
A Calligraphic Interface for Managing Agents

Alfredo Ferreira
alfredo.ferreira@inesc-id.pt

Marco Vala
marco.vala@tagus.ist.utl.pt

J. A. Madeiras Pereira
jap@inesc-id.pt

Joaquim A. Jorge
jorgej@acm.org

Ana Paiva
ana.paiva@inesc-id.pt

Department of Information Systems and Computer Engineering
INESC-ID / IST / Technical University of Lisbon
R.Alves Redol, 9, 1000-029 Lisboa, Portugal

ABSTRACT

Despite the considerable work on agent frameworks, user interfaces to manage these are mostly script based. Even though
some solutions provide graphical interfaces to build agent worlds these are quite limited and overly dependent on textual input.
Recently, calligraphic systems using sketch-based and pen-input have emerged as a viable alternative to conventional direct-
manipulation interfaces in a wide range of areas, such as user interface design or mechanical systems simulation. In this paper,
we present a preliminary approach to a calligraphic interface for managing agents. It recognizes gestures drawn by users
allowing them to create and manage agent worlds flexibly and efficiently using a concise language.

Keywords: Calligraphic Interfaces, Sketch Based Modeling, Agent Modeling Tools, Agent Frameworks

1 INTRODUCTION

Many definitions have been proposed to describe
"software agents" or simply "agents". Russell and
Norvig [RN03] define agent as "anything that can be
viewed as perceiving its environment through sensors
and acting upon that environment through effectors".
Maes [Mae95] adds that "autonomous agents are
computational systems that inhabit some complex
dynamic environment, sense and act autonomously
in this environment, and by doing so realize a set of
goals or tasks for which they are designed". And we
could add several other agent definitions that focus on
particular domains.

Agents are used in a large set of areas with a large
set of purposes. They are often seen as a programming
methodology and, in that sense, contribute to the
appearance of several agent frameworks. But, as these
frameworks are becoming increasingly widespread,
they lack tools to efficiently create and manage agents.

Recently, some agent frameworks have been includ-
ing graphical tools to aid in the creation of agent-based
applications. These tools are, however, quite limited

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SHORT COMMUNICATION proceedings
ISBN 80-86943-05-4
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

and dependent on script-based languages and/or textual
input. Moreover, they are not really user friendly since
they focus more on the agents of the world being cre-
ated than on the user’s task of creating the world.

Thus, we try to take advantage of the way developers
sketch agent-based worlds in sheets of paper before cre-
ating them, and we propose a novel approach based on
a calligraphic interface. The tool we present in this pa-
per, callededitION , allows users to sketch the agent-
based world directly on the computer, reducing script-
ing and textual input.

After a short discussion of related work, we will
present an overview of our approach to sketch-based
management of agents, describing the proposed archi-
tecture. Then we focus on the creation of agent-based
worlds using sketches, presenting our symbol recogni-
tion methodology and describing the user interaction
with our tool. Finally we present some conclusions and
suggest directions for future work.

2 RELATED WORK
Usually agent frameworks do not offer native tools to
create agent-based applications. Among positive ex-
ceptions are ZEUS Agent Building Toolkit [NNLC99]
and AgentFactory [Col01] which have tools to gener-
ate starting scripts for creating agents (see Figure 1).
Agent Academy [MKSA03] has a tool to parameterize
and launch agent-based applications using previously
defined agent types. Agent Society Configuration Man-
ager and Launcher (ASCML) [BPB+05] is a tool for the
Java Agent Development Framework (JADE) which fa-
cilitates the configuration and deployment of agent so-

Figure 1: Zeus agent building toolkit

cieties. NetLogo [Wil99] is a programmable modeling
environment, featuring hundreds of independent agents,
where modelers can give instructions using text-based
input (see figure 2).

But all these tools lack some interactivity. Most use
a script language and a command interpreter that parses
and executes scripts. Even the solutions which provide
graphical interfaces are quite limited and dependent on
textual input. Moreover, the mouse based interaction
in these graphical interfaces mostly relies on drag-and-
drop and menu navigation techniques, taking no advan-
tage of the latest1 user interaction techniques, such as
calligraphic interfaces.

