
Polygon Detection from a Set of Lines

Alfredo Ferreira Manuel J. Fonseca Joaquim A. Jorge
Department of Information Systems and Computer Science

INESC-ID/IST/Technical University of Lisbon
R. Alves Redol, 9, 1000-029 Lisboa, Portugal

alfredo.ferreira.jr@inesc-id.pt, mjf@inesc-id.pt, jorgej@acm.org

Abstract
Detecting polygons defined by a set of line segments in a plane is an important step in the analysis of vectorial
drawings. This paper presents an approach that combines several algorithms to detect basic polygons from a
set of arbitrary line segments. The resulting algorithm runs in polynomial time and space, with complexities of
O((N + M)4) andO((N + M)2) respectively, whereN is the number of line segments andM is the number of
intersections between line segments. Our choice of algorithms was made to strike a good compromise between
efficiency and ease of implementation. The result is a simple and efficient solution to detect polygons from lines.

Keywords
Polygon Detection, Segment Intersection, Minimum Cycle Basis

1. INTRODUCTION

Unlike image processing, where data consist of raster im-
ages, the proposed algorithm deals with drawings in vector
format, consisting of line segments. This requires com-
pletely different approaches, such as described in this pa-
per.

To perform polygon detection from a set of line segments
we divide this task in four major steps. First we detect
line segment intersections using the Bentley-Ottmann al-
gorithm [13]. Next step creates a graph induced by the
drawing, where vertices represent endpoints or proper in-
tesection points of line segments and edges represent max-
imal relatively open subsegments that contain no vertices.
The third step finds the Minimum Cycle Basis (MCB) [16]
of the graph induced in previous step, using the algorithm
proposed by Horton [12]. Last step constructs a set of poly-
gons based on cycles in the previously found MCB. This
is straight-forward if we transform each cycle into a poly-
gon, where each vertex in the cycle represents a vertex in
the polygon and each edge in the cycle represents an edge
in the polygon.

In sections 2 and 3 we describe the four steps of our
method. Section 4 presents the whole algorithm, followed
by experimental results in section 5. Finally in section 6
we discuss conclusions and future work.

2. INTERSECTION REMOVAL

In a vector drawing composed by a set of line segments
there might exist many intersections between these seg-
ments. To detect polygonal shapes we have to remove
proper segment intersections, thus creating a new set of

line segments in which any pair of segments share at most
one endpoint.

2.1. Finding line segment intersections

The first step of our approach consists in detecting allM
intersections betweenN line segments in a plane. This is
considered one of the fundamental problems of Computa-
tional Geometry and it is known that any algorithm, within
the model of algebraic decision tree, have a lower bound
of Ω(N log N + M) time to solve it [3, 5].

In [1] Balaban proposes two algorithms for finding inter-
secting segments, a deterministic and asymptotically op-
timal for both timeO(N log N + M) and spaceO(N)
algorithm and a simpler one that can perform the same
task in O(N log2 N + M)-time. Before that, Chazelle
and Edelsbrunner [5] reached a time optimal algorithm
O(N log N + M) with space requirement ofO(N + M).
The randomized approach devised by Clarkson and Shor
[6] produced a algorithm for reporting all intersecting pairs
that requiresO(N log N + M) time andO(N) space.

In 1979 Bentley and Ottmann proposed an algorithm that
solved this problem inO((N+M) log N) time andO(N+
M) space [13]. This algorithm is the well-known Bentley-
Ottmann algorithm and after more than 20 years it is still
widely adopted in practical implementations because it is
easy to understand and implement [15, 11]. In realiz-
ing that this is not the most complex part of our aproach,
we decide to use the Bentley-Ottmann algorithm, since its
complexity is pretty acceptable for our purposes and its
published implementations are quite simple.



Figure 1. Set Φ of line segments

2.2. Removing line segment intersections

The next step of our approach is to remove all proper
intersections between line segments, dividing each inter-
sected segment in sub-segments without proper intersec-
tions, only sharing endpoints. In order to find and re-
move intersections, performing at once the first two steps
of our approach, we use a robust and efficient imple-
mentation of the Bentley-Ottmann algorithm, described by
Bartuschka, Mehlhorn and Naher [2] that computes the
planar graph induced by a set of line segments. Their
implementation, represented in this paper by COMPUTE-
INDUCED-GRAPH, computes the graphG induced by set
Φ in O((N +M) log N) time. Since this algorithm is quite
long we choose not to present it here. We refer our readers
to [2] for a detailed description.

