAD applications, the fact remains that programs
written in the programming language of a particular CAD application are not
portable across the majority of others. This strong coupling between a program
and a CAD application is not only dangerous to the survival of the program itself,
it also damages the software process productivity, the software quality and the
communities.

In order to address this problem, we propose Rosetta, a programming environment
that (1) is specifically tailored for generative design, (2) integrates with different
CAD applications, and (3) accommodates different programming languages.

In the rest of this paper, we explain the implementation of Rosetta and we illustrate
its use with examples from generative design. Finally, we evaluate Rosetta, we
compare it with similar approaches and we present the conclusions.

2 Rosetta

Programs written in the programming languages provided by CAD applications suffer
from portability issues. In order to overcome this difficulty, we have been developing
Rosetta, a flexible and extensible programming environment that connects front-
end programming languages (front-ends) and back-end CAD applications (back-
ends). The front-ends represent the programming languages in which users write
the generative design programs. The back-ends represent the modeling target, in
which the geometric models that result from the generative design programs are
created. (Figure 1) illustrates Rosetta with the Racket programming language and
the Rhinoceros 3D back-end creating a perforated hollow sphere.

The loose coupling between the front-ends and back-ends gives users the flexibility
to explore different combinations. For example, one user can write a generative
design program in AutoLISP and choose Rhinoceros 3D as modeling target, while
another user can choose JavaScript as front-end and AutoCAD as back-end. On
the other hand, Rosetta is extensible in the sense that it allows new front-ends and
back-ends to be plugged-in to the programming environment, without breaking the
portability with existing programs.

In order to accommodate both flexibility and extensibility in the same architecture,
we defined an abstraction layer, which represents the Application Programming

INTEGRATIVE TOOLS AND TECHNIQUES

rve Suface Soid Mesh Dimension Iransform Tools Analyze

Creating meshes.. Press Escto cancel
 Command

0 Ijxﬂjﬂ-“&"?‘??@

E %40 bRQQ@wJI06U

N
IS
C)
>
@
q
9
S
By
%
e
=
T
Eid
%)

CPlane_ x-0562 3692 WO<fault

P
Fle Edt View Language Racket Insert Tsbs Help
camplesit (defne..)v Swve fun £ s10p @

#lang racket

(define (inverted-cone r h th fi) M
(rotate th p.uz
(rotate fi p.ux
(move
(p*n p.uz h)
(rotate pi p.ux (cone r h))))))

(define (sphere-substitution.cone r h n)

(filter

(A (e) (not (void? e)))

(flatten

(for/list ((fi (enumerate 0 pi (/ 2pi m))))
(for/list ((th (enumerate 0 2pi (/ 2pi n))))
(let ((r (* r (sin fi))))
(when (> r 1.0e-5)
(inverted-cone r h th £i))))))))

i

(define (spherical-puncture.cone r e rc n)
(let ((hollow-sphere

(subtract (sphere r) (sphere (- r e))))
(cones
(sphere-substitution.cone rc (* 1.1 r) n)))

(for ((cone cones))

(set! hollow-sphere (subtract hollow-sphere cone))) L
hollow-sphere))

Welcome to DiRacket, version 5.1-2011-02-27(bee619f0/d) [3m]. a
Language: racket; memory limit: 128 MB.

Starting Rhinoceros 3D...

> (evaluate (spherical-puncture.cone 1.0 0.05 0.15 20))

Deteminelanguage fom source P mavel §

Fig. 1

Figure 1. Perforated Hollow Sphere program in
Rosetta using the Racket programming language
and the Rhinoceros 3D back-end

197

198

ACADIA 2011 _PROCEEDINGS

Interface (API) of the programming environment, and an intermediate programming
language (IPL), which provides the core language constructs essential for
geometric modeling. When combined, the abstraction layer and the IPL establish
a communication protocol between the front-ends and the back-ends.

The rest of this section is dedicated to exploring the aforementioned components
of the architecture in further detail, namely, the abstraction layer, the IPL, and the
front-ends/back-ends.

2.1 ABSTRACTION LAYER

The abstraction layer encompasses the functionality common to CAD applications,
which includes (1) shape constructors, the procedures to create geometric shapes,
namely, circles and boxes; and (2) transformations, the procedures that apply geometric
transformations, including, translations, lofts, extrusions, and sweeps.