Although no calligraphic interfaces had been devised
for agent frameworks, several experimental sketch-
based systems were developed in recent years for a
number of different areas, such as interface design,
mechanical systems simulation or control systems
analysis. SILK [LM01] is an interactive tool to sketch
interfaces using an electronic pad and stylus. Designers
can use SILK to quickly sketch the user interface
and, when they are satisfied with the early prototype,
produce a complete and operational interface. A
similar tool, JavaSketchIt, was presented by Caetanoet
al. [CGFJ02] and generates a Java interface based
on hand-drawn compositions of simple geometric
shapes. The JavaSketchIt evaluation concluded that
users consider their sketch-based system more com-
fortable, natural and intuitive to use than traditional
mouse-based tools.

Alvarado and Davies [AD01] developed ASSIST, a
program that produces simple 2D mechanical devices
from hand-drawn sketches. This system performs real-
time interpretation, as the sketch is being created, using

Figure 2: Netlogo command center.

1 Some of these techniques are not quite novel, but only recently have
been adopted by the mainstream manufacturers. An example of this
is the pen-based interaction, proposed by Ivan Sutherland [Sut64] al-
most forty years before being available to the general public.

a set of heuristics to construct a recognition graph con-
taining the likely interpretation of the sketch and selects
the best one based on both contextual information and
user feedback.

Hong and Landay [HL00] developed a Java toolkit
to support the creation of pen-based applications.
Using this framework, Linet al. [LNHL00] created
DENIM, a sketch-based system that helps web site
designers in the early stages of the design process.
SketchySPICE [HL00] is another program developed
using SATIN. It consists in a calligraphic interface
for SPICE2 where users can draw simple circuits
gates in two distinct modes. Inimmediatemode
recognized sketches are immediately replaced by its
formal symbol, while indeferred mode recognized
objects are left sketchy but the recognized symbols are
drawn translucently behind the sketch, in order to give
some feedback to users.

More recently, Kara and Stahovich [KS04] presented
the SIM -U-SKETCH, an experimental sketch-based in-
terface for Matlab’s Simulink software package3. With
this tool users can sketch functional Simulink models
and interact with them, modifying existing objects or
add new ones. SIM -U-SKETCH was designed to allow
users to draw as they would do on paper, with no con-
straints imposed by the recognition engine. To that end,
this system employs arecognize on demandstrategy
in which the users have to explicitly indicate whenever
they want the sketch to be interpreted.

Despite their apparent similarity, distinct approaches
and strategies are used in the systems referred above.
We studied the advantages and drawbacks of these
methodologies and used them to devise a novel calli-
graphic interface to create agent-based worlds in the
context of an agent framework.

3 OVERVIEW
This paper introduceseditION , a tool to create agent-
based worlds on top of theION agent framework. Users
sketch world elements or commands in order to create
and control the agent-based world. SinceeditION
works closely together with theION framework, it will
be able to provide immediate visual feedback to users
of what is happening in the world.

The architecture of the proposed solution can be di-
vided in two distinct parts: theION framework, which
handles the agent world, and theeditION tool, that
provides management capabilities to users. In figure 3
we depict a block diagram of such architecture.

2 SPICE is a circuit CAD tool developed at University of California at
Berkeley

3 Simulink is an add-on package for analyzing feedback control system
and other similar dynamic systems.

Elements &
Commands

Elements &
Status Information

CALISketch
Recognizer

Scribbles

Gestures

Scheme
Manager

Viewer

World Generator

ION Core

Instructions Validations
editION

ION Framework

Figure 3: Architecture

3.1 TheeditION tool

The editION tool includes a calligraphic interface
where users sketch the agent world and visual feedback
is given. Unlike SketchySPICE, where users can se-
lect in which mode they draw, only theimmediatemode
makes sense ineditION . Therefore, the sketch is in-
terpreted and validated as it is being drawn, allowing
on-the-fly creation instead of having to draw the entire
world prior to its creation.

Scribbles drawn by users are processed by the Sketch
Recognizer module, which uses CAL I [FPJ02] library
to recognize them as shapes or commands. Sketch
Recognizer then identifies if they are an element of the
world or a command, sending the corresponding infor-
mation to the Scheme Manager module.