In this implementation the vertices ofG represent all end-
points and proper intersection points of line segments in
Φ, and the edges ofG are the maximal relatively open sub-
segments of lines inΦ that do not contain any vertex of
G. The major drawback of this implementation lies in that
parallel edges are produced in the graph for overlapping
segments. We assume thatΦ contains no such segments.
Considering, for example, the setΦ shown in Figure 1,
COMPUTE-INDUCED-GRAPH will produce the graphG,
depicted in Figure 2, where each edge represents a non-
intersecting line segment.

3. POLYGON DETECTION

Detecting polygons is similar to finding cycles on the graph
G produced in the previous step.

Figure 2. Graph G induced by Φ

..
.

.
.
.

.
3

1

2

4

5

r

Figure 3. A planar graph with a exponential
number of cycles

3.1. All Cycles of a Graph

The first known linear-time algorithm for listing all cycles
of a graph was presented by Syslo [16]. This algorithm
requiresO(V ) space andO(V × C) time, whereV is the
number of vertices andC the number of cycles inG. Later
Dogrus̈oz and Krishnamoorthy proposed a vector space al-
gorithm for enumerating all cycles of a planar graph that
runs inO(V 2 × C) time andO(V ) space [8]. Although
asymptoticaly slower, this algorithm is much simpler than
Syslo’s and is amenable to parallelization. Unfortunately,
the total number of cycles in a planar graph can grow ex-
ponentially with the number of vertices [14]. An example
of this situation is the graph presented in Figure 3. In this
case, the number of cycles, including the interior region
numbered 1, isO(2r) with r = k/2 + 1, wherek is the
number of vertices, since one can choose any combination
of the remaining regions to define a cycle [8]. This is why
it is not very feasible to detect all polygons that can be
constructed from a set of lines. In this paper, we choose
just to detect the minimal polygons, those that have a min-
imal number of edges and cannot be constructed by joining
other minimal polygons.

3.2. Minimum Cycle Basis of a Graph

Considering that we just want to detect the minimal poly-
gons this can be treated as searching for a Minimum Cycle
Basis (MCB). So, the second step of our approach con-
sists in obtaining a MCB of graphG. A cycle basis is
defined as a basis for the cycle space ofG which consists
entirely of elementary cycles. A cycle is called elemen-
tary if it contains no vertex more than once. The dimen-
sion of the cycle space is given by thecyclomatic num-
berν = E−V +P [9, 4], whereE is the number of edges
andV the number of vertices inG andP is the number of
connected components ofG.

Horton presented the first known polynomial-time algo-
rithm to find the shortest cycle basis of a graph, which runs
in O(E3V ) time [12] or inO(E4) on simple planar graphs
[10], which is the case. While assimptotically better so-
lutions have been published in the literature, the Bentley-
Ottmann algorithm is both simple and usable for our needs.
The pseudo-code of this algorithm is listed in MINIMUM -
CYCLE-BASIS and shortly described bellow. A further de-
tailed description of this algorithm and concepts behind it
can be found in [12].

The ALL -PAIRS-SHORTEST-PATHS finds the shortest



M INIMUM -CYCLE-BASIS(G)
1 Γ← empty set
2 Π← ALL -PAIRS-SHORTEST-PATHS(G)
3 for eachv in VERTICES(G)
4 do for each(x, y) in EDGES(G)
5 do if Πx,v ∩Πv,y = {v}
6 then C ← Πx,v ∪Πv,y ∪ (x, y)
7 addC to Γ
8 ORDER-BY-LENGTH(Γ)
9 return SELECT-CYCLES(Γ)

paths between all pairs of vertices in graphG and can be
performed inO(V 3) time andO(V 2) space using Floyd-
Warshall or Dijkstra algorithms [7]. ORDER-BY-LENGTH

orders the cycles by ascending length and can be imple-
mented by any efficient sorting algorithm. This is a non-
critical step because it has aO(V ν log V ) upper bound
in time complexity, which is insignificant in comparision
with other steps of this algorithm.