In order to understand the relevant shape constructors and transformations for generative
design, several CAD applications were surveyed and the results were generalized in
order to accommodate the most used CAD applications.

2.2 INTERMEDIATE PROGRAMMING LANGUAGE

The IPL is the compilation target of the front-ends, but it can also be used directly to
write generative design programs. This language is an extension to Racket, a dialect of
the Scheme programming language (Kelsey 1998). The IPL is supported by DrRacket,
a pedagogic programming environment suitable for the development of programming
languages (Findler 2002; Flatt 1999).

Because the IPL is used as a compilation target for the front-ends, the main focus of this
language is to provide the core functionality essential for generative design. Therefore,
certain linguistic features, such as presentation (i.e., syntax), are not addressed by this
language. In fact, because the presentation is such an important aspect of a language
and there are several possible syntaxes, including visual and textual ones, the only way
to accommodate all possibilities is to defer the choice of the presentation to the front-
ends, while maintaining an abstract syntax in the IPL. The need for an abstract syntax
is one of the reasons for supporting the choice of Racket as a starting point for the IPL.

By using the IPL, either directly or as a compilation target, generative design programs
can be executed, generating the appropriate geometric models in the CAD application
of choice. As part of its execution, the program generates internally a scene graph
which represents the structure of the geometric models to be drawn, including their
relationships and transformations (Dollner 2000). Before feeding the scene graph into
the CAD application, several transformations and optimizations are performed to adapt
the scene graph to the requirements of that particular CAD application.

2.3 FRONT-ENDS / BACK-ENDS

The front-ends are the programming languages in which users write the generative
design programs. Users accustomed to the Scheme language will feel at home
using directly the IPL, but those who prefer something different might appreciate the
different languages that can be used on the front-end, both textual and visual. After
surveying the programming language landscape through the generative design prism,
we selected a representative subset: AutoLISP, Processing, and JavaScript. In order to
accommodate both textual and visual presentations, we also considered Grasshopper
and GenerativeComponents. We plan to provide emulation for these languages and we
already have preliminary versions for three different front-ends, namely, RosettaFlow,
Rosetta AutolLISP and Rosetta JavaScript. The rest of this section is dedicated to
explaining these front-ends.

RosettaFlow is a visual programming language inspired in Grasshopper and Generative
Components. Similarly to Grasshopper, RosettaFlow represents a generative design
program as a data flow diagram, in which an operation is represented by a box and data
flow is represented by a connector between boxes. This application allows the user to

INTEGRATION THROUGH COMPUTATION

describe the generative design program visually and automatically generate the code in
the IPL. The generated code is then executed in Rosetta and the geometric models are
created in the CAD application of choice.

Rosetta AutoLISP and Rosetta JavaScript are textual front-ends that faithfully implement
the syntax and semantics of AutolLISP and JavaScript, respectively, using normalized
modeling primitives. The main purpose of these front-ends is to attract the large
community of designers that learned and used these languages in the past and to
simplify their transition to Rosetta.

Where back-ends are concerned, we have implemented two, namely, for AutoCAD and
Rhinoceros 3D, and we plan to implement more. Given that the back-ends are highly
dependent both on the API provided by the CAD application and on the communication
framework used to access that API, it is not expected that each of the currently
implemented back-ends provides the same coverage over the corresponding CAD
application.

3 Evaluation / Results

In this section, we perform the evaluation of Rosetta and its main components, resorting
to examples of generative design programs.

3.1 ROSETTA PROGRAMMING ENVIRONMENT

Rosetta has been successfully used for the development of several different generative
design programs written in Racket, AutoLISP, JavaScript, and RosettaFlow. In this paper
we illustrate only a few examples.

The DrRacket programming environment, in which Rosetta is based, has been
instrumental in this development effort by providing the editor with the typical features
required for programming, including syntax highlighting and text formatting, allowing
the debugger to quickly identify the cause and the location of programming errors, and
the listener has been a fundamental tool for incremental development and interactive
testing. This allows us to quickly experiment with generative design programs with
different combinations of parameters.

3.2 ABSTRACTION LAYER

As mentioned before, the shape constructors and transformations defined in the
abstraction layer result from a generalization of the functionality common to the most
used CAD applications. Using the API provided in the abstraction layer to write programs
is the key factor for virtualizing the different back-ends, resulting in portable generative
design programs. Nevertheless, the definition of this abstraction layer prevents the use
of any CAD-specific functionality, making it impossible to write portable programs that
take advantage of that functionality.