The Scheme Manager module can be considered as
the core ofeditION . It handles the diagram repre-
senting the agent world, performing syntactic and basic
semantic validation. To that end, it applies a set of pre-
defined grammatical rules to each change to guarantee
the correctness of the scheme. The scheme is stored
as a directed graph, in which the nodes represent the
elements and the edges represent the connectors. This
way, common graph manipulation techniques could be
used to manage the scheme and navigate through it.

The Viewer encapsulates the output details of our ap-
proach. It is responsible for providing visual feedback
to the user, by selecting the graphical shapes displayed
for each element and its properties according to the
current state. Based on information received from the
scheme manager, the viewer determines which shape
must be drawn, its position and color. Moreover, it
manages the way messages are shown to users and how
long they remain in the screen.

3.2 TheION framework
TheION framework [AV05] is yet another agent frame-
work. However, unlike most agent frameworks, which
mainly look at agents that will enrich pre-existent vir-
tual or real environments, theION framework is also
concerned with the creation and the simulation of the
environment itself4. For the purpose of this paper we
will only briefly describe the World Generator and the
representation model within theION core.

The World Generator is a bridging layer. It receives
instructions fromeditION and tries to execute these
instructions in theION core. Depending on the out-
come, it also sends feedback which might be useful for
further semantic validation.

The ION core manages the world model which is
populated by several entities. Entities have properties
that store relevant information about the entity, actions
to access and modify the environment, and relations
with other entities. These relations also have proper-
ties that keep information about the role played by the
entity in the relation.

The previous representation model allows us to create
and simulate different worlds. Imagine, as an example,
a small world with a blue object, a red object and a dog
that likes red objects and grabs them all the time. Us-
ing theION core, the objects are represented by entities
with a single property, its color. The dog is an agent,
represented by an entity, which has two actions: look
for objects, and grab objects. These actions would be
the agent’s sensors and actuators. The dog will sense
the environment for red objects (using the "look for ob-
jects" action) and will act in the environment grabbing
the red object (using the "grab objects" action). The dog
could even remember the objects that were grabbed be-
fore, if we create a relation between the dog and those
objects.

4 SKETCHING AGENT-BASED
WORLDS

Developers often start by drawing agent-based worlds
on paper. Then, they generally use script-based tools
to specify the world in the framework. Even when
these tools have graphical interfaces with mouse
interaction, they are greatly dependent on textual
commands. Following the recent developments in pen
and sketch-based interfaces, we propose an alternative
to standard mouse-based tools to create agent-based
worlds.

The interaction witheditION is usually made
through pen-based hardware such as a TabletPC or a
digitizing tablet. After capturing the scribbles drawn
by the user, these must be recognized, interpreted and

4 An example application of theION framework can be found
in [Pra05].

Scribble

Shape Command

Element

Calligraphic Recognition

Element Generation

Gesture

Command Interpretation

Command

Syntactic Validation Command Processing

Instruction Instruction

Figure 4: Recognition strategy

validated to become useful. Thus, the whole process of
handling the user input and producing corresponding
output both to the user and to the framework, plays a
major role in our calligraphic tool.

4.1 Symbol Recognition
In order to provide on-line recognition of sketches, our
approach processes the scribbles individually and not
the entire sketch on demand, as performed by SILK
and SIM -U-SKETCH. These scribbles are clusters of
strokes drawn by the user which are submitted to a
recognition process when the user’s pauses are longer
than a given time between strokes.

We use a multi-level recognition and parsing strat-
egy, outlined in Figure 4, in order to convert scribbles
drawn by users into instructions forION World Gener-
ator. This strategy is divided in several steps, detailed
below.

We start by performing the calligraphic recognition
of submitted scribbles. To that end, we use CAL I, a fast,
simple and compact scribble recognizer used in JavaS-
ketchIt. CAL I identifies shapes of different sizes and
rotated at arbitrary angles, drawn with dashed, contin-
uous strokes or overlapping lines. It detects not only
the most common shapes in drawing such as triangles,
lines, rectangles, circles, diamonds and ellipses, using
multiple strokes, but also other useful shapes such as
arrows, crossing lines or wavy lines, as depicted in fig-
ure 5.

For this work we only need to detect a subset of
the CAL I gestures to specify elements and commands.
These gestures are depicted in Figure 6. The scribbles
to represent the elements were selected based on its vi-
sual similarity with the hand-drawn elements, usually
sketched by developers when schematically represent-
ing their agent worlds.

