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Preface to the Third Edition

It is always the latest song
that an audience applauds the most.

Homer, Odyssey

During the World Congress on Computational Intelligence {(Orlando, 27 June ~
2 July 1994), Ken De Jong, one of the plenary speakers and the current editor-
in-chief of Evolutionary Computation, said that these days a large majority of
implementations of evolutionary techniques used non-binary representations. It
seems that the general concept of an evolutionary method (or evolutionary al-
gorithm, evolution program, etc.) was widely accepted by most practitioners in
the field. Consequently, in most applications of evolutionary techniques, a pop-
ulation of individuals is processed, where each individual represents a potential
solution to the problem at hand, ard a selection process introduce some bias:
better individuals have better chances to survive and reproduce. In the same
time, a particular representation of the individuals and the set of operators
which alter their genetic code are often problem-specific. Hence, there is really
little point in arguing any further that the incorporation of problem-specific
knowledge, by means of representation and specialized operators, may enhance
the performance of an evolutionary system in a significant way. On the other
hand, many successful implementations of such a hybrid system [89)]:

“... had pushed the application of simple GAs well beyond our initial
theories and understanding, creating a need to revisit and extend
them.”

I believe this is one of the most challenging tasks for researchers in the field
of evolutionary computation. Some recent results support the experimental de-
velopments by providing some theoretical foundations (see, for example, the
work of Nick Radcliffe [315, 316, 317] on formal analysis and respectful recom-
binations). However, further studies on various factors affecting the ability of
evolutionary techniques to solve optimization problems are necessary.

Despite this change in the perception of evolutionary techniques, the origi-
nal organization of the book is left unchanged in this edition; for example, the
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Introduction is kept almost without any alternation (with an argument for a de-
parture from binary-coded genetic algorithms towards more complex, problem-
specific systems). The book still consists of three parts, which discuss genetic
algorithms (the best known technique in the area of evolutionary computation),
numerical optimization, and various applications of evolution programs, respec-
tively. However, there are several changes between this and the previous edition
of the book. Apart from some minor changes, corrections, and modifications
present in most chapters (including Appendix A}, the main differences can be
summarized as follows:

e due to some new developments connected with constrained optimization
in numerical domains, Chapter 7 was totally rewritten:

e Chapter 11 was modified in a significant way, several new developments
were included;

e there is a new Chapter 13 which discusses the original evolutionary pro-
gramming techniques and quite recent paradigm of genetic programming;

o Chapter 14 incorporates material from Conclusions of the second edition;

o Chapter 15 provides a general overview on heuristic methods and con-
straint handling techniques in evolutionary methods;

o Conclusions were rewritten to discuss the current directions of research
in evolutionary techniques; because of this change, it was necessary to
change also the citation used at the beginning of this chapter;

e Appendices B and C contain a few test functions (unconstrained and
constrained, respectively) which might be used in various experiments
with evolutionary techniques; and

o Appendix D discusses a few possible projects; this part might be useful if
the book is adopted as a text for a project-oriented course.

I do hope that these changes would further enhance the popularity of the text.

As with the first and second editions, I am pleased to acknowledge the as-
sistance of several co-authors who worked with me during the last two years;
many results of this collaboration were included in this volume. The list of
new co-authors (not listed in the prefaces to the previous editions) include
(in alphabetical order): Tom Cassen, Michael Cavaretta, Dipankar Dasgupta,
Susan Esquivel, Raul Gallard, Sridhar Isukapalli, Rodolphe Le Riche, Li-Tine
Li, Hoi-Shan Lin, Rafic Makki, Maciej Michalewicz, Mohammed Moinuddin,
Subbu Muddappa, Girish Nazhiyath, Robert Reynolds, Marc Schoenauer, and
Kalpathi Subramanian. Thanks are due to Sita Raghavan, who improved the
simple real-coded genetic algorithm included in the Appendix A, and Girish
Nazhiyath, who developed a new version of the GENOCOP III system (de-
scribed in Chapter 7) to handle nonlinear constraints. I thank all the individu-
als who took their time to share their thoughts on the text with me; they are
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primarily responsible for most changes incorporated in this edition. In partic-
ular, I express my gratitude to Thomas Back and David Fogel, which whom I
have been working on a volume entitled Handbook of Evolutionary Computa-
tion [17], to the executive editor at Springer-Verlag, Hans Wassner, for his help
throughout the project, and to Gabi Fischer, Frank Holzwarth, and Andy Ross
at Springer-Verlag for all their efforts on this project. I would like also to ac-
knowledge a grant (IRI-9322400) from the National Science Foundation, which
helped me in preparing this edition. I was able to incorporate many results (re-
vision of Chapter 7, new Chapter 15) obtained with the support of this grant. I
greatly appreciate the assistance of Larry Reeker, Program Director at National
Science Foundation. Also, I would like to thank all my graduate students from
UNC-Charlotte, Universidad Nacional de San Luis, and Linképing University,
who took part in my courses offered during 1994/95; as usual, I enjoyed each
offering and found them very rewarding.

Charlotte Zbigniew Michalewicz
October 1995
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As natural selection works solely

by and for the good of each being,

all corporeal and mental endowments
will tend to progress toward perfection.

Charles Darwin, Origin of Species

The field of evolutionary computation has reached a stage of some maturity.
There are several, well established international conferences that attract hun-
dreds of participants (International Conferences on Genetic Algorithms—ICGA
[167, 171, 344, 32, 129], Parallel Problem Solving from Nature—PPSN (351,
251], Annual Conferences on Evolutionary Programming—EP [123, 124, 378]);
new annual conferences are getting started (IEEE International Conferences
on Evolutionary Computation [275, 276]). Also, there are tens of workshops,
special sessions, and local conferences every year, all around the world. A new
journal, Evolutionary Computation (MIT Press) [87], is devoted entirely to evo-
lutionary computation techniques; many other journals organized special issues
on evolutionary computation (e.g., [118, 263]). Many excellent tutorial papers
[28, 29, 320, 397, 119] and technical reports provide more-or-less complete bib-
liographies of the field [161, 336, 297]. There is also The Hitch-Hiker’s Guide to
FBvolutionary Computation prepared by Jorg Heitkotter [177] from University
of Dortmund, available on comp.ai.genetic interest group (Internet).

This trend prodded me to prepare the second, extended edition of the book.
As it was the case with the first edition, the volume consists mostly of arti-
cles I published over the last few years—because of that, the book represents
a personal overview of the evolutionary computation area rather than a bal-
anced survey of all activities in this field. Consequently, the book is not really
a textbook; however, many universities used the first edition as a text for an
“evolutionary computation” course. To help potential future students, I have
incorporated a few additional items into this volume (an appendix with a simple
genetic code, brief references to other developments in the field, an index, etc.).
At the same time, I did not provide any exercises at the end of chapters. The
reason is that the field of evolutionary computation is still very young and there
are many areas worthy of further study—these should be easy to identify in the
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text, which still triggers more questions than provides answers. The aim of this
volume is to talk about the field of evolutionary computation in simple terms,
and discuss their simplicity and elegance on many interesting test cases. Writing
an evolution program for a given problem should be an enjoyable experience;
the book may serve as a guide in this task.

I have also used this opportunity to correct many typos present in the first
edition. However, I left the organization of the book unchanged: there are still
twelve chapters, apart from the introduction and conclusions, but some chapters
were extended in a significant way. Three new subsections were added to Chap-
ter 4 (on contractive mapping genetic algorithms, on genetic algorithms with
varying population size, and on constraint handling techniques for the knapsack
problem). Some information on Gray coding was included in Chapter 5. Chapter
7 was extended by sections on implementation of the GENOCOP system. These
include a description of first experiments and results, a discussion on further
modifications of the system, and a description of first experiments on optimiza-
tion problems with nonlinear constraints (GENOCOP II). A brief section on
multimodal and multiobjective optimization was added to Chapter 8. In Chap-
ter 11, a section on path planning in a mobile robot environment was added.
The Conclusions were extended by the results of recent experiments, confirm-
ing a hypothesis that the problem-specific knowledge enhances an algorithm in
terms of performance (time and precision) and, at the same time, narrows its
applicability. Also, some information on cultural algorithms was included. This
edition has an Index (missing in the first edition) and an Appendix, where a
code for a simple real-coded genetic algorithm is given. This C code might be
useful for beginners in the field; the efficiency has been sacrificed for clarity.
There are also some other minor changes throughout the whole text: several
paragraphs were deleted, inserted, or modified. Also, this volume has over one
hundred added references.

As with the first edition, it is a pleasure to acknowledge the assistance of
several co-authors who worked with me during the last two years; many results
of this collaboration were included in this volume. The list of recent co-authors
include: Jaroslaw Arabas, Naguib Attia, Hoi-Shan Lin, Thomas Logan, Jan
Mulawka, Swarnalatha Swaminathan, Andrzej Szalas, and Jing Xiao. Thanks
are due to Denis Cormier, who wrote the simple real-coded genetic algorithm
included in the Appendix. I would like to thank all the individuals who took
their time to share their thoughts on the text with me; they are primarily
responsible for most changes incorporated in this edition. Also, I would like to
thank all my graduate students from UNC-Charlotte and North Carolina State
University who took part in the teleclass offered in Fall 1992 (and consequently
had to use the first edition of the book as the text); it was a very enjoyable and
rewarding experience for me.

Charlotte Zbigniew Michalewicz
March 1994
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‘What does your Master teach?’
asked a visitor.

‘Nothing,’ said the disciple.
‘Then why does he give discourses?’

‘He only points the way — he teaches
nothing.’

Anthony de Mello, One Minute Wisdom

During the last three decades there has been a growing interest in algorithms
which rely on analogies to natural processes. The emergence of massively par-
allel computers made these algorithms of practical interest. The best known
algorithms in this class include evolutionary programming, genetic algorithms,
evolution strategies, simulated annealing, classifier systems, and neural net-
works. Recently (1-3 October 1990) the University of Dortmund, Germany,
hosted the First Workshop on Parallel Problem Solving from Nature [351].

This book discusses a subclass of these algorithms — those which are based
on the principle of evolution (survival of the fittest). In such algorithms a popu-
lation of individuals (potential solutions) undergoes a sequence of unary (muta-
tion type) and higher order (crossover type) transformations. These individuals
strive for survival: a selection scheme, biased towards fitter individuals, selects
the next generation. After some number of generations, the program converges
— the best individual hopefully represents the optimum solution.

There are many different algorithms in this category. To underline the sim-
ilarities between them we use the common term “evolution programs”.

Evolution programs can be perceived as a generalization of genetic al-
gorithms. Classical genetic algorithms operate on fixed-length binary strings,
which need not be the case for evolution programs. Also, evolution programs
usually incorporate a variety of “genetic” operators, whereas classical genetic
algorithms use binary crossover and mutation.

The beginnings of genetic algorithms can be traced back to the early 1950s
when several biologists used computers for simulations of biological systems
(154]. However, the work done in late 1960s and early 1970s at the University
of Michigan under the direction of John Holland led to genetic algorithms as
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they are known today. The interest in genetic algorithms is growing rapidly —
the recent Fourth International Conference on Genetic Algorithms (San Diego,
13-16 July 1991) attracted around 300 participants.

The book describes the results of three years’ research from early 1989 at
Victoria University of Wellington, New Zealand, through late 1991 (since July
1989 I have been at the University of North Carolina at Charlotte). During this
time I built and experimented with various modifications of genetic algorithms
using different data structures for chromosome representation of individuals,
and various “genetic” operators which operated on them. Because of my back-
ground in databases [256], [260], where the constraints play a central role, most
evolution programs were developed for constrained problems.

The idea of evolution programs (in the sense presented in this book), was
conceived quite early [204], [277] and was supported later by a series of ex-
periments. Despite the fact that evolution programs, in general, lack a strong
theoretical background, the experimental results were more than encouraging:
very often they performed much better than classical genetic algorithms, than
commercial systems, and than other, best-known algorithms for a particular
class of problems.

Some other researchers, at different stages of their research, performed ex-
periments which were perfect examples of the “evolution programming” tech-
nique — some of them are discussed in this volume. Chapter 8 presents a survey
of evolution strategies — a technique developed in Germany by I. Rechenberg
and H.-P. Schwefel [319], [348] for parameter optimization problems. Many re-
searchers investigated the properties of evolution systems for ordering prob-
lems, including the widely known, “traveling salesman problem” (Chapter 10).
In Chapter 11 we present systems for a variety of problems including problems
on graphs, scheduling, and partitioning. Chapter 12 describes the construction
of an evolution program for inductive learning in attribute based spaces, de-
veloped by C. Janikow [200]. In the Conclusions, we briefly discuss evolution
programs for generating LISP code to solve problems, developed by J. Koza
[228], and present an idea for a new programming environment.

The book is organized as follows. The introduction provides a general discus-
sion on the motivation and presents the main idea of the book. Since evolution
programs are based on the principles of genetic algorithms, Part I of this book
serves as survey on this topic. We explain what genetic algorithms are, how they
work, and why (Chapters 1-3). The last chapter of Part I (Chapter 4) presents
some selected issues (selection routines, scaling, etc.) for genetic algorithms.

In Part IT we explore a single data structure: a vector in a floating point
representation, only recently widely accepted in the GA community [78]. We
talk only about numerical optimization. We present some experimental com-
parison of binary and floating point representations {Chapter 5) and discuss
new “genetic” operators responsible for fine local tuning (Chapter 6). Chapter
7 presents two evolution programs to handle constrained problems: the GENO-
COP system, for optimizing functions in the presence of linear constraints, and
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the GAFOC! system, for optimal control problems. Various tests cases are con-
sidered; the results of the evolution programs are compared with a commercial
system. The last chapter of this part (Chapter 8) presents a survey of evolution
strategies and describes some other methods.

Part 11T discusses a collection of evolution programs built over recent years
to explore their applicability to a variety of hard problems. We present further
experiments with order-based evolution programs, evolution programs with ma-
trices and graphs as a chromosome structure. Also, we discuss an application
of evolution program to machine learning, comparing it with other approaches.

The title of this book rephrases the famous expression used by N. Wirth
fifteen years ago for his book, Algorithms + Data Structures = Programs [406].
Both books share a common idea. To build a successful program (in particular,
an evolution program), appropriate data structures should be used (the data
structures, in the case of the evolution program, correspond to the chromosome
representation) together with appropriate algorithms (these correspond to “ge-
netic” operators used for transforming one or more individual chromosomes).

The book is aimed at a large audience: graduate students, programmers, re-
searchers, engineers, designers — everyone who faces challenging optimization
problems. In particular, the book will be of interest to the Operations Research
community, since many of the problems considered (traveling salesman, schedul-
ing, transportation problems) are from their area of interest. An understanding
of introductory college level mathematics and of basic concepts of programming
is sufficient to follow all presented material.
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Introduction

Again 1 saw that under the sun
the race is not to the swift,

nor the bittle to the strong,
nor bread to the wise,

nor riches to the intelligent,
nor favor to the man of skill;
but time and chance

happen to them all.

The Bible, Ecclesiastes, 9

During the last thirty years there has been a growing interest in problem solving
systems based on principles of evolution and hereditary: such systems maintain
a population of potential solutions, they have some selection process based on
fitness of individuals, and some “genetic” operators. One type of such systems
is a class of Evolution Strategies i.e., algorithms which imitate the principles of
natural evolution for parameter optimization problems [319, 348] (Rechenberg,
Schwefel). Fogel’s Evolutionary Programming [126] is a technique for searching
through a space of small finite-state machines. Glover’s Scatter Search tech-
niques [142] maintain a population of reference points and generate offspring
by weighted linear combinations. Another type of evolution based systems are
Holland’s Genetic Algorithms (GAs) [188]. In 1990, Koza [231] proposed an evo-
lution based systems, Genetic Programming, to search for the most fit computer
program to solve a particular problem.

We use a common term, Evolution Programs (EP), for all evolution-
based systems (including systems described above). The structure of an evolu-
tion program is shown in Figure 0.1.

The evolution program is a probabilistic algorithm which maintains a popu-
lation of individuals, P(t) = {z%,...,z!} for iteration t. Each individual repre-
sents a potential solution to the problem at hand, and, in any evolution program,
is implemented as some (possibly complex) data structure S. Each solution z}
is evaluated to give some measure of its “fitness”. Then, a new population (it-
eration ¢ + 1) is formed by selecting the more fit individuals (select step). Some
members of the new population undergo transformations (alter step) by means
of “genetic” operators to form new solutions. There are unary transformations
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procedure evolution program
begin
t—20
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t—t+1
select P(t) from P(t—1)
alter P(t)
evaluate P(t)
end
end

Fig. 0.1. The structure of an evolution program

m; (mutation type), which create new individuals by a small change in a sin-
gle individual (m; : S — S), and higher order transformations ¢; (crossover
type), which create new individuals by combining parts from several (two or
more) individuals (¢; : S x...x § — S). After some number of genera-
tions the program converges — it is hoped that the best individual represents
a near-optimum (reasonable) solution.

Let us consider the following example. Assume we search for a graph which
should satisfy some requirements (say, we search for the optimal topology of a
communication network accordingly to some criteria: cost of sending messages,
reliability, etc.). Each individual in the evolution program represents a poten-
tial solution to the problem, i.e., each individual represents a graph. The initial
population of graphs P(0) (either generated randomly or created as a result
of some heuristic process) is a starting point (¢ = 0) for the evolution pro-
gram. The evaluation function usually is given — it incorporates the problem
requirements. The evaluation function returns the fitness of each graph, distin-
guishing between better and worse individuals. Several mutation operators can
be designed which would transform a single graph. A few crossover operators
can be considered which combine the structure of two (or more) graphs into
one. Very often such operators incorporate the problem-specific knowledge. For
example, if the graph we search for is connected and acyclic (i.e., it is a tree),
a possible mutation operator may delete an edge from the graph and add a
new edge to connect two disjoint subgraphs. The other possibility would be to
design a problem-independent mutation and incorporate this requirement into
the evaluation function, penalizing graphs which are not trees.

Clearly, many evolution programs can be formulated for a given problem.
Such programs may differ in many ways; they can use different data struc-
tures for implementing a single individual, “genetic” operators for transforming
individuals, methods for creating an initial population, methods for handling
constraints of the problem, and parameters (population size, probabilities of
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applying different operators, etc.). However, they share a common principle:
a population of individuals undergoes some transformations, and during this
evolution process the individuals strive for survival.

As mentioned earlier, the idea of evolution programming is not new and
has been around for at least thirty years {126, 188, 348]. Many different evo-
lutionary systems have emerged since then; however, in this text we discuss
these various paradigms of evolutionary programs from the perspective of their
similarities. After all, the main differences between them are hidden on a lower
level. We will not discuss any philosophical differences between various evolu-
tionary techniques (e.g., whether they operate on the genotype or phenotype
level), but rather we discuss them from the perspective of building an evolu-
tionary program for a particular class of problems. Thus we advocate the use
of proper (possibly complex) data structures (for chromosome representation)
together with an expanded set of genetic operators, whereas, for example, clas-
sical genetic algorithms use fixed-length binary strings (as a chromosome, data
structure S) for its individuals and two operators: binary mutation and binary
crossover. In other words, the structure of a genetic algorithm is the same as the
structure of an evolution program (Figure 0.1) and the differences are hidden
on the lower level. In EPs chromosomes need not be represented by bit-strings
and the alteration process includes other “genetic” operators appropriate for
the given structure and the given problem.

This is not entirely a new direction. In 1985 De Jong wrote [84]:

“What should one do when elements in the space to be searched are
most naturally represented by more complex data structures such as
arrays, trees, digraphs, etc. Should one attempt to ‘linearize’ them
into a string representation or are there ways to creatively redefine
crossover and mutation to work directly on such structures. I am
unaware of any progress in this area.”

As mentioned earlier, genetic algorithms use fixed-length binary strings and
only two basic genetic operators. Two major (early) publications on genetic
algorithms {188, 82] describe the theory and implementations of such GAs. As
stated in [155]:

“The contribution of this work [82] was in its ruthless abstraction
and simplification; De Jong got somewhere not in spite of his simpli-
fication but because of it. [...] Holland’s book [188] laid the theoreti-
cal foundation for De Jong’s and all subsequent GA work by mathe-
matically identifying the combined role in genetic search of similarity
subsets (schemata), minimal operator disruption, and reproductive
selection. [...] Subsequent researchers have tended to take the the-
oretical suggestions in [188] quite literally, thereby reinforcing the
implementation success of De Jong’s neat codings and operators.”

However, in the next paragraph Goldberg [155] says:
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“[t is interesting, if not ironic, that neither man intended for his
work to be taken so literally. Although De Jong’s implementations
established usable technique in accordance with Holland’s theoreti-
cal simplifications, subsequent researchers have tended to treat both
accomplishments as inviolate gospel.”

It seems that a “natural” representation of a potential solution for a given
problem plus a family of applicable “genetic” operators might be quite useful
in the approximation of solutions of many problems, and this nature-modeled
approach (evolution programming) is a promising direction for problem solv-
ing in general. Apart from other paradigms of evolutionary computation (e.g.,
evolution strategies, evolutionary programming, genetic programming), some
researchers in genetic algorithms community have explored the use of other
representations as ordered lists (for bin-packing), embedded lists (for factory
scheduling problems), variable-element lists (for semiconductor layout). During
the last ten years, various application-specific variations on the genetic algo-
rithm were reported [73, 167, 171, 173, 278, 363, 364, 392]. These variations
include variable length strings (including strings whose elements were if-then-
else rules [363]), richer structures than binary strings (for example, matrices
[392]), and experiments with modified genetic operators to meet the needs of
particular applications [270]. In [285] there is a description of a genetic algo-
rithm which uses backpropagation (a neural network training technique) as an
operator, together with mutation and crossover that were tailored to the neu-
ral network domain. Davis and Coombs [65, 76| described a genetic algorithm
that carried out one stage in the process of designing packet-switching com-
munication network; the representation used was not binary and five “genetic”
operators (knowledge based, statistical, numerical) were used. These operators
were quite different to binary mutation and crossover. Other researchers, in
their study on solving a job shop scheduling problem [21}, wrote:

“To enhance the performance of the algorithm and to expand the
search space, a chromosome representation which stores problem
specific information is devised. Problem specific recombination op-
erators which take advantage of the additional information are also
developed.”

There are numerous similar citations available. It seems that most researches
modified their implementations of genetic algorithms either by using non-string
chromosome representation or by designing problem specific genetic operators
to accommodate the problem to be solved. In [228] Koza observed:

“Representation is a key issue in genetic algorithm work because the
representation scheme can severely limit the window by which the
system observes its world. However, as Davis and Steenstrup [74]
point out, ‘In all of Holland’s work, and in the work of many of his
students, chromosomes are bit strings.” String-based representations
schemes are difficult and unnatural for many problems and the need
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for more powerful representations has been recognized for some time
[84, 85, 86].”

Various nonstandard implementations were created for particular problems
— simply, the classical GAs were difficult to apply directly to a problem and
some modifications in chromosome structures were required. In this book we
have consciously departed from classical genetic algorithms which operate on
strings of bits: we searched for richer data structures and applicable “genetic”
operators for these structures for variety of problems. By experimenting with
such structures and operators, we obtained systems which were not genetic
algorithms any more, or, at least, not classical GAs. The titles of several reports
started with: “A Modified Genetic Algorithm ...” [271], “Specialized Genetic
Algorithms...” [201], “A Non-Standard Genetic Algorithm...” [278]. Also, there
is a feeling that the name “genetic algorithms” might be quite misleading with
respect to the developed systems. Davis developed several non-standard systems
with many problem-specific operators. He observed in [77]:

“] have seen some head-shaking about that system from other re-
searchers in the genetic algorithm field [...] a frank disbelief that the
system we built was a genetic algorithm (since we didn’t use binary
representation, binary crossover, and binary mutation).”

Additionally, we can ask, for example, whether an evolution strategy is a genetic
algorithm? Is the opposite true? To avoid all issues connected with classification
of evolutionary systems, we call them simply “evolution programs” (EPs).

Why do we depart from genetic algorithms towards more flexible evolution
programs? Even though nicely theorized, GA failed to provide for successful
applications in many areas. It seems that the major factor behind this failure
is the same one responsible for their success: domain independence.

One of the consequences of the neatness of GAs (in the sense of their domain
independence) is their inability to deal with nontrivial constraints. As mentioned
earlier, in most work in genetic algorithms, chromosomes are bit strings — lists
of 0s and 1s. An important question to be considered in designing a chromosome
representation of solutions to a problem is the implementation of constraints on
solutions (problem-specific knowledge). As stated in {74]:

“Constraints that cannot be violated can be implemented by im-
posing great penalties on individuals that violate them, by impos-
ing moderate penalties, or by creating decoders of the representa-
tion that avoid creating individuals violating the constraint. Each of
these solutions has its advantages and disadvantages. If one incor-
porates a high penalty into the evaluation routine and the domain is
one in which production of an individual violating the constraint is
likely, one runs the risk of creating a genetic algorithm that spends
most of its time evaluating illegal individuals. Further, it can happen
that when a legal individual is found, it drives the others out and the
population converges on it without finding better individuals, since
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the likely paths to other legal individuals require the production
of illegal individuals as intermediate structures, and the penalties
for violating the constraint make it unlikely that such intermediate
structures will reproduce. If one imposes moderate penalties, the
system may evolve individuals that violate the constraint but are
rated better than those that do not because the rest of the evaluation
function can be satisfied better by accepting the moderate constraint
penalty than by avoiding it. If one builds a “decoder” into the evalua-
tion procedure that intelligently avoids building an illegal individual
from the chromosome, the result is frequently computation-intensive
to run. Further, not all constraints can be easily implemented in this
way.”

(An example of decoders and repair algorithms, together with several penalty
functions is given in section 4.5, where a knapsack problem is considered).

In evolution programming, the problem of constraint satisfaction has a dif-
ferent flavor. It is not the issue of selecting an evaluation function with some
penalties, but rather selecting “the best” chromosomal representation of so-
lutions together with meaningful genetic operators to satisfy all constraints
imposed by the problem. Any genetic operator should pass some characteris-
tic structure from parent to offspring, so the representation structure plays an
important role in defining genetic operators. Moreover, different representation
structures have different characteristics of suitability for constraint representa-
tion, which complicates the problem even more. These two components (repre-
sentation and operators) influence each other; it seems that any problem would
require careful analysis which would result in appropriate representation for
which there are meaningful genetic operators.

Glover in his study on solving a complex keyboard configuration problem [141]
wrote:

“Although the robust character of the GA search paradigm is well
suited to the demands of the keyboard configuration problem, the
bit string representation and idealized operators are not properly
matched to the [...] required constraints. For instance, if three bits
are used to represent each component of a simple keyboard of only
40 components, it is easy to show that only one out of every 10 ar-
bitrarily selected 120-bit structures represents a legal configuration
map structure.”

Another citation is from the work of De Jong [88], where the traveling salesman
problem is briefly discussed:

“Using the standard crossover and mutation operators, a GA will
explore the space of all combinations of city names when, in fact,
it is the space of all permutations which is of interest. The obvious
problem is that as N [the number of cities in the tour] increases,
the space of permutations is a vanishingly small subset of the space
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of combinations, and the powerful GA sampling heuristic has been
rendered impotent by a poor choice of representation.”

At early stages of Al the general problem solvers (GPSs) were designed as
generic tools for approaching complex problems. However, as it turned out, it
was necessary to incorporate problem-specific knowledge due to unmanageable
complexity of these systems. Now the history repeated itself: until recently
genetic algorithms were perceived as generic tools useful for optimization of
many hard problems. However, the need for the incorporation of the problem-
specific knowledge in genetic algorithms has been recognized in some research
articles for some time [10, 128, 131, 170, 370]. It seems that GAs (as GPS)
are too domain independent to be useful in many applications. So it is not
surprising that evolution programs, incorporating problem-specific knowledge
in the chromosomes’ data structures and specific “genetic” operators, perform
much better.

The basic conceptual difference between classical genetic algorithms and
evolution programs is presented in Figures 0.2 and 0.3. Classical genetic algo-
rithms, which operate on binary strings, require a modification of an original
problem into appropriate (suitable for GA) form; this would include mapping
between potential solutions and binary representation, taking care of decoders
or repair algorithms, etc. This is not usually an easy task.

Genetic
Algorithm

Modified
Problem

Fig. 0.2. Genetic algorithm approach

On the other hand, evolution programs would leave the problem unchanged,
modifying a chromosome representation of a potential solution (using “natural”
data structures), and applying appropriate “genetic” operators.

In other words, to solve a nontrivial problem using an evolution program,
we can either transform the problem into a form appropriate for the genetic
algorithm (Figure 0.2), or we can transform the genetic algorithm to suit the
problem (Figure 0.3). Clearly, classical GAs take the former approach, EPs the
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Genetic
Algorithm

Evolution
Program

Fig. 0.3. Evolution program approach

latter. So the idea behind evolution programs is quite simple and is based on
the following motto:

“If the mountain will not come to Mohammed, then Mohammed
will go to the mountain.”

This is not a very new idea. In [77] Davis wrote:

“It has seemed true to me for some time that we cannot handle most
real-world problems with binary representations and an operator set
consisting only of binary crossover and binary mutation. One reason
for this is that nearly every real-world domain has associated domain
knowledge that is of use when one is considering a transformation
of a solution in the domain [...] I believe that genetic algorithms
are the appropriate algorithms to use in a great many real-world
applications. I also believe that one should incorporate real-world
knowledge in one’s algorithm by adding it to one’s decoder or by
expanding one’s operator set.”

Here, we call such modified genetic algorithms “evolution programs”.

It is quite hard to draw a line between genetic algorithms and evolution pro-
grams. What is required for an evolution program to be a genetic algorithm?
Maintaining population of potential solutions? Binary representation of poten-
tial solutions? Selection process based on fitness of individuals? Recombination
operators? The existence of a Schema Theorem? Building-block hypothesis?
All of the above? Is an evolution program for the traveling salesman problem
with integer vector representation and PMX operator (Chapter 10) a genetic
algorithm? Is an evolution program for the transportation problem with matrix
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representation and arithmetical crossover operator (Chapter 9) a genetic algo-
rithm? In this book we will not provide answers for the above question, instead
we present some interesting results of using evolution programming techniques
on variety of problems.

As mentioned earlier, several researchers recognized potential behind various
modifications. In [78] Davis wrote:

“When I talk to the user, I explain that my plan is to hybridize the
genetic algorithm technique and the current algorithm by employing
the following three principles:

e Use the Current Encoding. Use the current algorithm’s encod-
ing technique in the hybrid algorithm.

e Hybridize Where Possible. Incorporate the positive features of
the current algorithm in the hybrid algorithm.

e Adapt the Genetic Operators. Create crossover and mutation
operators for the new type of encoding by analogy with bit
string crossover and mutation operators. Incorporate domain-
based heuristics as operators as well.

[...] T use the term hybrid genetic algorithm for algorithms created
by applying these three principles.”

It seems that hybrid genetic algorithms and evolution programs share a
common idea: departure from classical, bit-string genetic algorithms towards
more complex systems, involving the appropriate data structures (Use the Cur-
rent Encoding) and suitable genetic operators (Adapt the Genetic Operators).
On the other hand, Davis assumed the existence of one or more current (tra-
ditional) algorithms available on the problem domain — on the basis of such
algorithms a construction of a hybrid genetic algorithm is discussed. In our ap-
proach of evolution programming, we do not make any assumption of this sort:
all evolution systems discussed later in the book were built from scratch.

What are the strengths and weaknesses of evolution programming? It seems
that the major strength of EP technique is its wide applicability. In this book,
we try to describe a variety of different problems and discuss a construction of an
evolution program for each of them. Very often, the results are outstanding: the
systems perform much better than commercially available software. Another
strong point connected with evolution programs is that they are parallel in
nature. As stated in [154]:

“In a world where serial algorithms are usually made parallel through
countless tricks and contortions, it is no small irony that genetic
algorithms (highly parallel algorithms) are made serial through
equally unnatural tricks and turns.”

Of course, this is also true for any (population based) evolution program. On
the other hand, we have to admit the poor theoretical basis of evolution pro-
grams. Experimenting with different data structures and modifying crossover
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and mutation requires a careful analysis, which would guarantee reasonable
performance. This has not been done yet.

In general, Al problem solving strategies are categorized into “strong” and
“weak” methods. A weak method makes few assumptions about the problem
domain; hence it usually enjoys wide applicability. On the other hand, it can
suffer from combinatorially explosive solution costs when scaling up to larger
problems [90]. This can be avoided by making strong assumptions about the
problem domain, and consequently exploiting these assumptions in the problem
solving method. But a disadvantage of such strong methods is their limited
applicability: very often they require significant redesign when applied even to
related problems.

Evolution programs fit somewhere between weak and strong methods. Some
evolution programs (as genetic algorithms) are quite weak without making any
assumption of a problem domain. Some other programs (e.g., GENOCOP or
GENETIC-2) are more problem specific with a varying degree of problem de-
pendence. For example, GENOCOP (Chapter 7), like all evolution strategies
(Chapter 8), was build to solve parameter optimization problems. The sys-
tem can handle any objective function with any set of linear constraints, The
GENETIC-2 (Chapter 9) work for transportation problems. Other systems (see
Chapters 10 and 11) are suitable for combinatorial optimization problems (like
scheduling problems, traveling salesman problems, graph problems). An inter-
esting application of an evolution program for inductive learning of decision
rules is discussed in Chapter 12.

It is little bit ironic: genetic algorithms are perceived as weak methods; how-
ever, in the presence of nontrivial constraints, they change rapidly into strong
methods. Whether we consider a penalty function, decoder, or a repair algo-
rithm, these must be tailored for a specific application. On the other hand, the
evolution programs (perceived as much stronger, problem-dependent methods)
suddenly seem much weaker (we discuss further this issue in Chapter 14). This
demonstrates a huge potential behind the evolution programming approach.

All these observations triggered my interest in investigating the properties
of different genetic operators defined on richer structures than bit strings —
further, this research would lead to the creation of a new programming method-
ology (in [277] such a proposed programming methodology was called EVA for
“EVolution progrAmming”).! Roughly speaking, a programmer in such an en-
vironment would select data structures with appropriate genetic operators for
a given problem as well as selecting an evaluation function and initializing the
population (the other parameters are tuned by another genetic process).

However, a lot of research should be done before we can propose the basic
constructs of such a programming environment. This book provides just the first
step towards this goal by investigating different structures and genetic operators
building evolution programs for many problems.

'We shall return to the idea of a new programming environment towards the end of the
book (Chapter 14).



1. GAs: What Are They?

Paradoxical as it seemed, the Master

always insisted that the true reformer

was one who was able to see that everything
is perfect as it is — and able to

leave it alone.

Anthony de Mello, One Minute Wisdom

There is a large class of interesting problems for which no reasonably fast algo-
rithms have been developed. Many of these problems are optimization problems
that arise frequently in applications. Given such a hard optimization problem it
is often possible to find an efficient algorithm whose solution is approximately
optimal. For some hard optimization problems we can use probabilistic algo-
rithms as well — these algorithms do not guarantee the optimum value, but by
randomly choosing sufficiently many “witnesses” the probability of error may
be made as small as we like.

There are a lot of important practical optimization problems for which such
algorithms of high quality have become available [73]. For instance we can apply
simulated annealing for wire routing and component placement problems in
VLSI design or for the traveling salesman problem. Moreover, many other large-
scale combinatorial optimization problems (many of which have been proved
NP-hard) can be solved approximately on present-day computers by this kind
of Monte Carlo technique.

In general, any abstract task to be accomplished can be thought of as solving
a problem, which, in turn, can be perceived as a search through a space of
potential solutions. Since we are after “the best” solution, we can view this
task as an optimization process. For small spaces, classical exhaustive methods
usually suffice; for larger spaces special artificial intelligence techniques must
be employed. Genetic Algorithms (GAs) are among such techniques; they are
stochastic algorithms whose search methods model some natural phenomena:
genetic inheritance and Darwinian strife for survival. As stated in [74]:

“... the metaphor underlying genetic algorithms is that of natural
evolution. In evolution, the problem each species faces is one of
searching for beneficial adaptations to a complicated and chang-
ing environment. The ‘knowledge’ that each species has gained is
embodied in the makeup of the chromosomes of its members.”
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The idea behind genetic algorithms is to do what nature does. Let us take rabbits
as an example: at any given time there is a population of rabbits. Some of them
are faster and smarter than other rabbits. These faster, smarter rabbits are less
likely to be eaten by foxes, and therefore more of them survive to do what rabbits
do best: make more rabbits. Of course, some of the slower, dumber rabbits will
survive just because they are lucky. This surviving population of rabbits starts
breeding. The breeding results in a good mixture of rabbit genetic material:
gsome slow rabbits breed with fast rabbits, some fast with fast, some smart
rabbits with dumb rabbits, and so on. And on the top of that, nature throws
in a ‘wild hare’ every once in a while by mutating some of the rabbit genetic
material. The resulting baby rabbits will {(on average) be faster and smarter than
these in the original population because more faster, smarter parents survived
the foxes. (It is a good thing that the foxes are undergoing similar process —
otherwise the rabbits might become too fast and smart for the foxes to catch
any of them).

A genetic algorithm follows a step-by-step procedure that closely matches
the story of the rabbits. Before we take a closer look at the structure of a genetic
algorithm, let us have a quick look at the history of genetics (from [380]):

“The fundamental principle of natural selection as the main evo-
lutionary principle has been formulated by C. Darwin long before
the discovery of genetic mechanisms. Ignorant of the basic heredity
principles, Darwin hypothesized fusion or blending inheritance, sup-
posing that parental qualities mix together like fluids in the offspring
organism. His selection theory arose serious objections, first stated
by F. Jenkins: crossing quickly levels off any hereditary distinctions,
and there is no selection in homogeneous populations (the so-called
‘Jenkins nightmare’).