With this situation in mind, we provide a choice: users can either write portable programs
using the APl defined in the abstraction layer or they can take advantage of CAD-specific
functionality. The latter choice may result in programs that are not portable, however, it
makes Rosetta available to a broader audience of Designers.

3.3 INTERMEDIATE PROGRAMMING LANGUAGE

Since the front-ends use the IPL as a compilation target, it is possible to write programs
that contain modules written in different programming languages. For the user of a
module it is not relevant to know in which language it was written but only how to use
the exported functionality. This allows a significant freedom both to the module writer as
well as to the module user.

3.4 SEMANTIC DIFFERENCES IN BACK-ENDS

Even though there is an abstraction layer that allows transparent access to several
CAD applications, these applications still present semantic differences. For

INTEGRATIVE TOOLS AND TECHNIQUES

199

example, a solid sphere in AutoCAD is the space enclosed by the sphere surface, whereas,

IR EIE the same sphere in Rhinoceros 3D is simply the spherical surface. This difference has
&- 2 o 22 (@8- @ 1Q - @ ieypors
ae e A very important consequences: for example, in AutoCAD, the subtraction of two concentric

Novigate ~ | Appearance + | Coordinates ~ | Visua Styles ~ o

spheres of different radius results in a hollow sphere, whereas, in Rhinoceros 3D, the same
operation results in an error because the two spherical surfaces do not intersect. In order
to solve these problems, each back-end understands the limitations of the corresponding
CAD application and provides ways around those limitations. As an example, reconsider
the shape in Figure 1. This object can be produced by subtracting cones from a hollow
sphere. However, when using the Rhinoceros 3D back-end, Rosetta delays the creation
of the hollow sphere until one of the cones perforates a hole in the outer sphere. This
reordering of operations is automatically done by Rosetta, by application of algebraic rules,
in order to correctly generate the intended final shape.

3.5 AUTOCAD AND RHINOCEROS 3D BACK-ENDS

As an example of the use of the AutoCAD back-end, consider the Sphere Cloud program
and the Shelter program.The Sphere Cloud program creates a number of randomly
positioned spheres inside a spherical region. Figure 2 illustrates the interaction between

the JavaScript front-end and the AutoCAD back-end. The main function, “sphere-cloud”,

sphere-cloudjs v Debug @ (CheckSyntax @ Run £ Stop @
function randomInterval (x0, x1) { i is fully parameterized, such that it is possible to specify the number of spheres inside the
return x0 + (x1 - x0) * Math.random();
} spherical region, as well as the minimum and maximum radii for the spheres and the radius
function randomSphere(dl, d2, sz) { for the spherical region.
var r = randomInterval(dl, d2);
var th = randomInterval (0, 2*Math.PI);
var fi = randomInterval (0, Math.PI); .
var p = pSph(r,th, fi);: The Shelter program subtracts a sphere from a set of tubes placed in an orthogonal grid

return move (p, sphere(sr - r));

} layout. Figure 3 illustrates the execution of this program.

function sphereCloud (dl, d2, r, n) {
for (var i = 0; 1 < n; i++) | ‘l
evaluate (randomSphere (dl, d2,)); I
))
) programs that generated the Sphere Cloud and the Shelter models in AutoCAD generate

Because Rosetta focuses on the portability of its programs, we show that the same

the exact same models in Rhinoceros 3D (Figures 4, 5). It should be noted that Figure 2
represents the Shelter program in JavaScript, while Figure 4 represents the semantically

[3m] = equivalent program in Racket.
mj.
Language: JavaScript; memory limit: 256 MB. q
> Math.randomSeed (10) |
> sphereCloud(4, 5, 5, 600) ¥ 3.6 ROSETTA AUTOLISP
>

Jnascipte 150 muve ¢

AutoLISP is one of the most used programming languages in generative design. However,
Fig. 2 this language has a few shortcomings which we have overcome in our implementation for
the Rosetta programming environment. For example, one of the most frequent mistakes is
to accidentally misspell the name of some variable or function, but AutoLISP treats the use
of undefined names as automatically bound to a default value, meaning that it will silently
accept the mistake. Usually, something will go wrong, but in general it will not be easy for
the user to understand the cause of the error. In this regard, the syntax checker and the
static debugger provided by Rosetta will immediately point out to the user the cause of the
error even before running the program.