However, since CAL I is size and rotation indepen-
dent, we need to carry out additional computation to
determine scribble orientation and size. This calli-
graphic recognition step yields two categories of ges-
tures: shape gestures and command gestures. There-
fore, after identifying the category to which the de-
tected gesture belongs, we apply distinct parsing paths
for shapes and commands.

To perform gesture identification we apply the gram-
mar presented in Figure 7. This set of simple rules
provides an efficient manner not only to determine if
the scribble is a command or a shape, but also to iden-
tify the command or element corresponding to a given
scribble.

We consider the application of the grammar men-
tioned above to be the gesture identification process.
This process implements the first levels of the recog-
nition strategy, which is the transformation of scribbles
into elements or commands. In this process, rectangles
are transformed into entities or actions, depending on
their geometric properties, triangles into relationships,
circles into properties and lines into connectors. On the
other hand, pre-specified gestures are transformed into
"delete", "select" and "copy" commands.

When a scribble is identified as an element, it goes
through validation. To that end, context information is
used to verify if such element makes sense in the current
scheme. In the case of a connector, such information is
also valuable to determine if it is a simple connector
or a role. If the generated element passes the syntac-
tic validation, the corresponding instruction is created
and sent to the World Generator. Semantic validation is

Figure 5: Gestures detected by CALI

Entity Relationship Property Action

Delete Select Copy
Figure 6: Gestures for elements and commands.

performed by the World Generator and, if the instruc-
tion is valid, theION framework is updated. In any
case, the World Generator gives proper feedback to the
Scheme Manager. Finally, this information is used to
provide visual feedback to the user, replacing the sketch
by the corresponding element on the screen or showing
an meaningful error message.

If a scribble is identified as a command, the context
is analyzed to verify its validity. It uses information ex-
tracted from context to produce an instruction to send
to the World Generator. As for the elements, the world
generator processes the instruction and provides infor-
mation that will be used to give visual feedback to the
user.

4.2 Interaction with editION

Currently, users sketch their agent world in sheets of pa-
per before coding it into the framework. IneditION
we take advantage of the users’ ability to draw agent
worlds with a pen to automate the boring and time
consuming task of writing unnecessary lines of code.
Therefore, users can sketch the world in theeditION
calligraphic interface using a pen-based digitizer and it
will be automatically created in the agent framework.

Since we perform on-the-fly gesture recognition, the
sketch is interpreted and validated as it is being drawn.

GESTURE-IDENTIFICATION-GRAMMAR (S)::=
valid_gesture→ shape | command
shape→ entity | action | relationship | property | connector
command→ delete | select | copy
entity→Gesture(S,RECTANGLE) &

SizeWithin(S,τmaxE ,τminE) & AspectRatio(S,4,3)
action→Gesture(S,RECTANGLE) &

SizeUnder(S,τA) & AspectRatio(S,1,1)
relationship→Gesture(S,TRIANGLE) &

SizeWithin(S,τmaxR,τminR)
property→Gesture(S,CIRCLE) & SizeUnder(S,τP)
connector→Gesture(S,LINE)
delete→Gesture(S,DELETE)
select→Gesture(S,CROSS)
copy→Gesture(S,COPY)
Gesture(sc, t)→ Scribblescrecognized by CAL I ast
SizeWithin(sc, tu, tl)→ Size ofsc is within tu andtl
SizeUnder(sc, t)→ Size ofsc is belowt
AspectRatio(sc,w,h)→ Aspect ratio ofsc' w:h

Figure 7: Grammar for gesture identification.

Figure 8: Example of an unrecognized scribble.

Moreover, the on-line connection with the framework
allowseditION to provide immediate feedback to the
user from the agent framework. To that end, syntac-
tic and semantic verifications of the sketches are per-
formed while the world is being constructed. Thus, it
is no longer necessary to design the complete world to
check if any errors exist, as it usually happens in other
tools.

Thus, to create an agent world witheditION the
user sketches each element at a time using single or
multi-stroke scribbles. The scribble is immediately in-
terpreted by the sketch recognizer. When it is inter-
preted as a valid element, the corresponding formal
symbol replaces the sketch.