It was not until 1865, when G. Mendel discovered the basic princi-
ples of transference of hereditary factors from parent to offspring,
which showed the discrete nature of these factors, that the ‘Jenk-
ins nightmare’ could be explained, since because of this discreteness
there is no ‘dissolution’ of hereditary distinctions.

Mendelian laws became known to the scientific community after
they had been independently rediscovered in 1900 by H. de Vries,
K. Correns and K. von Tschermak. Genetics was fully developed by
T. Morgan and his collaborators, who proved experimentally that
chromosomes are the main carriers of hereditary information and
that genes, which present hereditary factors, are lined up on chromo-
somes. Later on, accumulated experimental facts showed Mendelian
laws to be valid for all sexually reproducing organisms.

However, Mendel’s laws, even after they had been rediscovered, and
Darwin’s theory of natural selection remained independent, unlinked
concepts. And moreover, they were opposed to each other. Not until
the 1920s (see, for instance the classical work by Cetverikov [61])
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was it proved that Mendel’s genetics and Darwin’s theory of natural
selection are in no way conflicting and that their happy marriage
yields modern evolutionary theory.”

Genetic algorithms use a vocabulary borrowed from natural genetics. We
would talk about individuals (or genotypes, structures) in a population; quite
often these individuals are called also strings or chromosomes. This might be
a little bit misleading: each cell of every organism of a given species carries
a certain number of chromosomes (man, for example, has 46 of them); how-
ever, in this book we talk about one-chromosome individuals only, i.e., haploid
chromosomes (for additional information on diploidy — pairs of chromosomes
— dominance, and other related issues, in connection with genetic algorithms,
the reader is referred to [154]; see also a very recent work by Greene [165] and
Ng with Wong [298]). Chromosomes are made of units — genes (also features,
characters, or decoders) — arranged in linear succession; every gene controls the
inheritance of one or several characters. Genes of certain characters are located
at certain places of the chromosome, which are called loci (string positions).
Any character of individuals (such as hair color) can manifest itself differently;
the gene is said to be in several states, called alleles (feature values).

Each genotype (in this book a single chromosome) would represent a po-
tential solution to a problem (the meaning of a particular chromosome, i.e.,
its phenotype, is defined externally by the user); an evolution process run on
a population of chromosomes corresponds to a search through a space of po-
tential solutions. Such a search requires balancing two (apparently conflicting)
objectives: exploiting the best solutions and exploring the search space [46].
Hillclimbing is an example of a strategy which exploits the best solution for
possible improvement; on the other hand, it neglects exploration of the search
space. Random search is a typical example of a strategy which explores the
search space ignoring the exploitations of the promising regions of the space.
Genetic algorithms are a class of general purpose (domain independent) search
methods which strike a remarkable balance between exploration and exploita-
tion of the search space.

GAs have been quite successfully applied to optimization problems like
wire routing, scheduling, adaptive control, game playing, cognitive modeling,
transportation problems, traveling salesman problems, optimal control prob-
lems, database query optimization, etc. (see [15, 34, 45, 84, 121, 154, 167, 170,
171, 273, 344, 129, 103, 391, 392]). However, De Jong [84] warned against per-
ceiving GAs as optimization tools:

“...because of this historical focus and emphasis on function opti-
mization applications, it is easy to fall into the trap of perceiving
GAs themselves as optimization algorithms and then being surprised
and/or disappointed when they fail to find an ‘obvious’ optimum in
a particular search space. My suggestion for avoiding this perceptual
trap is to think of GAs as a (highly idealized) simulation of a natural
process and as such they embody the goals and purposes (if any) of
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that natural process. | am not sure if anyone is up to the task of
defining the goals and purpose of evolutionary systems; however, I
think it’s fair to say that such systems are not generally perceived
as functions optimizers”.

On the other hand, optimization is a major field of GA’s applicability. In [348§]
(1981) Schwefel said:

“There is scarcely a modern journal, whether of engineering, eco-
nomics, management, mathematics, physics, or the social sciences,
in which the concept ‘optimization’ is missing from the subject in-
dex. If one abstracts from all specialist points of view, the recurring
problem is to select a better or best (according to Leibniz, optimal)
alternative from among a number of possible states of affairs.”

During the last decade, the significance of optimization has grown even further
— many important large-scale combinatorial optimization problems and highly
constrained engineering problems can only be solved approximately on present
day computers.

Genetic algorithms aim at such complex problems. They belong to the class
of probabilistic algorithms, yet they are very different from random algorithms
as they combine elements of directed and stochastic search. Because of this, GA
are also more robust than existing directed search methods. Another important
property of such genetic based search methods is that they maintain a popu-
lation of potential solutions — all other methods process a single point of the
search space.

Hillclimbing methods use the iterative improvement technique; the tech-
nique is applied to a single point (the current point) in the search space. During
a single iteration, a new point is selected from the neighborhood of the current
point (this is why this technique is known also as neighborhood search or local
search [233]). If the new point provides a better! value of the objective func-
tion, the new point becomes the current point. Otherwise, some other neighbor
is selected and tested against the current point. The method terminates if no
further improvement is possible.

It is clear that the hillclimbing methods provide local optimum values only
and these values depend on thé selection of the starting point. Moreover, there
is no information available on the relative error (with respect to the global
optimum) of the solution found.

To increase the chances to succeed, hillclimbing methods usually are exe-
cuted for a (large) number of different starting points (these points need not be
selected randomly — a selection of a starting point for a single execution may
depend on the result of the previous runs).

The simulated annealing technique [1] eliminates most disadvantages of the
hillelimbing methods: solutions do not depend on the starting point any longer
and are (usually) close to the optimum point. This is achieved by introducing

smaller, for minimization, and larger, for maximization problems.
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a probability p of acceptance (i.e., replacement of the current point by a new
point): p = 1, if the new point provides a better value of the objective function;
however, p > 0, otherwise. In the latter case, the probability of acceptance p
is a function of the values of objective function for the current point and the
new point, and an additional control parameter, “temperature”, T. In general,
the lower temperature T is, the smaller the chances for the acceptance of a new
point are. During execution of the algorithm, the temperature of the system,
T, is lowered in steps. The algorithm terminates for some small value of T, for
which virtually no changes are accepted anymore.

As mentioned earlier, a GA performs a multi-directional search by maintain-
ing a population of potential solutions and encourages information formation
and exchange between these directions. The population undergoes a simulated
evolution: at each generation the relatively “good” solutions reproduce, while
the relatively “bad” solutions die. To distinguish between different solutions we
use an objective (evaluation) function which plays the role of an environment.

An example of hillclimbing, simulated annealing, and genetic algorithm
techniques is given later in this chapter (section 1.4).

The structure of a simple genetic algorithm is the same as the structure
of any evolution program (see Figure 0.1, Introduction). During iteration ¢, a
genetic algorithm maintains a population of potential solutions (chromosomes,
vectors), P(t) = {z},...,z.}. Each solution z! is evaluated to give some mea-
sure of its “fitness”. Then, a new population (iteration ¢ + 1) is formed by
selecting the more fit individuals. Some members of this new population un-
dergo alterations by means of crossover and mutation, to form new solutions.
Crossover combines the features of two parent chromosomes to form two simi-
lar offspring by swapping corresponding segments of the parents. For example,
if the parents are represented by five-dimensional vectors (ay, b1, ¢1,d;, 1) and
(ag, ba, 2, da, €2), then crossing the chromosomes after the second gene would
produce the offspring (a1, b1, 2, ds, e2) and (as, by, ¢, dy, e1). The intuition be-
hind the applicability of the crossover operator is information exchange between
different potential solutions.

Mutation arbitrarily alters one or more genes of a selected chromosome, by
a random change with a probability equal to the mutation rate. The intuition
behind the mutation operator is the introduction of some extra variability into
the population.

A genetic algorithm (as any evolution program) for a particular problem
must have the following five components:

e a genetic representation for potential solutions to the problem,
e a way to create an initial population of potential solutions,

e an evaluation function that plays the role of the environment, rating so- .
lutions in terms of their “fitness”,

e genetic operators that alter the composition of children,
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o values for various parameters that the genetic algorithm uses (population
size, probabilities of applying genetic operators, etc.).

We discuss the main features of genetic algorithms by presenting three ex-
amples. In the first one we apply a genetic algorithm for optimization of a simple
function of one real variable. The second example illustrates the use of a ge-
netic algorithm to learn a strategy for a simple game (the prisoner’s dilemma).
The third example discusses one possible application of a genetic algorithm to
approach a combinatorial NP-hard problem, the traveling salesman problem.

1.1 Optimization of a simple function

In this section we discuss the basic features of a genetic algorithm for optimiza-
tion of a simple function of one variable. The function is defined as

f(z) =z -sin(107 - ) + 1.0

and is drawn in Figure 1.1. The problem is to find z from the range [—1..2]
which maximizes the function f, i.e., to find zg such that

fzo) > f(z), for all z € [-1..2].
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Fig. 1.1. Graph of the function f(z) = z - sin(107 - z) + 1.0

It is relatively easy to analyse the function f. The zeros of the first derivative
f’ should be determined:
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f'(z) =sin(107 - ) + 107z - cos(10m - z) = 0;
the formula is equivalent to
tan(107 - ) = —107z.
It is clear that the above equation has an infinite number of solutions,

;= i + €, fori=1,2,...

20
Tog = 0
=% —¢, fori=—-1,-2,..,,

where terms ;s represent decreasing sequences of real numbers (for i = 1,2, ...,
and i = —1,—2,...) approaching zero.

Note also that the function f reaches its local maxima for z; if 7 is an odd
integer, and its local minima for z; if { is an even integer (see Figure 1.1).

Since the domain of the problem is z € [—1..2], the function reaches its
maximum for for x5 = g—g + €19 = 1.85+ €19, where f(z)9) is slightly larger than
f(1.85) = 1.85 - sin(187 + ) + 1.0 = 2.85.

Assume that we wish to construct a genetic algorithm to solve the above
problem, i.e., to maximize the function f. Let us discuss the major components
of such a genetic algorithm in turn.

1.1.1 Representation

We use a binary vector as a chromosome to represent real values of the variable
2. The length of the vector depends on the required precision, which, in this
example, is six places after the decimal point.

The domain of the variable z has length 3; the precision requirement implies
that the range [—1..2] should be divided into at least 3-1000000 equal size ranges.
This means that 22 bits are required as a binary vector (chromosome):

2097152 = 22! < 3000000 < 2% = 4194304.

The mapping from a binary string (ba1bgg. .. bo) into a real number z from
the range [—1..2] is straightforward and is completed in two steps:

e convert the binary string (ba1be . . . bp) from the base 2 to base 10:
({barbao . . . bo>)2 = (Z?io b; - 2i)lo =1,

e find a corresponding real number z:
T=—-10+2"" 5,

where —1.0 is the left boundary of the domain and 3 is the length of the
domain.

For example, a chromosome
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(1000101110110101000111)
represents the number 0.637197, since
z' = (1000101110110101000111), = 2288967

and

z = —1.0 + 2288967 - ——-— = 0.637197.

4194303

Of course, the chromosomes
(0000000000000000000000) and (1111111111111111111111)

represent boundaries of the domain, —1.0 and 2.0, respectively.

1.1.2 Initial population

The initialization process is very simple: we create a population of chromo-
somes, where each chromosome is a binary vector of 22 bits. All 22 bits for each
chromosome are initialized randomly.

1.1.3 Evaluation function

Evaluation function eval for binary vectors v is equivalent to the function f:

eval(v) = f(z),

where the chromosome v represents the real value z.

As noted earlier, the evaluation function plays the role of the environment,
rating potential solutions in terms of their fitness. For example, three chromo-
somes:

v, = (1000101110110101000111),
v, = (0000001110000000010000),
v, = (1110000000111111000101),

correspond to values z; = 0.637197, zo = —0.958973, and z3 = 1.627888,
respectively. Consequently, the evaluation function would rate them as follows:

eval(v,) = f(z,) = 1.586345,
eval(v,) = f(zg) = 0.078878,
eval(v,) = f(z3) = 2.250650.

Clearly, the chromosome v, is the best of the three chromosomes, since its
evaluation returns the highest value.
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1.1.4 Genetic operators

During the alteration phase of the genetic algorithm we would use two classical
genetic operators: mutation and crossover.

As mentioned earlier, mutation alters one or more genes (positions in a
chromosome) with a probability equal to the mutation rate. Assume that the
fifth gene from the v, chromosome was selected for a mutation. Since the fifth
gene in this chromosome is 0, it would be flipped into 1. So the chromosome v,
after this mutation would be

v," = (1110100000111111000101).

This chromosome represents the value z = 1.721638 and f(z}) = —0.082257.
This means that this particular mutation resulted in a significant decrease of the
value of the chromosome v;. On the other hand, if the 10th gene was selected
for mutation in the chromosome v, then

v, = (1110000001111111000101).

The corresponding value z7§ = 1.630818 and f(z}) = 2.343555, an improvement
over the original value of f(x3) = 2.250650.

Let us illustrate the crossover operator on chromosomes v, and v,. Assume
that the crossover point was (randomly) selected after the 5th gene:

v, = (00000/01110000000010000),
v, = (11100{00000111111000101).

The two resulting offspring are

v,’ = (00000|00000111111000101),
v, = (11100/01110000000010000).

These offspring evaluate to

Fv,) = F(~0.998113) = 0.940865,
flvy) = f(1.666028) = 2.459245.

Note that the second offspring has a better evaluation than both of its parents.

1.1.5 Parameters

For this particular problem we have used the following parameters: population
size pop.size = 50, probability of crossover p, = 0.25, probability of mutation
Pm = 0.01. The following section presents some experimental results for such a
genetic system.
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1.1.6 Experimental results

In Table 1.1 we provide the generation number for which we noted an improve-
ment in the evaluation function, together with the value of the function. The
best chromosome after 150 generations was '

Vmaee = (1111001101000100000101),

which corresponds to a value z,,,, = 1.850773.
As expected, Tpmgz = 1.85 + €, and f(Zmg,) is slightly larger than 2.85.

Generation | Evaluation
number function
1 1.441942

6 2.250003

8 2.250283

9 2.250284

10 2.250363

12 2.328077

39 2.344251

40 2.345087

51 2.738930

99 2.849246

137 2.850217

145 2.850227

Table 1.1. Results of 150 generations

1.2 The prisoner’s dilemma

.

In this section, we explain how a genetic algorithm can be used to learn a
sirategy for a simple game, known as the prisoner’s dilemma. We present the
results obtained by Axelrod [14].

Two prisoners are held in separate cells, unable to communicate with each
other. Each prisoner is asked, independently, to defect and betray the other
prisoner. If only one prisoner defects, he is rewarded and the other is punished.
If both defect, both remain imprisoned and are tortured. If neither defects, both
receive moderate rewards. Thus, the selfish choice of defection always yields a
higher payoff than cooperation — no matter what the other prisoner does —
but if both defect, both do worse than if both had cooperated. The prisoner’s
dilemma, is to decide whether to defect or cooperate with the other prisoner.
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The prisoner’s dilemma can be played as a game between two players, where
at each turn, each player either defects or cooperates with the other prisoner.
The players then score according to the payoffs listed in the Table 1.2.

Comment

Punishment for mutual defection
Temptation to defect and sucker’s payoff
Sucker’s payoff, and temptation to defect
Reward for mutual cooperation

Player 1 Player 2
Defect Defect
Defect Cooperate
Cooperate | Defect
Cooperate | Cooperate

w o ot =Y
O N ]

Table 1.2. Payoff table for prisoner’s dilemma game: P, is the payoff for Player i

We will now consider how a genetic algorithm might be used to learn a
strategy for the prisoner’s dilemma. A GA approach is to maintain a popula-
tion of “players”, each of which has a particular strategy. Initially, each player’s
strategy is chosen at random. Thereafter, at each step, players play games and
their scores are noted. Some of the players are then selected for the next gen-
eration, and some of those are chosen to mate. When two players mate, the
new player created has a strategy constructed from the strategies of its par-
ents (crossover). A mutation, as usual, introduces some variability into players’
strategies by random changes on representations of these strategies.

1.2.1 Representing a strategy

First of all, we need some way to represent a strategy (i.e., a possible sotution).
For simplicity, we will consider strategies that are deterministic and use the
outcomes of the three previous moves to make a choice in the current move.
Since there are four possible outcomes for each move, there are 4 x 4 x 4 = 64
different histories of the three previous moves.

A strategy of this type can be specified by indicating what move is to be
made for each of these possible histories. Thus, a strategy can be represented by
a string of 64 bits (or Ds and Cs), indicating what move is to be made for each
of the 64 possible histories. To get the strategy started at the beginning of the
game, we also need to specify its initial premises about the three hypothetical
moves which preceded the start of the game. This requires six more genes,
making a total of seventy loci on the chromosome.

This string of seventy bits specifies what the player would do in every possi-
ble circumstance and thus completely defines a particular strategy. The string of
70 genes also serves as the player’s chromosome for use in the evolution process.

1.2.2 Outline of the genetic algorithm

Axelrod’s genetic algorithm to learn a strategy for the prisoner’s dilemma works
in four stages, as follows:
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Choose an initial population. Each player is assigned a random string of
seventy bits, representing a strategy as discussed above.

Test each player to determine its effectiveness. Each player uses the strat-
egy defined by its chromosome to play the game with other players. The
player’s score is its average over all the games it plays.

Select players to breed. A player with an average score is given one mating;
a player scoring one standard deviation above the average is given two
matings; and a player scoring one standard deviation below the average
is given no matings.

The successful players are randomly paired off to produce two offspring per
mating. The strategy of each offspring is determined from the strategies
of its parents. This is done by using two genetics operators: crossover and
mutation.

After these four stages we get a new population. The new population will

display patterns of behavior that are more like those of the successful individuals
of the previous generation, and less like those of the unsuccessful ones. With each
new generation, the individuals with relatively high scores will be more likely
to pass on parts of their strategies, while the relatively unsuccessful individuals
will be less likely to have any parts of their strategies passed on.

1.2.3 Experimental results

Running this program, Axelrod obtained quite remarkable results. From a
strictly random start, the genetic algorithm evolved populations whose median
member was just as successful as the best known heuristic algorithm. Some
behavioral patterns evolved in the vast majority of the individuals; these are:

1.

Don'’t rock the boat: continue to cooperate after three mutual cooperations

(ie., C after (CC)(CC)(CC)?).

Be provokable: defect when the other player defects out of the blue
(i.e., D after receiving (CC)(CC)(CD)):

Accept an apology: continue to cooperate after cooperation has been re-
stored
(i.e., C after (CD)(DC)(CC)).

Forget: cooperate when mutual cooperation has been restored after an
exploitation (i.e., C after (DC)(CC)(CC)).

Accept a rut: defect after three mutual defections (i.e., D after (DD)(DD)
(DD)).

2The last three moves are described by three pairs (aib;)(azbhs)(asbhs), where the a’s are
this player’s moves (C for cooperate, D for defect) and the b’s are the other player’s moves.
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For more details, see [14]. The prisoner’s dilemma problem can be generalized
to more than two players; for details and interesting experimental results see
[413]. 3

1.3 Traveling salesman problem

In this section, we explain how a genetic algorithm can be used to approach
the Traveling Salesman Problem (TSP). Note that we shall discuss only one
possible approach. In Chapter 10 we discuss other approaches to the TSP as
well.

Simply stated, the traveling salesman must visit every city in his territory
exactly once and then return to the starting point; given the cost of travel
between all cities, how should he plan his itinerary for minimum total cost of
the entire tour?

The TSP is a problem in combinatorial optimization and arises in numerous
applications. There are several branch-and-bound algorithms, approximate al-
gorithms, and heuristic search algorithms which approach this problem. During
the last few years there have been several attempts to approximate the TSP by
genetic algorithms [154, pages 166-179]; here we present one of them.

First, we should address an important question connected with the chro-
mosome representation: should we leave a chromosome to be an integer vector,
or rather we should transform it into a binary string? In the previous two ex-
amples (optimization of a function and the prisoner’s dilemma) we represented
a chromosome (in a more or less natural way) as a binary vector. This allowed
us to use binary mutation and crossover; applying these operators we got legal
offspring, i.e., offspring within the search space. This is not the case for the trav-
eling salesman problem. In a binary representation of a n cities TSP problem,
each city should be coded as a string of [log, n] bits; a chromosome is a string
of n - [log,n] bits. A mutation can result in a sequence of cities, which is not a
tour: we can get the same city twice in a sequence. Moreover, for a TSP with
20 cities (where we need 5 bits to represent a city), some 5-bit sequences (for
example, 10101) do not correspond to any city. Similar problems are present
when applying crossover operator. Clearly, if we use mutation and crossover
operators as defined earlier, we would need some sort of a “repair algorithm”;
such an algorithm would “repair” a chromosome, moving it back into the search
space.

It seems that the integer vector representation is better: instead of using
repair algorithms, we can incorporate the knowledge of the problem into op-
erators: in that way they would “intelligently” avoid building an illegal indi-
vidual. In this particular approach we accept integer representation: a vector
vV = (i1i3...1,) represents a tour: from i to is, etc., from 4, 1 to i, and back
to i; (v is a permutation of {12 ... n}).

3See Chapter 13 and [120] for a discussion on evolutionary programming technique for this
problem.
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For the initialization process we can either use some heuristics (for example,
we can accept a few outputs from a greedy algorithm for the TSP, starting from
different cities), or we can initialize the population by a random sample of
permutations of (12 ...7n).

The evaluation of a chromosome is straightforward: given the cost of travel
between all cities, we can easily calculate the total cost of the entire tour.

In the TSP we search for the best ordering of cities in a tour. It is relatively
easy to come up with some unary operators (unary type operators) which would
search for better string orderings. However, using only unary operators, there is
a little hope of finding even good orderings (not to mention the best one) [160].
Moreover, the strength of genetic algorithms arises from the structured infor-
mation exchange of crossover combinations of highly fit individuals. So what
we need is a crossover-like operator that would exploit important similarities
between chromosomes. For that purpose we use a variant of a OX operator [71],
which, given two parents, builds offspring by choosing a subsequence of a tour
from one parent and preserving the relative order of cities from the other parent.
For example, if the parents are

(1234567891011 12) and
(731114125210968)

and the chosen part is
(4567),
the resulting offspring is
(111124567210983).

As required, the offspring bears a structural relationship to both parents. The
roles of the parents can then be reversed in constructing a second offspring.

A genetic algorithm based on the above operator outperforms random
search, but leaves much room for improvements. Typical (average over 20 ran-
dom runs) results from the algorithm, as applied to 100 randomly generated
cities, gave (after 20000 generations) a value of the whole tour 9.4% above
optimum.

For full discussion on the TSP, the representation issues and genetic oper-
ators used, the reader is referred to Chapter 10.

1.4 Hillclimbing, simulated annealing, and genetic
algorithms

In this section we discuss three algorithms, i.e., hillclimbing, simulated anneal-
ing, and the genetic algorithm, applied to a simple optimization problem. This
example underlines the uniqueness of the GA approach.

The search space is a set of binary strings v of the length 30. The objective
function f to be maximized is given as
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f(v) = |11 - one(v) — 150],

where the function one(v) returns the number of 1s in the string v.

For example, the following three strings

v; = (110110101110101111111011011011),
vy = (111000100100110111001010100011),
v3 = (000010000011001000000010001000),

il

would evaluate to

f(v1) = [11-22 = 150| = 92,
Flvy) = [11-15 — 150] = 15,
Fvs) = |11 6 — 150 = 84,

(one(v)) = 22, one(ve) = 15, and one(vs) = 6).

The function f is linear and does not provide any challenge as an optimiza-
tion task. We use it only to illustrate the ideas behind these three algorithms.
However, the interesting characteristic of the function f is that it has one global
maximum for

vy = (111111111111111111111111111111),

f(vg) =|11-30 — 150} = 180, and one local maximum for
v; = (000000000000000000000000000000),

flwy) =110 — 150| = 150.

There are a few versions of hillclimbing algorithms. They differ in the way
a new string is selected for comparison with the current string. One version of
a simple (iterated) hillclimbing algorithm (M AX iterations) is given in Figure
1.2 (steepest ascent hillclimbing). Initially, all 30 neighbors are considered, and
the one v, which returns the largest value f(v,) is selected to compete with the
current string v.. If f(v.) < f(v,), then the new string becomes the current
string. Otherwise, no local improvement is possible: the algorithm has reached
(local or global) optimum (local = TRUE). In a such case, the next iteration
(t « t + 1) of the algorithm is executed with a new current string selected at
random.

It is interesting to note that the success or failure of the single iteration
of the above hillclimber algorithm (i.e., return of the global or local optimum)
is determined by the starting string (randomly selected). It is clear that if the
starting string has thirteen 1s or less, the algorithm will always terminate in the
local optimum (failure). The reason is that a string with thirteen 1s returns a
value 7 of the objective function, and any single-step improvement towards the
global optimum, i e., increase the number of 1s to fourteen, decreases the value
of the objective function to 4. On the other hand, any decrease of the number
of 1s would increase the value of the function: a string with twelve 1s yields a
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procedure iterated hillclimber
begin
t—0
repeat
local — FALSE
select a current string v, at random
evaluate v,
repeat
select 30 new strings in the neighborhood of v,
by flipping single bits of v,
select the string v, from the set of new strings
with the largest value of objective function f
if f(ve) < f(wn)
then v, — v,
else local — TRUE
until local
t—1t+1
until t = MAX
end

Fig. 1.2. A simple (iterated) hillclimber

value of 18, a string with eleven 1s yields a value of 29, etc. This would push
the search in the “wrong” direction, towards the local maximum.

For problems with many local optima, the chances of hitting the global
optimum (in a single iteration) are slim.

The structure of the simulated annealing procedure is given in Figure 1.3.

The function random|0, 1) returns a random number from the range [0, 1).
The (termination-condition) checks whether ‘thermal equilibrium’ is reached,
i.e., whether the probability distribution of the selected new strings approaches
the Boltzmann distribution [1}. However, in some implementations [4], this re-
peat loop is executed just k times (k is an additional parameter of the method).

The temperature T is lowered in steps (g(T,t) < T for all ). The algorithm
terminates for some small value of T: the (stop-criterion) checks whether the
system is ‘frozen’, i.e., virtually no changes are accepted anymore.

As mentioned earlier, the simulated annealing algorithm can escape local
optima. Let us consider a string

v4 = (111000000100110111001010100000),

with twelve 1s, which evaluates to f(vy) = |11-12 — 150| = 18. For v, as the
starting string, the hillclimbing algorithm (as discussed earlier) would approach
the local maximum

v; = (000000000000000000000000000000),
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procedure simulated annealing
begin
t—20
initialize temperature T'
select a current string v, at random
evaluate v,
repeat
repeat
select a new string v,
in the neighborhood of v,
by flipping a single bit of v,
if f(ve) < f(vn)
then v, — v,
else if random|0, 1) < exp{(f(v,) — f(v.))/T}
then v, — v,
until (termination-condition)
T « g(T,t)
t—t+1
until (stop-criterion)
end

Fig.1.3. Simulated annealing

since any string with thirteen 1s (i.e., a step ‘towards’ the global optimum) eval-
uates to 7 (less than 18). On the other hand, the simulated annealing algorithm
would accept a string with thirteen 1s as a new current string with probability

p = exp{(f(va) — f(vc))/T} = exp{(7 - 18)/T},
which, for some temperature, say, T' = 20, gives

p=e % = 0.57695,
i.e., the chances for acceptance are better than 50%.

Genetic algorithms, as discussed in section 1.1, maintain a population of
strings. Two relatively poor strings

vs = (111110000000110111001110100000) and
vg = (000000000001101110010101111111)

each of which evaluate to 16, can produce much better offspring (if the crossover
point falls anywhere between the 5th and the 12th position):

v7 = (111110000001101110010101111111).
The new offspring v; evaluates to

Flvr) = |11-19 — 150| = 59.
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For a detailed discussion on these and other algorithms (various variants
of hillclimbers, genetic search, and simulated annealing) tested on several func-
tions with different characteristics, the reader is referred to [4]. Also, it is pos-
sible to construct hybrids which combine several techniques (including genetic
algorithms) — see, for example, dynamic hill climbing technique [92]. We con-
clude this section by citing a funny message which was presented recently on
the Internet (comp.ai.neural-nets [337]): it provides a nice comparison between
hill-climbing, simulated annealing, and genetic algorithm techniques:

“Notice that in all [hill-climbing] methods discussed so far, the kan-
garoo can hope at best to find the top of a mountain close to where
he starts. There’s no guarantee that this mountain will be Everest,
or even a very high mountain. Various methods are used to try to
find the actual global optimum.

In simulated annealing, the kangaroo is drunk and hops around ran-
domly for a long time. However, he gradually sobers up and tends
to hop up hill.

In genetic algorithms, there are lots of kangaroos that are parachuted
into the Himalayas (if the pilot didn’t get lost) at random places.
These kangaroos do not know that they are supposed to be looking
for the top of Mt. Everest. However, every few years, you shoot the
kangaroos at low altitudes and hope the ones that are left will be
fruitful and multiply”.

1.5 Conclusions

The three examples of genetic algorithms for function optimization, the pris-
oner’s dilemma, and the traveling salesman problem, show a wide applicability
of genetic algorithms. However, at the same time we should observe first signs
of potential difficulties. The representation issues for the traveling salesman
problem were not obvious. The new operator used (OX crossover) was far from
trivial. What kind of further difficulties may we have for some other (hard)
problems? In the first and third examples (optimization of a function and the
traveling salesman problem) the evaluation function was clearly defined; in the
second example (the prisoner’s dilemma) a simple simulation process would give
us an evaluation of a chromosome (we test each player to determine its effec-
tiveness: each player uses the strategy defined by its chromosome to play the
game with other players and the player’s score is its average over all the games
it plays). How should we proceed in a case where the evaluation function is not
clearly defined? For example, the Boolean Satisfiability Problem (SAT) seems
to have a natural string representation (the i-th bit represents the truth value
of the i-th Boolean variable), however, the process of choosing an evaluation
function is far from obvious [90].
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The first example of optimization of an unconstrained function allows us
to use a convenient representation, where any binary string would correspond
to a value from the domain of the problem (i.e., [~1..2]). This means that any
mutation and any crossover would produce a legal offspring. The same was true
in the second example: any combination of bits represents a legal strategy. The
third problem has a single constraint: each city should appear precisely once in
a legal tour. This caused some problems: we used vectors of integers (instead of
binary representation) and we modified the crossover operator. But how should
we approach a constrained problem in general? What possibilities do we have?

The answers are not easy; we explore these issues later in the book.
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To every thing there is a season,
and a time to every purpose under the heaven:

A time to be born and a time to die;
a time to plant, and a time to pluck up
that which is planted;

A time to kill, and a time to heal,
a time to break down, and a time to build up.

The Bible, Ecclesiastes, 3

In this chapter we discuss the actions of a genetic algorithm for a simple param-
eter optimization problem. We start with a few general comments; a detailed
example follows.

Let us note first that, without any loss of generality, we can assume maxi-
mization problems only. If the optimization problem is to minimize a function
f, this is equivalent to maximizing a function g, where g = —f, i.e,,

min f(z) = max g(z) = max{—f(z)}.

Moreover, we may assume that the objective function f takes positive values
on its domain; otherwise we can add some positive constant C, i.e.,

max g(z) = max{g(z) + C}.

Now suppose we wish to maximize a function of k variables, f(zy,...,z¢) :
R* — R. Suppose further that each variable z; can take values from a domain
D; = [a;,b]) € R and f(zy,...,7¢) > 0 for all z; € D;. We wish to optimize
the function f with some required precision: suppose six decimal places for the
variables’ values is desirable.

It is clear that to achieve such precision each domain D; should be cut into
(bi — a;) - 10° equal size ranges. Let us denote by m; the smallest integer such
that (b; — a;) - 108 < 2™ — 1. Then, a representation having each variable z;
coded as a binary string of length m; clearly satisfies the precision requirement.
Additionally, the following formula interprets each such string:

z; = 0; + decimal(1001...001,) - Bizai

2mi-1?
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where decimal(string,) represents the decimal value of that binary string.

Now, each chromosome (as a potential solution) is represented by a binary
string of length m = }:f:l m;; the first m; bits map into a value from the range
[a1,b1], the next group of m, bits map into a value from the range {ay, b2], and
so on; the last group of my bits map into a value from the range [ay, be).

To initialize a population, we can simply set some pop_size number of chro-
mosomes randomly in a bitwise fashion. However, if we do have some knowledge
about the distribution of potential optima, we may use such information in ar-
ranging the set of initial (potential) solutions.

The rest of the algorithm is straightforward: in each generation we evaluate
each chromosome (using the function f on the decoded sequences of variables),
select new population with respect to the probability distribution based on fit-
ness values, and alter the chromosomes in the new population by mutation and
crossover operators. After some number of generations, when no further im-
provement is observed, the best chromosome represents an (possibly the global)
optimal solution. Often we stop the algorithm after a fixed number of iterations
depending on speed and resource criteria.

For the selection process (selection of a new population with respect to the
probability distribution based on fitness values), a roulette wheel with slots
sized according to fitness is used. We construct such a roulette wheel as follows
(we assume here that the fitness values are positive, otherwise, we can use some
scaling mechanism — this is discussed in Chapter 4):

o Calculate the fitness value eval({v;) for each chromosome v; (i = 1,...,
pop_size).

e Find the total fitness of the population
F = Y0252 oyl (v;).

e Calculate the probability of a selection p; for each chromosome v; (i =
1,...,pop_size):

pi = eval(v;)/F.

e Calculate a cumulative probability g; for each chromosome v; (i =
- 1,...,pop_size):

%= E;=1pj-

The selection process is based on spinning the roulette wheel pop_size times;
each time we select a single chromosome for a new population in the following
way:

o Generate a random (float) number r from the range [0..1].

o If r < g, then select the first chromosome (v;); otherwise select the i-th
chromosome v; (2 < i < pop_size) such that ¢,_; <7 < q;.
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Obviously, some chromosomes would be selected more than once. This is in
accordance with the Schema Theorem (see next chapter): the best chromosomes
get more copies, the average stay even, and the worst die off.

Now we are ready to apply the recombination operator, crossover, to the
individuals in the new population. As mentioned earlier, one of the parameters
of a genetic system is probability of crossover p.. This probability gives us the
expected number p, - pop.size of chromosomes which undergo the crossover
operation. We proceed in the following way:

For each chromosome in the (new) population:

o Generate a random (float) number 7 from the range [0..1];
e If r < p,, select given chromosome for crossover.

Now we mate selected chromosomes randomly: for each pair of coupled
chromosomes we generate a random integer number pos from the range [1..m—1]
(m is the total length — number of bits — in a chromosome). The number pos
indicates the position of the crossing point. Two chromosomes

(bibz .. . bposbpost1 - - - by} and
(6162 -+ - CposCpos+1 - - - cm)

are replaced by a pair of their offspring:

(b1by . .. bposCpost1 - - - Cm) and
(0102 cee Cposbpos-H cee b‘m)~

The next operator, mutation, is performed on a bit-by-bit basis. Another
parameter of the genetic system, probability of mutation p,, gives us the ex-
pected number of mutated bits p,, - m - pop_size. Every bit (in all chromosomes
in the whole population) has an equal chance to undergo mutation, i.e., change
from 0 to 1 or vice versa. So we proceed in the following way.

For each chromosome in the current (i.e., after crossover) population and
for each bit within the chromosome:

o Generate a random (float) number r from the range [0..1];
e If r < p,,, mutate the bit.

Following selection, crossover, and mutation, the new population is ready for
its next evaluation. This evaluation is used to build the probability distribution
(for the next selection process), i.e., for a construction of a roulette wheel with
slots sized according to current fitness values. The rest of the evolution is just
cyclic repetition of the above steps (see Figure 0.1 in the Introduction).

The whole process is illustrated by an example. We run a simulation of
a genetic algorithm for function optimization. We assume that the population
size pop_size = 20, and the probabilities of genetic operators are p, = 0.25 and
P = 0.01.

Let us assume also that we maximize the following function:
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flz1,29) = 21.5 4 x, - sin(dwz;) + T2 - sin(20mx,),

where —3.0 < z; < 12.1 and 4.1 < zo < 5.8. The graph of the function f is
given in Figure 2.1.

2

Fig. 2.1. Graph of the function f(x),z2) = 21.5 + x, - sin(4nx,) + 2 - sin(20mzs)

Let assume further that the required precision is four decimal places for each
variable. The domain of variable x; has length 15.1; the precision requirement
implies that the range [—3.0,12.1] should be divided into at least 15.1 - 10000
equal size ranges. This means that 18 bits are required as the first part of the
chromosome:

217 < 151000 < 218,

The domain of variable z, has length 1.7; the precision requirement im-
plies that the range [4.1,5.8] should be divided into at least 1.7 - 10000 equal
size ranges. This means that 15 bits are required as the second part of the
chromosome:

2 < 17000 < 2'5.
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The total length of a chromosome (solution vector) is then m = 18415 = 33
bits; the first 18 bits code x; and remaining 15 bits (19-33) code zs.
Let us consider an example chromosome:

(010001001011010000111110010100010).
The first 18 bits,
010001001011010000,

represent ; = —3.0 + decimal(010001001011010000,) - 255=20 = —3,0 +
70352 « 5iids = —3.0 + 4.052426 = 1.052426.
The next 15 bits,

111110010100010,

represent zp = 4.1 + decimal(111110010100010,) - 38741 = 4.1 4 31906 - 745 =
4.1 4+ 1.655330 = 5.755330.
So the chromosome

(010001001011010000111110010100010)

corresponds to {1, Z,) = (1.052426,5.755330). The fitness value for this chro-
mosome is

£(1.052426, 5.755330) = 20.252640.