In SELECT-CYCLES we use a greedy algorithm to find the
MCB from Γ set of cycles. To do this Horton [12] suggests
representing the cycles as rows of a 0-1 incidence matrix,
in which columns correspond to the edges of the graph
and rows are the incidence vectors of each cycle. Gaus-
sian elimination using elementary row operations over the
integers modulo two can then be applied to the incidence
matrix, processing each row in turn, in ascending order of
the weights of cycles, until enough independent cycles are
found.

This step dominates the time complexity from other steps,
since it takesO(Eν2V ) time. Knowing thatG is always
a simple planar graph we can conclude that as a whole the
M INIMUM -CYCLE-BASIS algorithm has a worst case up-
per bound ofO(Eν2V ) = O(E3V ) = O(E4) operations
and a space requirements ofO(V 2).

Figure 4 shows an example ofΓ, the set of cycles resulting
from applying the MINIMUM -CYCLE-BASIS to graphG
shown in Figure 2.

3.3. Polygon construction

The last step of our approach consists in constructing a
set Θ of polygons from the MCB. An algorithm to per-
form this operation can easily run inO(CV ) time, where
C is number of cycles in MCB. Such an algorithm is listed
in POLYGONS-FROM-CYCLES which returns a setΘ of
polygons.

Figure 4. Shortest cycle basis Γ of graph G

P1

P4

P2

P3

Figure 5. Set Θ of polygons detected from Φ

POLYGONS-FROM-CYCLES(Γ)
1 Θ← empty set
2 for eachC in Γ
3 do P ← new polygon
4 for eachv in VERTICES(V )
5 do add vertexv to P
6 add polygonP to Θ
7 return Θ

Figure 5 illustrates the resulting setΘ of polygons gen-
erated by applying POLYGONS-FROM-CYCLES to Γ de-
picted in Figure 4.

4. ALGORITHM OUTLINE

We can now outline DETECT-POLYGONS. This algorithm
is able to detect a setΘ of polygons from a initial setΨ
of line segments. To perform this task we pipeline the
algorithms referred in previous sections for line segment
intersection removal, MCB finding and cycle-to-polygon
conversion.
DETECT-POLYGONS(Ψ)
1 G← COMPUTE-INDUCED-GRAPH(Ψ)
2 Γ← M INIMUM -CYCLE-BASIS(G)
3 Θ← POLYGONS-FROM-CYCLES(Γ)
4 return Θ

As refered in section 2.2, COMPUTE-INDUCED-GRAPH

runs inO((N + M) log N) time andO(N + M) space.
The SHORTEST-CYCLE-BASIS runs inO(V 4) operations
and has a space requirement ofO(V 2), making this the
critical step in the complexity of this algorithm, since the
POLYGONS-FROM-CYCLES just needsO(CV ) time.

Since the numberV of vertices in the graph is no greater
than the sum of line endpoints (2 × N ) with detected in-
tersectionsM , we can then conclude that the proposed
algorithm has time and space complexities ofO(V 4) =
O((N + M)4) andO(V 2) = O((N + M)2), respectively.

5. EXPERIMENTAL RESULTS

The algorithm proposed in this paper was implemented in
C++ and tested in a Intel Pentium III 1GHz 512MB RAM
computer running Windows XP . We tested the algorithm
with sets of line segments created from simple test draw-
ings, technical drawings of mechanical parts and hand-
sketched drawings. Table 1 presents the results obtained
from these tests.



Lines Intersections Nodes Edges Time (ms)

6 9 21 24 10
36 16 58 68 50

167 9 169 177 3986
286 47 389 376 8623
518 85 697 679 36703
872 94 1066 10050 128995

2507 10 2407 2526 1333547

Table 1. Results of algorithm tests

Based on these results we conclude that performance is
acceptable for on-line processing in sets with less than
three-hundred lines like hand-sketches or small-size tech-
nical drawings. If the line set have about 2500 lines the
algorithm will take more than twenty minutes to detect the
polygons. Still this remains a feasible solution for batch
processing of medium-size technical drawings.