Other similar problems that are automatically (and statically) detected by Rosetta AutoLISP
include syntax errors, wrong number of arguments to function calls, and a subset of type
errors.

3.7 ROSETTAFLOW

Our implementation of RosettaFlow is still in the early stages of development. The purpose
of this prototype is to demonstrate the capabilities of Rosetta in incorporating not only
textual but also visual programming languages. At the moment, RosettaFlow presents a
very simple interface and a small set of operations, but we plan to extend it with more
functionality. Nevertheless, RosettaFlow is fully functional and integrated with Rosetta. As
an example, consider Figure 6 which illustrates the schematic representation of the Sphere
Cloud program. Due to the size of the visual program, only a fragment is illustrated.

One important feature of RosettaFlow programs is that they are compiled to the IPL

and executed in DrRacket. At the moment, the execution workflow of RosettaFlow
Figure 2. Sphere Cloud program in Rosetta using the requires manual intervention to compile and execute the generated program, but we
JavaScript front-end and the AutoCAD back-end intend to automate this process.

200

ACADIA 2011 _PROCEEDINGS INTEGRATION THROUGH COMPUTATION

4 Related work

In this section, we present other programming environments that served as
inspiration to Rosetta.

4.1 VISUALSCHEME

VisualScheme is a CAD programming language (Leitdo 2010) that envisages
a pedagogical approach to programming and its integration in the architecture
curriculum. Following a series of pedagogical studies (Chen 1992; Berman 1994;
Felleisen 2002, 2004; Marceau 2011), VisualScheme relies on the Scheme
programming language as a teaching tool for an audience without a background in
Computer Science.

Rosetta is a direct descendent of VisualScheme, maintaining the same pedagogical
concerns, but with a different approach. We still defend the use of Scheme for
the general audience of Designers that do not have a background in Computer
Science. However, we include additional programming languages for those who
have programming experience, so that they can choose the one that is most
suitable for their program. As a result, CAD applications no longer impose the
provided programming language to their users. Other benefits include the automatic
compatibility of the chosen language with the programming environment and the
portability of the programs written in it.

4.2 GRASSHOPPER AND GENERATIVE COMPONENTS

Grasshopper and Generative Components are visual approaches to generative
design. These languages have a visual syntax and users create programs using
boxes, which represent operations, and connectors, which represent data flow.
These visual programming languages make it easier to avoid errors associated
with writing code in textual form. However, complex programs tend to be very large
graphs that are hard to read and understand, and even harder to maintain.

Grasshopper presents not only with an appealing interface but also with a rich set
of geometric functions which operate transparently with values and lists of values.
For example, the translation operation can be used both on a single sphere and
on a list of spheres. This transparent mapping of operations over multiple values
allows for separating the chain of operations from the input values, such that the
same program that is used for transforming a single shape can also be used for
multiple shapes.

Nevertheless, this linguistic feature may result in difficult semantics. For example,
using the addition operation from Grasshopper, users can choose different data
matching strategies for the input values, which include shortest list, longest list
and cross reference. These strategies introduce confusing semantics and may lead
to program defects. We are currently studying a way of introducing this linguistic
feature in Rosetta while avoiding the need for data matching strategies.

While Grasshopper mainly uses the visual representation of the generative design
program and the geometry displayed in the screen, GenerativeComponents (GC)
uses different representations for the same program, including visual and textual
ones (Menges 2010). These representations complement each other and are linked,
such that changes in one representation are propagated to the others. Moreover, GC
is used not only to create geometry but also to implement several other processes
related to architecture and civil engineering, such as measurement, evaluation,
configuration and fabrication. At the moment, the purpose of Rosetta is to develop
generative design programs, so the focus will remain on producing geometric
models, leaving other processes to be supported by the CAD applications used
as back-ends. Furthermore, it is possible to have different representations of the
same program in Rosetta. Examples of these representations include RosettaFlow
and the IPL. These representations are also linked, such that it is possible to
automatically generate the IPL code of a RosettaFlow program.