Besides elements, the user can also sketch com-
mands. These are also interpreted by the recognizer
and, if they are valid, the corresponding action imme-
diately takes place and the drawing area is updated
accordingly.

If the scribble is not recognized, it is marked in a dif-
ferent color and a text message informs the user of such
situation. Figure 8 depicts an example of an unrecog-
nized scribble, showing the feedback given to the user.
This information remains on the screen for a couple of
minutes or until the user restarts sketching. Then, both
the message and the unknown scribble are deleted.

Similarly, if the user sketches a line, recognized as a
connector, but one or both of its endpoints are not over
an element, it is drawn in a distinct color with the cor-
responding message. The same happens if the sketched
connection is invalid. Invalid connections occur when
the connector extremities are over entities that cannot
be connected, for instance if the user is trying to con-
nect two entities or an action to a property, as illustrated
in Figure 9.

Besides the unrecognized and invalid scribbles, some
elements have no meaning unless they are connected
with others. The property and action elements depend

Figure 9: Two examples of invalid strokes.

on an entity and the relationship must be connected to,
at least, two entities. In these cases, we consider that
the recognized element is incomplete. TheeditION
keeps incomplete elements in the drawing area, but they
are represented in a different color.

Figure 10 depicts an agent world being created us-
ing theeditION while a new entity is being sketched
and its recognition is underway. In this example, some
elements have already been recognized and validated.
However, the relationship is incomplete, since it needs
to be connected to, at least, two entities. Likewise, one
action and one property remain unconnected, thus in-
complete.

Incomplete elements are displayed in a distinct color
until the user corrects this situation. While these ele-
ments are incomplete they are not considered besides
Scheme Manager. This means that no information
about them is sent to the World Manager. Thus, their
existence is ignored by the framework.

To create agent-based worlds much more information
is needed in order to make it fully functional. Speci-
fication of the behavior and the state of each element
is an important part of the definition of agents. Thus,
editION provides an efficient way to edit all the de-
tails of each element of the world. A simple click over a
recognized entity allows the user to access such details
through a pop-up window.

An example of a detail pop-up window is depicted
in Figure 11. In this case, the user is changing the de-
tails of an action, more specifically, changing the code
associated with an event of that action. This kind of
changing is submitted to the World Generator, which
performs syntactic and, when possible, semantic vali-
dation and provides proper feedback to the user.

Many other details can be changed in all elements
using the pop-up window, but any change made here is

Figure 10: Creating an agent world with editION

Figure 11: Changing details of an action

always submitted to validation by the Scheme Manager
and the World Manager, depending on the type of mod-
ification. For instance, when changing an element’s
name, the name is validated by the Scheme Manager
to make sure it does not conflict with other names and
then it is validated by the World Manager to check if it
is acceptable in the current world.

5 CONCLUSIONS AND FUTURE
WORK

The proposed calligraphic interface represents an
alternative to current agent management tools. Instead
of writing numerous lines of code or dragging and
dropping elements from toolbars and menus, with
editION we bring agent developers closer to tradi-
tional paper-and-pencil methods when creating agent
worlds.

Since the sketch is interpreted and validated as it
is being drawn, the user receives immediate feedback
from the agent framework. Therefore, it is no longer
necessary to create the complete world to check for er-
rors or incoherence. Most importantly, with this tool,
the user avoids writing sometimes long and complex
scripts to describe the agent world. It can be simply
done by sketching it.

Despite the fact that the proposed tool was devised
for management of theION framework, we intend to
make it as general as possible in order to allow it to
work with other agent frameworks in the future without
major changes. To that end, we do not embed the man-
ager in the framework. Instead, we considereditION
as an independent module that communicates with the
framework using a small set of pre-defined instructions.
The adopted visual language and identification gram-
mar are, however, best suited forION framework.

The presented version of theeditION is still under
development and offers limited functionality. Basically

it allows the user to create, change and delete world el-
ements. But we feel it has potential to grow into a com-
plete and powerful management tool for agent frame-
works, while retaining most of its simplicity. To that
end, in a near future we plan to add, among other func-
tionalities, debugging capabilities toeditION , offer-
ing total control over the agent world and providing
continuous visual feedback on the world status.