To optimize the function f using a genetic algorithm, we create a population
of pop_size = 20 chromosomes. All 33 bits in all chromosomes are initialized
randomly.

Assume that after the initialization process we get the following population:

v, = (100110100000001111111010011011111)
v, = (111000100100110111001010100011010)
vs = (000010000011001000001010111011101)
v, = (100011000101101001111000001110010)
vs = (000111011001010011010111111000101)
vg = (000101000010010101001010111111011)
v; = (001000100000110101111011011111011)
vg = (100001100001110100010110101100111)
vy = (010000000101100010110000001111100)
10 = (000001111000110000011010000111011)
vy, = (011001111110110101100001101111000)
v2 = (110100010111101101000101010000000)
vy3 = (111011111010001000110000001000110)
vy4 = (010010011000001010100111100101001)
v1s = (111011101101110000100011111011110)
v1e = (110011110000011111100001101001011)
v17 = (011010111111001111010001101111101)
v1s = (011101000000001110100111110101101)
v1e = (000101010011111111110000110001100)

( )

9o = (101110010110011110011000101111110
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During the evaluation phase we decode each chromosome and calculate the
fitness function values from (z;, x,) values just decoded. We get:

eval(v;) = f(6.084492, 5.652242) = 26.019600
eval(vy) = £(10.348434, 4.380264) = 7.580015
eval(vs) = f(—2.516603,4.390381) = 19.526329
eval(vy) = f(5.278638, 5.593460) = 17.406725
eval(vs) = f(—1.255173,4.734458) = 25.341160
eval(ve) = f(—1.811725,4.391937) = 18.100417
eval(vy) = f(—0.991471,5.680258) = 16.020812
eval(vs) = f(4.910618,4.703018) = 17.959701
cval(vy) = f(0.795406, 5.381472) = 16.127799
eval(vig) = f(—~2.554851, 4.793707) = 21.278435
eval(vy,) = £(3.130078, 4.996097) = 23.410669
eval(vya) = £(9.356179,4.239457) = 15.011619
eval(viz) = f(11.134646,5.378671) = 27.316702
eval(vig) = £(1.335944, 5.151378) = 19.876294
eval(vis) = £(11.080025, 5.054515) = 30.060205
eval(vis) = £(9.211598, 4.993762) = 23.867227
eval(viy) = f(3.367514, 4.571343) = 13.696165
eval(vig) = £(3.843020,5.158226) = 15.414128
eval(vig) = f(—1.746635, 5.395584) = 20.095903
eval(vy) = [(7.935098,4.757338) = 13.666016

It is clear, that the chromosome w5 is the strongest one, and the chromosome
V2 the weakest.

Now the system constructs a roulette wheel for the selection process. The
total fitness of the population is

F =32 cval(v;) = 387.776822.

The probability of a selection p; for each chromosome v; (i =1,...,20) is:

eval(vy)/F = 0.067099  p,
eval(vs)/F = 0.050355  py

eval(vs)/F = 0.019547
eval(vy)/F = 0.044889

D
D3
ps = eval(vs)/F = 0.065350  pg = eval(vg)/F = 0.046677
P = 61)0,l(’U7)/F = 0.041315 Pg = eval(’vg)/F = 0.046315
)
)

il
[

Do = eval(vg)/F = 0.041590 p1o = eval(v1p)/F = 0.054873
P11 = eval(vy)/F = 0.060372  pio = eval(v,g)/F = 0.038712
P13 = eval(viz)/F = 0.070444  pyy = eval(viy)/F = 0.051257
Pis = eval(vys)/F = 0.077519  p1g = eval(vis)/ F = 0.061549

(
(

P17 = eval(vir)/F = 0.035320 pig = eval(vis)/F = 0.039750

pro = eval(vye)/F = 0.051823 pyy = eval(vy)/F = 0.035244

The cumulative probabilities g; for each chromosome v; (i = 1,. .., 20) are:
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g = 0.067099 g = 0.086647 g3 = 0.137001
gs = 0.247240 gs = 0.293917 g7 = 0.335232
go = 0.423137 gy = 0.478009 g, = 0.538381
q13 = 0.647537 g1q = 0.698794 qy5 = 0.776314
qi7 = 0.873182 g5 = 0.912932 qy¢ = 0.964756
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gs = 0.181890
gs = 0.381546
q12 = 0.577093
q16 = 0.837863
g20 = 1.000000

Now we are ready to spin the roulette wheel 20 times; each time we select
a single chromosome for a new population. Let us assume that a (random)
sequence of 20 numbers from the range [0..1] is:

0.513870 0.175741
0.171736 0.702231
0.703899 0.389647
0.005398 0.765682

The first number r = 0.513870 is greater than qio

0.308652 0.534534
0.226431 0.494773
0.277226 0.368071
0.646473 0.767139

0.947628
0.424720
0.983437
0.780237

and smaller than ¢4,

meaning the chromosome vy, is selected for the new population; the second
number r = 0.175741 is greater than gz and smaller than ¢4, meaning the
chromosome wv4 is selected for the new population, etc.

Finally, the new population consists of the following chromosomes:

v} = (011001111110110101100001101111000) (v ,)
v}, = (100011000101101001111000001110010) (v,)
v = (001000100000110101111011011111011) (wr)
v} = (011001111110110101100001101111000) (v1,)
v} = (000101010011111111110000110001100) (1)
vg = (100011000101101001111000001110010) (wv4)
v}, = (111011101101110000100011111011110) (v15)
v, = (000111011001010011010111111000101) (vs)
vy = (011001111110110101100001101111000) (v1)
v}, = (000010000011001000001010111011101
v}, = (111011101101110000100011111011110

~o~

’03)
V1)
’09)
’05)
’Ug)

)
)
v, = (010000000101100010110000001111100)
v, = (000101000010010101001010111111011)
v, = (100001100001110100010110101100111)
v, = (101110010110011110011000101111110) (vsp)
vl = (100110100000001111111010011011111) (w,)
v, = (000001111000110000011010000111011) (v,0)
v, = (111011111010001000110000001000110) (v,3)
v}y = (111011101101110000100011111011110) (v;5)
v)o = (110011110000011111100001101001011) (wy6)

(
(
(
(
(
(
(
(

Now we are ready to apply the recombination operator, crossover, to the
individuals in the new population (vectors v}). The probability of crossover
p. = 0.25, so we expect that (on average) 25% of chromosomes (i.e., 5 out of
20) undergo crossover. We proceed in the following way: for each chromosome
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in the (new) population we generate a random number r from the range [0..1];
if 7 < 0.25, we select a given chromosome for crossover.
Let us assume that the sequence of random numbers is:

0.822951 0.151932 0.625477 0.314685 0.346901
0.917204 0.519760 0.401154 0.606758 0.785402
0.031523 0.869921 0.166525 0.674520 0.758400
0.581893 0.389248 0.200232 0.355635 0.826927

This means that the chromosomes v}, v},, v}z, and v} were selected for
crossover. (We were lucky: the number of selected chromosomes is even, so
we can pair them easily. If the number of selected chromosomes were odd, we
would either add one extra chromosome or remove one selected chromosome
— this choice is made randomly as well.) Now we mate selected chromosomes
randomly: say, the first two (i.e., v} and v,) and the next two (i.e., vi; and
v}s) are coupled together. For each of these two pairs, we generate a random
integer number pos from the range [1..32] (33 is the total length — number of
bits — in a chromosome). The number pos indicates the position of the crossing
point. The first pair of chromosomes is

v, = (100011000{101101001111000001110010)
v}, = (111011101|101110000100011111011110)

and the generated number pos = 9. These chromosomes are cut after the 9th
bit and replaced by a pair of their offspring:

vy = (100011000/101110000100011111011110)
v/, = (111011101|101101001111000001110010).

The second pair of chromosomes is

v'; = (00010100001001010100/1010111111011)
vy = (11101111101000100011|0000001000110)

and the generated number pos = 20. These chromosomes are replaced by a pair
of their offspring:

vfy = (00010100001001010100{0000001000110)

vl = (11101111101000100011{1010111111011).
The current version of the population is:

vy = (011001111110110101100001101111000)
vy = (100011000101110000100011111011110)
vy = (001000100000110101111011011111011)
v, = (011001111110110101100001101111000)
vy = (000101010011111111110000110001100)
vg = (100011000101101001111000001110010)
v, = (111011101101110000100011111011110)
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v = (000111011001010011010111111000101)
= (011001111110110101100001101111000)

[~
©
I

(000010000011001000001010111011101)
v/, = (111011101101101001111000001110010)
v}, = (010000000101100010110000001111100)
vy = (000101000010010101000000001000110)
v, = (100001100001110100010110101100111)
v}, = (101110010110011110011000101111110)
v/, = (100110100000001111111010011011111)
|, = (000001111000110000011010000111011)
(
(

<
=)
I

vy = (111011111010001000111010111111011)
v}y = (111011101101110000100011111011110)
vho = (110011110000011111100001101001011)

The next operator, mutation, is performed on a bit-by-bit basis. The prob-
ability of mutation p,, = 0.01, so we expect that (on average) 1% of bits would
undergo mutation. There are m X pop-size = 33 x 20 = 660 bits in the whole
population; we expect (on average) 6.6 mutations per generation. Every bit has
an equal chance to be mutated, so, for every bit in the population, we generate
a random number 7 from the range [0..1]; if 7 < 0.01, we mutate the bit.

This means that we have to generate 660 random numbers. In a sample
run, 5 of these numbers were smaller than 0.01; the bit number and the random
number are listed below:

Bit Random
position | number
112 0.000213
349 0.009945
418 0.008809
429 0.005425
602 0.002836

The following table translates the bit position into chromosome number and
the bit number within the chromosome:

Bit Chromosome { Bit number within
position number chromosome

112 4 13

349 11 19

418 13 22

429 13 33

602 19 8

This means that four chromosomes are affected by the mutation operator;
one of the chromosomes (the 13th) has two bits changed.

The final population is listed below; the mutated bits are typed in boldface.
We drop primes for modified chromosomes: the population is listed as new
vectors v;:
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v; = (011001111110110101100001101111000)
vy = (100011000101110000100011111011110)
vz = (001000100000110101111011011111011)
vy = (011001111110010101100001101111000)
vs = (000101010011111111110000110001100)
vg = (100011000101101001111000001110010)
vy = (111011101101110000100011111011110)
vg = (000111011001010011010111111000101)
vy = (011001111110110101100001101111000)
v = (000010000011001000001010111011101)
vy, = (111011101101101001011000001110010)
vy = (010000000101100010110000001111100)
w33 = (000101000010010101000100001000111)
v14 = (100001100001110100010110101100111)
v15 = (101110010110011110011000101111110)
v = (100110100000001111111010011011111)
v17 = (000001111000110000011010000111011)
vg = (111011111010001000111010111111011)
19 = (111011100101110000100011111011110)
v9o = (110011110000011111100001101001011)

We have just completed one iteration (i.e., one generation) of the while loop
in the genetic procedure (Figure 0.1 from the Introduction). It is interesting to
examine the results of the evaluation process of the new population. During the
evaluation phase we decode each chromosome and calculate the fitness function
values from (z1,z5) values just decoded. We get:

eval(vy) = £(3.130078,4.996097) = 23.410669

eval(vy) = f(5.279042,5.054515) = 18.201083
eval(vs) = f(—0.991471,5.680258) = 16.020812
eval(vy) = f(3.128235,4.996097) = 23.412613
eval(vs) = f(—1.746635,5.395584) = 20.095903
eval(vg) = f(5.278638,5.593460) = 17.406725
eval(vy) = f(11.089025,5.054515) = 30.060205
eval(vs) = f(—1.255173,4.734458) = 25.341160

eval(vy) = f(3.130078,4.996097) = 23.410669
eval(vig) = f(—2.516603,4.390381) = 19.526329
eval(vir) = f(11.088621, 4.743434) = 33.351874
eval(via) = £(0.795406, 5.381472) = 16.127799
eval(vis) = f(—1.811725,4.209937) = 22.692462
eval(vys) = f(4.910618,4.703018) = 17.959701
eval(vys) = £(7.935998,4.757338) = 13.666916
eval(vig) = £(6.084492, 5.652242) = 26.019600
eval(vyy) = f(—2.554851,4.793707) = 21.278435
eval(vig) = f(11.134646,5.666976) = 27.591064
eval(vig) = f(11.059532,5.054515) = 27.608441
eval(vy) = f(9.211598, 4.993762) = 23.867227
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Note that the total fitness of the new population F' is 447.049688, much
higher than total fitness of the previous population, 387.776822. Also, the best
chromosome now (w;;) has a better evaluation (33.351874) than the best chro-
mosorme (vis) from the previous population (30.060205).

Now we are ready to run the selection process again and apply the genetic
operators, evaluate the next generation, etc. After 1000 generations the popu-
lation is:

v, = (111011110110011011100101010111011)
v, = (111001100110000100010101010111000)
vy = (111011110111011011100101010111011)
vs = (111001100010000110000101010111001)

Vs 111011110111011011100101010111011)
Vs 111001100110000100000100010100001)
vy = (110101100010010010001100010110000)
Vg 111101100010001010001101010010001)

Vg
Vo =

= (
= (
(
= (
(111001100010010010001100010110001)
(111011110111011011100101010111011)
11 = (110101100000010010001100010110000)
v15 = (110101100010010010001100010110001)

(

(

(

(

(

(

(

vy3 = (111011110111011011100101010111011)
14 = (111001100110000100000101010111011)
v)5 = (111001101010111001010100110110001)
v16 = (111001100110000101000100010100001)

)

111001100110000100000101010111011
v1s = (111001100110000100000101010111001)
w19 = (111101100010001010001110000010001)
v = (111001100110000100000101010111001)

V7 =

The fitness values are:

eval(vy) = £(11.120940, 5.092514) = 30.298543
eval(vy) = f(10.588756, 4.667358) = 26.869724
eval(vy) = f(11.124627, 5.092514) = 30.316575
eval(vy) = £(10.574125,4.242410) = 31.933120
eval(vs) = f(11.124627,5.092514) = 30.316575
eval(vg) = f(10.588756,4.214603) = 34.356125
eval(vy) = £(9.631066,4.427881) = 35.458636

eval(vs) = f(11.518106, 4.452835) — 23.309078
eval(ve) = f(10.574816,4.427933) = 34.303820
eval(vio) = £(11.124627,5.092514) = 30.316575
eval(vy) = £(9.623693, 4.427881) = 35.477938

eval(vi) = £(9.631066,4.427933) = 35.456066

)
)
eval(vis) = f(11.124627,5.002514) = 30.316575
eval(via) = £(10.588756,4.242514) = 32.932098
eval(vis) = f(10.606555,4.653714) = 30.746768
eval(vig) = £(10.588814, 4.214603) = 34.359545



44 2. GAs: How Do They Work?

eval(vi7) = £(10.588756, 4.242514) = 32.932098
eval(vys) = £(10.588756,4.242410) = 32.956664
eval(vip) = f(11.518106,4.472757) = 19.669670
eval(va) = £(10.588756,4.242410) = 32.956664

However, if we look carefully at the progress during the run, we may discover
that in earlier generations the fitness values of some chromosomes were better
than the value 35.477938 of the best chromosome after 1000 generations. For
example, the best chromosome in generation 396 had value of 38.827553. This
is due to the stochastic errors of sampling — we discuss this issue in Chapter
4.

It is relatively easy to keep track of the best individual in the evolution
process. It is customary (in genetic algorithm implementations) to store “the
best ever” individual at a separate location; in that way, the algorithm would
report the best value found during the whole process (as opposed to the best
value in the final population).
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Species do not evolve to perfection, but
quite the contrary. The weak, in fact,
always prevail over the strong, not only
because they are in the majority, but also
because they are the more crafty.

Friedrich Nietzsche, The Twilight of the Idols

The theoretical foundations of genetic algorithms rely on a binary string rep-
resentation of solutions, and on the notion of a schema (see e.g., [188]) — a
template allowing exploration of similarities among chromosomes. A schema is
built by introducing a don’t care symbol (*) into the alphabet of genes. A schema
represents all strings (a hyperplane, or subset of the search space), which match
it on all positions other than ‘x’.

For example, let us consider the strings and schemata of the length 10, The
schema (11110010 0) matches two strings

{(0111100100), (1111100100)},
and the schema (¥ 1411001 0 0) matches four strings:
{(0101100100), (0111100100), (1101100100), (1111100100)}.

Of course, the schema (1 0 0 1 1 1 0 0 0 1) represents one string only:
(1001110001), and the schema (x*x%**%**x) represents all strings of length 10.
It is clear that every schema matches exactly 2" strings, where r is the number
of don’t care symbols ‘+’” in a schema template. On the other hand, each string of
the length m is matched by 2™ schemata. For example, let us consider a string
(1001110001). This string is matched by the following 2!° schemata:

(1001110001)
(*001110001)
(1x01110001)
(10x1110001)

(100111000%)
(*x01110001)
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(x0x1110001)

(10011100%%)
(**%x1110001)

(Fxk *k* % &k %),

Considering strings of the length m, there are in total 3™ possible schemata.
In a population of size n, between 2™ and n - 2™ different schemata may be
represented.

Different schemata have different characteristics. We have already noticed
that the number of don’t care conditions x in a schema determines the number
of strings matched by the schema. There are two important schema properties,
order and defining length; the Schema Theorem will be formulated on the basis
of these properties.

The order of the schema S (denoted by o(S)) is the number of 0 and 1
positions, i.e., fired positions (non-don’t care positions), present in the schema.
In other words, it is the length of the template minus the number of don’t care
(x) symbols. The order defines the speciality of a schema. For example, the
following three schemata, each of length 10,

S1=(x*x+x001%110),
S = (****00%x0 %),
Ss=(11101%%001),

have the following orders:
O(Sl) = .6) 0(52) = 3, and 0(53) = 8)

and the schema S3 is the most specific one.

The notion of the order of a schema is useful in calculating survival proba-
bilities of the schema for mutations; we discuss it later in the chapter.

The defining length of the schema S (denoted by §(5)) is the distance be-
tween the first and the last fixed string positions. It defines the compactness of
information contained in a schema. For example,

6(51)210—426,5(Sg)=9—5=4,and5(53)=10—1=9

Note that the schema with a single fixed position has a defining length of zero.
The notion of the defining length of a schema is useful in calculating survival
probabilities of the schema for crossovers; we discuss it later in the chapter.
As discussed earlier, the simulated evolution process of genetic algorithms
consists of four consecutively repeated steps:

te—t+1

select P(t) from P(t —1)
recombine P(t)

evaluate P(t)
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The first step (¢ « ¢+ 1) simply moves the evolution clock one unit further;
during the last step (evaluate P(¢)) we just evaluate the current population. The
main phenomenon of the evolution process occurs in two remaining steps of the
evolution cycle: selection and recombination. We discuss the effect of these two
steps on the expected number of schemata represented in the population. We
start with the selection step; we illustrate all formulae by a running example.

Let us assume, the population size pop_size = 20, the length of a string
(and, consequently, the length of a schema template} is m = 33 (as in the
running example discussed in the previous chapter). Assume further that (at
the time ¢) the population consists of the following strings:

vy = (100110100000001111111010011011111)
vy = (111000100100110111001010100011010)
vs = (000010000011001000001010111011101)
v = (100011000101101001111000001110010)
vs = (000111011001010011010111111000101)
ve = (000101000010010101001010111111011)
vy = (001000100000110101111011011111011)
vs = (100001100001110100010110101100111
ve = (010000000101100010110000001111100
1o = (000001111000110000011010000111011
vy; = (011001111110110101100001101111000
v12 = (110100010111101101000101010000000)

(

(

N e e e

w13 = (111011111010001000110000001000110)
v14 = (010010011000001010100111100101001)
v15 = (111011101101110000100011111011110) .-
v16 = (110011110000011111100001101001011)
vy7 = (011010111111001111010001101111101)
v1g = (011101000000001110100111110101101)
v19 = (000101010011111111110000110001100)
vgo = (101110010110011110011000101111110)

Let us denote by £(S,t) the number of strings in a population at the time
t, matched by schema S. For example, for a given schema

So = (Fkkr1 1 1okookokokshknhkdsskkxkkkkkkxkxskkx),

&(Sp, t) = 3, since there are 3 strings, namely 0,3, v15, and v;6, matched by the
schema Sy. Note that the order of the schema Sy, 0(Sp) = 3, and its defining
length 6(Sp) =7—-5=2.

Another property of & schema is its fitness at time t, eval(S, t). It is defined
as the average fitness of all strings in the population matched by the schema
S. Assume there are p strings {v;,,...,;,} in the population matched by a
schema § at the time ¢. Then

eval(S,t) = Y5, eval(v;;)/p.
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During the selection step, an intermediate population is created: pop_size =
20 single string selections are made. Each string is copied zero, one, or more
times, according to its fitness. As we have seen in the previous chapter, in a
single string selection, the string v; has probability p; = eval(v;)/F(t) to be
selected (F(t) is the total fitness of the whole population at time t, F(t) =
T2, eval(v;)).

After the selection step, we expect to have £(S,t + 1) strings matched by
schema. S. Since (1) for an average string matched by a schema S, the probability
of its selection (in a single string selection) is equal to eval(S,t)/F(t), (2) the
number of strings matched by a schema S is £(S,¢), and (3) the number of
single string selections is pop_size, it is clear that

£(S,t+ 1) =¢(S,t) - pop_size - eval(S,t)/ F(t),

We can rewrite the above formula: taking into account that the average fitness
of the population F(t) = F(t)/pop-size, we can write:

£(S,t+ 1) = £(S,t) - eval(S, t)/FR). (3.1)

In other words, the number of strings in the population grows as the ratio
of the fitness of the schema to the average fitness of the population. This means
that an “above average” schema receives an increasing number of strings in
the next generation, a “below average” scheme receives decreasing number of
strings, and an average schema stays on the same level.

The long-term effect of the above rule is also clear. If we assume that a

schema S remains above average by €% (i.e., eval(S,t) = F(t) + ¢ - F(t)), then
5(5, t) = f(S, 0)(1 + 6)tv

and € = (eval(S,t) — F(t))/F(t) (e > 0 for above average schemata and ¢ < 0
for below average schemata).

This is a geometric progression equation: now we can say not only that an
“above average” schema receives an increasing number of strings in the next
generation, but that such a schema receives an exponentially increasing number
of strings in the next generations. -

We call the equation (3.1) the reproductive schema growth equation.

Let us return to the example schema, Sy. Since there are 3 strings, namely

V13, V15, and vy (at the time t) matched by the schema Sy, the fitness eval(Sp)
of the schema is

eval(Sp, t) = (27.316702 + 30.060205 + 23.867227)/3 = 27.081378.
At the same time, the average fitness of the whole population is
F(t) = =2, eval(v;) /pop-size = 387.776822/20 = 19.388841,

and the ratio of the fitness of the schema Sy to the average fitness of the popu-
lation is
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eval(So,t)/F(t) = 1.396751.

This means that if the schema Sy stays above average, then it receives an expo-
nentially increasing number of strings in the next generations. In particular, if
the schema Sy stays above average by the constant factor of 1.396751, then, at
time t + 1, we expect to have 3 x 1.396751 = 4.19 strings matched by Sy (i-e.,
most likely 4 or 5), at time ¢ + 2: 3 x 1.3967512 = 5.85 such strings (i.e., very
likely, 6 strings), etc.

The intuition is that such a schema Sy defines a promising part of the search
space and is being sampled in an exponentially increased manner.

Let us check these predictions on our running example for the schema Sy.
In the population at the time ¢, the schema Sy matched 3 strings, vis, v15, and
v16. In the previous chapter we simulated the selection process using the same
population. The new population consists of the following chromosomes:

v} = (011001111110110101100001101111000) (v11)

000111011001010011010111111000101) (wvs)

S
~oo™
I

v}, = (100011000101101001111000001110010) ()
v}, = (001000100000110101111011011111011) (v-)
v, = (011001111110110101100001101111000) (v1;)
v, = (000101010011111111110000110001100) (vy,)
v}, = (100011000101101001111000001110010) (vs)
vy = (111011101101110000100011111011110) (v,5)
( )
vy = (011001111110110101100001101111000) (vy,)
vl = (000010000011001000001010111011101) (vs)
v}, = (111011101101110000100011111011110) (v;5)
v}, = (010000000101100010110000001111100) (vo)
vl = (000101000010010101001010111111011) (vg)
vl = (100001100001110100010110101100111) (vs)
vl = (101110010110011110011000101111110) (v30)
v}; = (111001100110000101000100010100001) (v.)
v); = (111001100110000100000101010111011) (w10)
vl = (111011111010001000110000001000110) (v,3)
vl = (111011101101110000100011111011110) (v,5)

v} = (110011110000011111100001101001011) (v1g)

Indeed, the schema Sy now (time ¢+ 1) matches 5 strings: v%, v},, vig, vig, and
Vg

However, selection alone does not introduce any new points (potential solu-
tions) for consideration from the search space; selection just copies some strings
to form an intermediate population. So the second step of the evolution cycle,
recombination, takes the responsibility of introducing new individuals in the
population. This is done by two genetic operators: crossover and mutation. We
discuss the effect of these two operators on the expected number of schemata
in the population in turn.

Let us start with crossover and consider the following example. As discussed
earlier in the chapter, a single string from the population, say, v/g
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{111011111010001000110000001000110),

is matched by 2%° schemats; in particular, the string is matched by these two
schemata:

So = (%% kk L 1 1okokskkkokkkkkkk*&k*%xkkk**xx)and
S1=(111xkxnkkskkhkxkkhkkk*kkkkkxxkx*10).

Let us assume further that the above string was selected for crossover (as hap-
pened in Chapter 2). Assume further (according to experiments from Chapter
2, where v}g was crossed with v];) that the generated crossing site pos = 20. It
is clear that the schema Sy survives such a crossover, i.e., one of the offspring
still matches Sy. The reason is that the crossing site preserves the sequence ‘111’
on the fifth, sixth, and seventh positions in the string in one of the offsprings:
a pair

v = (11101111101000100011]0000001000110),
v)5 = (00010100001001010100]1010111111011),

would produce

vl = (11101111101000100011]1010111111011),
", = (00010100001001010100{0000001000110).

On the other hand, the schema S; would be destroyed: none of the offspring
would match it. The reason is that the fixed positions ‘111" at the beginning
of the template and the fixed positions ‘10’ at the end are placed in different
offspring.

It should be clear that the defining length of a schema plays a significant
role in the probability of its destruction and survival. Note, that the defining
length of the schema Sy was 6(Sp) = 2, and the defining length of the schema
S] was 6(S1) = 32.

In general, a crossover site is selected uniformly among m — 1 possible sites.
This implies that the probability of destruction of a schema S is

pa(S) = &5

m—1"'

and consequently, the probability of schema survival is
S
ps(S ) =1- %_—)1

Indeed, the probabilities of survival and destruction of our example schemata
SO and Sl are:

pd(SO) = 2/32, ps(So) = 30/32, pd(Sl) = 32/32 = 1, pd(Sl) = 0,

so the outcome was predictable.

It is important to note that only some chromosomes undergo crossover and
the selective probability of crossover is p.. This means that the probability of a
schema survival is in fact:
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ps(S)=1-p- 6;(5—1

Again, referring to our example schema Sy and the running example (p, = 0.25):
ps(So) =1-0.25- 3—22 = 63/64 = 0.984375.

Note also that even if a crossover site is selected between fixed positions
in a schema, there is still a chance for the schema to survive. For example, if
both strings v and v}, started with ‘111’ and ended with ‘10’, the schema S,
would survive crossover {however, the probability of such event is quite small).
Because of that, we should modify the formula for the probability of schema
survival:

5(S
ps(S) > 1—pc- m_)1~
So the combined effect of selection and crossover gives us a new form of the
reproductive schema growth equation:

£(S,t+1) > &(S,1) - eval(S,t)/F(t) [1 — Pe - %} . (3.2)

The equation (3.2) tells us about the expected number of strings matching
a schema S in the next generation as a function of the actual number of strings
matching the schema, relative fitness of the schema, and its defining length. It
is clear that above-average schemata with short defining length would still be
sampled at exponentially increased rates. For the schema Sy:

eval(So,t)/F(£) [1 — pe - 28] = 1.396751 - 0.984375 = 1.374927.

m—1

This means that the short, above-average schema Sy would still receive an ex-
ponentially increasing number of strings in the next generations: at time (¢ +1)
we expect to have 3 x 1.374927 = 4.12 strings matched by Sy (only slightly
less than 4.19 — a value we got considering selection only), at time (¢ + 2):
3 x 1.374927? = 5.67 such strings (again, slightly less than 5.85).

The next operator to be considered is mutation. The mutation operator
randomly changes a single position within a chromosome with probability p,.
The change is from zero to one or vice versa. It is clear that all of the fixed
positions of a schema must remain unchanged if the schema survives mutation.
For example, consider again a single string from the population, say, v/g:

(111011101101110000100011111011110)
and schema Sy:
So = (kxx kL L1 kkk ok k ok ok &k ok &k ok Kok ok k& kK Kk ok &k k).

Assume further that the string v}y undergoes mutation, i.e., at least one bit is
flipped, as happened in the previous chapter. (Recall also that four strings un-
derwent mutation there: one of these strings, v};, was mutated at two positions,
three other strings — including vy — at one.) Since v}y was mutated at the
8th position, its offspring,
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v’y = (111011100101110000100011111011110)

still is matched by the schema Sp. If the selected mutation positions were from
1 to 4, or from 8 to 33, the resulting offspring would still be matched by Sp.
Only 3 bits (fifth, sixth, and seventh — the fixed bit positions in the schema
So) are “important”: mutation of at least one of these bits would destroy the
schema Sy. Clearly, the number of such “important” bits is equal to the order
of the schema, i.e., the number of fixed positions.

Since the probability of the alteration of a single bit is p,,, the probability
of a single bit survival is 1 — p,,. A single mutation is independent from other
mutations, so the probability of a schema S surviving a mutation (i.e., sequence
of one-bit mutations) is

ps(S)=(1 _pm)o(s)-

Since p,, < 1, this probability can be approximated by:
ps(S) = 1 —0(8S) - pm.

Again, referring to our example schema Sy and the running example (p, =
0.01):

ps(So) &~ 1—3-0.01 =0.97.

The combined effect of selection, crossover, and mutation gives us a new form
of the reproductive schema growth equation:

(5,14 1) > €(S,1) - eval(,1)/F0) |1 = po- %

—o(S) - pm|. (3.3)
As in the simpler forms (equations (3.1) and (3.2)), equation (3.3) tells us about
the expected number of strings matching a schema S in the next generation as
a function of the actual number of strings matching the schema, the relative
fitness of the schema, and its defining length and order. Again, it is clear that
above-average schemata with short defining length and low-order would still be
sampled at exponentially increased rates.
For the schema Sy:

eval(So, t)/F(t) [1 = pe - 25 = 0(S0) - pm| = 1.396751 - 0.954375 =
1.333024.

This means that the short, low-order, above-average schema Sy would still re-
ceive an exponentially increasing number of strings in the next generations: at
time (¢ + 1) we expect to have 3 x 1.333024 = 4.00 strings matched by Sp
(not much less than 4.19 — a value we got considering selection only, or than
4.12 — a value we got considering selections and crossovers), at time (¢ + 2):
3 x 1.3330242 = 5.33 such strings (again, not much less than 5.85 or 5.67).
Note that equation (3.3) is based on the assumption that the fitness function
f returns only positive values; when applying GAs to optimization problems
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where the optimization function may return negative values, some additional
mapping between optimization and fitness functions is required. We discuss
these issues in the next chapter.

In summary, the growth equation (3.1) shows that selection increases the
sampling rates of the above-average schemata, and that this change is exponen-
tial. The sampling itself does not introduce any new schemata (not represented
in the initial ¢ = 0 sampling). This is exactly why the crossover operator is intro-
duced — to enable structured, yet random information exchange. Additionally,
the mutation operator introduces greater variability into the population. The
combined (disruptive) effect of these operators on a schema is not significant if
the schema is short and low-order. The final result of the growth equation (3.3)
can be stated as:

Theorem 1 (Schema Theorem.) Short, low-order, above-average schemata
recetve exponentially increasing trials in subsequent gemerations of a genetic
algorithm.

An immediate result of this theorem is that GAs explore the search space
by short, low-order schemata which, subsequently, are used for information ex-
change during crossover:

Hypothesis 1 (Building Block Hypothesis.) A genetic algorithm seeks
near-optimal performance through the juxtaposition of short, low-order, high-
performance schemata, called the building blocks.

As stated in [154]:

“Just as a child creates magnificent fortresses through the arrange-
ment of simple blocks of wood, so does a genetic algorithm seek near
optimal performance through the juxtaposition of short, low-order,
high performance schemata.”

We have seen a perfect example of a building block through this chapter:
So = (Fdkx 1 11 koo kokokk k& ko k ko ok ok ko k& & ok ok ok k).

So is a short, low-order schema, which (at least in early populations) was also
above average. This schema contributed towards finding the optimum.

Although some research has been done to prove this hypothesis [38], for
most nontrivial applications we rely mostly on empirical results. During the
last fifteen years many GAs applications were developed which supported the
building block hypothesis in many different problem domains. Nevertheless,
this hypothesis suggests that the problem of coding for a genetic algorithm is
critical for its performance, and that such a coding should satisfy the idea of
short building blocks.

Earlier in the chapter we stated that a population of pop_size individuals of
length m processes at least 2™ and at most 2PP-5i#¢ schemata. Some of them are
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processed in a useful manner: these are sampled at the (desirable) exponentially
increasing rate, and are not disrupted by crossover and mutation (which may
happen for long defining length and high-order schemata).

Holland [188] showed, that at least pop_size® of them are processed usefully
— he has called this property an implicit parallelism, as it is obtained without
any extra memory/processing requirements. It is interesting to note that in a
population of pop.size strings there are many more than pop_size schemata
represented.!

This constitutes possibly the only known example of a combinatorial explo-
sion working to our advantage instead of our disadvantage.

In this chapter we have provided some standard explanations for why genetic
algorithms work. Note, however, that the building block hypothesis is just an
article of faith, which for some problems is easily violated. For example, assume
that the two short, low-order schemata (this time, let us consider schemata of
the total length of 11 positions):

S1=(111xxxxx*%x)and
Sy = (xkkkkkrx*11)

are above average, but their combination
Sy=(111xk*xxxx11)

is much less fit than
Sy =(000*%x*xxxx00).

Assume further that the optimal string is so = (1111111111111) (S5 matches it).
A genetic algorithm may have some difficulties in converging to s, since it may
tend to converge to points like (00011111100). This pheniomenon is called decep-
tion [38], [154}: some building blocks (short, low-order schemata) can mislead
genetic algorithm and cause its convergence to suboptimal points.

A phenomenon of deception is strongly connected with the concept of epis-
tasis , which (in terms of genetic algorithms) means strong interaction among
genes in a chromosome.? In other words, epistasis measures the extent to which
the contribution to fitness of one gene depends on the values of other genes. For
a given problem, high degree of epistasis means that building blocks can not
form; consequently, the problem is deceptive.

Three approaches were proposed to deal with deception (see [155]). The
first one assumes prior knowledge of the objective function to code it in an
appropriate way (to get ‘tight’ building blocks). For example, prior knowledge
about the objective function, and consequently about the deception, might re-
sult in a different coding, where the five bits required to optimize the function
are adjacent, instead of being six positions apart.

'Recently, Bertoni and Dorigo [36] shown that the pop_size® estimate is correct only in
the particular case when pop_size is proportional to 2! and provided a more general analysis.

2Geneticists use the term epistasis for masking or switching effect: a gene is epistatic if its
presence suppresses the effect of a gene at another locus.
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The second approach uses the third genetic operator, inversion. Simple in-
version is (like mutation) a unary operator: it selects two points within a string
and inverts the order of bits between selected points, but remembering the bit’s
‘meaning’. This means that we have to identify bits in the strings: we do so by
keeping bits together with a record of their original positions. For example, a
string

s = ((1,0)(2,0)(3,0)1(4,1)(5,1)(6,0)(7, 1)|(8, 0)(9, 0)(10,0)(11, 1))
with two marked points, after inversion becomes
s' = ((1,0)(2,0)(3,0)|(7,1)(6,0)(5,1)(4, 1)|(8,0)(9,0)(10,0)(11, 1)).

A genetic algorithm with inversion as one of the operators searches for the best
arrangements of bits for forming building blocks. For example, the desirable
schema considered earlier

S3=(111x*xx*xx%11),
rewritten as

S = ((1,1)(2, 1)(3, 1)(4, 4)(5, %) (6, #)(7, #)(8, #)(9, %) (10, 1)(11, 1),
might be regrouped (after successful inversion) into

83 = ((1,1)(2,1)(3, 1)(11, 1) (10, 1)(9, %)(8, %)(7, %) (6, %)(5, %) (4, %)),
making an important building block. However, as stated in [155]:

“An earlier study [160] argued that inversion — a unary operator
— was incapable of searching efficiently for tight building blocks
because it lacked the power of juxtaposition inherent in binary op-
erators. Put another way, inversion is to orderings what mutation
is to alleles: both fight the good fight against search-stopping lack
of diversity, but neither is sufficiently powerful to search for good
structures, allelic or permutational, on its own when good structures
require epistatic interaction of the individual parts.”