INTEGRATIVE TOOLS AND TECHNIQUES

& (< 1% L2 M conceptual
@208 12

Stesring wora 212 @ 1O @°1G @ |\iewpors| win

Wheels % |~ Llea

Nevigate ~ | Appeorance ~ | Coordinates ~

Visual Styles +

Command: _u INTELLIZOOM INTELLIZOOM

Command:

Longuage Racket [nsert Tabs
sheltersit > (define .) v

tep

Run & stop @

#lang racket
(require "rosetta.rkt")
(provide shelter)

(define (cut-pipe x y z p £ 1)
(subtract
(move (p.xyz x y 2) p)
(move (p*n p.uy (- 1)) (sphere r))))

(define (shelter w 1 h nx ny nz 1)
(let* ((p-r (/ w nx 2))
(-1 (/ 1 ny))
(p (rotate
(/ pi 2
p.ux
(pipe (- p-r 0.1) p-r p-1))))
(for/list ((zi (range nz)))
(for/list ((yi (range ny)))
(for/1ist ((xi (range nx)))
(let ((x (- (+ (* p-r 2 xi) p-r) (/ w 2)))
(y (* p-1 yi))
(z (+ (* p-r 2 zi) p-1)))
(cut-pipe x y z p r 1)))))))

@yl

Welcome to DrRacket, version 2
5.1--2011-02-27 (bee619£0/d) [3m].
Language: racket; memory limit: 256 MB.
> (evaluate (shelter 100.0 50.0 50.0 18 1 9 47.2)) -
e S — 10 wavel §

Fig. 3

Figure 3. Shelter program in Rosetta using the
Racket programming language and the AutoCAD
back-end

201

it Curve Suface Soiid Mesh Dimension Transform Tools Analyze R

eating meshes _ Press Escto cancel

I;Commanﬂ B »

DEESTXD0~0+P5 0P PH=®ex 9

ersi

> v
QU -

DEFS S &EFDOHRTQ:
E %40 hRQQ@wJI06

Edit View Language Racket Insert Iabs Help
sphere-cloudkt™ (define..) >

Run & stop @
#lang racket a

(require "rosetta.rkt")
(provide sphere-cloud)

(define (random-sphere dl d2 sr)
(let* ((r (random-interval dl d2))
(th (random-interval 0 (* pi 2)))
(fi (random-interval 0 pi))
(p (p.sph r th f£i)))
(move p (sphere (- sr r)))))

(define (sphere-cloud dl d2 r n)
(for/list ((i (range n)))
(random-sphere dl d2 r)))

&

Welcome to DrRacket, version 2
5.1--2011-02-27 (bee619£0/d) [3m].

Language: racket; memory limit: 256 MB.

Starting Rhinoceros 3D...

> (evaluate (sphere-cloud 4 5 5 600))

Deteminelanguage fom source w52 mamvs §

Fig. 4

Figure 4. Sphere Cloud program in Rosetta
using the Racket programming language and the
Rhinoceros 3D back-end

202

ACADIA 2011 _PROCEEDINGS

4.3 PROCESSING

Processing (Reas 2007) is a programming language and environment specialized
for the production of images, animations and interactions. Initially designed for
sketching, it has grown to become a professional tool. The language is a simplified
version of Java and is capable of generating applets for Java-enabled browsers or
standalone applications that run on the major operating systems.

Rosetta differs from Processing in that it is not restricted to a single front-end
language and was designed to integrate well with CAD applications. This is a
direct consequence of the decision to target architectural work that, nowadays,
relies critically on CAD applications. However, we plan to include a dedicated
front-end that emulates the Processing language so that architects already used
to Processing can easily migrate to Rosetta.

5 Conclusions

We have shown that portability in generative design programs is a very important
requirement. Unfortunately, the current programming environments provided
by CAD applications do not promote portable programs. In order to solve this
problem, we propose Rosetta, a programming environment that integrates several
programming languages, in which users write their programs with multiple CAD
applications, in which the geometric models are created. As a result, users can
explore different combinations of front-ends and back-ends in order to find the
one that is most suitable for their needs. Moreover, they can use programs written
by other designers, possibly written for a different CAD application and with a
different language.

By providing a direct connection between a chosen language and a chosen CAD
application, Rosetta dispenses with the error-prone, manual migration of models
between different CAD applications, thus improving the designer’s workflow. This
workflow can be further simplified by the addition of specific back-ends (e.g., for
performance analysis).

We are now currently evaluating Rosetta with a group of architecture students
that volunteered as beta-testers. In future work, we plan to expand Rosetta in
several ways: (1) the linguistic constructs of the IPL; (2) the supported front-
ends and back-ends (e.g., Processing and Revit); and (3) RosettaFlow. It is our
intention that our work creates an online community of programmers in the area of
generative design in which they can share and develop software in a collaborative
fashion.