When botheditION andION framework are fully
functional we intend to perform users’ evaluation
involving developers and researchers from the agents
area. In these tests we expect not only to validate the
proposed methodology for agent world design, but also
to collect information in order to refine our approach,
according to the users’ needs.

ACKNOWLEDGEMENTS
Alfredo Ferreira was supported in part by the Por-
tuguese Foundation for Science and Technology, grant
reference SFRH/BD/17705/2004.

REFERENCES
[AD01] Christine Alvarado and Randall Davis. Resolving am-

biguities to create a natural sketch based interface. In
Proceedings of IJCAI-2001, August 2001.

[AV05] Ruth Ayllet and Marco Vala. Victec deliverable 3.5.1:
Toolkit final version, 2005.

[BPB+05] Lars Braubach, Alexander Pokahr, Dirk Bade, Karl-
Heinz Krempels, and Winfried Lamersdorf. Deploy-
ment of distributed multi-agent systems. In Franco Zam-
bonelli Marie-Pierre Gleizes, Andrea Omicini, editor,
5th International Workshop on Engineering Societies
in the Agents World, pages 261–276. Springer-Verlag,
Berlin Heidelberg, 8 2005.

[CGFJ02] Anabela Caetano, Neri Goulart, Manuel Fonseca, and
Joaquim Jorge. Javasketchit: Issues in sketching the
look of user interfaces. InProceedings of the 2002 AAAI
Spring Symposium - Sketch Understanding, pages 9–14,
Palo Alto, USA, March 2002.

[Col01] R. W. Collier. "Agent Factory: A Framework for the En-
gineering of Agent-Oriented Applications". PhD thesis,
"University College Dublin", 2001.

[FPJ02] Manuel J. Fonseca, César Pimentel, and Joaquim A.
Jorge. CALI: An Online Scribble Recognizer for Cal-
ligraphic Interfaces. InProceedings of the 2002 AAAI

Spring Symposium - Sketch Understanding, pages 51–
58, Palo Alto, USA, March 2002.

[HL00] Jason I. Hong and James A. Landay. Satin: a toolkit for
informal ink-based applications. InUIST ’00: Proceed-
ings of the 13th annual ACM symposium on User inter-
face software and technology, pages 63–72, New York,
NY, USA, 2000. ACM Press.

[KS04] Levent Burak Kara and Thomas F. Stahovich. Sim-u-
sketch: a sketch-based interface for simulink. InPro-
ceedings of the Working Conference on Advanced Visual
Interfaces, pages 354–357, New York, NY, USA, 2004.
ACM Press.

[LM01] James A. Landay and Brad A. Myers. Sketching inter-
faces: Toward more human interface design.IEEE Com-
puter, 34(2):56–64, 2001.

[LNHL00] James Lin, Mark W. Newman, Jason I. Hong, and
James A. Landay. DENIM: finding a tighter fit between
tools and practice for web site design. InCHI, pages
510–517, 2000.

[Mae95] Pattie Maes. Artificial life meets entertainment: lifelike
autonomous agents.Commun. ACM, 38(11):108–114,
1995.

[MKSA03] P. A. Mitkas, D. Kehagias, A. L. Symeonidis, and I. N.
Athanasiadis. "a framework for constructing multi-agent
applications and training intelligent agents". InProceed-
ings of the 4th Int. Workshop on Agent-Oriented Soft-
ware Engineering (AOSE-2003), pages 96–109, 2003.

[NNLC99] H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus: a
toolkit and approach for building distributed multi-agent
systems. InProceedings of the 3rd conference on Au-
tonomous Agents, pages 360–361. ACM Press, 1999.

[Pra05] Rui Prada.Teaming Up Human and Synthetic Charac-
ters. PhD thesis, Instituto Superior Técnico, Technical
University of Lisbon, 2005.

[RN03] Stuart Russell and Peter Norvig.Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 2nd edition edition, 2003.

[Sut64] Ivan E. Sutherland. Sketch pad a man-machine graphical
communication system. InDAC ’64: Proceedings of
the SHARE design automation workshop, pages 6.329–
6.346, New York, NY, USA, 1964. ACM Press.

[Wil99] U. Wilensky. Netlogo. Center for Con-
nected Learning and Computer-Based Model-
ing. Northwestern University, Evanston, IL.,
<http://ccl.northwestern.edu/netlogo>, 1999.