The third approach to fight the deception was proposed recently [155, 159]: a
messy genetic algorithm (mGA). Since mGAs have other interesting properties
as well, we discuss them briefly in the next chapter (section 4.6).
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A man once saw a butterfly
struggling to emerge from

its cocoon, too slowly

for his taste, so he began

to blow on it gently. The

warmth of his breath speeded

up the process all right. But
what emerged was not a butterfly
but a creature with mangled
wings.

Anthony de Mello, One Minute Wisdom

GA theory provides some explanation why, for a given problem formulation, we
may obtain convergence to the sought optimal point. Unfortunately, practical
applications do not always follow the theory, with the main reasons being:

e the coding of the problem often moves the GA to operate in a different
space than that of the problem itself,

e there is a limit on the hypothetically unlimited number of iterations, and
e there is a limit on the hypothetically unlimited population size.

One of the implications of these observations is the inability of GAs, under
certain conditions, to find the optimal solutions; such failures are caused by
a premature convergence to a local optimum. The premature convergence is a
common problem of genetic algorithms and other optimization algorithms. If
convergence occurs too rapidly, then the valuable information developed in part
of the population is often lost. Implementations of genetic algorithms are prone
to converge prematurely before the optimal solution has been found, as stated
in [46):

“...While the performance of most implementations is comparable
to or better than the performance of many other search techniques,
it [GA] still fails to live up to the high expectations engendered by
the theory. The problem is that, while the theory points to sampling
rates and search behavior in the limit, any implementation uses a
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finite population or set of sample points. Estimates based on finite
samples inevitably have a sampling error and lead to search trajecto-
ries much different from those theoretically predicted. This problem
is manifested in practice as a premature loss of diversity in the pop-
ulation with the search converging to a sub-optimal solution.”

Eshelman and Schaffer [105] discuss a few strategies for combating premature
convergence; these include (1) a mating strategy, called incest prevention,! (2)
a use of uniform crossover (see section 4.6), and (3) detecting duplicate strings
in the population (similar to the crowding model; see section 4.1).

However, most of research in this area relates to:

e the magnitude and kind of errors introduced by the sampling mechanism,
and

e the characteristics of the function itself.

These two issues are closely related; however, we discuss them in turn (sections
4.1 and 4.2). Additional two sections present a result on the convergence of
a class of genetic algorithms (called contractive mapping genetic algorithms),
which is based on Banach fixpoint theorem (section 4.3), and the first results of
some experiments with genetic algorithms with varying population size (section
4.4). Section 4.5 discusses briefly a few constraint handling methods, and the
last section presents some additional ideas for enhancing the genetic search.

4.1 Sampling mechanism

It seems that there are two important issues in the evolution process of the
genetic search: population diversity and selective pressure. These factors are
strongly related: an increase in the selective pressure decreases the diversity of
the population, and vice versa. In other words, strong selective pressure “sup-
ports” the premature convergence of the GA search; a weak selective pressure
can make the search ineffective. Thus it is important to strike a balance be-
tween these two factors; sampling mechanisms are attempt to achieve this goal.

As observed by Whitley [395]:

“It can be argued that there are only two primary factors (and
perhaps only two factors) in genetic search: population diversity and
selective pressure [...] In some sense this is just another variation on
the idea of exploration versus exploitation that has been discussed
by Holland and others. Many of the various parameters that are used
to ‘tune’ genetic search are really indirect means of affecting selective
pressure and population diversity. As selective pressure is increased,
the search focuses on the top individuals in the population, but

1For additional information on an incest prevention technique applied to the TSP, see the
end of Chapter 10.



4.1 Sampling mechanism 59

because of this ‘exploitation’ genetic diversity is lost. Reducing the
selective pressure (or using larger population) increases ‘exploration’
because more genotypes and thus more schemata are involved in the
search.”

The first, and possibly the most recognized work, was due to DeJong [82]
in 1975. He considered several variations of the simple selection presented in
the previous chapter. The first variation, named the elitist model, enforces pre-
serving the best chromosome. The second variation, the ezpected value model,
reduces the stochastic errors of the selection routine. This is done by introduc-
ing a count for each chromosome v, which is set initially to the f(v)/f value
and decreased by 0.5 or 1 when the chromosome is selected for reproduction
with crossover or mutation, respectively. When the chromosome count falls be-
low zero, the chromosome is not available for selection any longer. In the third
variation, the elitist expected value model, the first two variations are combined
together. In the fourth model, the crowding factor model, a newly generated
chromosome replaces an “old” one and the doomed chromosome is selected
from those which resemble the new one.

In 1981 Brindle [49] considered some further modifications: deterministic
sampling, remainder stochastic sampling without replacement, stochastic tour-
nament, and remainder stochastic sampling with replacement. This study con-
firmed the superiority of some of these modifications over simple selection. In
particular, the remainder stochastic sampling with replacement method, which
allocates samples according to the integer part of the expected value of occur-
rences of each chromosome in a new population and where the chromosomes
compete according to the fractional parts for the remaining places in the popula-
tion, was the most successful one and adopted by many researchers as standard.
In 1987 Baker [23] provided a comprehensive theoretical study of these modifi-
cations using some well defined measures, and also presented a new improved
version called stochastic universal sampling. This method uses a single wheel
spin. This wheel, which is constructed in the standard way (Chapter 2), is spun
with a number of equally spaced markers equal to the population size as opposed
to a single one.

Other methods to sample a population are based on introducing artificial
weights: chromosomes are selected proportionally to their rank rather than ac-
tual evaluation values (see e.g., [22], [395]). These methods are based on a belief
that the common cause of rapid (premature) convergence is the presence of super
individuals, which are much better than the average fitness of the population.
Such super individuals have a large number of offspring and (due to the con-
stant size of the population) prevent other individuals from contributing any
offspring in next generations. In a few generations a super individual can elimi-
nate desirable chromosomal material and cause a rapid convergence to (possibly
local) optimum.

There are many methods to assign a number of offspring based on ranking.
For example, Baker [22] took a user defined value, MAX, as the upper bound for
the expected number of offspring, and a linear curve through MAX was taken
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such that the area under the curve equaled the population size. In that way
we can easily determine the difference between expected numbers of offspring
between “adjacent” individuals. For example, for MAX = 2.0 and pop_size =
50, the difference between expected numbers of offspring between “adjacent”
individuals would be 0.04.

Another possibility is to take a user defined parameter ¢ and define a linear
function, e.g.,

prob(rank) = g — (rank — 1)r,
or a nonlinear function, e.g.,
prob(rank) = g(1 — g)Tamk-1,

Both functions return the probability of an individual ranked in position rank
(rank = 1 means the best individual, rank = pop_size the worst one) to be
selected in a single selection.

Both schemes allow the users to influence the selective pressure of the algo-
rithm. In the case of the linear function, the requirement

pop-size
=1

prob(i) =1
implies, that
q = r(pop-size — 1)/2 + 1/pop-size.

If r = 0 (and consequently g = 1/pop-size) there is no selection pressure at
all: all individuals have the same probability of selection. On the other hand, if
g — (pop_size — 1)r = 0, then

r=2/(n(n - 1)), and ¢ = 2/n,

provide the maximum selective pressure. In other words, if a linear function
is selected to provide probabilities for ranked individuals, a single parameter
g, which varies between 1/pop_size and 2/pop_size can control the selective
pressure of the algorithm. For example, if pop_size = 100, and ¢ = 0.015,
then r = q/(pop-size — 1) = 0.00015151515 and prob(1) = 0.015, prob(2) =
0.0148484848, ... , prob(100) = 0.00000000000000000051.

For the nonlinear function, the parameter ¢ € (0..1) does not depend on
the population size; larger values of ¢ imply stronger selective pressure of the
algorithm. For example, if ¢ = 0.1 and pop-size = 100, then prob(1) = 0.100,
prob(2) = 0.1-0.9 = 0.090, prob(3) = 0.1 - 0.9-0.9 = .081, ... , prob(100) =
0.000003. Note that

PR prob(i) = TR (1 = )1 & 1.2

2Tt is easy to replace ~ by =; it is sufficient to define prob(i) = c- q(1 - ¢)*~!, where
1
C= T(T—q)ror—mize -



4.1 Sampling mechanism 61

Such approaches, though shown to improve genetic algorithm behavior in
some cases, have some apparent drawbacks. First, they put the responsibility
on the user to decide when to use these mechanisms. Second, they ignore the in-
formation about the relative evaluations of different chromosomes. Third, they
treat all cases uniformly, regardless of the magnitude of the problem. Finally,
selection procedures based on ranking violate the Schema Theorem. On the
other hand, as shown in some research studies [23], [395], they prevent scal-
ing problems (discussed in the next section), they control better the selective
pressure, and (coupled with one-at-a-time reproduction) they give the search a
greater focus.

An additional selection method, tournament selection [159], combines the
idea of ranking in very interesting and efficient way. This method (in a single
iteration) selects some number £ of individuals and selects the best one from
this set of k elements into the next generation. This process is repeated pop_size
number of times. It is clear, that large values of &k increase selective pressure of
this procedure; typical value accepted by many applications is & = 2 (so-called
tournament size). Here it is possible to add a flavor of simulated annealing by
considering Boltzmann selection , where two elements, ¢ and j, compete with
each other, and the winner is determined accordingly to the formula

1

OG0
14+e™ 7

where T is temperature and f(i) and f(j) are values of the objective function
for elements ¢ and j, respectively (the formula is for minimization problems).

In [16] Back and Hoffmeister discuss categories of selection procedures. They
divide selection procedures into dynamic and stetic methods — a static selec-
tion requires that selection probabilities remain constant between generations
(for example, ranking selection), whereas a dynamic selection does not have
such a requirement {e.g., proportional selection). Another division of selection
procedures is into extinctive and preservative methods — preservative selection
requires non-zero selection probability for each individual, whereas extinctive
selection does not. Extinctive selections are further divided into left and right
selections: in left extinctive selection the best individuals are prevented from
reproduction in order to avoid premature convergence due to super individuals
(right selection does not). Additionally, some selection procedures are pure in
the sense that parents are allowed to reproduce in one generation only (i.e., the
life time of each individual is limited to one generation only regardless of its
fitness). We shell return to extinctive, pure selections in Chapter 8, when we
discuss evolution strategies and compare them with genetic algorithms. Some
selections are generational in the sense that the set of parents is fixed until all
offspring for the next generation are completely produced; in selections on-the-
fly an offspring replaces its parent immediately. Some selections are elitist in
the sense that some (or all) of the parents are allowed to undergo selection with
their offspring — we have already seen such selection in the elitist model [82].
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In most of the experiments discussed in this volume, we used a new, two-step
variation of the basic selection algorithm. However, this modification is not just
a new selection mechanism; it can use any of the sampling methods devised so far
and is itself designed to decrease the (possible) undesirable influence of some
functions’ characteristics. It falls into the category of dynamic, preservative,
generational, and elitist selection.

The structure of the modified genetic algorithm (modGA) is shown in Fig-
ure 4.1. The modification with respect to the classical genetic algorithm is that
in the modGA we do not perform the selection step “select P(¢) from P(t—1)",
but rather we select independently r (not necessarily distinct) chromosomes
for reproduction and r (distinct) chromosomes to die. These selections are per-
formed with respect to the relative fitness of the strings: a string with a better
than average performance has a higher chance to be selected for reproduction;
strings with a worse than average performance have higher chances to be se-
lected to die. After the “select-parents” and “select-dead” steps of the modGA
are performed, there are three (not necessarily disjoint) groups of strings in the
population:

o 7 (not necessarily distinct) strings to reproduce (parents),
e precisely r strings to die (dead), and
e the remaining strings, called neutral strings.

The number of neutral strings in a generation (at least pop_size — 2r and at
most pop_size — r) depends on the number of selected distinct parents and on
the number of overlapping strings in categories “parents” and “dead”. Then a
new population P(¢ + 1) is formed, consisting of the pop_size — r strings (all
strings except these selected to die) and r offspring of the r parents.

procedure modGA
begin
{20
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t—t+1
select-parents from P(t — 1)
select-dead from P(t — 1)
form P(t): reproduce the parents
evaluate P(t)
end
end

Fig. 4.1. The algorithm modGA
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As presented, the algorithm has a potentially problematic step: how to select
the r chromosomes to die. Obviously, we wish to perform this selection in such
a way that stronger chromosomes have smaller chances of dying. We achieved
this by changing the method of forming the new population P(t + 1) to the
following one:

step 1: Select r parents from P(t). Each selected chromosome (or rather each
of selected copies of some chromosomes) is marked as applicable to exactly
one fixed genetic operation.

step 2: Select pop_size — r distinct chromosomes from P(t) and copy them to
P(t+1).

step 3: Let r parent chromosomes breed to produce exactly r offspring,.
step 4: Insert these r new offspring into population P(t + 1).

The above selections (steps 1 and 2) are done according to the chromosomes’
fitness (stochastic universal sampling method).

There are a few important differences between different selection routines
discussed earlier and the one described above. Firstly, both parent and offspring
have a very good chance to be present in a new generation: an above average
individual has a good chances to be selected as a parent (step 1) and, in the
same time, to be selected in a new population of pop_size — r elements (step 2).
If s0, one (or more) of its offspring would take some of the remaining r positions.
Secondly, we apply genetic operators on whole individuals as opposed to indi-
vidual bits (classical mutation). This would provide an uniform treatment of all
operators used in evolution program (an evolution program, GENOCOP, uses
several genetic operators; see Chapter 7). So, if three operators are used (e.g.,
mutation, crossover, inversion), some of the parents would undergo mutation,
some others crossover, and the rest inversion.

The modified approach (modGA) enjoys similar theoretical properties as
the classical genetic algorithm. We can rewrite the growth equation (3.3) from
Chapter 3 as:

S(S,t-i-l) 2§(S,t)~ps(S)-pg(S), (4'1)

where p,(9) represents the probability of the survival of the schema S and
Pg(S) represents the probability of the growth of the schema S. The growth
of the schema S happens during the selection stage (growing phase) where
several copies of above-average schemata are copied into a new population. The
probability pg(S) of the growth of the schema S, p,(S) = ewval(S,t)/F(t), and
Pg(S) > 1 for better-than-average schemata. Then the selected chromosomes
must survive the genetic operators crossover and mutation (shrinking phase).
As discussed in Chapter 3, the probability ps(S) of survival of the schema S,

ps(S) =1 _pci_(f% —Pm - o(S) <L
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Formula (4.1) implies that for short, low-order schemata, p,(S) - ps(S) > 1;
because of this, such schemata receive an exponentially increasing number of
trials in subsequent generations. The same holds for the modified (modGA)
version of the algorithm. The expected number of chromosomes of the schema
S in the modGA algorithm is also a product of the number of chromosomes
in the old population £(S,t), the probability of survival (ps(S) < 1), and the
probability of the growth py(S) ~— the only difference is in interpretation of
growing and shrinking phases and their relative order. In the modGA version,
the shrinking phase is the first one: n — r chromosomes are selected for the new
population. The probability of survival is defined as a fraction of chromosomes
of the schema $ which were not selected to die. The growing phase is next and
is manifested in the arrival of r new offspring. The probability of the growth
pg(S) of the schema S is a probability that the schema S expands by a new
offspring generated from the r parents. Again, for short, low-order schemata,
ps(S)-pe(S) > 1 holds and such schemata receive exponentially increasing trials
in subsequent generations.

One of the ideas of the modGA algorithm is a better utilization of the
available storage resource: population size. The new algorithm avoids leaving
exact multiple copies of the same chromosome in the new populations (which
may still happen by accident by other means but is very unlike). On the other
hand, the classical algorithm is quite vulnerable to creation of such multiple
copies. Moreover, such multi-occurrences of super individuals create a possibility
for a chain reaction: there is an chance for an even larger number of such exact
copies in the next population, etc. This way the already limited population
size can actually represent only a decreasing number of unique chromosomes.
Lower space utilization decreases the performance of the algorithm; note that
the theoretical foundations of genetic algorithms assume infinite population
size. In the modGA algorithm we may have a number of family members for a
chromosome, but all such members are different (by a family we mean offspring
of the same parent).

As an example consider a chromosome with an expected value of appear-
ances in P(t + 1) equal p = 3. Also assume that the classical genetic algorithm
has probability of crossover and mutation p. = 0.3 and p,, = 0.003, a rather
usual scenario. Following the selection, ‘there will be exactly p = 3 copies of
this chromosome in P(¢t + 1) before reproduction. After reproduction, assuming
chromosome length m = 20, the expected number of exact copies of this chro-
mosome remaining in P(t + 1) will be p- (1 — p. — pr - m) = 1.92. Therefore,
it is safe to say that the next population will have two exact copies of such a
chromosome, reducing the number of different chromosomes.

The modification used in the modGA is based on the idea of the crowding
factor model [82], where a newly generated chromosome replaces some old one.
But the difference is that in the crowding factor model the dying chromosome
is selected from those which resemble the new one, whereas in the modGA the
dying chromosomes are those with lower fitness.
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The modGAs, for small values of the parameter 7, belong to a class of Steady
State GAs (SSGA) [394], [382]; the main difference between GAs and SSGAs is
that in the latter only few members of the population are changed (within each
generation). There is also some similarity between the modGA and classifier
systems (Chapter 12): a genetic component of a classifier system changes the
population as little as possible. In the modGA we can regulate such a change
using the parameter r, which determines the number of chromosomes to re-
produce and the number of chromosomes to die. In the modGA, pop_size —
chromosomes are placed in a new population without any change. In particu-
lar, for r = 1, only one chromosome is replaced in each generation. Recently,
Miihlenbein [289] proposed Breeder GAs (BGA), where r best individuals are
selected and mated randomly until the number of offspring is equal to the size
of the population. The offspring generation replaces the parent population and
the best individual found so far remains in the population.

4.2 Characteristics of the function

The modGA algorithm provides a new mechanism for forming a new population
from the old one. However, it seems that some additional measures might be
helpful in fighting problems related to the characteristic of the function being
optimized. Over the years we have seen three basic directions. One of them
borrows the simulated annealing technique of varying the system’s entropy,
(see e.g., [359], where the authors control the rate of population convergence by
thermodynamic operators, which use a global temperature parameter).

Another direction is based on allocation of reproductive trials according to
rank rather than actual evaluation values (as discussed in the previous section),
since ranking automatically introduces a uniform scaling across the population.

The last direction concentrates on trying to fix the function itself by intro-
ducing a scaling mechanism. Following Goldberg [154, pp. 122-124] we divide
such mechanisms into three categories:

1. Linear Scaling. In this method the actual chromosomes’ fitness is scaled
as

fl=axfi+bh

The parameters a,b are normally selected so that the average fitness is
mapped to itself and the best fitness is increased by a desired multiple
of the average fitness. This mechanism, though quite powerful, can in-
troduce negative evaluation values that must be dealt with. In addition,
the parameters a, b are normally fixed for the population life and are not
problem dependent.

2. Sigma Truncation. This method was designed as an improvement of linear
scaling both to deal with negative evaluation values and to incorporate



66 4. GAs: Selected Topics

problem dependent information into the mapping itself. Here the new
fitness is calculated according to:

fi=fi+(f-cro),

where ¢ is chosen as a small integer (usually a number from the range
1 and 5) and ¢ is the population’s standard deviation; possible negative
evaluations f' are set to zero.

3. Power Law Scaling. In this method the initial fitness is taken to some
specific power:

fi=fF,

with some k& close to one. The parameter k scales the function f; however,
in some studies [138] it was concluded that the choice of &k should be
problem dependent. In the same study the author used £ = 1.005 to
obtain some experimental improvements.

The most noticeable problem associated with the characteristic of the func-
tion under consideration involves differences in relative fitness. As an example
consider two functions: f1(z) and fa(z) = fi(z) + const. Since they are both ba-
sically the same (i.e., they share the same optima), one would expect that both
can be optimized with similar degree of difficulty. However, if const > fi(z),
then the function fo(z) will suffer from (or enjoy) much slower convergence
than the function f;(z). In fact, in the extreme case, the second function will
be optimized using a totally random search; such a behavior may be tolerable
during the very early life of the population but would be devastating later on.
Conversely, fi(z) might be converging too fast, pushing the algorithm into a
local optimum.

In addition, due to the fixed size of the population, the behavior of a GA
may be different from run to run — this is caused by errors of finite sampling.
Consider a function fi(z) with a sample zf € P(t) close to some local opti-
mum and f(z!) much greater than the average fitness f(z¢) (i.e., z} is a super
individual). Furthermore, assume that there is no z% close to the sought global
maximum. This might be the case for a highly non-smooth function. In such a
case, there is a fast convergence towards that local optimum. Because of that,
the population P(t+ 1) becomes over-saturated with elements close to that so-
lution, decreasing the chance of a global exploration needed to search for other
optima. While such a behavior is permissible at the later evolutionary stages,
and even desired at the very final stages, it is quite disturbing at the early ones.
Moreover, normally late populations (during late stages of the algorithm) are
saturated with chromosomes of similar fitness as all of those are closely related
(by the mating processes). Therefore, using the traditional selective techniques
the sampling actually becomes random. Such a behavior is exactly the opposite
of the most desirable one, where there is a decreased influence of relative chro-
mosomes fitness on the selection process during the initial stages of population
life and increased influence at late stages.
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One of the best known systems, GENESIS 1.2ucsd, uses two parameters
to control the search with respect to the characteristic of the function being
optimized: the scaling window and the sigma truncation factor. The system
minimizes a function: in such cases usually the evaluation function eval returns

eval(z) = F — f(x),

where F is a constant such that F' > f(z) for all z. As discussed earlier, a poor
choice of F' may have unfortunate effect on the search, moreover, F’ might be not
available a priori. The scaling window W of the GENESIS 1.2ucsd allows the
user to control how often the constant F' is updated: if W > 0, the system sets
F to the greatest value of f(z) which has occurred in the last W generations.
A value W = 0 indicates an infinite window, i.e., F = max{f(z)} over all
evaluations. If W < 0, the users can use another method discussed earlier:
sigma truncation.

It is important also to point out the significance of the termination condition
used in the algorithm. The simplest termination condition would check the
current generation number; the search is terminated if the total number of
generations exceeds a predefined constant. In terms of Figure 0.1 (Introduction),
such termination condition is expressed as “t > T for some constant 7. In many
versions of evolution programs, not all individuals need to be re-evaluated: some
of them pass from one generation to the next without any alteration. In such
cases it might be meaningful (for the sake of comparison with some other,
traditional algorithms) to count the number of function evaluations (usually,
such a number is proportional to the number of generations) and terminate
the search when the number of function evaluations exceeds some predefined
constant.

However, the above termination conditions assume user’s knowledge on the
characteristic of the function, which influence the length of the search. In many
instances it is quite difficult to claim that the total number of generations (or
function evaluations) should be, say, 10,000. It seems that it would be much
better if the algorithm terminates the search, when the chance for a significant
improvement is relatively slim.

There are two basic categories of termination conditions, which use the
characteristic of the search for making termination decisions. One category is
based on the chromosome structure (genotype); the other—on the meaning of
a particular chromosome (phenotype). Terminations conditions from the first
category measure the convergence of the population by checking the number
of converged alleles, where allele is considered converged if some predetermined
percentage of the population have the same (or similar—for non-binary repre-
sentations) value in this allele. If the number of converged alleles exceeds some
percentage of total alleles, the search is terminated. Terminations conditions
from the second category measure the progress made by the algorithm in a
predefined number of generations: if such progress is smaller than some epsilon
(which is given as a parameter of the method), the search is terminated.
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4.3 Contractive mapping genetic algorithms

The convergence of genetic algorithms is one of the most challenging theoret-
ical issues in the evolutionary computation area. Several researchers explored
this problem from different perspectives. Goldberg and Segrest [163] provided a
finite Markov chain analysis of genetic algorithm (finite population, reproduc-
tion and mutation only). Davis and Principe [80] investigated a possibility of
extrapolation of the existing theoretical foundation of the simulated annealing
algorithm onto a Markov chain genetic algorithm model. Eiben, Aarts, and Van
Hee [98] proposed an abstract genetic algorithm which unifies genetic algorithms
and simulated annealing; a Markov chain analysis on a such abstract genetic
algorithm is discussed and conditions implying that the evolution process finds
an optimum with probability 1 are given. Kingdon [224] investigated starting
points, convergence and the class of problems genetic algorithms find hard to
solve. The notion of competing schemata is generalized and the probability of
convergence of such schemata is given. Several researchers considered also vari-
ous definitions of deceptive problems [154]. Recently [334] Rudolph proved that
a classical genetic algorithm never converges to the global optimum, but mod-
ified versions, which maintain the best solution in the population (i.e., elitist
model) do.

One possible approach for explaining the convergence properties of genetic
algorithm might be based on Banach fixpoint theorem [386]. It provides an in-
tuitive explanation of a convergence of GAs (without elitist model); the only
requirement is that there should be an improvement in subsequent populations
(not necessarily improvement of the best individual). Banach fixpoint theorem
deals with contractive mappings on metric spaces. It states that any such a
mapping f has a unique fixpoint, i.e., an element = such that f(z) = z. Fix-
point techniques are generally accepted as a powerful tool for defining semantics
of computations. For example, the denotational semantics of a program or com-
putation is usually given as the least fixpoint of a continuous mapping defined
on a suitable complete lattice. However, unlike in the traditional denotational
semantics, we found that these are metric spaces that provide a very simple and
natural way to express the semantics of genetic algorithms. Genetic algorithms
can be defined as transformations between populations. Suppose now that we
are able to find such metric spaces, in which those transformations are contrac-
tive. In such a case we are given a semantics of genetic algorithms as fixpoints of
the underlying transformations. Since any such transformation has the unique
fixpoint, we get the convergence of genetic algorithms as a simple corollary.

Intuitively, a metric space is an ordered pair of a set and a function that
allows us to measure the distance between any pair of elements of the set.
A mapping f defined on elements of such a set is contractive if the distance
between f(z) and f(y) is less® than the distance between x and y.

3Actually, as we shall see later, the term less is a bit stronger than usual.
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Let us now define the basic notions more formally. Denote the set of real
numbers by R. A set S together with a mapping 6 : S x S — R is a metric
space if the following conditions are satisfied for any elements z,y € S

e 5(z,y) > 0and §(z,y) =0iff z =y
* 6(z,y) = 6(y, )
o 6(x,y)+6(y,2) = b8(z,2).

The mapping 0 is called a distance. We usually denote metric spaces by (S, 8).
Let (S, 6) be a metric space and let f:.S — S be a mapping. We shall say
that f is contractive iff there is a constant € € [0,1) such that for all z,y € S

8(f(2), f(¥) S ex6(x,y).

In order to formulate Banach theorem, we have to define the notion of
completeness of metric spaces. We say that the sequence pg, p1, ... of elements
of metric space (S, 6) is a Cauchy sequence iff for any ¢ > 0 there is k such that
for all m,n > k, 8(pm,Pn) < €. We say that a metric space is complete if any
Cauchy sequence g, pi, .- has a limit p = lim, o py.

We are now ready to formulate the Banach theorem. The proof of the the-
orem was for the first time given in [25] and can be found in most manuals on
topology (e.g., [94], p. 60).

Theorem. [25] Let (S, 8) be a complete metric space and let f: S — S bea
contractive mapping. Then there f has a unique fixpoint € S such that for
any rg € S,
r = lim f'(z),
1—00

where f(zo) = 2o and f*'(zo) = f(f*(20)).
The Banach theorem has a very intuitive application to the case of genetic al-
gorithms. Namely, if we construct the metric space S in such a way that its
elements are populations, then any contractive mapping f has unique fixpoint,
which by Banach theorem is obtained by iteration of f applied to an arbitrary
chosen initial population P(0). Thus if we find a suitable metric space in which
genetic algorithms are contracting, then we are able to show the convergence of
those algorithms to the same fixpoint independently of the choice of initial pop-
ulation. We shall show that such a construction is possible for a slightly modified
genetic algorithm, called Contractive Mapping Genetic Algorithm (CM-GA).

Without any loss of generality we assume that we deal with maximization
problems, i.e., problems for which a solution Z; is better than solution Z; iff
eval(T;) > eval(T;).

We assume, that the size of a population pop_size = n is fixed; every popu-
lation consists of n individuals, i.e., P = {Zi,...,7,}. Moreover, let us consider
an evaluation function Ewal for a population P; for example, we can assume

1
Eval(P) = = Z eval(T;),
" z.eP
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where eval returns the ‘fitness’ of an individual Z; from the population P. The
set S consists of all possible populations, P, i.e., any vector {Z;,...,ZTp} € S.

Now we define a mapping (distance) 6 : S x S — R and a contractive
mapping f : § — S in the metric space (S,8). The distance § in the metric
space S of populations can be defined as:

0 Zf Pl = PQ
6(P1,P2)= 11+M—E’Ual(P1)l+
|1+ M — Eval(P,)| otherwise

where M is the upper limit of the eval function in the domain of interest, i.e.,
eval(Z) < M for all individuals Z (consequently, Eval(P) < M for all possible
populations P). Indeed,

e §(P, P,) > 0 for any populations P, and P; moreover, §( Py, P,) = 0 iff
PI = P27

e §(P1, P) = 8(P,, P\), and

o 6(Py, Py)+6(Py, Py) = |14 M — Eval(P,)| +|1+M — Bval( P,)| + |1+ M —
Eval(P)|+1+M ~ Eval(P3)| > |1+M — Eval(Py)|+|1+ M —FEval(P;)| =
5(P17P3)7

and, consequently, (S, ) is a metric space.

Moreover, the metric space (S, 8) is complete. This is because for any Cauchy
sequence Py, Py, ... of populations there exist k such that forall n > k, P, = P.
It means that all Cauchy sequences P, have a limit for i — o0.4

Now we are ready to discuss the contractive mapping, f : S — §, which is
simply a single iteration of a run® of genetic algorithm (see Figure 4.3) provided,
that there was an improvement (in terms of function Eval) from population P(¢)
to population P(t+1). In such a case, f(P(¢)) = P(t+1). In other words, a ¢-th
iteration of a genetic algorithm would serve as a contractive mapping operator
fiff Eval(P(t)) < Eval(P(t+1)). If there is no improvement, we do not count
such iteration, i.e., we run selection and recombination process again.

The structure of such modified genetic algorithm (Contractive Mappimng
Genetic Algorithm—CM-GA) is given in Figure 4.2.

The modified iteration of the CM-GA indeed satisfies the requirement for
contractive mapping. It is clear that if an iteration f : P(t) — P(t + 1)
improves a population in terms of function Eval, i.e., if

Eval(Pi(t)) < Eval(f(Pi(t))) = Eval(P,(t + 1)), and
Eval(Py(¢)) < Eval(f(Py(8))) = Eval(Pa(t + 1)),

4Note that in the case of genetic algorithms we essentially deal with finite metric spaces,
as there is only a finite and bounded number of elements of all possible populations. Thus
Banach demand as to the completeness of metric spaces is in that case always satisfied. In
our case, however, (S,8) is complete for any set S.

5By a run we mean here any observable computation sequence.
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procedure CM-GA
begin
t=0
initialize P(%)
evaluate P(t)
while (not termination-condition) do
begin contractive mapping f(P(t)) — P(t+1)
t=t4+1
select P(t) from P(t —1)
recombine P(t)
evaluate P(t)
if Eval(P(t — 1)) > Eval(P(t))
thent=¢—-1
end
end

Fig. 4.2. Contractive mapping genetic algorithm

then

S(f(P1(t)), f(Pa(8)) = |1+ M — Eval(f(Py(£)))] + 1+ M = Eval(f(P(t)))] <

Moreover, as one always deals with a particular implementation of the algo-
rithms the improvement is not less than the smallest real number, given by the
implementation.

In summary, the CM-GA satisfies the assumptions of Banach fixpoint theo-
rem: the space of populations {5, §) is a complete metric space and the iteration
f: P(t) — P(t+1) (which improves a population in terms of evaluation func-
tion Ewval) is contractive. Consequently,

x __ 15 i
i.e., the CM-GA algorithm converges to population P*, which is a unique fix-
point in the space of all populations.

Obviously, P* represents the population which yields the global optimum.
Note that the Ewval function was defined as

Eval(P) = % > eval(Ts);

T;eP

it means that the fixpoint P* is achieved when all individuals in this population
have the same (global maximum) value. Moreover, P* does not depend on the
initial population, P(0).

An interesting problem appears when the evaluation function eval has more
than one maximum. In such a case contractive mapping genetic algorithm does
not really define contractive mapping, as for optimal populations P, Py,
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S(f(P), f(Py)) = 6(Py, B).

On the other hand, it can be shown in this case that CM-GA converges to one
of possible optimal populations. That follows from the fact that each run of the
algorithm converges to an optimal population.

At the first glance the result seems surprising: in case of contractive map-
ping genetic algorithms the choice of initial population may influence only the
convergence speed. The proposed contractive mapping genetic algorithm (on
the basis of the Banach theorem) would always converge to the global optimum
(in infinite time). However, it is possible that (at some stage of the algorithm)
no new population is accepted for a long time and the algorithm loops trying to
find a new population P(¢). In other words, mutation and crossover operators
applied to a particular sub-optimal population are unable to produce “better”
population and the algorithm loops trying to perform the next converging step.
The choice of the distance § between populations and the evaluation function
Eval were made just to make things as simple as possible. On the other hand,
such choices can have an influence on the convergence speed and seem to be
application dependent.

4.4 Genetic algorithms with varying population size

The size of the population is one of the most important choices faced by any
user of genetic algorithms and may be critical in many applications. If the
population size is too small, the genetic algorithm may converge too quickly; if
it is too large, the genetic algorithm may waste computational resources: the
waiting time for an improvement might be too long. As we discussed earlier
(section 4.1), there are two important issues in the evolution process of the
genetic search: population diversity and selective pressure. Clearly, both these
factors are influenced by the size of population.

Several researchers have investigated the size of population for genetic al-
gorithms from different perspectives. Grefenstette [169] applied a meta~-GA to
control parameters of another GA (including populations size and the selection
method). Goldberg [151, 153] provides a theoretical analysis of the optimal pop-
ulation size. A study on influence of the control parameters on the genetic search
(online performance for function optimization) is presented in [343]. Additional
experiments with population size were reported in [206] and [59]. Recently Smith
[362] proposed an algorithm which adjusts the population size with respect to
the probability of selection error.

In this section we discuss a Genetic Algorithm with Varying Population
Size (GAVaPS) [12]. This algorithm does not use any variation of selection
mechanism considered earlier (section 4.1), but rather introduces the concept
of “age” of a chromosome, which is equivalent to the number of generations the
chromosome stays “alive”. Thus the age of the chromosome replaces the concept
of selection and, since it depends on the fitness of the individual, influences the
size of the population at every stage of the process. It seems also that such
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approach is more “natural” than any selection mechanism considered earlier:
after all, the aging process is well-known in all natural environments.

It seems that the proposed method of variable population size is similar
to some evolution strategies (Chapter 8) and other methods where offspring
compete with parents for survival. However, an important difference is that the
in other methods the population size remain constant, whereas the size of the
population in GAVaPS varies over time.

Additional motivation for this work was based on the following observation:
a few researchers examined a possibility of introducing adaptive probabilities of
genetic operators in genetic algorithms [77], [115], [343], [367], [368]; other tech-
niques, like evolutionary strategies [349] already incorporated adaptive probabil-
ities for its operators some time ago (we discuss these aspects briefly in section
4.6 and Chapter 8). It seems reasonable to assume that at different stages of
the evolution process different operators would have different significance and
the system should be allowed to self-tune their frequencies and scope. The same
should be true for population sizes: at different stages of the evolution process
different sizes of the population may be ‘optimal’, thus it is important to exper-
iment with some heuristic rules to tune the size of the population to the current
stage of the search.

The GAVaPS algorithm at time ¢ processes a population P(¢) of chromo-
somes. During the ‘recombine P(t)’ step, a new auxiliary population is created
(this is a population of offspring). The size of the auxiliary population is propor-
tional to the size of the original population; the auxiliary population contains
AuzPopSize(t) = | PopSize(t) * p| chromosomes (we refer to parameter p as
a reproduction ratio). Each chromosome from the population can be chosen to
reproduce (i.e., to place the offspring in the auxiliary population) with equal
probability, independently of its fitness value. Offspring are created by applying
genetic operators (crossover and mutation) to selected chromosomes. Since the
selection of the chromosomes does not depend on their fitness values, i.e., there
is no selection step as such, we introduce the concept of age of the chromosome
and its lifetime parameter.

The structure of the GAVaPS is shown in Figure 4.3.

The lifetime parameter is assigned once for each chromosome during the
evaluation step (either after the initialization for all chromosomes or after the
recombination step for members of auxiliary population) and remains constant
(for a given chromosome) through the evolution process, i.e., from the birth
of the chromosome to its death. It means that for the ‘old’ chromosomes their
lifetime values are not re-calculated. The death of a chromosome occurs when
its age, i.e., the number of generations the chromosome stays alive (initially
set to zero), exceeds its lifetime value. In other words, a chromosome’s lifetime
determines the number of GAVaPS generations during which the chromosome
is kept in the population: after its lifetime expires, the chromosome dies off.
Thus the size of the population after single iteration is

PopSize(t + 1) = PopSize(t) + AuzPopSize(t) — D(t)

’
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procedure GAVaPS
begin
t=0
initialize P(t)
evaluate P(%)
while (not termination-condition) do
begin
t=1t+1
increase the age of each individual by 1
recombine P(t)
evaluate P(t)
remove from P(¢) all individuals
with age greater than their lifetime
end
end

Fig. 4.3. The GAVaPS algorithm

where D(t) is the number of chromosomes which die off during generation ¢.