INTEGRATION THROUGH COMPUTATION

F: sphere-cloud
for/list

RI
RE

RL
random-sphere

N
RI

RE
RL

Fig. 6

References

Berman, A. M. 1994. Does Scheme enhance an introductory programming
course?: some preliminary empirical results. In ACM SIGPLAN Notices, vol. 29,
Issue 2, 44-48.

Chen. N. M. 1992. High School Computing: The inside Story. In The Computing
Teacher, vol. 19, no. 8, 51-52, International Society for Technology in Education.

Dollner, J., and K. Hinrichs. 2000. A Generalized Scene Graph. In Vision,
Modeling and Visualization 2000, 247-254, Saarbrlcken, Germany, Akademische
Verlagsgesellschaft.

Felleisen, M., R. Findler, M. Flatt, and S. Krishnamurthi. 2002. The Structure
and Interpretation of the Computer Science Curriculum. In Journal of Functional
Programming, vol. 14, issue 4, 365-378.

Felleisen, M., R. Findler, M. Flatt, and S. Krishnamurthi. 2004. The TeachScheme!
Project: Computing and Programming for Every Student. In Computer Science
Education, vol. 14, issue 1, 565-77.

Findler, R., J. Clements, C. Flanagan, M Flatt, S. Krishnamurthi, P. Steckler,
and M. Felleisen. 2002. Dr Scheme: a programming environment for Scheme. In
Journal of Functional Programming, vol. 12, issue 2, 1569-182.

Flatt, M., R. Findler, S. Krishnamurthi, M. Felleisen. 1999. Programming Languages
as Operating Systems (or Revenge of the Son of the Lisp Machine). In ACM

SIGPLAN International Conference on Functional Programming, 138-147.

Kelsey, R., W. Clinger, and J. Rees. 1998. Revised 5 Report on the Algorithmic
Language Scheme. In ACM SIGPLAN Notices, vol. 33, issue 9, September, 1998

Marceau, G., K. Fisler, and S. Krishnamurthi. 2011. Measuring the Effectiveness
of Error Messages Designed for Novice Programmers. In SIGCSE ‘11 Proceedings
of the 42nd ACM technical symposium on Computer science education, 499-504.

Leitdo, A., F. Cabecinhas, and S. Martins. 2010. Revisiting the Architecture

Curriculum: The Programming Perspective, In 28th eCAADe Conference
Proceedings: Future Cities, 81-88.
Menges, A. 2010. Instrumental Geometry. In Corser, R.(ed.), Fabricating

Architecture: Selected Readings in Digital Design and Manufacturing, Princeton
Architectural Press, 2010.

Reas, C., B. Fry, and J. Maeda. 2007. Processing: A Programming Handbook for
Visual Designers and Artists. The MIT Press.

INTEGRATIVE TOOLS AND TECHNIQUES

Render com

 Command: oy

QEFS S EFDOHETQP 7
F §%40 hRQQ@wJI0GU

CPlane x-47714 y-334885 20000
— —

Ble Edt View Longusge Rocket Insert Tabs Help
shelersit~ (deine) v

Run & stop @

#lang racket
(require "rosetta.rkt")
(provide shelter)

(define (cut-pipe x y z p £ 1)
(subtract
(move (p.xyz x y 2) p)
(move (p*n p.uy (- 1)) (sphere r))))

(define (shelter w 1 h nx ny nz 1)
(let* ((p-r (/ w nx 2))
(-1 (/ 1 ny))
(p (rotate
(/ pi 2
p.ux
(pipe (- p-r 0.1) p-r p-1))))
(for/list ((zi (range nz)))
(for/list ((yi (range ny)))
(for/list ((xi (range nx)))
(let ((x (- (+ (* p-r 2 xi) p-r) (/ w 2)))
(y (* p-1 yi))
(z (+ (* p-r 2 zi) p-1)))
(cut-pipe x y z p r 1)))))))

@]«

5.1--2011-02-27 (bee619£0/d) [3m].

Language: racket; memory limit: 256 MB.

starting Rhinoceros 3D...

> (evaluate (shelter 100.0 50.0 50.0 18 1 9 47.2))

.

Deteminelanguage fom source 172 wmve §

Fig. 5

Figure 5. Shelter program in Rosetta using the
Racket programming language and the Rhinoceros
3D back-end

Figure 6. RosettaFlow schematic for the Sphere
Cloud program

203