6. CONCLUSIONS and FUTURE WORK

The proposed algorithm is used for polygon detection in
vector drawings to create descriptions based on spatial and
topological relationships between polygons. Other use is
detecting planar shapes in sketches. Both applications have
been implemented as working prototypes used for shape
retrieval and architectural drawing from sketches.

The algorithm presented here detects in polynomial time
and space, all minimal polygons that can be constructed
from a set of line segments. This approach uses well-
known and simple to implement algorithms to perform
line segment intersection detection and to find a MCB of
a graph, instead of using more efficient but less simpler
methods.

Indeed there is considerable room for improvement in the
presented algorithm, namely through the use of more re-
cent, complex and efficient algorithms. Further work may
be carried out regarding the detection and correction of
rounding errors resulting from finite precision computa-
tions.

7. ACKNOWLEDGMENTS

We thank to Professor Mukkai S. Krishnamoorthy from
Rensselaer Polytechnic Institute, New York, for his very
helpful suggestions.

This work was funded in part by the Portuguese Founda-
tion for Science and Technology, project 34672/99 and the
European Commission, project SmartSketches IST-2000-
28169.
References
[1] Ivan J. Balaban. An optimal algorithm for finding

segment intersections. InProceedings of the 11th
Annual ACM Symposium Comp. Graph., pages 211–
219. ACM, 1995.

[2] Ulrike Bartuschka, Kurt Mehlhorn, and Stefan Naher.
A robust and efficient implementation of a sweep line
algorithm for the straight line segment intersection.
In Proceedings of Workshop on Algorithm Engineer-
ing, pages 124–135, Venice, Italy, September 1997.

[3] M. Ben-Or. Lower bounds for algebraic computation
trees. InProceedings of the 15th Annual ACM Sym-
posium Theory of Computing, pages 80–86. ACM,
1983.

[4] Augustin-Louis Cauchy. Recherche sur les
polyèdres. J. Ecole Polytechnique, 9(16):68–86,
1813.

[5] Bernard Chazelle and Herbert Edelsbrunner. An op-
timal algorithm for intersecting line segments in the
plane.Journal of the ACM, 39:1–54, 1992.

[6] Ken Clarkson and Peter W. Shor. Applications
of random sampling in computational geometry, ii.
Discrete and Computational Geometry, 4:387–421,
1989.

[7] Thomas Cormen, Charles Leiserson, and Ronald
Rivest. Introduction to Algorithms. MIT Press,
McGraw-Hill, 2nd. edition, 1990.

[8] U. Dogrus̈oz and M. Krishnamoorthy. Cycle vector
space algorithms for enumerating all cycles of a pla-
nar graph. Technical Report 5, Rensselaer Polytech-
nic Institute, Dept. of Computer Science, Troy, New
York 12180 USA, January 1995.

[9] Leonhard Euler. Elementa doctrinae solido-
rum. Novi Commentarii Academiae Scientiarum
Petropolitanae, 4:109–140, 1752.

[10] David Hartvigsen and Russel Mardon. The all-pairs
minimum cut problem and the minimum cycle basis
problem on planar graphs.SIAM Journal on Comput-
ing, 7(3):403–418, August 1994.

[11] John Hobby. Practical segment intersection with fi-
nite precision output.Computational Geometry: The-
ory and Applications, 13(4), 1999.

[12] J.D.Horton. A polynomial-time algorithm to find the
shortest cycle basis of a graph.SIAM Journal on
Computing, 16(2):358–366, April 1987.

[13] J.L.Bentley and T.Ottmann. Algorithms for reporting
and counting geometric intersections.IEEE Transac-
tions on Computers, pages 643–647, 1979.

[14] Prabhaker Mateti and Narsingh Deo. On algorithms
for enumerating all circuits of a graph.SIAM Journal
on Computing, 5(1):90–99, March 1976.

[15] Joseph O’Rourke. Computational Geometry in
C, chapter Section 7.7 ”Intersection of Segments”,
pages 264–266. Cambridge University Press, 2nd
edition, 1998.

[16] Maciej M. Syslo. An efficient cycle vector space al-
gorithm for listing all cycles of a planar graph.SIAM
Journal on Computing, 10(4):797–808, November
1981.