There are many possible strategies of assigning lifetime values. Clearly, as-
signing a constant value {(greater than one) independently of any statistics of
the search would cause an exponential growth of the population size. More-
over, since there is no selection mechanism as such in the GAVaPS, no selective
pressure exists, so assigning a constant value for the lifetime parameter would
result in a poor performance of the algorithm. In order to introduce a selective
pressure, a more sophisticated lifetime calculation should be performed. The
lifetime calculation strategies should (1) reinforce the individuals with above-
average fitness, (and consequently, restrict the individuals with below-average
fitness), and (2) tune the size of the population to the current stage of the search
(in particular, prevent the exponential growth of the population and lower sim-
ulation costs). Reinforcement of fit individuals should result in above-average
allocation of their offspring in the auxiliary populations. Since there is an equal
probability for each individual to undergo the genetic recombination, the ex-
pected number of the individual’s offspring is proportional to its lifetime value
(since the lifetime determines number of generations of keeping the individual
in the population). So individuals having above-average fitness values should
be granted higher lifetime values. While calculating the lifetime, a state of the
genetic search should be taken under consideration. Because of that we use a
few measures of the state of the search: AvgFit, MaxFit and MinFit repre-
sent average, maximal and minimal fitness values, respectively, in the current
population, and AbsFitMax and AbsFitMin stand for maximal and minimal
fitness values found so far. It should be also noted that the lifetime calculation
should be computationally easy in order to spare the computational resources.

Having in mind the above remarks, several lifetime calculation strategies
have been implemented and used for the experiments. The lifetime parameter for
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the i-th individual (lifetime/i/) can be determined by (as in the previous section,
we assume maximization problems with non-negative evaluation function):

(1) proportional allocation:

fitnessli]

min(MinLT + 9 AvgFit

yMazLT)

(2) linear allocation:

fitness|i] — AbsFitMin

MinLT + 2
bl + nAbsFitMam — AbsFitMin

(3) bi-linear allocation:

AvgFit—MinFit

$(MinLT + MaxLT) + n%% if AvgFit < fitness[i)

{ MinLT + plinesslil-MinFit if AvgFit > fitness|i]

where Max LT and MinLT stand for maximal and minimal allowable lifetime
values, respectively (these values are given as the GAVaPS parameters), and
n=3(MaxLT — MinLT).

The first strategy (proportional allocation) has come up from the idea of
roulette-wheel selection: the value of lifetime for particular individual is propor-
tional to its fitness (within limits MinLT and MaxLT). However, this strategy
has a serious drawback — it does not utilize any information about the “objec-
tive goodness” of the individual, which can be estimated by relating its fitness
to the best value found so far. This observation motivates the linear strategy.
In this strategy the lifetime value is calculated accordingly to the individual fit-
ness related to the best value at present. However, if many individuals have their
fitness equal or approximately equal to the best value, such strategy results in
allocating long lifetime values, thus enlarging the size of the population. Finally,
the bi-linear strategy attempts to make a compromise between the first two. It
sharpens the difference between lifetime values of nearly-the-best individuals
utilizing information about the average fitness value, however also taking into
consideration the maximal and minimal fitness values found so far.

The GAVaPS algorithm was tested on the following functions:

Gl: —zsin(l07z) + 1 -20<z<1.0
G2: integer(8z)/8 00<z<1.0
G3: =z -sgn(zx) -10<2<20
. sin? 24+42—0.
Ga: 05+ L(Hom’j(;ﬂyz‘;; ~100 < z,y < 100

The functions were chosen to cover the wide spectrum of possible function
types to be optimized. Functions G1 and G4 are multimodal functions with
many local maxima. Function G2 cannot be optimized by means of any gra-
dient technique, since there is no gradient information available. Function G3
represents a problem recognized as a “deceptive problem” [154]. While maxi-
mizing such function, two directions of growth can easily be recognized, but the
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boundaries are chosen in such way that only for one of them a global maximum
can be obtained. In case of gradient-based techniques with random sampling
this should result in frequent finding the local maximum.

GAVaPS performance has been tested and compared to the performance of
the Goldberg’s Simple Genetic Algorithm (SGA) [154]. Problem coding methods
as well as genetic operators were identical for the SGA and GAVaPS (a simple
binary coding has been used and two genetic operators: mutation and one-point
crossover),

For the experiments we have made the following assumptions. The initial
size of any population was 20. In case of the SGA, the size of initial population
remained constant through the entire simulation. Reproduction ratio p was set
to 0.4 (this parameter is meaningless in case of the SGA). Mutation ratio was
set to 0.015, and crossover ratio was set to 0.65. The length of chromosomes
was 20. Through all our experiments we assumed that minimal and maximal
lifetime values were constant and equal to Max LT = 7 and MinLT = 1.

To compare SGA with GAVaPS, two parameters have been chosen: cost of
the algorithm, represented by evalnum (the average of the number of function
evaluations over all runs) and performance, represented by avgmaz (the average
of the maximal values found over all runs). Both algorithms have the same
termination condition: they terminate if there is no progress in terms of the best
value found for consecutive conv = 20 generations. Population was initialized
at random, and there were 20 independent runs performed. Then, measures
of performance and cost were averaged over these 20 runs giving the reported
results. While testing the influence of a single parameter on the performance
and the cost, the values of the parameters reported above were constant except
the one which influence was tested.

Figure 4.4 shows the PopSize(t) and the average fitness of the population
for a single GAVaPS run for the function G4 with the bi-linear lifetime calcula-
tion (similar observations can be made for other functions and other strategies
for allocating lifetime values). The shape of the PopSize(t) curve seems very
interesting. At first, when the fitness variation is relatively high, the population
size grows. This means, that the GAVaPS makes a wide search for the optima.
Once the neighborhood of the optimum is located, the algorithm starts to con-
verge and the population size is reduced. However, there is still a search for
an improvement. When a possibility for a better result occurs, another “demo-
graphic explosion” takes place, which is followed by another convergence stage.
It seems that the GAVaPS incorporates a self-tuning process by choosing the
population size at each stage of the evolution process.

Figures 4.5-4.6 show the influence of the reproduction ratio on the perfor-
mance of the GAVaPS. For the SGA, this value has no meaning (since in this
case there is a total overlap of the old population by the new one). In case of
the GAVaPS, this value strongly influences the simulation cost, which can be
decreased by lowering the reproduction ratio, however without loss of accuracy
(see relevant values of avgmaz). Judging from the experiments, it seems that
the ‘optimal’ selection of p is approximately 0.4.
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Figures 4.7-4.8 show the influence of the initial population size on the per-
formance (avgmaz) and computation cost (evalnum) of the algorithms. In the
case of the SGA, the population size (for all runs) was constant and equal to
its initial value. As expected, for the SGA low values of population size implied

low cost and poor performance. Increasing population size

at first improves the

performance but also increases cost of computations. Then there is a stage of
“performance saturation”, while cost is still linearly growing. In case of the
GAVaPS, the initial population size has in practice no influence on both per-
formance (very good) and cost (reasonable and sufficient for the very good

performance).
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Fig. 4.5. Comparison of the SGA and GAVaPS: reproduction ratio versus number of evalua-

tions
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Fig.4.7. Comparison of the SGA and GAVaPS: initial population size versus number of
evaluations

Similar observations can be made by analysing the cost and the performance
of both algorithms on remaining functions G1-G3. However, it is important to
note that the SGA has the optimal behavior (best performance with minimum
cost) for different values of the population size for all four problems. On the
other hand, GAVaPS adopts the population size to the problem at hand and the
state of the search. In the table below we report on performance and simulation
cost obtained from the experiments with all testbed functions G1-G4. The rows
‘SGA’, ‘GAVaPS (1), ‘GAVaPS (2)’, and ‘GAVaPS (3)’ contain the best value
found (V') and the number of function evaluations (E) for the SGA and GAVaPS
with proportional, linear, and bi-linear lifetime allocations, respectively. The
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Fig. 4.8. Comparison of the SGA and GAVaPS: initial population size versus average perfor-
mance

optimal population sizes for the SGA for test cases G1 — G4 were 75, 15, 75,
100, respectively.

Type Function
of the Gl G2 G3 G4
algorithm vV E |4 E v E |4 E
SGA 2.814 1467 | 0.875 345 | 1.996 1420 | 0.959 2186
GAVaPS(1) | 2.831 1708 10.875 970 [ 1.999 1682 | 0.969 2133
GAVaPS(2) | 2.841 3040 [ 0.875 1450 | 1.999 2813 | 0.970 3739
GAVaPS(3) | 2.813 1538 | 0.875 670 | 1.999 1555 0.972 2106

Table 4.1. Comparison between three strategies

The linear strategy (2) is characterized by the best performance and (un-
fortunately) the highest cost. On the other hand, the bi-linear strategy (3) is
the cheapest one, but the performance is not as good as in the linear case. Fi-
nally, the proportional strategy (1) provides the medium performance with the
medium cost. It should be noted, that the GAVaPS algorithm with any lifetime
allocation strategy (1)-(3) in most test-cases provides better performance than
the SGA. The cost of the GAVaPS (in comparison to the SGA) is higher, how-
ever, the results of the SGA were reported for the optimal sizes of populations.
If, for example, the population size for the SGA in the experiment with function
G2 was 75 (instead of the optimal 15), then the SGA simulation cost would be
1035.
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The knowledge about the proper selection of GA parameters is still only frag-
mentary and has rather empirical background. Among these parameters, the
population size seems to be the most important, since it has strong influence
on the GA simulation cost. It might be that the best way for its setting is to
let it to self-tune accordingly to the GA actual needs. This is the idea behind
the GAVaPS method: at different stages of the search process different sizes of
the population might be optimal. However, the reported experiments are pre-
liminary and the allocation of the lifetime parameter deserves further research.

4.5 Genetic algorithms, constraints, and the knapsack
problem

As discussed in the Introduction, the constraint-handling techniques for ge-
netic algorithms can be grouped into a few categories. One way of dealing with
candidates that violate the constraints is to generate potential solutions with-
out considering the constraints and then to penalize them by decreasing the
“goodness” of the evaluation function. In other words, a constrained problem
is transformed to an unconstrained one by associating a penalty with all con-
straint violations; these penalties are included in the function evaluation. Of
course, there are a variety of possible penalty functions which can be applied.
Some penalty functions assign a constant as a penalty measure. Other penalty
functions depend on the degree of violation: the larger violation is, the greater
penalty is imposed (however, the growth of the function can be logarithmic,
linear, quadratic, exponential, etc. with respect to the size of the violation).

Additional version of penalty approach is elimination of non-feasible solu-
tions from the population (i.e., application of the most severe penalty: death
penalty). This technique was used successfully in evolution strategies (Chap-
ter 8) for numerical optimization problems. However, such approach has its
drawbacks. For some problems the probability of generating (by means of stan-
dard genetic operators) a feasible solution is relatively small and the algorithm
spends a significant amount of time evaluating illegal individuals. Moreover, in
this approach non-feasible solutions do not contribute to the gene-pool of any
population.

Another category of constraint handling methods is based on application
of special repair algorithms to “correct” any infeasible solutions so generated.
Again, such repair algorithms might be computationally intensive to run and the
resulting algorithm must be tailored to the particular application. Moreover, for
some problems the process of correcting a solution may be as difficult as solving
the original problem.

The third approach concentrates on the use of speciai representation map-
pings (decoders) which guarantee (or at least increase the probability of) the
generation of a feasible solution or the use of problem-specific operators which
preserve feasibility of the solutions. However, decoders are frequently computa-
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tionally intensive to run [73], not all constraints can be easily implemented this
way, and the resulting algorithm must be tailored to the particular application.

In this section we examine the above techniques on one particular problem:
the 0/1 knapsack problem. The problem is easy to formulate, yet, the decision
version of it belongs to a family of NP-complete problems. It is an interesting
exercise to evaluate the advantages and disadvantages of constraint handling
techniques on this particular problem with a single constraint: the conclusions
might be applicable to many constrained combinatorial optimization problems.
It should be noted, however, that the main purpose of this section is to illustrate
the concept of decoders, repair algorithms, and penalty functions (discussed
briefly in the Introduction) on one particular example; by no means it is a
complete survey of possible methods. For that reason we do not provide the
optimum solutions for the test cases: we only make some comparisons between
presented methods.

4.5.1 The 0/1 knapsack problem and the test data

There is a variety of knapsack-type problems in which a set of entities, together
with their values and sizes, is given, and it is desired to select one or more
disjoint subsets so that the total of the sizes in each subset does not exceed
given bounds and the total of the selected values is maximized (252]. Many of
the problems in this class are NP-hard and large instances of such problems can
be approach only by using heuristic algorithms. The problem selected for these
experiments is the 0/1 knapsack problem. The task is, for a given set of weights
W i), profits P[i], and capacity C, to find a binary vector & = {(z[1],...,z[n]),
such that

Y i) Wi < C,
and for which
P(z) = T, z[d] - Pld]

is maximum.

As indicated earlier, in this section we analyse the experimental behavior
of a few GA-based algorithms on several sets of randomly generated test prob-
lems. Since the difficulty of such problems is greatly affected by the correlation
between profits and weights [252], three randomly generated sets of data are
considered:

o uncorrelated:
W/i] := (uniformly) random({1..v]), and
P[i] := (uniformly) random([1..v]).

o weakly correlated:

W{i] := (uniformly) random([1..v]), and
P[i] := W[i]+ (uniformly) random([—r..r]),
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(if, for some i, P[i] < 0, such profit value is ignored and the calculations
are repeated until P[] > 0).

e strongly correlated:

W{i] := (uniformly) random([1..v]), and
Pli] :==W[i] +r.

Higher correlation implies smaller value of the difference:
maxi=1.n{ P[]/ Wi} — minimy o { P[]/ W[i]};

as reported in [252], higher correlation problems have higher expected difficulty.

Data have been generated with the following parameter settings: v-= 10 and
r = 5. For the tests we used three data sets of each type containing n = 100,
250, and 500 items, respectively. Again, following a suggestion from [252], we
have taken under consideration two knapsack types:

e restrictive knapsack capacity

A knapsack with the capacity of C; = 2v. In this case the optimal solution
contains very few items. An area, for which conditions are not fulfilled,
occupies almost the whole domain.

e average knapsack capacity

A knapsack with the capacity C; = 0.53"% , W[i]. In this case about half
of the items are in the optimal solution.

As reported in [252], further increasing the value of capacity C does not signif-
icantly increase the computation times of the classical algorithms.

4.5.2 Description of the algorithms

Three types of algorithms were implemented and tested: algorithms based on
penalty functions (A,[i], where i is the index of a particular algorithm in this
class), algorithms based on repair methods (A.[i]), and algorithms based on
decoders (Agfz]). We discuss these three categories of algorithms in turn.

Algorithms A,[i]
In all algorithms in this category a binary string of the length n represents a
solution x to the problem: the i-th item is selected for the knapsack iff z[z] = 1.
The fitness eval(z) of each string is determined as:

eval(x) = Y0, zli] - P[i] — Pen(x),

where penalty function Pen(z) is zero for all feasible solutions @, i.e., solutions
such that 37, z[i] - W[i] < C, and is greater than zero, otherwise.

There are many possible strategies for assigning the penalty value. Here,
three cases only were considered, where the growth of the penalty function
is logarithmic, linear, and quadratic with respect to the degree of violation,
respectively:
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o Ap{l): Pen(z) = logy(1 4 p- (Eio zli]) - W[i] - ©)),
o Ap[2]: Pen(z) = p- (L1 zli} - Wi - C),
o A[3]: Pen(z) = (p- (XL, 2[i] - W[i] - C))*.

In all three cases, p = max;_,_o{P[i]/W[i]}.

Algorithms A,[i]
As in the previous category of algorithms, a binary string of the length n
represents a solution to the problem x: the i-th item is selected for the knapsack

iff zfi] = 1.
The fitness eval(x) of each string is determined as:
eval(x) =31, 2'[{] - P[],

where vector ' is a repaired version of the original vector .

There are two interesting aspects here. First, we may consider different re-
pair methods. Second, some percentage of repaired chromosomes may replace
the original chromosomes in the population. Such replacement rate may vary
from 0% to 100%; recently Orvosh and Davis [301] reported so-call 5% rule
which states that if replacing original chromosomes with a 5% probability, the
performance of the algorithm is better than if replacing with any other rate (in
particular, it is better than with ‘never replacing’ or ‘always replacing’ strate-
gies).

We have implemented and tested two different repair algorithms. Both al-
gorithms are based on the same procedure, shown in Figure 4.9.

procedure repair (x)
begin
knapsack-overfilled := false
=
ity i - Wi > C
then knapsack-overfilled := true
while (knapsack-overfilled) do
begin
i := select an item from the knapsack
remove the selected item from the knapsack:
ie., z2'[i}:=0
X7, o/l - Wii] < C
then knapsack-overfilled := false
end
end

Fig. 4.9. The repair procedure

The two repair algorithms considered here differ only in selection procedure
select, which chooses an item for removal from the knapsack:
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e A,[1] (random repair). The procedure select selects a random element
from the knapsack.

o A,[2] (greedy repair). All items in the knapsack are sorted in the decreas-
ing order of their profit to weight ratios. The procedure select chooses
always the last item (from the list of available items) for deletion.

Algorithms A4[i]

A possible decoder for the knapsack problem is based on integer representa-
tion.® Here we used the ordinal representation (see Chapter 10 for more details
on this representation) of selected items. Each chromosome is a vector of n
integers; the i-th component of the vector is an integer in the range from 1
to n — 4 + 1. The ordinal representation references a list L of items; a vector
is decoded by selecting appropriate item from the current list. For example,
for a list of items L = (1,2,3,4,5,6), the vector (4,3,4,1,1,1) is decoded as
the following sequence of items: 4, 3, 6 (since 6 is the 4-th element on the
current list after removal of 4 and 3), 1, 2, and 5. Clearly, in this method a
chromosome can be interpreted as a strategy of incorporating items into the
solution. Additionally, one-point crossover applied to any two feasible parents
would produce a feasible offspring. A mutation operator is defined in a similar
way as for the binary representation: if the i-th gene undergoes mutation, it
takes a value random value (uniform distribution) from the range [1..n — i+ 1].
The decoding algorithm is presented in Figure 4.10.

The two algorithms based on decoding techniques considered here differ only in
the procedure build:

e Ay[1] (random decoding). In this algorithm the procedure build creates
a list L of items such that the order of items on the list corresponds to
the order of items in the input file (which is random).

o Ay[2] (greedy decoding). The procedure build creates a list L of items
in the decreasing order of their profit to weight ratios. The decoding of
the vector @ is done on the basis of the sorted sequence (there are some
similarities with the A,[2] method). For example, z[i] = 23 is interpreted
as the 23-rd item (in the decreasing order of the profit to weight ratios)
on the current list L.

4.5.3 Experiments and results

In all experiments the population size was constant and equal to 100. Also,
probabilities of mutation and crossover were fixed: 0.05 and 0.65, respectively.

SThere are, of course, other possibilities. We can stay, for example, with binary represen-
tation, and interpret a string from the left to the right (i.e., from ¢ = 1 to n) in the following
fashion: take the i-th item if (1) i = 1, and (2) there is a room in the knapsack for this item.
Such interpretation always results in a feasible solution. Moreover, if items are sorted by the
profit to weight ratio, a solution of all 1’s correspond to the solution by the greedy algorithm.
An example of such decoder is given in section 15.3, part .
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procedure decode (x)
begin
build a list L of items
i:=1
WeightSum =0
ProfitSum =0
while 1 < n do
begin
j = ali]
remove the j-th item from the list L
if WeightSum + W[j] < C then
begin
WeightSum = WeightSum + Weight|j]
ProfitSum := ProfitSum + Profit[j]
end
1=1+1
end
end

Fig. 4.10. The decoding procedure for the ordinal representation

As a performance measure of the algorithm we have collected the best solution
found within 500 generations. It has been empirically verified that after such
number of generations no improvement has been observed. The results reported
in the Table 4.2 are mean values of the 25 experiments. The exact solutions are
not listed there; the table compares only the relative effectiveness of different
algorithms. Note, that the data files were unsorted (arbitrary sequences of items,
not related to their P[i]/W[i] ratios). The capacity types C; and Cs, stand for
restrictive and average capacities (section 2), respectively.

Results for the methods A,[1] and A,[2] have been obtained using the 5% repair
rule. We have also examined whether the 5% rule works for the 0/1 knapsack
problem (the rule was discovered during experiments on two other combinato-
rial problems: network design problem and graph coloring problem [301]). For
the purpose of comparison we have chosen the test data sets with the weak
correlation between weights and profits. All parameters settings were fixed and
the value of the repair ratio varied from 0% to 100%. We have observed no
influence of the 5% rule on performance of the genetic algorithm. The results
(algorithm A,[2]) have been collected in the Table 4.3.

The main conclusions drawn from the experiments can be summarized as
follows:

e Penalty functions A,[i] (for all ) do not produce feasible results on prob-
lems with restrictive knapsack capacity (C;). This is the case for any
number of items (n = 100, 250, and 500) and any correlation.
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Correl. [No. of|{Cap. method
items | type|| A[1] [ Ap[2] [ Ap[3] [| A-[1] [ A-[2] [ Aa[1] | 4a[2]
none | 100 | C) * * * 629 [ 94.0 || 63.5 | 59.4
Cs i 398.1 | 341.3 | 342.6 |[ 344.6 | 371.3 || 354.7 | 353.3
250 | &y * * * 62.6 | 135.1 || 58.0 | 604
Cy |[919.6 | 837.3 | 825.5 || 842.2 | 894.4 || 867.4 | 857.5
500 | * * * 63.9 | 156.2 )| 61.0 | 61.4
C, |11712.2|1570.8/1565.1|[1577.4|1663.2((1602.8|1597.0
weak | 100 | C4 * * * 39.7 | 51.0 || 38.2 | 384
C, ]| 408.5 | 327.0 | 328.3 || 330.1 [ 358.2 || 333.6 | 332.3
250 | 4 * * * 43.7 | 74.0 || 42.7 | 44.7
Cs || 920.8 | 791.3 | 788.5 || 798.4 | 852.1 {| 804.4 | 799.0
500 | C4 * * * 44.5 | 93.8 || 43.2 | 445
Cy |[1729.0{1531.8/|1532.0{1538.61624.8(/1548.4(1547.1
strong| 100 | C4 * * * 61.6 | 90.0 || 59.5 | 59.5
Cy J| 741.7 | 564.5 | 564.4 || 566.5 | 577.0 || 576.2 | 576.2
250 | Cy * * * 65.5 | 117.0 {{ 65.5 | 64.0
C, (|1631.9{1339.5(1343.411345.81364.4|| 1366.4|1359.0
500 | C) * * * 67.5 {1200 || 67.1 | 64.1
Cy [|3051.6|2703.8(2700.8((2709.5]2748.1([2738.0|2744.0

Table 4.2, Results of experiments; symbol ‘*’ means, that no valid solution has been found
within given time constraints

o Judging only from the results of the experiments on problems with average
knapsack capacity (Cs), the algorithm A,[1] based on logarithmic penalty
function is a clear winner: it outperforms all other techniques on all cases
(uncorrelated, weakly and strongly correlated, with n = 100, 250, and 500
items). However, as mentioned earlier, it fails on problems with restrictive
capacity.

o Judging only from the results of the experiments on problems with re-
strictive knapsack capacity (C1), the repair method A4,[2] (greedy repair)
outperforms all other methods on all test cases.

These results are quite intuitive. In the case of restrictive knapsack capacity,
only very small fraction of possible subsets of items constitute feasible solutions;
consequently, most penalty methods would fail. This is generally the case for
many other combinatorial problems: the smaller the ratio between feasible part
of the search space and the whole search space, the harder it is for the penalty
function methods to provide feasible results. This was already observed in [332],
where the authors wrote:

“On sparse problems, [harsh penalty functions] seldom found solu-
tions. The solutions which it did occasionally manage to find were
poor. The reason fo- this is clear: with a sparse feasible region, an
initial population is very unlikely to contain any solutions. Since
[the harsh penalty function} made no distinction between infeasible
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correlation weak

no. of items 100 250 500

capacity type CTCz Cy l Cy Cy l C»

repair ratio
0 94.0/371.3}1134.1}895.0{/ 158.0/1649.1
5 94.0/371.7|(135.1/891.4]1155.8/1648.5
10 94.0{370.2(1135.1|889.5(|157.3|1640.3
15 94.0{368.3((135.3/{895.4{1156.6/1646.2
20 94.0(372.0{1135.6(/905.71/155.8/1643.6
25 94.0(370.2({135.1{894.0({155.8]1644.0
30 94.01367.2((135.1(895.7({157.3{1648.0
35 94.0]370.3(1136.1|896.5]/156.3|1643.3
40 94.0(368.6{[134.3(886.5(/156.1|1648.4
45 94.0{369.0]135.3{891.5]j156.6|1649.0
50 94.0|371.7({134.6/891.0{|156.1|1641.5
55 94.0(371.3|1135.0{895.7{/157.0|1647.0
60 94.0/369.6((135.0(894.0]156.1|1645.0
65 94.0/370.0{/135.1{893.2{|156.6(1642.8
70 94.0/367.6]{135.0/893.4}1156.1]|1640.9
75 94.0]367.7)1135.31895.7|{157.1]1648.1
80 94.01368.2(|134.3/898.5||155.8/1648.5
85 94.0{364.7((135.6(897.4}{156.1|1646.2
90 94.01368.7(/134.3(885.2(/156.1|1648.9
95 94.0{371.2(/135.0{890.5{,155.3|1642.3
100 94.0(370.2(j134.6(901.0(1156.3{1646.1

Table 4.3. Influence of the repair ratio on the performance of the algorithm A, [2}

solutions, the GA wandered around aimlessly. If through a lucky
mutation or strange crossover, an offspring happened to land in the
feasible region, this child would become a super-individual, whose
genetic material would quickly dominate the population and pre-
mature convergence would ensue”.

On the other hand, the repair algorithms perform quite well. In the case of aver-
age knapsack capacity, logarithmic penalty function method (i.e., small penal-
ties) is superior: it is interesting to note that the size of the problem does not
influence the conclusions.

As indicated earlier, these experiments do not provide a complete picture
yet; many additional experiments are planned in the near future. In the category
of penalty functions, it might be interesting to experiment with additional for-
mulae. All considered penalties were of the form Pen(x) = f(x), where f was
logarithmic, linear, and quadratic. Another possibility would be to experiment
with Pen{x) = a + f(x) for some constant a. This would provide a minimum
penalty for any infeasible vector. Further, it might be interesting to experi-
ment with dynamic penalty functions, where their values depend on additional
parameters, like the generation number {this was done in [267] for numerical
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optimization for continuous variables) or characteristic of the search (see [360],
where dynamic penalty functions were used for the facility layout problem: as
better feasible and infeasible solutions are found, the penalty imposed on a
given infeasible solution will change). Also, it seems worthwhile to experiment
with self-adaptive penalty functions. After all, probabilities of applied opera-
tors might be adaptive (as in evolution strategies); some initial experiments
indicate that adaptive population sizes may have some merit (section 4.4); so
the idea of adaptive penalty functions deserves some attention. In its simplest
version, a penalty coefficient would be part of the solution vector and undergo
all genetic (random) changes (as opposed the idea of dynamic penalty functions,
where such penalty coefficient is changed on regular basis as a function of, for
example, generation number).

It is also possible to experiment with many repair schemes, including other
heuristics than the ratio of the profit and the weight. Also, it might be interesting
to combine the penalty methods with repair algorithms: infeasible solutions for
algorithms A,[] could have been repaired into feasible ones.

In the category of decoders it would be necessary to experiment with dif-
ferent (integer) representations (as it was done for the traveling salesman prob-
lem — Chapter 10): adjacency representation (with alternating-edges crossover,
subtour-chunks crossover, or heuristic crossover), or path representation (with
the PMX, OX, and CX crossovers, or even the edge recombination crossover). It
would be interesting to compare the usefulness of these representations and op-
erators for the 0/1 knapsack problem (as it was done for the traveling salesman
problem and scheduling [370]). It is quite possible, that some new problem-
specific crossover would provide with the best results.

4.6 Other ideas

In the previous sections of this chapter we have discussed some issues connected
with removing possible errors in sampling mechanisms. The basic aim of that
research was to enhance genetic search; in particular, to fight the premature
convergence of GAs. During the last few years there have been some other
research efforts in the quest for better schema processing, but using different
approaches. In this section we discuss some of them.

The first direction is related to the genetic operator, crossover. This oper-
ator was inspired by a biological process; however, it has some drawbacks. For
example, assume there are two high performance schemata:

S1=(001**x*x*xx%xx01)and
So = (k*xx]l Lokxkxxx*)

There are also two strings in a population, v; and v,, matched by S, and Ss,
respectively:

v; = (0010001101001) and
vy = (1110110001000).
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Clearly, the crossover cannot combine certain combinations of features en-
coded on chromosomes; it is impossible to get a string to be matched by a
schema

S3=(001%x11xxxxx01),

since the first schema will be destroyed.

Additional argument against the classical, one-point crossover is in some
asymmetry between mutation and crossover: a mutation depends on the length
of the chromosome and crossover does not. For example, if the probability of
mutation is p,, = 0.01, and the length of a chromosome is 100, the expected
number of mutated bits within the chromosome is one. If the length of a chro-
mosome is 1000, the expected number of mutated bits within the chromosome is
ten. On the other hand, in both cases, one-point crossover combines two strings
on the basis of one cross site, regardless the length of the strings.

Some researchers (see, e.g., [104] or [382]) have experimented with other
crossovers. For example, two-point crossover selects two crossing sites and chro-
mosomal material is swapped between them. Clearly, strings v; and v, may
produce a pair of offspring

v) = (001]01100/01001) and
v, = (111}00011|01000),

where v} is matched by
S3=(001%x11xk*xxx01),

which was not possible with one-point crossover.

Similarly, there are schemata that two-point crossover cannot combine. We
can experiment then with multi-point crossover [104], a natural extension of two-
point crossover. Note, however, that since multi-point crossover must alternate
segments (obtained after cutting a chromosome into s pieces) between the two
parents, the number of segments must be even, i.e., a multi-point crossover is
not a natural extension of single-point crossover.

Schaffer and Morishima [341] experimented with a crossover which adapts
the distribution of its crossover points by the same processes already in place
(survival of the fittest and recombination). This was done by introducing special
marks into string representation. These marks keep track of the sites in the
string where crossover occurred. The hope was that the crossover sites would
undergo an evolution process: if a particular site produces poor offspring, the site
dies off (and vice versa). Experiments indicated {341] that adaptive crossover
performed as well or better than a classical GA for a set of test problems.
Spears [367] experimented with adapting a particular crossover (two crossovers:
one-point and uniform crossovers were considered) by extending a chromosomal
representation by additional bit.

Some researchers [104] experimented with other crossovers: segmented cross-
over and shuffle crossover. Segmented crossover is a variant of the multi-point
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crossover, which allows the number of crossover points to vary. The (fixed)
number of crossover points (or segments) is replaced by a segment switch rate.
This rate specifies the probability that a segment will end at any point in the
string. For example, if the segment switch rate is s = 0.2, then, starting from the
beginning of a segment, the chances of terminating this segment at each bit are
0.2. In other words, with the segment switch rate s = 0.2, the expected number
of segments will be m/5, however, unlike multi-point crossover, the number of
crossover points will vary. Shuffle crossover should be perceived as an additional
mechanism which can be applied with other crossovers. It is independent of the
number of crossover points. The shuffle crossover (1) randomly shuffles the bit
positions of the two strings in tandem, (2) crosses the strings, i.e., exchanges
segments between crossover points, and (3) unshuffles the strings.

A further generalization of one-point, two-point, and multi-point crossover
is the uniform crossover [366], [382]: for each bit in the first offspring it decides
(with some. probability p) which parent will contribute its value in that position.
The second offspring would receive the bit from the other parent.

For example, for p = 0.5 (0.5-uniform crossover), the strings

v; = {0010001101001) and
v, = (1110110001000)

may produce the following pair of offspring:

'0/1 = (01011201121202110112010102) and
vl = (13121;020,0,1;05021,020,11),

where subscripts 1 and 2 indicate the parent (vectors v; and wvs, respectively)
for a given bit. If p = 0.1 (0.1-uniform crossover), two strings v; and vy may
produce

'Ull = (01011101120111110112010111) and
'U'Z = (1212120201 1202020211020202).

Since the uniform crossover exchanges bits rather than segments, it can
combine features regardless their relative location. For some problems [382]
this ability outweighs the disadvantage of destroying building blocks. However,
for other problems, the uniform crossover was inferior to two-point crossover.
Syswerda. [382] compared theoretically the 0.5-uniform crossover with one-point
and two-point crossovers. Spears and De Jong [366] provided an analysis of
p-uniform crossovers, i.e., crossovers which involve on average m - p crossover
points.

Eshelman [104] reports on several experiments for various crossover opera-
tors. The results indicate that the ‘loser’ is one-point crossover; however, there
is no clear winner. A general comment on the above experiments is that each
of these crossovers is particularly useful for some classes of problems and quite
poor for other problems. This strengthens our idea of problem dependent oper-
ators leading us towards evolution programs.
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Miihlenbein and Voigt [290] investigated the properties of a new recombi-
nation operator, called gene pool recombination, where the genes are randomly
picked from the gene pool defined by the selected parents. An interesting aspect
of this operator is that it allows so-called orgies: several parents in producing
an offspring. Such a multi-parent crossover was also investigated by Eiben et al.
[100], where several gene scanning techniques (which produce a single offspring
out of several parents) are considered. Renders and Bersini [324] experimented
with simplezr crossover for numerical optimization problems; this crossover in-
volves computing centroid of group of parents and moving from the worst indi-
vidual beyond the centroid point. Also, scatter search techniques [142] propose
the use of multiple parents.

Several researchers looked also at the effect of control parameters of a GA
(population size, probabilities of operators) on the performance of the system.
Grefenstette [169] applied a meta-GA to control parameters of another GA.
Goldberg [153] provides a theoretical analysis of the optimal population size.
A complete study on influence of the control parameters on the genetic search
(online performance for function optimization) is presented in [343]. The results
suggest that (1) mutation plays a stronger role than has previously been ad-
mitted (mutation is regarded as a background operator), (2) the importance of
the crossover rate is smaller than expected, (3) the search strategy based on
selection and mutation only might be a powerful search procedure even without
the assistance of crossover (like evolution strategies, presented in Chapter 8).
However, GAs still lack good heuristics to determine good values for their pe-
rameters: there is no single setting which would be universal for all considered
problems. It seems that finding good values for the GA parameters is still more
an art than a science.

Until this chapter we have discussed two basic genetic operators: crossover
(one-point, two-point, uniform, etc.) and mutation, which were applied to in-
dividuals or single bits at some fixed rates (probabilities of crossover p. and
mutation pn). As we have seen in the running example of Chapter 2, it was
possible to apply crossover and mutation to the same individual (e.g., v13). In
fact, these two basic operators can be viewed as one recombination operator,
the “crossover and mutation” operator, since both operations can be applied
to individuals at the same time. One possibility in experimenting with genetic
operators is to make them independent: one or the other of these operators will
be applied during the reproduction event, but not both [78]. There are & few
advantages of such separation. Firstly, a mutation will not be applied to the
result of the crossover operator any longer, making the whole process conceptu-
ally simpler. Secondly, it is easier to extend a list of genetic operators by adding
new ones: such a list may consist of several, problem dependent operators. This
is precisely the idea behind evolution programming: there are many problem
dependent “genetic operators”, which are applied to individual data structures.
Recall also, that for evolution programs presented in this book, we have devel-
oped a special selection routine modGA (previous section) which facilitates the
above idea. Moreover, we can go further. Each operator may have its own fitness
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which would undergo some evolution process as well. Operators are selected and
applied randomly, however, according to their fitness. This idea is not new and
has been around for some time [77], [115], [78], but it is getting a new meaning
and significance in the evolution programming technique.

Another interesting direction in search for a better schema processing, men-
tioned already in the previous chapter in connection with a deception problem,
was proposed recently {155], [159]: a messy genetic algorithm (mGA).

The mGAs differ from classical GAs in many ways: representation, oper-
ators, size of population, selection, and phases of the evolution process. We
discuss them briefly in turn.

First of all, each bit of a chromosome is tagged with its name (number) —
the same trick we used discussing inversion operator in the previous chapter.
Additionally, strings are of variable length and there is no requirement for a
string to have full gene complements. A string may have redundant and even
contradictory genes. For example, the following strings are legitimate chromo-
somes in mGA:

v, = ((77 1)(150));
U, = ((37 1)(9’ 0)(3’ 1)(37 1)v (3y 1))7
1)3 = ((27 1)(2’ 0)(47 1)(57 0)(67 O)(7> 1)(8a l))

The first number in each parenthesis indicate a position, the second number the
value of the bit. Thus the first string, v,, specifies two bits: bit 1 on the 7th
position and bit 0 on the 1st position.

To evaluate such strings, we have to deal with overspecification (string v,
where two bits are specified on the 2nd position) and underspecification (all
three vectors are underspecified, assuming 9 bit positions) problems. Overspec-
ification can be handled in many ways; for example, some voting procedure
(deterministic or probabilistic) can be used, or a positional precedence. Under-
specification is harder to deal with, and we refer the interested reader to the
source information [155], [158], [159].

Clearly, variable-length, overspecified or underspecified strings would influ-
ence the operators used. Simple crossover is replaced by two (even simpler)
operators: splice and cut. The splice operator concatenates two selected strings
(with the specified splice probability). For example, splicing strings v, with v,
we get,

vy = ((77 1)(17 0)(3’ 1)(9a 0)(3= 1)(3» 1)7 (3’ 1))

The cut operator cuts (with some cut probability) the selected string at a po-
sition determined randomly along its length. For example, cutting string v, at
position 4, we get

vy = ((2,1)(2,0)(4,1)(5,0)) and
Vg = ((61 0)(71 1)(8’ 1))

In addition, there is an unchanged mutation operator, which changes 0 to 1 (or
vice versa) with some specified probability.
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There are some other differences between GA and mGA. Messy genetic al-
gorithms (for reliable selection regardless of function scaling) use a form of tour-
nament selection [155]; they also divide the evolution process into two phases
(the first phase selects building blocks, and only in the second phase are genetic
operators invoked), and the population size changes in the process.

Messy genetic algorithms were tested on several deceptive functions with
very good results [155], [158]. As stated by Goldberg [155):

“A difficult test function has been designed, and in two sets of ex-
periments the mGA is able to find its global optimum. [...] In all
runs on both sets of experiments, the mGA converges to the test
function global optimum. By contrast, a simple GA using a random
ordering of the string is able to get only 256% of the subfunctions
correct.”

and in [158]:

“Because mGAs can converge in these worst-case problems, it is be-
lieved that they will find global optima in all other problems with
bounded deception. Moreover, mGAs are structured to converge in
computational time that grows only as a polynomial function of
the number of decision variables on a serial machine and as a log-
arithmic function of the number of decision variables on a parallel
machine. Finally, mGAs are a practical tool that can be used to
climb a function’s ladder of deception, providing useful and rela-
tively inexpensive intermediate results along the way.”

There were also some other attempts to enhance genetic search. A modi-
fication of GAs, called Delta Coding, was proposed recently by Whitley et al.
[400]. Schraudoph and Belew [347] proposed a Dynamic Parameter Encoding
(DPE) strategy, where the precision of the encoded individual is dynamically
adjusted. These algorithms are discussed later in the book (Chapter 8).
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Numerical Optimization



5. Binary or Float?

There were rules in the
monastery, but the Master
always warned against
the tyranny of the law.

Anthony de Mello, One Minute Wisdom

As discussed in the previous chapter, there are some problems that GA ap-
plications encounter that sometimes delay, if not prohibit, finding the optimal
solutions with the desired precision. One of the implications of these problems
was premature convergence of the entire population to a non-global optimum
(Chapter 4); other consequences include inability to perform fine local tuning
and inability to operate in the presence of nontrivial constraints (Chapters 6
and 7).

The binary representation traditionally used in genetic algorithms has some
drawbacks when applied to multidimensional, high-precision numerical prob-
lems. For example, for 100 variables with domains in the range [—500, 500]
where a precision of six digits after the decimal point is required, the length
of the binary solution vector is 3000. This, in turn, generates a search space of
about 10'°%, For such problems genetic algorithms perform poorly.

The binary alphabet offers the maximum number of schemata per bit of
information of any coding [154] and consequently the bit string representation
of solutions has dominated genetic algorithm research. This coding also facili-
tates theoretical analysis and allows elegant genetic operators. But the ‘implicit
parallelism’ result does not depend on using bit strings [9] and it may be worth-
while to experiment with large alphabets and (possibly) new genetic operators.
In particular, for parameter optimization problems with variables over contin-
uous domains, we may experiment with real-coded genes together with special
“genetic” operators developed for them.

In [157] Goldberg wrote:

“The use of real-coded or floating-point genes has a long, if contro-
versial, history in artificial genetic and evolutionary search schemes,
and their use as of late seems to be on the rise. This rising usage has
been somewhat surprising to researchers familiar with fundamental
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genetic algorithm (GA) theory ([154], (188]), because simple analy-
ses seem to suggest that enhanced schema processing is obtained by
using alphabets of low cardinality, a seemingly direct contradiction
of empirical findings that real codings have worked well in a number
of practical problems.”

In this chapter we describe the results of experiments with various modifica-
tions of genetic operators on floating point representation. The main objective
behind such implementations is {in line with the principle of evolution program-
ming) to move the genetic algorithm closer to the problem space. Such a move
forces, but also allows, the operators to be more problem specific — by utilizing
some specific characteristics of real space. For example, this representation has
the property that two points close to each other in the representation space
must also be close in the problem space, and vice versa. This is not generally
true in the binary approach, where the distance in a representation is normally
defined by the number of different bit positions. However, it is possible to reduce
such discrepancy by using Gray coding.

The procedures for converting a binary number b = (by,. .., b,) into Gray
code number g = (gi,...,gm) and vice versa are given in Figure 5.1; the pa-
rameter m denotes the number of bits in these representations.

procedure Binary-to-Gray
begin
g=2
for k=2 tom do
gk =br_) XOR by

end

procedure Gray-to-Binary

begin
value = ¢
b, = value
for k=2tomdo
begin
if g, = 1 then value = NOTwvalue
b, = value
end
end

Fig. 5.1. The Binary-to-Gray and Gray-to-Binary procedures

Table 5.1 lists the first 16 binary numbers together with the corresponding
Gray codes.

Note that the Gray coding representation has the property that any two
points next to each other in the problem space differ by one bit only. In other
words, an increase of one step in the parameter value corresponds to a change
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Binary | Gray
0000 | 0000
0001 | 0001
0010 | 0011
0011 | 0010
0100 | 0110
0101 | 0111
0110 | 0101
0111 | 0100
1000 | 1100
1001 | 1101
1010 | 1111
1011 | 1110
1100 | 1010
1101 1011
1110 |} 1001
1111 | 1000

Table 5.1. Binary and Gray codes

of a single bit in the code. Note also that there are other equivalent procedures
for converting binary and Gray codes. For example (case of m = 4), a pair of
matrices:

1000 1000
1100 L {1100
A4=10 11 0 AM=l1110

0011 1111

provides the following transformations:
g=Aband b= A"1lg,

where multiplication operations are done modulo 2.

However, we use a floating point representation as it is conceptually closest
to the problem space and also allows for an easy and efficient implementation
of closed and dynamic operators (see also Chapters 6 and 7). Subsequently, we
empirically compared a binary and floating point implementations using various
new operators on many test cases. In this chapter, we illustrate the differences
between binary and float representations on one typical test case of a dynamic
control problem. This is a linear-quadratic problem, which is a particular case of
a problem we use in the next chapter (together with two other dynamic control
problems) to illustrate the progress of our evolution program in connection with
premature convergence and local fine tuning. As expected, the results are better
than those from binary representation. The same conclusion was also reached
by other researchers, e.g., [78], [408].



100 5. Binary or Float?
5.1 The test case

For experiments we have selected the following dynamic contro! problem:

N-1
min (rf\, + Y (=h+ ui)) ,
k=0
subject to
Tt = Ti + Ug, k=0,1,...,N—1,
where zq is a given initial state, 2 € R is a state, and u € R" is the sought
control vector. The optimal value can be analytically expressed as

J* = K().Tg,
where K} is the solution of the Riccati equation:
Ky=1+ Kk+1/(1 + Kk-f—l) and Ky = 1.

During the experiments a chromosome represented a vector of the control
states u. We have also assumed a fixed domain (—200,200) for each u; (ac-
tual solutions fall within this range for the class of tests performed). For all
subsequent experiments we used o = 100 and N = 45, i.e., a chromosome
u = {uy, ..., U4q), having the optimal value J* = 16180.4.

5.2 The two implementations

For the study we have selected two genetic algorithm implementations differing
only by representation and applicable genetic operators, and equivalent other-
wise. Such an approach gave us a better basis for a more direct comparison.
Both implementations used the same selective mechanism: stochastic universal
sampling [23].

5.2.1 The binary implementation

In the binary implementation each element of a chromosome vector was coded
using the same number of bits. To facilitate fast run-time decoding, each element
occupied its own word (in general it occupied more than one if the number of
bits per element exceeded the word size, but this case is an easy extension) of
memory: this way elements could be accessed as integers, which removed the
need for binary to decimal decoding. Then, each chromosome was a vector of N
words, which equals the number of elements per chromosome (or a multiple of
such for cases where multiple words were required to represent a desired number
of bits).

The precision of such an approach depends (for a fixed domain size) on
the number of bits actually used and equals (UB — LB)/(2" — 1), where UB
and LB are domain bounds and n is the number of bits per one element of a
chromosome.
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5.2.2 The floating point implementation

In the floating point (FP) implementation each chromosome vector was coded
as a vector of floating point numbers, of the same length as the solution vector.
Each element was forced to be within the desired range, and the operators were
carefully designed to preserve this requirement.

The precision of such an approach depends on the underlying machine, but
is generally much better than that of the binary representation. Of course, we
can always extend the precision of the binary representation by introducing
more bits, but this considerably slows down the algorithm (see section 5.4).

In addition, the FP representation is capable of representing quite large
domains (or cases of unknown domains). On the other hand, the binary repre-
sentation must sacrifice precision with an increase in domain size, given fixed
binary length. Also, in the FP representation it is much easier to design special
tools for handling nontrivial constraints: this is discussed fully in Chapter 7.

5.3 The experiments

The experiments were conducted on a DEC3100 workstation. All results pre-
sented here represent the average values obtained from 10 independent runs.
During all experiments the population size was kept fixed at 60, and the number
of iterations was set at 20,000. Unless otherwise stated, the binary representa-
tion used n = 30 bits to code one variable (one element of the solution vector),
making 30 - 45 = 1350 bits for the whole vector.

Because of possible differences in interpretation of the mutation operator,
we accepted the probability of chromosomes’ update as a fair measure for com-
paring the floating point and binary representations. All experimental values
were obtained from runs with the operators set to achieve the same such rate;
therefore, some number of iterations can be approximately treated interchange-
ably with the same number of function evaluations.

5.3.1 Random mutation and crossover

In this part of the experiment we ran both implementations with operators
which are equivalent (at least for the binary representation) to the traditional
ones.

Binary

The binary implementation used traditional operators of mutation and crossover.
However, to make them more similar to those of the FP implementation, we
allowed crossover only between elements. The probability of crossover was fixed
at 0.25, while the probability of mutation varied to achieve the desired rate of
chromosome update (shown in Table 5.2).
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Probability of chromosome’s update
implementation 0.6 0.7 0.8 0.9 0.95
Binary, pm 0.00047 | 0.00068 | 0.00098 | 0.0015 | 0.0021
FP, pmm 0.014 0.02 0.03| 0.045| 0.061

Table 5.2. Probabilities of chromosome’s update versus mutation rates

FP

The crossover operator was quite analogous to that of the binary implementation
(split points between float numbers) and applied with the same probability
(0.25). The mutation, which we call random, applies to a floating point number
rather that to a bit; the result of such mutation is a random value from the
domain (LB,UB).

Results

Probability of chromosome’s update | standard
implementation 0.6 0.7 0.8 09| 0.95 | deviation
Binary 42179 | 46102 | 29290 | 52769 | 30573 31212
FP 46594 | 41806 | 47454 | 69624 | 82371 11275

Table 5.3. Average results as a function of probability of chromosome’s update

The results (Table 5.3) are slightly better for the binary case; however, it
is rather difficult to judge them better as all fell well away from the optimal
solution (16180.4). Moreover, an interesting pattern emerged that showed the
FP implementation to be more stable, with much lower standard deviation.

In addition, it is interesting to note that the above experiment was not quite
fair for the FP representation; its random mutation behaves “more” randomly
than that of the binary implementation, where changing a random bit doesn’t
imply producing a totally random value from the domain. As an illustration let
us consider the following question: what is the probability that after mutation
an element will fall within 6% of the domain range (400, since the domain is
{—200, 200)) from its old value? The answer is:

FP: Such probability clearly falls in the range (6, 2-8). For example, for § = 0.05
it is in (0.05,0.1).

Binary: Here we need to consider the number of low-order bits that can be
safely changed. Assuming n = 30 as an element length and m as the
length of permissible change, m must satisfy m < n + log, 8. Since m
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is an integer, then m = |n + log, 8] = 25 and the sought probability is
m/n = 25/30 = 0.833, a quite different number.

Therefore, we will try to design a method of compensating for this drawback in
the following subsection.

5.3.2 Non-uniform mutation

In this part of the experiments we ran, in addition to the operators discussed
in section 5.3.1, a special dynamic mutation operator aimed at both improving
single-element tuning and reducing the disadvantage of random mutation in the
FP implementation. We call it a non-uniform mutation; a full discussion of this
operator is presented in the next two chapters.

FP

The new operator is defined as follows: if s{, = (vy,...,vn) is a chromosome (¢

is the generation number) and the element v, was selected for this mutation,
t+1

the result is a vector st*!' = (v;,...,v,..., Un), where
v k

o= et A, UB - v) if a random digit is 0,
71 v — A(t, v — LB)  if a random digit is 1,

and LB and UB are lower and upper domain bounds of the variable v,. The
function A(t,y) returns a value in the range [0,y] such that the probability
of A(t,y) being close to 0 increases as t increases. This property causes this
operator to search the space uniformly initially (when t is small), and very
locally at later stages; thus increasing the probability of generating the new
number closer to its successor than a random choice. We have used the following
function:

Aty) =y- (1-r7"),

where 7 is a random number from [0..1], T is the maximal generation number,
and b is a system parameter determining the degree of dependency on iteration
number (we used b = 5).

Binary

To be more than fair to the binary implementation, we modeled the dynamic
operator into its space, even though it was introduced mainly to improve the
FP mutation. Here, it is analogous to that of the FP, but with a differently
defined v}

v, = mutate(ve, V(¢,n)),

where n = 30 is the number of bits per one element of a chromosome;
mutate(vg, pos) means: mutate value of the k-th element on pos bit (0 bit is the
least significant), and
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Vit n) = |A(t,n)] if a random digit is 0,
(t,m) = [A(t,n)] if a random digit is 1,

with the b parameter of A adjusted appropriately if similar behavior is desired
(we used b = 1.5).

Results
We repeated similar experiments to those of section 5.3.1 using also the non-
uniform mutations applied at the same rate as the previously defined mutations.

Probability of standard
chromosome’s update | deviation '
implementation 0.8 0.9
Binary 35265 30373 40256
FP 20561 26164 2133

Table 5.4. Average results as a function of probability of chromosome’s update

Now the FP implementation shows a better average performance (Table
5.4). In addition, again the binary’s results were more unstable. However, it is
interesting to note here that despite its high average, the binary implementation
produced the two single best results for this round (16205 and 16189).

5.3.3 Other operators

In this part of the experiment we decided to implement and use as many addi-
tional operators as could be easily defined in both representation spaces.

Binary

In addition to those previously described we implemented a multi-point crossover,
and also allowed for crossovers within bits of an element. The multi-point op-
erator had the probability of application to a single element controlled by a
system parameter (set at 0.3).

FP

Here we also implemented a similar multi-point crossover. In addition, we im-
plemented single and multi-point arithmetical crossovers; they average values
of two elements rather that exchange them, at selected points. Such operators
have the property that each element of the new chromosomes is still within the
original domain. More details of these operators are provided in the next two
chapters.
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Results

Here the FP implementation shows an outstanding superiority (Table 5.5); even
though the best results are not so very different, only the FP was consistent in
achieving them.

Probability of standard
chromosome’s update | deviation Best
implementation 0.7 0.8 0.9
Binary 23814 | 19234 | 27456 6078 | 16188.2
FP 16248 | 16798 | 16198 54 | 16182.1

Table 5.5. Average results as a function of probability of chromosome’s update

5.4 Time performance

Many complain about the high time complexity of GAs on nontrivial problems.
In this section we compare the time performance of both implementations. The
results presented in Table 5.6 are those for runs of section 5.3.3.

Number of elements (V)

implementation 5 15 25 35 45
Binary 1080 | 3123 | 5137 | 7177 | 9221
FP 184 | 398 | 611 | 8231072

Table 5.6. CPU time (sec) as a function of number of elements

Table 5.6 compares CPU time for both implementations on varying number
of elements in the chromosome. The FP version is much faster, even for the
moderate 30 bits per variable in the binary implementation. For large domains
and high precision the total length of the chromosome grows, and the relative
difference would expand as further indicated in Table 5.7.

5.5 Conclusions

The conducted experiments indicate that the floating point representation is
faster, more consistent from run to run, and provides a higher precision (espe-
cially with large domains where binary coding would require prohibitively long
representation). At the same time its performance can be enhanced by special
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Number of bits per binary element
implementation 5 10 20 30 40 50
Binary 4426 | 5355 | 7438 | 9219 | 10981 | 12734
FP 1072 (constant)

Table5.7. CPU time (sec) as a function of number of bits per element; N = 45

operators to achieve high (even higher than that of the binary representation)
accuracy. In addition, the floating point representation, as intuitively closer to
the problem space, is easier for designing other operators incorporating problem
specific knowledge. This is especially essential in handling nontrivial, problem—
specific constraints (Chapter 7).

These conclusions are in accordance with the reasons of the users of genetic-
evolutionary techniques who prefer floating point representation given in {157):
(1) comfort with one-gene-one-variable correspondence, (2) avoidance of Ham-
ming cliffs and other artifacts of mutation operating on bit strings treated as
unsigned binary integers, (3) fewer generations to population conformity.

At this stage the reader is encouraged to run a few experiments (see Ap-
pendix D; exercise 3). Select a few test functions (e.g., take some functions from
Appendix B) and experiment with three GA-based systems with binary, Gray,
and floating point representations. For the first two systems, use GENESIS
1.2ucsd ; for the third one — use GENOCOP (Chapter 7).
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Weeks later, when a visitor asked him
what he taught his disciples, he said,
‘To get their priorities right: Better
have the money than calculate it; better
have the experience than define it.’

Anthony de Mello, One Minute Wisdom

Genetic algorithms display inherent difficulties in performing local search for nu-
merical applications. Holland suggested [188] that the genetic algorithm should
be used as a preprocessor to perform the initial search, before turning the search
process over to a system that can employ domain knowledge to guide the local
search. As observed in [170]:

“Like natural genetic systems, GAs progress by virtue of changing
the distribution of high performance substructures in the overall
population; individual structures are not the focus of attention. Once
the high performance regions of the search space are identified by
a GA, it may be useful to invoke a local search routine to optimize
the members of the final population.”

Local search requires the utilization of schemata of higher order and longer
defining length than those suggested by the Schema Theorem. Additionally,
there are problems where the domains of parameters are unlimited, the number
of parameters is quite large, and high precision is required. These requirements
imply that the length of the (binary) solution vector is quite significant (for 100
variables with domains in the range [—500, 500], where the precision of six digits
after the decimal point is required, the length of the binary solution vector is
3000). As mentioned in the previous chapter, for such problems the performance
of genetic algorithms is quite poor.

To improve the fine local tuning capabilities of a genetic algorithm, which
is a must for high precision problems, we designed a special mutation operator
whose performance is quite different from the traditional one. Recall that a
traditional mutation changes one bit of a chromosome at a time; therefore,
such a change uses only local knowledge — only the bit undergoing mutation is
known. Such a bit, if located in the left portion of a sequence coding a variable, is
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very significant to the absolute magnitude of the mutation effect on the variable.
On the other hand, bits far to the right of such a sequence have quite a smaller
influence while mutated. We decided to use such positional global knowledge
in the following way: as the population ages, bits located further to the right
of each sequence coding one variable get higher probability of being mutated,
while those on the left have such a probability decreasing. In other words, such
a mutation causes global search of the search space at the beginning of the
iterative process, but an increasingly local exploitation later on. We call this a
non-uniform mutation and discuss it later in the chapter. First, we discuss the
problems used for a test bed for this new operator.

6.1 The test cases

In general, the task of designing and implementing algorithms for the solution
of optimal control problems is a difficult one. The highly touted dynamic pro-
gramming is a mathematical technique that can be used in variety of contexts,
particularly in optimal control [37]. However, this algorithm breaks down on
problems of moderate size and complexity, suffering from what is called “the
curse of dimensionality” [33].

Optimal control problems are quite difficult to deal with numerically. Some
numerical dynamic optimization programs available for general users are typ-
ically offspring of the static packages [50] and they do not use dynamic-
optimization specific methods. Thus the available programs do not make an
explicit use of the Hamiltonian, transversality conditions, etc. On the other
hand, if they did use the dynamic-optimization specific methods, they would be
even more difficult for a layman to handle.

On the other hand, to the best of the author’s knowledge, it is only re-
cently that GAs have been applied to optimal control problems in a systematic
way [273], [271]. We believe that previous GA implementations were too weak
to deal with problems where high precision was required. In this chapter we
present our modification of a GA designed to enhance its performance. We
show the quality and applicability of the developed system by a comparative
study of some dynamic optimization problems. Later, the system evolved to
include typical constraints for such optimization problems — this is discussed
in the next chapter (section 7.2). As a reference for these test cases (as well as
many other experiments discussed later in the book), we use a standard compu-
tational package used for solving such problems: the Student Version of General
Algebraic Modeling System with MINOS optimizer [50]. We will refer to this
package in the rest of the book as GAMS.

Three simple discrete-time optimal control models (frequently used in ap-
plications of optimal control) have been chosen as test problems for the evo-
lution program: the linear-quadratic problem, the harvest problem, and the
(discretized) push-cart problem. We discuss them in turn.
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6.1.1 The linear-quadratic problem

The first test problem is a one-dimensional linear-quadratic model:

N-1

ming-z% + Y (s- 2} +7-uf), (6.1)
k=0
subject to
T =a-Zp+b-u, k=01,... ,N—-1, (6.2)

where 2, is given, a, b, g, s, T are given constants, r € R, is the state and ux € R
is the control of the system.
The value for the optimal performance of (6.1) subject to (6.2) is

J* = Ko])g, (63)
where K, is the solution of the Riccati equation:
K =s8+1a K, /(r + VK1), Kn=4q (6.4)

In the sequel, the problem (6.1) subject to (6.2) will be solved for the sets
of the parameters displayed in Table 6.1.

Case | N| =zo s T q a b
1145100 1 1 1 1 1

II| 45100 10 1 1 1 1
III | 45 | 100 | 1000 1 1 1 1
IV | 451 100 1 10 1 1 1
V|45 ]| 100 11 1000 1 1 1
VI | 45| 100 1 1 0 1 1
VII| 45 | 100 1 11| 1000 1 1
VIII | 45| 100 1 1 1]0.01 1
IX | 45 | 100 1 1 1 1]0.01
X | 451100 1 1 1 1] 100

Table 6.1. Ten test cases

In the experiments the value of N was set at 45 as this was the largest hori-
zon for which a comparative numerical solution from GAMS was still achievable.

6.1.2 The harvest problem

The harvest problem is defined as:
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subject to the equation of growth,
Tiy1 = Q- T — Up, (6.6

and one equality constraint,
To = IN, (6.7

where initial state xp is given, a is a constant, and 7, € R and u, € BT are the
state and the (nonnegative) control, respectively.
The optimal value J* of (6.5) subject to (6.6) and (6.7) is:

. _ | %o (aV —1)2
J* = afv—_l—(m (6.8)

Problem (6.5) subject to (6.6) and (6.7) will be solved for a = 1.1, 25 = 100,
and the following values of N = 2, 4, 10, 20, 45.

6.1.3 The push-cart problem

The push-cart problem is to maximize the total distance z;(N) traveled in a
given time (a unit, say), minus the total effort. The system is second order:

z1(k + 1) = zo(k) (6.9)
1
and the performance index to be maximized is:
1 N-1 )
Z'I(N) - 5_1\7 P U (k) (611)

For this problem the optimal value of index (6.11) is:

., 1 3N-1 1 =

The push-cart problem will be solved for different values N = 5, 10, 15, 20,
25, 30, 35, 40, 45. Note that different N correspond to the number of discretiza-

tion periods (of an equivalent continuous problem) rather than to the actual
length of the optimization horizon which will be assumed as one.

6.2 The evolution program for numerical optimization

The evolution program we have built for numerical optimization problems is
based on the floating point representation, and some new (specialized) genetic
operators; we discuss them in turn.
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6.2.1 The representation

In floating point representation each chromosome vector is coded as a vector of
floating point numbers of the same length as the solution vector. Each element
is initially selected as to be within the desired domain, and the operators are
carefully designed to preserve this constraint (there is no such problem in the
binary representation, but the design of the operators is rather simple; we do not
see that as a disadvantage; on the other hand, it provides for other advantages
mentioned below).

The precision of such an approach depends on the underlying machine, but
is generally much better than that of the binary representation. Of course, we
can always extend the precision of the binary representation by introducing
more bits, but this considerably slows down the algorithm, as discussed in the
previous chapter.

In addition, the floating point representation is capable of representing quite
large domains (or cases of unknown domains). On the other hand, the binary
representation must sacrifice precision with an increase in domain size, given
fixed binary length. Also, in the floating point representation it is much easier
to design special tools for handling nontrivial constraints: this is discussed fully
in next chapter.

6.2.2 The specialized operators

The operators we use are quite different from the classical ones, as they work
in a different space (real valued). However, because of intuitive similarities, we
will divide them into the standard classes, mutation and crossover. In addition,
some operators are non-uniform, i.e., their action depends on the age of the
population.

Mutation group:

¢ uniform mutation, defined similarly to that of the classical version:
if 28 = (v1,...,vn) is a chromosome, then each element v, has exactly
equal chance of undergoing the mutative process. The result of a single
application of this operator is a vector (vy, ..., v}, ..., v,), with1 < k£ < n,
and v;, a random value from the domain of the corresponding parameter
domaing.

e non-uniform mutation is one of the operators responsible for the fine
tuning capabilities of the system. It is defined as follow: The non-uniform
mutation operator was defined as follows: if st = (vy,...,vn,) is a chro-
mosome and the element v, was selected for this mutation (domain of
vk I8 [lg,ue]), the result is a vector s4*' = (vy,...,v},...,vm), with
ke {1,...,n}, and

ol U + A(t,ue — vg)  if a random digit is 0,
E7 v — Ot ug ~ ) if a random digit is 1,
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where the function A(f,y) returns a value in the range [0,y) such that
the probability of A(t,y) being close to O increases as t increases. This
property causes this operator to search the space uniformly initially (when
t is small), and very locally at later stages. We have used the following

function: -
Alty) =y (1-r07"),

where 7 is a random number from [0..1], T is the maximal generation num-
ber, and b is a system parameter determining the degree of non-uniformity.
Figure 6.1 displays the value of A for two selected times; this picture
clearly indicates the behavior of the operator.

Alty) Alt,y)

v W t/T =0.50 b=2 v t/T=090b=2

g

e —_

1 1
Fig. 6.1. A(t,y) for two selected times

Moreover, in addition to the standard way of applying mutation we have
some new mechanisms: e.g., non-uniform mutation is also applied to a whole
solution vector rather than a single element of it, causing the whole vector to
be slightly slipped in the space.

Crossover group:

¢ simple crossover, defined in the usual way, but with the only permissible
split points between v’s, for a given chromosome x.

¢ arithmetical crossover is defined as a linear combination of two vectors:
if st and s, are to be crossed, the resulting offspring are sit! = q - s¢, +
(1-a)-st and st = a- st +(1—a)- st, This operator can use a parameter
a which is either a constant (uniform arithmetical crossover), or a variable
whose value depends on the age of population (non-uniform arithmetical
crossover).

Here again we have some new mechanisms to apply these operators; e.g., the
arithmetical crossover may be applied either to selected elements of two vectors
or to the whole vectors.
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6.3 Experiments and results

In this section we present the results of the evolution program for the optimal
control problems. For all test problems, the population size was fixed at 70, and
the runs were made for 40,000 generations. For each test case we have made three
random runs and reported the best results; it is important to note, however, that
the standard deviations of such runs were almost negligibly small. The vectors
(ug, ..., un—;) were initialized randomly (but within a desired domains). Tables
6.2, 6.3, and 6.4 report the values found along with intermediate results at some
generation intervals. For example, the values in column “10,000” indicate the
partial result after 10,000 generations, while running 40,000. It is important to
note that such values are worse than those obtained while running only 10,000
generation, due to the nature of some genetic operators. In the next section we
compare these results with the exact solutions and solutions obtained from the
computational package GAMS.

Generations Factor

Case 1 100 1,000 10,000 20,000 30,000 40,000
T | 17904.4 | 3.87385 | 1.73682 | 1.61859 | 1.61817 | 1.61804 | 1.61804 10

II | 13572.3 | 5.56187 | 1.35678 | 1.11451 | 1.09201 | 1.09162 | 1.09161 10°
III | 17024.8 | 2.89355 | 1.06954 | 1.00952 | 1.00124 | 1.00102 | 1.00100 107
IV | 15082.1 | 8.74213 | 4.05532 | 3.71745 | 3.70811 | 3.70162 | 3.70160 104

V| 5968.42 | 12.2782 | 2.69862 | 2.86524 | 2.87645 | 2.87571 | 2.87569 103

VI | 17897.7 | 5.27447 | 2.09334 | 1.61863 | 1.61837 | 1.61805 | 1.61804 104

VII | 2690258 | 18.6685 | 7.23567 | 1.73564 | 1.65413 | 1.61842 | 1.61804 104
VIII | 123.942 | 72.1958 | 1.95783 | 1.00009 | 1.00005 | 1.00005 | 1.00005 104

IX | 7.28165 | 4.32740 | 4.39091 | 4.42524 | 4.31021 | 4.31004 | 4.31004 10°

X | 9971341 | 148233 | 16081.0 | 1.48445 | 1.00040 | 1.00010 | 1.00010 104

Table 6.2. Evolution program for the linear-quadratic problem (6.1)-(6.2)

Note, that the problem (6.5)—(6.7) has the final state constrained. It differs
from the problem (6.1)—(6.2) in the sense that not every randomly initialized
vector (up, . .., uy—1) of positive real numbers generates an admissible sequence
74, (see condition (6.6)) such that zo = zn, for given a and zo. In our evolu-
tion program, we have generated a random sequence of ug, . .., uy 2, and have
set uy—y = a-Ty_1 — Ty. For negative uy_;, we have discarded the sequence
and repeated the initialization process (we discuss this process in detail in the
next chapter, section 7.2). The same difficulty occurred during the reproduction
process. An offspring (after some genetic operations) need not satisfy the con-
straint o = zn. In such a case we replaced the last component of the offspring
vector u using the formula uy_, = @+ Ty — Tny. Again, if uy_, turns out to
be negative, we do not introduce such offspring into the new population.

It is the only test problem considered in this chapter which includes a non-
trivial constraint. We discuss the general issue of constrained optimal control
problems in the next chapter.
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Generations
N 1 100 1,000 10,000 20,000 30,000 40,000
2 6.3310 6.3317 6.3317 6.3317 6.3317 6.3317 6.331738
4 12.6848 12.7127 12.7206 12.7210 12.7210 12.7210 12.721038
8| 254601 | 25.6772 | 259024 | 25.9057 | 25.9057 | 25.9057 { 25.905710
10 | 32.1981 | 32.5010 | 32.8152 | 32.8209 | 32.8209 | 32.8209 | 32.820943
20 | 65.3884 | 68.6257 | 73.1167 | 73.2372 | 73.2376 | 73.2376 | 73.237668
45 | 167.1348 | 251.3241 | 277.3990 | 279.0657 | 279.2612 | 279.2676 | 279.271421

Table 6.3. Evolution program for the harvest problem (6.5)—(6.7)

Generations
N 1 100 1,000 | 10,000 | 20,000 | 30,000 | 40,000
5 -3.008351 | 0.081197 | 0.119979 | 0.120000 | 0.120000 | 0.120000 | 0.120000
10 -5.668287 | -0.011064 | 0.140195 | 0.142496 | 0.142500 | 0.142500 | 0.142500
15 -6.885241 | -0.012345 | 0.142546 | 0.150338 | 0.150370 | 0.150370 | 0.150371
20 -7.477872 | -0.126734 | 0.149953 | 0.154343 | 0.154375 | 0.154375 | 0.154377
25 -8.668933 | -0.015673 | 0.143030 | 0.166775 | 0.156800 | 0.156800 | 0.156800
30 | -12.257346 | -0.194342 | 0.123045 | 0.158241 | 0.158421 | 0.158426 | 0.158426
35 | -11.789546 | -0.236753 | 0.110964 | 0.159307 | 0.159586 | 0.159592 | 0.159592
40 | -10.985642 | -0.235642 | 0.072378 | 0.160250 | 0.160466 | 0.160469 | 0.160469
45 | -12.789345 | -0.342671 | 0.072364 | 0.160913 | 0.161127 | 0.161152 | 0.161152

Table 6.4. Evolution program for the push-cart problem (6.9)-(6.11)

6.4 Evolution program versus other methods

In this section we compare the above results with the exact solutions as well as
those obtained from the computational package GAMS.

6.4.1 The linear-quadratic problem

Exact solutions of the problems for the values of the parameters specified in
Table 6.1 have been obtained using formulae (6.3) and (6.4).

To highlight the performance and competitiveness of the evolution program,
the same test problems were solved using GAMS. The comparison may be re-
garded as not totally fair for the evolution program since GAMS is based on
search methods particularly appropriate for linear-quadratic problems. Thus the
problem (6.1)—(6.2) must be an easy case for this package. On the other hand, if
for these test problems the evolution program proved to be competitive, or close
to, there would be an indication that it should behave satisfactorily in general.
Table 6.5 summarizes the results, where columns D refer to the percentage of
the relative error.
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Exact solution Evolution Program GAMS

Case value value D value D
I 16180.3399 16180.3928 | 0.000% 16180.3399 | 0.000%
I 109160.7978 109161.0138 | 0.000% 109160.7978 | 0.000%
IIT | 10009990.0200 | 10010041.3789 | 0.000% | 10009990.0200 | 0.000%
v 37015.6212 37016.0426 | 0.000% 37015.6212 | 0.000%
A% 287569.3725 287569.4357 | 0.000% 287569.3725 | 0.000%
VI 16180.3399 16180.4065 | 0.000% 16180.3399 | 0.000%
VII 16180.3399 16180.3784 | 0.000% 16180.3399 | 0.000%
VIII 10000.5000 10000.5000 | 0.000% 10000.5000 | 0.000%
1X 431004.0987 431004.4182 | 0.000% 431004.0987 | 0.000%
X 10000.9999 10001.0038 | 0.000% 10000.9999 | 0.000%

Table 6.5. Comparison of solutions for the linear-quadratic problem

As shown above, the performance of GAMS for the linear-quadratic problem
is perfect. However, this was not at all the case for the second test problem.

6.4.2 The harvest problem

To begin with, none of the GAMS solutions was identical with the analytical one.
The difference between the solutions increased with the optimization horizon as
shown in Table 6.6, and for N > 4 the system failed to find any value.

It appears that GAMS is sensitive to non-convexity of the optimizing prob-
lem and to the number of variables. Even adding another constraint to the
problem (ug1 > 0.1-ug) to restrict the feasibility set so that the GAMS algo-
rithm does not “lose itself”' has not helped much (see column “GAMS+"). As
this column shows, for sufficiently long optimization horizons there is no chance
to obtain a satisfactory solution from GAMS.

6.4.3 The push-cart problem

For the push-cart problem both GAMS and the evolution program produce
very good results (Table 6.7). However, it is interesting to note the relationship
between the times different search algorithms need to complete the task.

For most optimization programs, the time necessary for an algorithm to
converge to the optimum depends on the number of decision variables. This re-
lationship for dynamic programming is exponential (“curse of dimensionality” ).
For the search methods (like GAMS) it is usually “worse than linear”.

I'This is “unfair” from the point of view of the genetic algorithm which works without such
help.
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N | Exact solution GAMS GAMS+ Genetic Alg
value D | value D value D
2 6.331738 | 4.3693 | 30.99% | 6.3316 | 0.00% 6.3317 | 0.000%
4 12.721038 | 5.9050 | 53.58% | 12.7210 | 0.00% | 12.7210 | 0.000%

8 25.905710 * 18.8604 | 27.20% | 25.9057 | 0.000%
10 32.820943 22.9416 | 30.10% | 32.8209 | 0.000%
20 73.237681 * 73.2376 | 0.000%
45 279.275275 * 279.2714 | 0.001%

¥ ¥ ¥

Table 6.8, Comparison of solutions for the harvest problem. The symbol * means that the
GAMS failed to report a reasonable value

Exact solution GAMS GA

N value value D value D

5 0.120000 | 0.120000 | 0.000% | 0.120000 | 0.000 %
10 0.142500 | 0.142500 | 0.000% | 0.142500 | 0.600 %
15 0.150370 | 0.150370 { 0.000% | 0.150370 | 0.000 %
20 0.154375 | 0.154375 | 0.000% | 0.154375 | 0.000 %
25 0.156800 | 0.156800 | 0.000% 1 0.156800 | 0.000 %
30 0.158426 | 0.158426 | 0.000% | 0.158426 | 0.000 %
35 0.159592 | 0.159592 | 0.000% | 0.159592 | 0.000 %
40 0.160469 | 0.160469 | 0.000% | 0.160469 | 0.000 %
45 0.161152 | 0.161152 | 0.000% | 0.161152 | 0.000 %

Table 6.7. Comparison of solutions for the push-cart problem

Table 6.8 reports the number of iterations the evolution program needed to
obtain an exact solution (with six decimal place rounding), the time needed for
that, and the total time for all 40,000 iterations (for unknown exact solution
we cannot determine the precision of the current solution). Also, the time for
GAMS is given. Note that GAMS was run on PC Zenith z-386/20 and the
evolution program on a DEC-3100 station.

It is clear that the evolution program is much slower than GAMS: there is a
difference in absolute values of CPU time as well as computers used. However, let
us compare not the times needed for both systems to complete their calculations,
but rather their growth rates of the time as a function of the size of the problem.
Figure 6.2 show the growth rate of the time needed to obtain the result for the
evolution program and GAMS.

These graphs are self-explanatory: although the evolution program is gen-
erally slower, its close to linear growth rate is much better than that of GAMS
(which is at least quadratic). Similar results hold for the linear-quadratic prob-
lem and the harvest problem.
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N No. of Time | Time for 40,000 | Time for
iterations needed iterations GAMS
needed | (CPU sec) (CPU sec) | (CPU sec)

5 6234 65.4 328.9 31.5
10 10231 109.7 400.9 33.1
15 19256 230.8 459.8 36.6
20 19993 257.8 590.8 41.1
25 18804 301.3 640.4 47.7
30 22976 389.5 701.9 58.2
35 23768 413.6 779.5 68.0
40 25634 467.8 850.7 81.3
45 28756 615.9 936.3 95.9

Table6.8. Time performance of evolution program and GAMS for the push-cart problem
(6.9)-(6.11): number of iterations needed to obtain the result with precision of six decimal
places, time needed for that number of iterations, time needed for all 40,000 iterations

CPU time, GA CPU time, GAMS
5004 504
100 - - N 104 ~ - N
10 45 10 45

Fig. 6.2. Time as a function of problem size (N).

6.4.4 The significance of non-uniform mutation

It is interesting to compare these results with the exact solutions as well as
those obtained from another GA, exactly the same but without the non-uniform
mutation on. Table 6.9 summarizes the results; columns labeled D indicate the
relative errors in percents.

The genetic algorithm using the non-uniform mautation clearly outperforms
the other one with respect to the accuracy of the found optimal solution; while
the enhanced GA rarely erred by more than a few thousandths of one percent,
the other one hardly ever beat one percent. Moreover, it also converged much
faster to that solution.
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GA GA
Exact solution | w/ non-uniform mutation | w/o non-uniform mutation
Case value value D value D
I 16180.3399 16180.3939 0.000% 16234.3233 0.334%
I 109160.7978 109163.0278 0.000% 113807.2444 4.257%
IIT | 10009990.0200 | 10010391.3989 0.004% | 10128951.4515 1.188%
v 37015.6212 37016.0806 0.001% 37035.5652 0.054%
\Y 287569.3725 287569.7389 0.000% 208214.4587 3.702%
\%1 16180.3399 16180.6166 0.002% 16238.2135 0.358%
VII 16180.3399 16188.2394 0.048% 17278.8502 6.786%
VIII 10000.5000 10000.5000 0.000% 10000.5000 0.000%
IX 431004.0987 431004.4092 0.000% 431610.9771 0.141%
X 10000.9999 10001.0045 0.000% 10439.2695 4.380%

Table 6.9. Comparison of solutions for the linear-quadratic dynamic control problem

As an illustration of the non-uniform mutation’s effect on the evolution-
ary process check Figure 6.3; the new mutation causes quite an increase in the
number of improvements observed in the population at the end of the popula-
tion’s life. Moreover, a smaller number of such improvements prior to that time,
together with an actually faster convergence, clearly indicates a better overall
search.

# improvements # improvements

T = 40,000, ¢ increments 400 T = 40,000, t increments 400

1004
i O O O S e t
10,000 40,000 40,000

Fig. 6.3. Number of improvements on case I of the linear-quadratic dynamic control problem

6.5 Conclusions

In this chapter we have studied a new operator, a non-uniform mutation, to
improve the fine local tuning capabilities of a GA. The experiments were suc-
cessful on the three discrete-time optimal control problems which were selected
as test cases. In particular, the results were encouraging because the closeness of
the numerical solutions to the analytical ones was satisfying. Additionally, the
computation effort was reasonable (for the 40,000 generations, a few minutes of
CPU time on a CRAY Y-MP and up to 15 minutes on a DEC-3100 station).
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The numerical results were compared with those obtained from a search-
based computational package (GAMS). While the evolution program gave us
results comparable with the analytic solutions for all test problems, GAMS
failed for one of them. The developed evolution program displayed some qualities
not always present in the other (gradient-based) systems:

e The optimization function for the evolution program need not be contin-
uous. At the same time some optimization packages will not accept such
functions at all.

e Some optimization packages are all-or-nothing propositions: the user has
to wait until the program completes. Sometimes it is not possible to get
partial (or approximate) results at some early stages. Evolution programs
give the users additional flexibility, since the user can monitor the “state
of the search” during the run time and make appropriate decisions. In
particular, the user can specify the computation time (s)he is willing to
pay for (longer time provides better precision in the answer).

e The computational complexity of evolution programs grows at a linear
rate; most of other search methods are very sensitive to the length of the
optimization horizon. As usual, we can easily improve the performance of
the system using parallel implementations; often this is difficult for other
optimization methods.

Recently there have been many interesting developments in the area of evo-
lutionary algorithms to enhance their fine local tuning capabilities. These in-
clude Delta Coding algorithm, Dynamic Parameter Encoding, ARGOT strategy,
IRM strategies, extension of evolutionary programming, granularity evolution,
, and interval genetic algorithms. A short description of these attempts is pro-
vided in the last section of Chapter 8, after discussion of series of GENOCOP
systems (Chapter 7) and evolution strategies (Chapter 8).

There are some other activities which (more or less directly) aim at the
fine local tuning capabilities. These include research of Arabas et al. [11], where
adaptive intermediate and uniform crossovers for evolution strategies (see Chap-
ter 8) were introduced. On the other hand, Hinterding [184] experimented with
mutation of genes (which correspond to variables) as opposed to mutation of
bits. From this perspective the authors analysed the significance of coding (Gray
versus binary), granularity, and the frequency of such gene mutations.

There were also interesting results reported by Srinivas and Patnaik [368],
who experimented with adaptive probabilities of mutation and crossover to
maintain diversity of the population (and sustaining the convergence capacity
of the algorithm). In this approach the probabilities of these operators were
varied depending on the fitness values of the solutions: ‘good’ solutions are
protected and ‘poor’ solutions are disrupted. More precisely,

Pcz{ kl'(fmax—fl)/(fmaz_—f) Zf f’s—f

ks otherwise,



120 6. Fine Local Tuning

and _ B
pm={ k2 (fmaz — f)/(fmaz — F) of F<TF

ks otherwise,

where k| and k, are positive constants (not greater than one), fi. and f denote
the maximum and the average values of the fitness function f in the current
population, respectively, f denotes the value of the fitness function for a given
solution, and f’ — the larger value (for two solutions selected for crossover).
Note, that (1) the value of fn., — f is essential in the above formulae; it is also
important in measuring the convergence of the algorithm; (2) p. and p,, are
zeros for the solution with the maximum fitness; (3) p. = k; and p,, = ky for a
solution with f = f; and (4) p, = k3 and p,,, = k4 for a below average solutions.
For the proper choice of values k), ks, k3, and k4, and experimental results, see
[368).
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A traveler in quest of the divine
asked the Master how to distinguish
a true teacher from a false one when

he got back to his own land.

Said the Master, ‘A good teacher
offers practice; a bad one offers
theories.’

‘But how shall I know good practice
from bad?’

‘In the same way that the farmer
knows good cultivation from bad.’

Anthony de Mello, One Minute Wisdom

The general nonlinear programming problem A'LP is to find = so as to
optimize f(x), = (z1,...,2,) € RY,

subject to p > 0 equations:
a(®)=0,i=0,...,p,

and m — p > 0 inequalities:
() <0,i=p+1,...,m.

There is no known method of determining the global maximum (or min-
imum) to the general nonlinear programming problem. Ounly if the objective
function f and the constraints ¢; satisfy certain properties, the global optimum
can sometimes be found. Several algorithms were developed for unconstrained
problems (e.g., direct search method, gradient method) and constrained prob-
lems (these algorithms usually are classified as indirect and direct methods). An
indirect method attacks the problem by extracting one or more linear problems
from the original one, whereas a direct method tries to determine successive
search points. This is usually done by converting the original problem into un-
constrained one for which gradient methods are applied with some modifications
[387]. Despite the active research and progress in global optimization in recent
years [114], it is probably fair to say that no efficient solution procedure is in
sight for the general nonlinear problems N'LP. As stated in [172]:
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“It’s unrealistic to expect to find one general N LP code that's go-
ing to work for every kind of nonlinear model. Instead, you should
try to select a code that fits the problem you are solving. If your
problem doesn't fit in any category except ‘general’, or if you insist
on a globally optimal solution (except when there is no chance of
encountering multiple local optima), you should be prepared to have
to use a method that boils down to exhaustive search, i.e., you have
an intractable problem.”

There are many other problems connected with traditional optimization
techniques. For example, most proposed methods are local in scope, they depend
on the existence of derivatives, and they are insufficiently robust in discontinu-
ous, vast multimodal, or noisy search spaces. It is important then to investigate
other (heuristic) methods, which, for many real world problems, may prove very
useful.

In this chapter we discuss several methods which were developed in con-
nection with the nonliner programming problem. We start with a description
of GENOCOP, a system developed for convex search spaces. In further sections
we survey other evolutionary approaches for nonlinear programming problem
and describe two other systems, GENOCOP II and GENOCOP III.

7.1 An evolution program: the GENOCOP system

Many researchers [78, 408] investigated GAs based on floating point represen-
tation. But the optimization problems they considered were defined on a search
space D C RY?, where D = [[{_, (I, %), i.€., each variable z, was restricted to
a given interval (li,7) (1 < k < ¢). Yet it seems important to include other
constraints into the considerations; as stated in [66]:

“A little observation and reflection will reveal that all optimization
problems of the real world are, in fact, constrained problems. Sup-
pose one has an expression for the output of a chemical reaction
vessel in which some set of chemical reactions are taking place and
one wishes to maximize the output. It is also necessary to take into
account material balance restrictions on the reactans and products,
the laws governing flow of materials into and out of the reaction
vessel, and other conditions. All of these are additional constraints
on the variables of the function to be optimized.”

In a constrained optimization problem, the geometric shape of the set of
solutions in R? is perhaps the most crucial characteristic of the problem, with
respect to the degree of difficulty that is likely to be encountered in attempting
to solve the problem [66]. There is only one special type of set—a convex set—for
which a significant amount of theory has been developed.

In this section we are concerned with the following optimization problem:



7.1 An evolution program: the GENOCOP system 123

optimize f(zi,...,z,) € R,

where (z1,...,%,) € D C R? and D is a convez set.

The domain D is defined by ranges of variables (I < zx < ry for k =
1,...,q9) and by a set of constraints C. From the convexity of the set D it
follows that for each point in the search space (zi,...,z,) € D there exists
a feasible range (left(k), right(k)) of a variable z; (1 < k < g), where other
variables z; (i = 1,...,k— 1,k +1,...,q) remain fixed. In other words, for a
given (z1,...,%k,...,2Zq) € D:

y € (left(k),right(k)) i (21,...,Tk-1,Y Tht1,---,Zq) € D,

where all z;’s (i =1,...,k—1,k+1,...,q) remain constant. We assume also
that the ranges (left(k),right(k)) can be efficiently computed.
For example, if D C R? is defined as:

_3S$1S3y
OSSEQSS?
and 72 < 73 < z; + 4,

then for a given point (2,5) € D:

left(1) = 1, right(1) = /5,
left(2) = 4, right(2) = 6.

This means that the first component of the vector (2,5) can vary from 1 to /5
(while z5 = 5 remains constant) and the second component of this vector can
vary from 4 to 6 (while z; = 2 remains constant).

Of course, if the set of constraints C is empty, then the search space D =
[12_, (I, rx) is convex; additionally left(k) = I, right(k) =, for k=1,...,q.

The above property is a basis for all mutation operators: if the x; variable
is to be mutated, the range of the mutation is (left(k), right(k)); consequently,
an offspring is always feasible.

An additional property of convex search spaces guarantees that for any two
points &, and &, in the solution space D, the linear combination ax, + (1 —
o)x,, where a € [0,1], is also a point in D. This property is important for
implementation of arithmetical crossover.

We consider a particular class of optimization problems which are defined
on a convex domain; these problems can be formulated as follows:

Optimize a function f(z1,%2,...,2,), subject to the following sets of linear
constraints:

1. Domain constraints: I; < x; <wu; for i =1,2,...,q. We write l < ¢ < u,
where L = (ly,..., 1), w=(u1,...,ug), = (z1,...,7,).

2. Equalities: Az = b, where = (z,,...,24), A = (ai;), b = (b1,...,bp),
1 <i<p,and 1 <j <gq (pis the number of equations).
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3. Inequalities: Cx < d, where x = (zy,...,2,), C = (¢;5), d = (dy, ..., dn),
1 <i<m,and 1 <j<gq(mis the number of inequalities).

This formulation is general enough to handle a large class of standard Oper-
ations Research optimization problems with linear constraints and any objective
function. The example considered later, the nonlinear transportation problem,
is one of many problems in this class.

The developed system (GENOCOP, for GEnetic algorithm for Numerical
Optimization for COnstrained Problems) provides a way of handling constraints
that is both general and problem independent. It combines some of the ideas
seen in the previous approaches, but in a totally new context. The main idea
behind this approach lies in (1) an elimination of the equalities present in the
set of constraints, and (2) careful design of special genetic operators, which
guarantee to keep all chromosomes within the constrained solution space. This
can be done very efficiently for linear constraints and, while we do not claim
these results extend easily to nonlinear constraints, the former class contains
many interesting optimization problems.

In some optimization techniques, such as linear programming, equality con-
straints are welcome since it is known that the optimum, if it exists, is situated
at the surface of the convex set. Inequalities are converted to equalities by the
addition of slack variables, and the solution method proceeds by moving from
vertex to vertex, around the surface.

In contrast, for a method that generates solutions randomly, such equality
constraints are a nuisance. In GENOCOP they are eliminated at the start,
together with an equal number of problem variables; this action removes also
part of the space to be searched. The remaining constraints, in the form of
linear inequalities, form a convex set which must be searched for a solution. The
convexity of the search space ensures that linear combinations of solutions yield
solutions without needing to check the constraints—a property used throughout
this approach. The inequalities can be used to generate bounds for any given
variable: such bounds are dynamic as they depend on the values of the other
variables and can be efficiently computed.

Suppose the equality constraint set is represented in matrix form:

Ax =b.

We assume there are p independent equality equations (there are easy meth-
ods to verify this), i.e., there are p variables z; ,xi,,..., 2, ({i1,...,ip} C
{1,2,...,¢}) which can be determined in terms of the other variables. These
can, therefore, be eliminated from the problem statement, as follows.

We can split the array A vertically into two arrays A; and A,, such that
the j-th column of the matrix A belong to A, iff 5 € {41,...,4p}. Thus A7!
exists. Similarly, we split matrix C' and vectors z,1,u (ie. 2! = (z;,,.. S Tiy),
l1 = <lip ... ,lip>, and wu; = (Ui“ cee ,'u,ip)). Then

Azl + Ayz® =b.
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and it is easily seen that
x' = A7'b — AT Agx.

Using the above rule, we can eliminate the variables z;,, ..., z;, replacing
them by a linear combination of remaining variables. However, each variable z;,
(j =1,2,...,p) is constrained additionally by a domain constraint: li; <z <
u;;. Eliminating all variables z;, leads us to introduce a new set of inequalities:

l] S Al—lb — A1_1A2m2 S Uu,

which is added to the original set of inequalities.
The original set of inequalities,

Cx <d,

can be represented as
Cix' + Cox® < d.

This can be transformed into
Ci(A7'D — AT Aya?) + Cox® < d.

So, after eliminating the p variables z;,, ..., z;,, the final set of constraints
consists of the following inequalities only:

1. original domain constraints: Iy < 2% < ug,
2. new inequalities: I; < A7'b — A7 Apx? < u,y,

3. original inequalities (after removal of &' variables): (Cy — Cy A7 Ag)x? <
d— CiA7'b.

7.1.1 An example

Let us start with an example and assume we wish to optimize a function of six
variables:

f(xl y X2, T3, T4, Ts5, $5),
subject to the following constraints:

221 + 9 + 3 = 6,

T3 + 25 — 3z = 10,

xy + 44 = 3,

T + x5 < 120,

—40 < 7, < 20, 50 < 2 < 75,
0<1z23<10,5<1z4 <15
0<25<20, -5<26<5.
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We can take advantage of the presence of three independent equations and
express four variables as functions of the remaining three:

T = 3 - 41‘4,
Tg = —10+ 81174 + 5 — 3.’176,
r3 = 10 — x5 + 3zg.

Thus we have reduced the original problem to the optimization problem of
a function of three variables x4, x5, and z4:

9(z4, x5, %6) = f((3 — 4z4), (—10 + 8z4 + x5 — 376),
(10 — z5 + 3x6), T4, Z5, T6),

subject to the foliowing constraints (inequalities only):

~10 + 8x4 + 225 — 3z < 120, (original zo + z5 < 120),

50 < 3 — 4z4 < 20, (original 50 < z; < 20),

—20 < —10 + 8x4 + x5 — 3x6 < 75, (original —20 < z5 < 75),
0 <10 — x5 + 3z¢ < 10, (original 0 < z3 < 10),

5 <24 <15 0<L25<20,and -5 <z5 <5.

These can be reduced further; for example the second and fifth inequalities can
be replaced by a single one:

5 < x4 £10.75.

Such transformation completes the first step of our algorithm: elimination of
equalities. The resulting search space is, of course, convex. As discussed earlier,
from the convexity of the search space it follows that for each feasible point
(z1, z2, x3) there exists a feasible range (left(k), right(k)) of a variable z; (1 <
k < 3), where the other two variables are fixed. For example, for the feasible
space defined above and for a given feasible point (z4, z5, 25} = (10, 8, 2):

left(1) = 7.25, right(1) = 10.375,
left(2) = 6, right(2) = 11,
left(3) = 1, right(3) = 2.666,

(left(1) and right(1) are ranges of the first component of the vector (10,8, 2),
i.e., of the variable x4, etc.). This means that the first component of the vec-
tor (10,8,2) can vary from 7.25 to 10.375 (while 5 = 8 and zg = 2 remain
constant), the second component of this vector can vary from 6 to 11 (while
z4 = 10 and zg = 2 remain constant), and the third component of this vector
can vary from 1 to 2.666 (while z4 = 10 and z5 = 8 remain constant).

The GENOCOP system tries to locate an initial (feasible) solution by sam-
pling the feasible region. If some predefined number of trials is unsuccessful, the
system would prompt the user for a feasible initial point. The initial popula-
tion consists of identical copies of such an initial point (whether generated or
provided by the user).

There are several operators in the GENOCOP system which proved to be
useful on many test problems. We discuss them in turn in the next subsectior.
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7.1.2 Operators

In this subsection we describe six genetic operators based on floating point rep-
resentation, which were used in the modified version of the GENOCOP system.
The first three are unary operators (category of mutation), the other three are
binary (various types of crossovers). We discuss them in turn.

Uniform mutation
This operator requires a single parent @ and produces a single offspring a'.
The operator selects a random component k& € (1,...,q) of the vector z =
(z1,--- Zky - .-, ,) and produces &’ = (zy,...,%}, ..., Z,), Where z}, is a random
value (uniform probability distribution) from the range (left(k), right(k)).

The operator plays an important role in the early phases of the evolution
process as the solutions are allowed to move freely within the search space.
In particular, the operator is essential in the case where the initial population
consists of multiple copies of the same (feasible) point. Such situations may
occur quite often in constrained optimization problems where users specify the
starting point for the process. Moreover, such a single starting point (apart from
its drawbacks) has a powerful advantage: it allows for developing an iterative
process, where the next iteration starts from the best point of the previous
iteration. This very technique was used in a development of a system to handle
nonlinear constraints in spaces that were not necessarily convex (GENOCOP
1I).

Also, in the later phases of an evolution process the operator allows possible
movement away from a local optimum in the search for a better point.

Boundary mutation

This operator requires also a single parent & and produces a single offspring
@'. The operator is a variation of the uniform mutation with z} being either
left(k) or right(k), each with equal probability.

The operator is constructed for optimization problems where the optimal
solution lies either on or near the boundary of the feasible search space. Con-
sequently, if the set of constraints C is empty, and the bounds for variables are
quite wide, the operator is a nuisance. But it can prove extremely useful in the
presence of constraints. A simple example demonstrates the utility of this op-
erator. The example is a linear programming problem; in such a case we know
that the global solution lies on the boundary of the search space.

Example 7.1.
Let us consider the following test case [387]:

maximize f(z1,23) = 4z; + 3z,
subject to the following constraints:

21, +3.’L‘2 < 6,
*—33}'1 +2$2 S 3,
2z1 + x9 < 4, and
0<z;,<2,i=12
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The known global optimum is (x;, z2) = (1.5,1.0), and f(1.5,1.0) = 9.0.

To determine the utility of this operator in optimizing the above problem,
ten experiments were run with all operators functioning and another ten ex-
periments without boundary mutation. The system with boundary mutation
found the global optimum easily in all runs, on average within 32 generations,
whereas without the operator, even in 100 generations the best point found
(in ten runs) was @ = (1.501,0.997) and f(x) = 8.996 (the worst point was
x = (1.576,0.847) with f(x) = 8.803).

Non-uniform mutation

This is the (unary) operator responsible for the fine tuning capabilities of the
system. It is defined as follows. For a parent x, if the element xz; was selected
for this mutation, the result is &' = (z,,...,2},...,Z,), where

;| @+ At right(k) — xi) if a random binary digit is 0
Te =Y gy - Alt,zr — left(k))  if a random binary digit is 1

The function A(t,y) returns a value in the range [0,y] such that the probability
of A(t,y) being close to 0 increases as ¢ increases (¢ is the generation number).
This property causes this operator to search the space uniformly initially (when
t is small), and very locally at later stages. We have used the following function:

t
Aty =y-r-(1-=),
(Ly)=y-7 (- )
where 7 is a random number from [0..1], T' is the maximal generation number,
and b is a system parameter determining the degree of non-uniformity.

Arithmetical crossover
This binary operator is defined as a linear combination of two vectors: if x;
and @, are to be crossed, the resulting offspring are | = a-x; + (1 — a) - @2
and x5 = a- 23 + (1 — a) - ;. This operator uses a random value a € [0..1],
as it always guarantees closure (@}, ), € D). Such a crossover was called a
guaranteed average crossover [77] (when a = 1/2); intermediate crossover [18];
linear crossover [408]; and arithmetical crossover [268, 269).

The importance of arithmetical crossover is illustrated by the following ex-
ample.

Example 7.2.
Let us consider the following problem [114]:

minimize f(z, T2, T3, T4, T5) = —5sin(z1)sin(ze)sin(z;)sin(zq)sin(xs)+
—sin(5z)sin(5x2)sin(bx3)sin(5x4)sin(5zs),

where

0<z; <mfor1 <i<L5.
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The known global solution is (21, z2, &3, 24, 25) = (7/2,7/2,7/2,7/2,7/2),
and f(n/2,7/2,%/2,%w/2,7/2) = —6.

It appears that the system without arithmetical crossover has slower con-
vergence. After 50 generations the average value of the best point (out of 10
runs) was —5.9814, and the average value of the best point after 100 generations
was —5.9966. In the same time, these averages for the system with arithmetical
crossover were —5.9930 and —5.9996, respectively.

Moreover, an interesting pattern that emerged showed that the system with
arithmetical crossover was more stable, with much lower standard deviation of
the best solutions (obtained in ten runs).

Simple crossover

This binary operator is defined as follows: if &, = (z1,...,z,) and @y =
(Y1,-..,Yq) are crossed after the k-th position, the resulting offspring are:
xy = (T1,.., Ths Ye+1, - -, Yg) and @y = (Y1, .-, Yk, Tht1, - - -, Tg)- Such an op-

erator may produce offspring outside the domain D. To avoid this, we use the
property of convex spaces that there exists a € [0, 1] such that

CL”]=<$1,---y$k’yk+l'a+xk+l'(l_a):~-qu'a+xq'(1_a)>

and

=Y, Yk The1 A+ Y- (1 —a), .., Zg a4y (1 —a))

are feasible.

The only remaining question to be answered is how to find the largest a to
obtain the greatest possible information exchange. The simplest method would
start with a = 1 and, if at least one of the offspring does not belong to D,
decreases a by some constant 1p. After p attempts a = 0 and both offspring
are in D since they are identical to their parents. The necessity for such max-
imal decrement is small in general and decreases rapidly over the life of the
population.

It seems that the merits of simple crossover are the same as of arithmeti-
cal crossover (for experiments, we have used the problem from the test case
#6; see next subsection). The results showed that the system without simple
crossover was even less stable than the system without arithmetical crossover;
in this case the standard deviation of the best solutions obtained in ten runs was
much higher. Also, the worst solution obtained in 100 generations had a value
of —5.9547, which was much worse than the worst solution obtained with all op-

erators (—5.9982) or the worst solution obtained without arithmetical crossover
(—5.9919).

Heuristic crossover
This operator [408] is a unique crossover for the following rcasons: (1) it uses
values of the objective function in determining the direction of the search, (2)
it produces only one offspring, and (3) it may produce no offspring at all.

The operator generates a single offspring «; from two parents z, and a,
according to the following rule:
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;=71 (r,—x,)+,

where r is a random number between 0 and 1, and the parent &, is not worse
than z,, i.e., f(x.) > f(x,) for maximization problems and f(x,) < f(=x,) for
minimization problems.

It is possible for this operator to generate an offspring vector which is not
feasible. In such a case another random value r is generated and another off-
spring created. If after w attempts no new solution meeting the constraints is
found, the operator gives up and produces no offspring.

Tt seems that heuristic crossover contributes to the precision of the solution
found; its major responsibilities are (1) fine local tuning, and (2) search in the
most promising direction.

7.1.3 Testing GENOCOP

In order to evaluate the GENOCOP method, a set of test problems have been
carefully selected to illustrate the performance of the algorithm and to indi-
cate that it has been successful in practice. The eight test cases, which in-
clude quadratic, nonlinear, and discontinuous functions with several linear con-
straints, are discussed below.

All runs of the system were performed on SUN SPARC station 2. We used
the following parameters for all experiments:

pop_size = 70, k = 28 (number of parents in each generation; clas-
sification step), and b = 2 (coefficient for non-uniform mutation).

{The third version of the GENOCOP system is available from ftp.uncc.edu,
directory coe/evol, file GENOCOP3.0.tar.Z). For each test case we run the
GENOCOP ten times. For all problems, the number of generations T was 500
or 1000 (with exception of the test case #6, where the system was run for 10,000
generations). The eight test cases and the results of the GENOCOP system are
reported in the following subsections.

Test Case #1
The problem [114] is

minimize f(z,y) = —10.5x; — 7.513 — 3.5z3 — 2.524 — 1.5x5 — 10y—
0532, 22,

subject to:

6xy 4+ 3z9 + 3z3 + 224 + x5 < 6.5, 10zy + 1023 +y < 20,
0 S T S 1, 0 S Y.

The global solution is (z*,y*) = (0,1,0,1,1,20), and f(z*, y*) = —213.
GENOCOP found solutions that were very close to the optimum in all ten
runs; a typical discovered optimum point was:
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(0.000000, 1.000000, 0.000000, 0.999999, 1.000000, 20.000000),

for which the value of the objective function is equal to —213.0. A single run of
1000 iterations took 21 sec of CPU time.

Test Case #2
The problem [186] is

minimize f(l') = ;il Tj (cj +In zl+.a.:.'+:vm)’
subject to:

Ty + 200+ 223+ 26+ 2T10=2, Ts+2z5+z6+27=1,
T3+ T7 4+ Tg+ 229+ 210 =1, x; > 0.000001, (l = 1,...,10),

where

= —6089, Cy = —17].64, Cc3 = —34054, Cq = —5914, Cy = —24721,
ce = —14.986; c; = —24.100; cg = —10.708; cg = —26.662; ¢19 = —22.179;

The previously best known solution [186] was

o* = (01773548, 08200180, .8825646, .0007233256, 4907851,
0004335469, .01727298, 007765639, .01984929, .05269826),

and f(a*) = —47.707579.
GENOCOP found points with better value than the one above in all ten
runs; the best solution found was

x* = (.04034785, .15386976, .77497089, .00167479, .48468539,
.00068965, .02826479, .01849179, .03849563,.10128126),

for which the value of the objective function is equal to —47.760765. A single
run of 1000 iterations took 56 sec of CPU time.

Test Case #3
The problem [114] is

minimize f(,y) = 5z + 525 + 523 + 524 — 5 i, 27 — Yia1 ¥

subject to:
2z, + 232 + y6 + y7 < 10, 2zy 4+ 273 + Y6 +ys < 10,
2z9 + 2z3 +y7 + ys < 10, —8z) +ys <0,
=8z +y7 <0, —8z3 +ys <0,
—2z4— % + 9 <0, =2y —ys +y7 <0,
—2y4—y5+yg§0, 0S$i51,i=1,2,3,4,

OSyi511i=l72$31415,9y Osyi,i:6,7,8.

The global solution is (x*,¥*) = (1,1,1,1,1,1,1,1,1,3,3,3,1), and f(x*, y*)
= —15.

GENOCOP found the optimum in all ten runs; a typical optimum point
found was:
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(1.000000, 1.000000, 1.000000, 1.000000, 0.999995, 1.000000, 0.999999,
1.000000, 1.000000, 2.999984, 2.999995, 2.999995, 0.999999),

for which the value of the objective function is equal to —14.999965. A single
run of 1000 iterations took 41 sec of CPU time.

Test Case #4
The problem [113] is

i — 33429223408 4z —2xro+x3
maximize f(m) - 271 —z2+23 + Tx1+3z2—x3°

subject to:

T +2—123 <1, -T1+22—23 < -1,
122, + 525 + 1223 < 34.8, 12z, + 1219 + Tz3 < 29.1,
—621 + 29 + 23 < —4.1, 0<z;,1=1,2,3.

The global solution is &* = (1,0,0), and f(z*) = 2.471428.
GENOCOP found the optimum in all ten runs; a single run of 500 iterations
took 10 sec of CPU time.

Test Case #5
The problem|114] is

minimize f(z) = 29° + 23° — 6z, — 423 + 3z4,
subject to:

—32’1 + zy — 3.’L’3 = 0, z +2$3 < 4,
T2 + 2z4 < 4, 7 <3,
z4 <1, 0<z;,1=1,2,3,4.

The best known global solution is z* = (3,4,0,0), and f(x*) = —4.5142.
GENOCOP found this point in all ten runs; a single run of 500 iterations
took 9 sec of CPU time.

Test Case #6
The problem[64] is

minimize f(x) = 100(z2 — z3)? + (1 — 1) + 90(z4 — 12)*+
+(1~23)*+10.1((23—1)?+ (24— 1)2) +19.8(z3— 1) (4 — 1),

subject to:
-10.0<z; £10.0,:=1,2,3,4.

The global solution is &* = (1,1,1,1), and f(z*) =0.
GENOCOP approached the optimum quite closely in all ten runs; a typical
optimum point found was:

(@1, 22, 23, T4) = (1.000044, 1.000087,0.999954, 0.999909),
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for which the value of the objective function is equal to 0.00000001. A single
run of 10,000 iterations took 159 sec of CPU time.

Test Case #7
The problem {114] is

minimize f(z,y) = 6.5z — 0.5z — y; — 2y2 — 3ys — 2y4 — ¥s,
subject to:

T+ 2y; + 8y + y3 + 3ya + Sy < 16,

—8z —dy1 — 2y + 2ys + 4ya — Y5 < -1,
2z + 0.5y + 0.2y2 — 3y — ya — dys < 24,
0.22 + 2y; + 0.1yy — 4dys + 2y4 + 2y5 < 12,
—0.12 — 0.5y; + 2y2 + 5ys — 5ys + 3y < 3,
y3 <1,y <1,and ys < 2,

220,y 20,for1 <i<5.

The global solution is (z,y*) = (0,6,0,1,1,0), and f(z,y*) = —11.
GENOQOCOP found the optimum in all runs; a single run of 1000 iterations
took 23 sec of CPU time.

Test Case #8
The problem was constructed from three separate problems [186] in the following
way!

fi=2a+10%(z —21)2 = 1.0 if 0< 2, <2
minimize f(z) =< f2 Ti/g((xl_B)z_ Y3 if 2<z;<4
fi=im-2P 4z -4 if 4<x,<6

I

subject to:

z,/v3 — 12 >0,
—71 — V322 + 6 > 0,
0<z;<6,and z3 > 0.

The function f has three global solutions:
) = (070)’ x5 = (3, \/§)7 and x3 = (4, O)v

in all cases f(x])=—-1(i=1,2,3).

We made three separate experiments. In experiment k (k = 1,2, 3) all func-
tions f; except fr were increased by 0.5. As a result, the global solution for
the first experiment was @} = (0,0), the global solution for the second exper-
iment was % = (3,V3), and the global solution for the third experiment was
x} = (4,0).

GENQCOP found global optima in all runs in all three cases; a single run
of 500 iterations took 9 sec of CPU time.



134 7. Handling Constraints

Summary
As demonstrated earlier, GENOCQOP worked very well for many experimental
test problems with linear constraints. However, it is not clear how to generalize
GENQOCOP to handle nonlinear constraints (i.e., problems in class N'P). Some
sets of nonlinear constraints can still yield a convex search spaces—the property
important for many operators (all mutations, arithmetical crossover). However,
even in this case the process of finding the ranges left(k) and right(k) might be
hard computationally. Another possibility would be to cover the search space by
a (not necessarily disjoint) family of convex subspaces and run GENOCOP on
each of these. Again, the method would still have many computational problems.
For the above reasons, we looked at traditional optimization methods for
further inspiration. Two particular methods (described in the following sections)
were selected for ‘mating’ with the GENOCQOP system.

7.2 Nonlinear optimization: GENOCOP II

In this section we discuss a new hybrid system, GENOCQOP I, to solve nonlinear
programming problems. The concept of the system is based on ideas taken from
recent developments in the area of optimization [13] combined with iterative
execution of GENOCOP (in this section we refer to GENOCOP as GENOCOP
I to distinguish it from GENOCOP II).

Calculus-based methods assume that the objective function f(z) and all con-
straints are twice continuously differentiable functions of x. The general ap-
proach of most methods is to transform the nonlinear problem A LP into a
sequence of solvable subproblems. The amount of work involved in a subprob-
lem varies considerably among methods. These methods require explicit (or
implicit) second derivative calculations of the objective (or transformed) func-
tion, which in some methods can be ill-conditioned and cause the algorithm to
fail.

During the last 30 years there has been considerable research directed to-
ward nonlinear optimization problems and progress has been made in theory
and practice [114]. Several approaches have been developed in this area, in-
cluding: the sequential quadratic penalty function [51], [13], recursive quadratic
programming method [40], penalty trajectory methods [291], and the SOLVER
method [112].

One of these approaches, the sequential quadratic penalty function method,
was used as the main idea behind the GENOCOP 1I system. The method re-
places a problem N LP by the problem N LP':

optimize F(z,7) = f(z) + 5‘;6T6,

where 7 > 0 and C is a vector of all active constraints ¢y, ..., c.
Fiacco and McCormick [253] have shown that the solutions of NLP and
NLP' are identical in the limit as 7 — 0. It was thought that A'LP’ could then
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be solved simply by minimizing F{z,r) for a sequence of decreasing positive
values of r by Newton’s method [111]. This hope, however, was short-lived,
because minimizing F(x,r) proved to be extremely inefficient for the smaller
values of r; it was shown by Murray [291] that this was due to the Hessian
matrix of F(z,r) becoming increasingly ill-conditioned as r — 0. As there
seemed to be no obvious way of overcoming this problem, the method gradually
fell into disuse. More recently, Broyden and Attia [52], [51] offered a method
of overcoming the numerical difficulties associated with the simple quadratic
penalty function. The computation of the search direction does not require the
solution of any system of linear equations, and can thus be expected to require
less work than is needed for some other algorithms. The method also provides
an automatic technique for calculating the initial value for the parameter r and
its successive values [51].

The above technique together with the existing system GENOCOP I was
used to construct a new system, GENOCOP II. The structure of GENOCOP
IT is given in Figure 7.1.

procedure GENOCOP II
begin
t«—20
split the set of constraints C into
C = L U Ne U Nl
select a starting point @,
set the set of active constraints, A to
A«— N, UV
set penalty 7 «— 79
while (not termination-condition) do
begin
te—1t+1
execute GENOCOP I for the function
F(z,7)= f(z) + %XTZ
with linear constraints L
and the starting point x,
save the best individual x*:
Ty, «— x*
update A:
A—A-5UV,
decrease penalty 7:
T g(1.1)
end
end

Fig. 7.1. The structure of GENOCOP II

There are several steps of the algorithm in the first phase of its execution
(before it enters the while loop). The parameter ¢ (which counts the number of
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iterations of the algorithm, i.e., the number of times the algorithm GENOCOP
I is applied) is initialized to zero. The set of all constraints C is divided into
three subsets: linear constraints L, nonlinear equations N, and nonlinear in-
equalities V;. A starting point @, (which need not be feasible) for the following
optimization process is selected (or a user is prompted for it). The set of active
constraints A consists initially of elements of N, and set V C N, of violated
constraints from N;. A constraint ¢; € Nj is violated at point x iff ¢;(x) > 6
(j =p+1,...,m), where ¢ is a parameter of the method. Finally, the initial
penalty coefficient of the system 7 is set to 7y (a parameter of the method).

In the main loop of the algorithm we apply GENOCOP 1 to optimize a
modified function

Fla,7) = f(z)+ 44 A4

with linear constraints L. Note that the initial population for GENOCQOP I con-
sists of pop_size identical copies (of the initial point for the first iteration and of
the best saved point for subsequent ones); several mutation operators introduce
diversity in the population at early stages of the process. When GENOCOP I
converges, its best individual * is saved and used later as the starting point x
for the next iteration. However, the next iteration is executed with a decreased

value of the penalty parameter (7 — g(7,t)) and a new set of active constraints
A:

A—A-5UV,

where S and V are subsets of /V; satisfied and violated by «*, respectively. Note
that the decrease of T results in an increase of the penalty.

The mechanism of the algorithm is illustrated on the following example.
The problem is to

minimize f(z) = x; - 23,
subject to one nonlinear constraint:
e 2—a2? —a2>0.

The known global solution is &* = (—0.816497, —1.154701), and f(z*) =
—1.088662. The starting feasible point is @g = (—0.99,—0.99). After the
first iteration of GENOCOP II (A is empty) the system converged to &, =
(=1.5,—1.5), f(z;) = —3.375. The point x; violates the constraint ¢;, which
becomes active. The point x; is used as the starting point for the second
iteration. The second iteration (r = 107}, A = {¢;}) resulted in z, =
(—0.831595, —1.179690), f(x2) = —1.122678. The point @, is used as the start-
ing point for the third iteration. The third iteration (7 = 1072, A = {¢})
resulted in x; = (—0.815862, —1.158801), f(x3) = —1.09985. The sequence
of points &; (where t = 4,5,... is the iteration number of the algorithm) ap-
proaches the optimum.

In order to evaluate the method of GENOQCOP 11, a set of test problems
have been selected to indicate the performance of the algorithm and to illustrate
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that it has been successful in practice. The five test cases include quadratic,
nonlinear, and discontinuous functions with several nonlinear constraints.

All runs of the system were performed on SUN SPARC station 2. We used
the following parameters for GENOCOP I in all experiments:

pop_size = 70, k = 28 (number of parents in each generation), b = 6
(coefficient for non-uniform mutation), § = 0.01 (parameter which
determines whether or not a constraint is active).

In most cases, the initial penalty coefficient 79 was set at 1 (i.e., g(7,0) = 1);
additionally, g(7,¢) = 1071 - g(r,t = 1).

GENOCOP II was executed ten times for each test case. For most problems,
the number of generations necessary for GENOCOP I to converge was 1000
(more difficult problems required a larger number of iterations). We did not
report the computational times for these test cases, because we do not have full
implementation of GENOCOP II yet. The actions of the system were simulated
by executing its external loop in manual fashion: when GENOCOP I converges,
the best point is incorporated as the starting point for the next iteration, the
constraints are checked for their activity status, and the evaluation function is
adjusted accordingly.

Test Case #1
The problem (taken from [186]) is

minimize f(z) = 100(z; — )% + (1 — 21)?,
subject to nonlinear constraints:

a .’L‘]*I‘IE%ZO,
Co . .’L‘%*I-.’IJQZO,

and bounds:
—05< 1z, <05, and o, < 1.0.

The known global solution is &* = (0.5,0.25), and f(z*) = 0.25. The start-
ing feasible point is @y = (0, 0).

GENOCOP 1I found the exact optimum in one iteration, as none of the
nonlinear constraints are active at the optimum.

Test Case #2
The problem (taken from [113]) is

minimize f(z,y) =—z— v,
subject to nonlinear constraints:

e ¢ oy <22t — 8%+ 827 +2,
ey ¢y < 4zt — 322°% + 88x% — 96z + 36,
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and bounds:
0<z<3and0<y<4.

The known global solution is x* = (2.3295,3.1783), and f(x*) = —5.5079.
The starting feasible point is &y = (0,0). The feasible region is almost discon-
nected.

GENOCOP II approached the optimum very closely at the 4th iteration.
The progress of the system is shown in Table 7.1.

Iteration The best Active
number point constraints
0 (0,0) none

1 (3,4) Co

2 (206, 398) Cy, Co
3 (2.3298, 3.1839) | ¢, ¢
4 (23295, 31790) Cy, Co

Table 7.1. Progress of GENOCOP II on test case #2; for iteration 0 the best point is the
starting point

Test Case #3
The problem (taken from [113]) is

minimize f(z) = (z; — 10)3 + (z, — 20)3,
subject to nonlinear constraints:

e ¢ (zy —5)2 + (z2 — 5)2 — 100 > 0,
co ¢ —(2y —6)2 — (zy — 5)2 + 82.81 > 0,

and bounds:
13 < z; <100 and 0 < 25 < 100.

The known global solution is &* = (14.095,0.84296), and f(x*) = —6961.81381
(see figure 7.2). The starting point, which is not feasible, is zy = (20.1, 5.84).

GENOCOP II approached the optimum very closely at the 12th iteration.
The progress of the system is shown in Table 7.2.

Test Case #4
The problem (taken from [39]) is

minimize f(z,x2) = 0.01z2 + 12,

subject to nonlinear constraints:
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feasible space

optimum
(14.095, 0.84296)

Fig. 7.2. A feasible space for test case #3

Iteration The best Active

number point constraints
0 (201, 584) C1, Cg
1 (130, 00) Ci1, Co
2 (13.63, 0.0) 1, Ca
3 (13.63, 0.0) c1, Gy
4 (1373, 016) C1, C2
5 (13.92, 0.50) 1, 2
6 (14.05, 0.75) €1, Co
7 (14.05, 0.76) a, G
8 (14.05, 0.76) ¢, Co
9 (1410, 087) C1, C2
10 (14.10, 0.86) c1, o
11 (14.10, 0.85) 1, Co
12 (14.098, 0.849) C1, Co

Table 7.2. Progress of GENOCOP II on test case #3; for iteration 0O the best point is the
starting point

C1 : Tyxo—25>0,
c2 : 22+ 13-25>0,
and bounds:

2SI1S5OaHdOSIE2S5O
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The global solution is @* = (v/250,v/2.5) = (15.811388,1.581139), and
f(x*) = 5.0. The starting point (not feasible) is 2o = (2,2).

It is interesting to note that the standard cooling scheme (i.e., g(7,t) =
107! - g{r,t — 1)) did not produce good results; however, when the cooling
process was slowed down (i.e., g(7,0) = 5 and g(7,t) = 27! - g(7,¢ — 1)), the
system approached optimum easily (Table 7.3). This, of course, leads to some
questions about how to control temperature for a given problem: this is one of
the topics for future research.

Tteration The best Active
number point constraints
0 (2,2) Ci, Co
1 (3.884181, 3.854743) a
2 (15.805878, 1.581057) ¢l
3 {15.811537, 1.580996) c1

Table 7.3. Progress of GENOCOP 1II on test case #4; for iteration 0 the best point is the
starting point

Test Case #5
The final test problem (taken from [186]) is

minimize f(z) = (z1 —2)? + (z2 — 1)2,
subject to a nonlinear constraint:

c1 1 —ri413y>0,
and a linear constraint:

1+ 2 < 2.

The global solution is * = (1,1) and f(z*) = 1. The starting (feasibie)
point is ¢ = (0,0).

GENQCQP II approached the optimum very closely at the 6th iteration.
The progress of the system is shown in Table 7.4.

Summary
There are several interesting points connected with the above method. First,
like any other GA-based method, it does not require any implicit (or explicit)
calculations of the gradient or Hessian matrix of the objective function and
constraints. Consequently, the method does not suffer from the ill-conditioned
Hessian problem usually associated with some calculus-based methods.

It should be noted that any genetic algorithm can be used in place of GENO-
COP I for the inner loop of GENOCOP II. In such a case all constraints (linear
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Iteration The best Active
number point constraints

0 (0, 0) 5]

1 (1.496072, 0.503928) a

2 (1.020873, 0.979127) a

3 (1.013524, 0.986476) a

4 {1.002243, 0.997757) a

5 (1.000217, 0.999442) a

6 (1.000029, 0.999971) a1

Table 7.4. Progress of GENOCOP II on test case #B5; for iteration 0 the best point is the
starting point

and nonlinear) should be considered for placement in the set of active constraints
A (the elements of L should be distributed between N, and N;). However, such
a method is much slower and less effective: for efficiency reasons, it is much
better to process linear constraints separately (as done in GENOCQOP I).

7.3 Other techniques

During the last two years several methods were proposed for handling con-
straints by genetic algorithms for numerical optimization problems. Most of
them are based on the concept of penalty functions, which penalize infeasible
solutions, i.e.,!
fl(x), if & is feasible
eval(x) = { fgm; + penalty(x), otherwise,
where penalty(x) is zero, if no violation occurs, and is positive, otherwise. In
most methods a set of functions f; (1 < j < m) is used to construct the penalty;
the function f; measures the violation of the j-th constraint in the following
way:
_ { max{0,gy(@)}, 1<) <q

@) = ks, fgrl<j<m.

However, these methods differ in many important details as to how the penalty
function is designed and applied to infeasible solutions. In the following sub-
sections we discuss them in turn; the methods are sorted in decreasing order of
parameters they require.

In the rest of the section we assume minimization problems.
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Method #1

This method was proposed by Homaifar et al. [195]. The method assumes that
for every constraint we establish a family of intervals which determine an ap-
propriate penalty coefficient. It works as follows:

o for each constraint, create several (£) levels of violation,

e for each level of violation and for each constraint, create a penalty coeffi-
cient Ry; (i=1,2,...,4,j =1,2,...,m); higher levels of violation require
larger values of this coefficient.

e start with a random population of individuals (feasible or infeasible}),
o evolve the population; evaluate individuals using the formula
eval(z) = f(x) + T, Ri; f} ().

The weakness of the method is in the number of parameters: for m constraints
the method requires m parameters to establish number of intervals for each
constraint (in [195], these parameters are the same for all constraints equal to
¢ = 4), plus ¢ parameters for each constraint (i.e., £ x m parameters in total;
these parameters represent boundaries of intervals or levels of violation), plus
¢ parameters for each constraint (¢ x m parameters in total; these parameters
represent the penalty coefficients R;;). So the method requires m(2¢ + 1) pa-
rameters in total to handle m constraints. In particular, for m = 5 constraints
and £ = 4 levels of violation, we need to set 45 parameters! Clearly, the results
are parameter dependent. It is quite likely that for a given problem there ex-
ists a unique optimal set of parameters for which the system returns feasible
near-optimum solution, but it might be quite hard to find it.

Method #2

The second method was proposed by Joines and Houck [210]. As opposed to
the previous method, the authors assumed dynamic penalties. Individuals are
evaluated (at the iteration ¢) by the following formula:

eval(z) = f(z) + (C x 1)* T}, ff(m)7

where C, o and 3 are constants. A reasonable choice for these parameters
(reported in [210]) is C = 0.5, @ = 8 = 2. The method requires a much smaller
number (independent of the number of constraints) of parameters than the first
method. Also, instead of defining several levels of violation, the pressure on
infeasible solutions is increased due to the (C x t)* component of the penalty
term: towards the end of the process (for high values of the generation number
t), this component assumes large values.

Method #3
The third method was proposed by Schoenauer and Xanthakis [346]; it works
as follows:
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e start with a random population of individuals (feasible or infeasible),
e set j =1 (j is a constraint counter),

e evolve this population with eval(z) = f;(x), until a given percentage of
the population (so-called flip threshold ¢) is feasible for this constraint,?

esetj=7+1,

e the current population is the starting point for the next phase of the
evolution, where eval(x) = f;(x). During this phase, points that do not
satisfy one of the 1st, 2nd, ... , or (j — 1)-th constraint are eliminated
from the population. The stop criterion is again the satisfaction of the
j-th constraint by the flip threshold percentage ¢ of the population.

e if j < m, repeat the last two steps, otherwise (j = m) optimize the
objective function, i.e., eval(a) = f(x), rejecting infeasible individuals.

The method requires a linear order of all constraints which are processed in turn.
It is unclear what is the influence of the order of constraints on the results of
the algorithm; our experiments indicated that different orders provide different
results (different in the sense of the total running time and precision).

In total, the method requires 3 parameters: the sharing factor o, the flip
threshold ¢, and a particular order of constraints. The method is very different
from the previous two methods, and, in general, is different from other penalty
approaches, since it considers only one constraint at the time. Also, in the
last step of the algorithm the method optimizes the objective function f itself
without any penalty component.

Method #4

Let us denote the GENOCOP II system as the method #4. As discussed ear-
lier, this is the only method described here which distinguishes between linear
and nonlinear constraints. The algorithm maintains feasibility of all linear con-
straints using a set of closed operators, which convert a feasible solution (feasible
in terms of linear constraints only) into another feasible solution. At every iter-
ation the algorithm considers active constraints only; the pressure on infeasible
solutions is increased due to the decreasing values of temperature 7.

The method has an additional unique feature: it starts from a single point.3
Consequently, it is relatively easy to compare this method with other classical
optimization methods whose performance is tested (for a given problem) from
some starting point.

The method requires a starting and ‘freezing’ temperatures, 7o and 7y, re-
spectively, and a cooling scheme to decrease temperature 7. Standard values
(reported in [267]) are 7o = 1, Ti41 = 0.1 - 7, with 7, = 0.000001.

2The method suggests the use of a sharing scheme (to maintain diversity of the population).
3This feature, however, is not essential. The only important requirement is that the next
population contains the best individual from the previous population.
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Method #5

The fifth method was developed by Powell and Skolnick [313]. The method
is a classical penalty method with one notable exception. Each individual is
evaluated by the formula:

eval(x) = f(z) + T‘E;';l fJ(:z:) + At, z),

where r is a constant; however, there is also a component A(¢,«). This is an
additional iteration dependent function which influences the evaluations of in-
feasible solutions. The point is that the method distinguishes between feasible
and infeasible individuals by adopting an additional heuristic rule (suggested
earlier in [332]): for any feasible individual = and any infeasible individual ¥,
eval(z) < eval(y), i.e., any feasible solution is better than any infeasible one.
This can be achieved in many ways; one possibility is to set

0, fceF
At, x) = { max{0, max,cr{f(z)}—
minggr{f(x) +r XL, f;(z)}}, otherwise

where F denotes the feasible part of the search space. In other words, infeasible
individuals have increased penalties: their values cannot be better than the
value of the worst feasible individual (i.e., max,er{f(z)}).*

Method #6

The final method rejects infeasible individuals (death penalty); the method has
been used by evolution strategies [18], evolutionary programming adopted for
numerical optimization [117], and simulated annealing.

7.3.1 Five test cases

In the selection process of the following five test cases we took into account (1)
the type of the objective function, (2) the number of variables, (3) the number
of constraints, (4) the types of constraints, (5) the number of active constraints
at the optimum, and (6) the ratio p between the sizes of the feasible search space
and the whole search space. We do not make any claims on the completeness of
the proposed set of these test cases G1-G5; however, it may constitute a handy
collection for preliminary tests for other constraint handling methods.

Test Case #1
The problem [114] is to minimize a function:

G1(x) = 5z + 525 + 573 + Bzy — 51, 22 — i 1,

subject to

4Powell and Skolnick achieved the same result by mapping evaluations of feasible solutions
into the interval (—oo,1) and infeasible solutions into the interval (1,00). For ranking and
tournament selections this implementational difference is not important.
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2z 4+ 2z9 + 1o + 17 < 10, 22 + 223 + 719 + 712 < 10,

209+ 2z3+ 211+ 212 <10, =8z + 210 <0, —8xy+x1; <0,
—8x3+219L0, —2z4—25+72,0<0, —2z6— 274+, <0,
“2$8~I9+I12SO, 0§:1:,-§1,z'=1,...,9,
OS.’L'1<100,Z=10,11,12, 051‘1351.

The problem has 9 linear constraints; the function G1 is quadratic with its
global minimum at

z*=(1,1,1,1,1,1,1,1,1,3,3,3,1),

where G1(z*) = —15. Six (out of nine) constraints are active at the global
optimum (all except the following three: —8z; + x19 < 0, —8z9 + z;; < 0,
—8z3 + 212 < 0).

Test Case #2
The problem [186] is to minimize a function:

G2(x) = z1 + z2 + x3,
where

1—-0.0025(z4 +x) >0, 1-—0.0025(zs + 27 — z4) >0,

1—0.01(zg—z5) = 0, 26— 833.33252z, —100z; +83333.333 > 0,

Tox7— 125025~ 124 +1250x4 > 0, z313—1250000—1375+2500x5 >

0,

100 < z; < 10000, 1000 < z; €10000, =23, 10 < z; < 1000,
i=4,...,8

The problem has 3 linear and 3 nonlinear constraints; the function G2 is linear
and has its global minimum at

z* = (579.3167,1359.943, 5110.071, 182.0174,
295.5985, 217.9799, 286.4162, 395.5979),

where G2(x*) = 7049.330923. All six constraints are active at the global opti-
mum.

Test Case #3
The problem [186] is to minimize a function:

G3(z) = (z1 — 10)? + 5(zo — 12)% + 23 + 3(z4 — 11)%+
1028 + 722 + 7% — 4z6z7 — 1026 — 827,

where

127 — 222 — 323 — 3 — 425 — 5z5 > 0,

282 — Tx; — 379 — 1022 — x4 + 25 > 0,

196 — 23z, — 22 — 622 + 827 > 0,

—4x? — 2% + 37,79 — 205 — Bxg + 1177 > 0
-100<1;<10.0,i=1,...,7.
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The problem has 4 nonlinear constraints; the function G3 is nonlinear and has
its global minimum at

x* = (2.330499, 1.951372, —0.4775414,
4.365726, —0.6244870, 1.038131, 1.594227),

where G3(x*) = 680.6300573. Two {(out of four) constraints are active at the
global optimum (the first and the last one).

Test Case #4
The problem [186] is to minimize a function:

G4(m) — exlzzxauzs,
subject to

itz 42l 4zl +22 =10, 2933 Sr4z5 =0,
4zl =-1 -23<4z<231i=12 -32<x <32
i=1345.

The problem has 3 nonlinear equations; nonlinear function G4 has its global
minimum at

z* = (—1.717143, 1.595709, 1.827247, —0.7636413, —0.7636450),
where G4(x*) = 0.0539498478.

Test Case #5
The problem {186] is to minimize a function:

G5(x) = 22 + 2% + 2172 — 1471 — 1672 + (73 — 10)2 + 4(z4 — 5)2 + (25 — 3)%+
2(xg — 1)2 + 51‘3 + 7(zg — 11)2 + 2(zg — 10)2 + (10— 7)2 + 45,

where

105 — 4z — 5z9 + 3x7 — 918 > 0,

—10z; + 8zy + 1727 — 225 > 0,

8z — 229 — bxg + 2310 + 12 > 0,

—3(zy — 2)® — 4(zy — 3)% — 222 + Tz + 120 > 0,
—53}? — 83}2 - (1'3 — 6)2 -+ 22}4 + 40 2 O,

—(E% — 2(1‘2 - 2)2 + 2z129 — 1425 + 625 > 0,
—0.5(z; — 8)2 — 2(zp — 4)2 — 322 + x5 + 30 > 0,
3z, — 6y — 12(1‘9 — 8)2 + 7x19 2 0,

—-10.0<z; 100, i=1,...,10.

The problem has 3 linear and 5 nonlinear constraints; the function G5 is
quadratic and has its global minimum at

x* = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
1.430574, 1.321644, 9.828726, 8.280092, 8.375927),
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where G5(z*) = 24.3062091. Six (out of eight) constraints are active at the
global optimum (all except the last two).

Summary

All test cases are summarized in Table 7.5; for each test case (TC) we list
number n of variables, type of the function f, the ratio p between sizes of the
feasible and the whole search space, the number of constraints of each category
(linear inequalities LI, nonlinear equations NE and inequalities NI), and the
number a of active constraints at the optimum.

TC| n| Typeof f 0 LI| NE| NI
#1 | 13 | quadratic | 0.0111%
42 | 8| linear |0.0010%
#3 | 7| polynomial | 0.5121%
#4 {1 5| nonlinear | 0.0000%
#5 | 10 | quadratic | 0.0003%

W o O W
S wWwo oo
GO WO
WO

Table 7.5. Summary of five test cases. The ratio p was determined experimentally by gener-
ating 1,000,000 random points from the search space and checking whether they are feasible.
LI, NE, and NI represent the number of linear inequalities, and nonlinear equations and
inequalities, respectively.

7.3.2 Experiments

In all experiments we assumed floating point representation, nonlinear ranking
selection, Gaussian mutation, arithmetical and heuristic crossovers; the proba-
bilities of all operators were set at 0.08, and the population size was 70. For all
methods the system was run for 5,000 generations.

The results are summarized in Tables 7.6 and 7.7, which report (for each
method) the best (row b), median (row m), and the worst (row w) result {out of
10 independent runs) and numbers (row ¢) of violated constraints at the median
solution: the sequence of three numbers indicate the number of violations with
violation amount between 1.0 and 10.0, between 0.1 and 1.0, and between 0.001
and 0.1, respectively (a sequence of three zeros indicates a feasible solution). If
at least one constraint was violated by more than 10.0 (in terms of functions f;),
the solution was considered as ‘not meaningful’. In some cases it was hard to
determine “the best” solution due to a relationship between the objective value
and the number of violated constraints; the tables report the smallest objective
value (for the best solution); consequently, some values are “better” than the
value at the global minimum.

It is difficult to provide a complete analysis of all six methods on the basis
of five test cases, however, it seems that method #1 can provide good results
only if violation levels and penalty coefficients R;; are tuned to the problem
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TC | Exact Method | Method | Method
opt. #1 #2 #3
b| —15.002 | —15.000 | —15.000
#11 —15.000 f m | —15.002 | —15.000 | —15.000
w | —15.001 | —14.999 | —14.998
c 0,04 0,0,0 0,0,0
b | 2282,723 | 3117.242 | 7485.667
#2 | 7049.331 | m | 2449.798 | 4213.497 | 8271.292
w | 2756.679 | 6056.211 | 8752.412
c 0,30 0,30 0,0,0
b| 680771 | 680.787 | 680.836
#3| 680630 | m | 681.262 | 681.111 | 681.175
w | 689.660 | 682.798 | 685.640
c 0,0, 1 0,0,0 0,0,0
b 0.084 0.059
#4 0054 | m 0.955 0.812 *
w 1.000 2.542
c 0,0,0 0,0,0
b 24.690 25.486
45| 24306 | m| 20258 | 26.905 —
w 36.060 42.358
el 01,1] 0,00

Table 7.6. Experimental results. For each method (#1, #2, and #3) we report the best
(b), median (m), and the worst (w) result (out of 10 independent runs) and the number (¢}
of violated constraints at the median solution: the sequence of three numbers indicate the
number of violations by more than 1.0, more than 0.1, and more than 0.001, respectively. The
symbols ‘¢’ and ‘— stand for ‘the method was not applied to this test case’ and ‘the results
were not meaningful’, respectively.

(e.g., our arbitrary choice of 4 violation levels with penalties of 100, 200, 500,
and 1,000, respectively, worked well for the test cases #1 and #3, whereas
it did not work well for other test cases, where some other values for these
parameters are required). Also, these violation levels and penalty coefficients
did not prevent the system from violating 3 constraints in the test case #2, since
the ‘reward’ was too large to resist (i.e., the optimum value outside the feasible
region is 2,100 for = (100.00, 1000.00, 1000.00, 128.33, 447.95, 336.07, 527.85,
578.08) with relatively small penalties). In all test cases (except test case #4) the
method returned solutions which were infeasible by a relatively small margin,
which is an interesting characteristic of this method.

Method #2 provided better results than the previous method for almost
all test cases: for test case #1 (where all returned solutions were feasible), test
cases #2 and #4 (where constraint violations were much smaller), and test case
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Method | Method | Method [ Method
#4 #5 #6 #6(f)

~15.000 | —15.000 —15.000
~15.000 | -15.000 | — | —14.999
~15.000 | —14.999 —13.616
0,0,0] 0,0,0 0,0, 0
7377.976 | 2101.367 7872.948
8206.151 | 2101.411 | — | 8559.423
9652.901 | 2101.551 8668.648
0,0,0| 1,20 0,0,0

680.642 | 680.805 | 680.934 | 680.847
680.718 | 682.682 | 681.771 | 681.826
680.955 | 685.738 | 689.442 | 689.417
0,00/ 0,00 0,00| 0,00

0.054 |  0.067
0.064| 0.091| = ¥
0.557 |  0.512
0,0,0| 0,00
18917 | 17.388 25.653
24418 | 22.932| — 27.116
44.302 |  48.866 32.477
0,1,0| 1,0,0 0,0,0

Table 7.7. Continuation of Table 7.6; experimental results for methods #4, #5, and #6. The
results for method #6 report also the results of experiments (method #6(f)) where the initial
population was feasible.

#3 (the standard deviation of results was much smaller). On the other hand,
method #2 seems to provide too strong penalties: often the factor (C x¢)* grows
too fast to be useful. The system has little chance of escaping from local optima:
in most experiments the best individual was found in early generations. It is
also worth mentioning that this method gave very good results for test cases
#1 and #5, where the objective functions were quadratic.

Method #3 was not applied to test case #4, and it did not give meaningful
results for test case #5, which has a very small ratio p (the smallest apart from
the test case #4). Clearly, the method is quite sensitive to the size of the feasible
part of the search space. Also, some additional experiments indicated that the
order of constraints to be considered influenced the results in a significant way.
On the other hand, the method performed very well for test cases #1 and #3,
and for test case #2 it gave reasonable results.

Method #4 performed very well for the test cases #1, #3 and #4, where
it provided the best results. It also gave a reasonable performance in test case
#2 (where linear constraints were responsible for the failure of the methods
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#1 and #2). However, for test case #5 the method gave quite poor results in
comparison with methods #1, #2, and #6(f); it seems the linear constraints of
this problem prevented the system from moving closer to the optimum. This is
an interesting example of the damaging effect of limiting the population to the
feasible (with respect to linear constraints) region only. Additional experiments
indicated that the method is very sensitive to the cooling scheme. For example,
the results of the test case #5 were improved in a significant way for different
cooling scheme (741 = 0.01 - 73).

Method #5 had difficulties in locating a feasible solution for test case #2:
similarly to methods #1 and #2 the algorithm settled for infeasible solution. In
all other test cases the method gave a stable, reasonable performance, returning
feasible solutions {test cases #1, #3, and #5), or slightly infeasible solutions
(test case #4). Additional experiments (not reported in the tables) included
runs of the method #5 with a feasible initial population. For test case #2, the
results were almost identical to these of method #6(f)). However, for test case
#5, the results were excellent (the best of all methods).

The method #6 (apart from test case #3) did not produce any meaningful
results. To test this method properly it was necessary to initialize a population
by feasible solutions (method #6(f)). This different initialization scheme makes
the comparison of these methods even harder. However, an interesting pattern
emerged: the method generally gave a quite poor performance. The method was
not as stable as other methods on the easiest test case #1 (this was the only
method to return a solution of —13.618, far from the optimum), and for the test
case #2 only in one run the returned value was below 8000.

No single parameter (number of linear, nonlinear, active constraints, the
ratio p, type of the function, number of variables) proved its significance as a
measure of difficulty of the problem for the evolutionary techniques. For ex-
ample, all methods approached the optimum quite closely for the test cases #1
and #5 (with p = 0.0111% and p = 0.0003%, respectively), whereas most of the
methods experienced difficulties for the test case #2 (with p = 0.0010%). Two
quadratic functions (test cases #1 and #5) with a similar number of constraints
(9 and 8, respectively) and an identical number (6) of active constraints at the
optimum, gave a different challenge to most of these methods. It seems that
other properties (the characteristic of the objective function together with the
topology of the feasible region) constitute quite significant measures of the diffi-
culty of the problem. Also, several methods were quite sensitive to the presence
of a feasible solution in the initial population.

7.4 Other possibilities

As indicated earlier, several researchers studied heuristics on design of penalty
functions. Some hypotheses were formulated in [332]:
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e “penalties which are functions of the distance from feasibility are bet-
ter performers than those which are merely functions of the number of
violated constraints,

o for a problem having few constraints, and few full solutions, penalties
which are solely functions of the number of violated constraints are not
likely to find solutions,

e good penalty functions can be constructed from two quantities, the maz-
imum completion cost and the expected completion cost,

o penalties should be close to the ezpected completion cost, but should not
frequently fall below it. The more accurate the penalty, the better will be
the solutions found. When penalty often underestimates the completion
cost, then the search may not find a solution.”

and in [358]:

o “the genetic algorithm with a variable penalty coefficient outperforms the
fixed penalty factor algorithm,”

where variability of the penalty coefficient was determined by a heuristic rule.

This last observation was further investigated by Smith and Tate [360]. In
their work they experimented with dynamic penalties, where the penalty mea-
sure depends on the number of violated constraints, the best feasible objective
function found, and the best objective function value found.

Also, a method of adapting penalties was developed by Bean and Hadj-
Alouane [27, 174]. It uses a penalty function, however, one component of the
penalty function takes a feedback from the search process. Each individual is
evaluated by the formula:

eval(X) = f(X) + A(t) 272, fH(X),
where A(t) is updated every generation ¢ in the following way:

(1/81) - A(t), if Bi)e Fforallt—k+1<i<t
At+1) =12 B2 A1), f Bi)g Fforallt—k+1<i<t
At), otherwise,

where B(i) denotes the best individual, in terms of function eval, in generation
i, P1,02 > 1 and By # B2 (to avoid cycling). In other words, the method (1)
decreases the penalty component A(t + 1) for the generation ¢ + 1, if all best
individuals in the last k generations were feasible, and (2) increases penalties,
if all best individuals in the last k generations were infeasible. If there are some
feasible and infeasible individuals as best individuals in the last k generations,
A(t + 1) remains without change.

The above approach was applied for integer programming problems. The
problem considered in [174] is
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minimize cx

subject to
Az —b>0, (1)
Z;‘;lxij=1, fOl'i=1,...,m, (2)
zi; € {0,1}. 3)

For each set, i = 1,...,m, equations (2) and (3) force exactly one variable in

{zi;}7%, to be one. Matrix A is k x n (n = ¥i=1"n;) and b is a constant
k-dimensional vector.

As reported in [174], most successful techniques for solving the above prob-
lem are branch and bound methods that use either linear programming, La-
grangian relaxation or its variations. Lagrangian relaxation drops some con-
straints by incorporating a weighted linear penalty for constraint violation. The
“correct” weights may result in very good bounds or even optimal solutions
to the original problem; a typical Lagrangian relaxation replaces the original
problem (the constraints (1)) by the following formulation

minimize cx — A(Ax — b)
subject to
Ezx = ey, z;; € {0,1}

(constraints Ex = e,, are the multiple choice constraints, where ep, is a vector
of ones).
The proposed approach replaces the original problem by

minimize ex + py(x),
subject to
Ex =e,, Ty € {0, 1}

where py(z) = %, \i[min{0, Az — b;}]%. The function is nonlinear and a
genetic algorithm is used to optimize the expression.

There are interesting ideas present in the proposed method. First of all,
results of experiments indicated that starting with high values for A did not
lead to efficient algorithm. So the proposed algorithm adjusts the vector A
during the run: a sequence of increasing A vectors is employed. The experiments
[174] indicated that the rate at which this sequence is increased is extremely
important (a similar observation was made on the basis of experimental results
of GENOCOP 1II): a slow rate would improve the quality of solutions at the
expense of rate of improvement and a fast rate may result in an inefficient
genetic evolution. Additionally, the proposed genetic algorithm uses a technique
of random keys, where a solution is represented as a vector of random numbers:
their sorted order decodes the solution (note the similarity between this method
and application of evolution strategies to the traveling salesman problem; see
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Chapter 8 on evolution strategies and Chapter 10 on the traveling salesman
problem). A solution is represented by a string of length equal to the number
of multiple choice sets. Each position ¢ of the string can take any integer in
{1,...,n;}, where n; is the number of variables in the multiple choice set.

Other constraint handling methods deserve also some attention. One of
them (GENOCOP III, discussed in the next section) is based on repair algo-
rithms: an infeasible solution x is “forced” into the feasible region and its re-
paired version is evaluated. 1t is also possible to construct a hybrid algorithms
which incorporate some deterministic optimization procedure; for a short survey
and a description of one particular method, see [294].

An additional possibility would include the use of the values of objective
function f and penalties f; as elements of a vector and applying multi-objective
techniques to minimize all components of the vector. In other words, objective
function f and constraint violation measures f; (for m constraints) constitute
a (m + 1)-dimensional vector v:

v=(f’f])"‘7fm)'

Using some multi-objective optimization method, we can attempt to minimize
its components: an ideal solution z would have f;(z) = 0for 1 < i < m and
f(z) < f(y) for all feasible y (minimization problems). A successful implemen-
tation of this approach was presented recently in Surry et al. [376].

Yet another approach was proposed recently by Le Riche et al. [239]. The
authors designed a (segregated) genetic algorithm which uses two values of
penalty parameters (for each constraint) instead of one; these two values aim
at achieving a balance between heavy and moderate penalties by maintaining
two subpopulations of individuals. The population is split into two cooperating
groups, where individuals in each group are evaluated using either one of the
two penalty parameters.

Also, an interesting approach was recently reported by Paredis [308]. The
method (described in the context of constraint satisfaction problems) is based
on a co-evolutionary model, where a population of potential solutions co-
evolves with a population of constraints: fitter solutions satisfy more constraints,
whereas fitter constraints are violated by more solutions. This means that indi-
viduals from the population of solutions are considered from the whole search
space, and that there is no distinction between feasible and infeasible individ-
uals. The evaluation of an individual is determined on the basis of constraint
violations measures f;'s; however, better f;’s (e.g., active constraints) would
contribute more towards evaluating the solution. It would be interesting to
adopt this approach to constrained numerical optimization problems and com-
pare it with the other methods. But the major difficulty to be resolved in such
adaptation seems very much the same as in many other methods: how to bal-
ance the pressure of feasibility of a solution with the pressure to minimize the
objective function.

The research on cultural algorithms [327, 328, 330, 331] was triggered by
observations that culture might be another kind of inheritance system. But it is
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not clear what the appropriate structures and units to represent the adaptation
and transmission of cultural information are. Neither it is clear how to describe
the interaction between natural evolution and culture. Reynolds developed a few
models to investigate the properties of cultural algorithms; in these models, the
belief space is used to constrain the combination of traits that individuals can
assume. Changes in the belief space represent macroevolutionary change and
changes in the population of individuals represent microevolutionary change.
Both changes are moderated by the communication link.

The general intuition behind belief spaces is to preserve those beliefs associ-
ated with “acceptable” behavior at the trait level (and, consequently, to prune
away unacceptable beliefs). The acceptable beliefs serve as constraints that di-
rect the population of traits. It seems that the cultural algorithms may serve as a
very interesting tool for numerical optimization problems, where constraints in-
fluence the search in a direct way (consequently, the search in constrained spaces
may be more efficient than in unconstrained ones!). Very recently Reynolds et
al. {329] investigated a possibility of applying cultural algorithms for constrained
numerical optimization. The first experiments indicate a great potential behind
this approach.

7.5 GENOCOP III

This method incorporates the original GENOCOP system (described in section
7.1, but also extends it by maintaining two separate populations, where a devel-
opment in one population influences evaluations of individuals in the other pop-
ulation. The first population P; consists of so-called search points which satisfy
linear constraints of the problem (as in the original GENOCOP system). The
feasibility (in the sense of linear constraints) of these points is maintained, as
before, by specialized operators. The second population P, consists of so-called
reference points; these points are fully feasible, i.e., they satisfy all constraints
(if GENOCOP 111 has difficulties in locating such a reference point for the pur-
pose of initialization, the user is prompted for it. In cases where the ratio p
between the sizes of feasible and the whole search spaces is very small, it may
happen that the initial set of reference points consists of a multiple copies of a
single feasible point). Figure 7.3 illustrates these two populations.

Reference points R, being feasible, are evaluated directly by the objective
function (i.e., eval(R) = f(R)). On the other hand, infeasible search points
are “repaired” for evaluation and the repair process works as follows. Assume,
there is a search point .S is not fully feasible. In such a case the system selects
(better reference points have better chances to be selected; a selection method
based on nonlinear ranking was used) one of the reference points, say R, and
creates random points Z from a segment between S and R by generating random
numbers a from the range {0,1): Z = aS + (1 — a)R. Figure 7.4 illustrates this
repair process.
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Once a feasible Z is found, eval(S) = eval(Z) = f(Z).> Additionally, if
" f(Z) is better than f(R), then the point Z replaces R as a new reference point.
Also, Z replaces S with some probability of replacement p;.

GENOCOP III avoids many disadvantages of other systems. It introduces
few additional parameters (the population size of reference points, probability of
replacement) only. It always returns a feasible solution. A feasible search space
is searched by making references from the search points. The neighborhoods
of better reference points are explored more often. Some reference points are
moved into the population of search-points, where they undergo transformation
by specialized operators (which preserve linear constraints).

The preliminary version of GENOCOP III (available from ftp.unce.edu,
directory coe/evol, file genocoplll.tar.Z) was tested on the test cases G1 - G5
(given in section 7.3.1). The results of GENOCOP III on G1 are identical to
these of the original GENOCOP: since there are no nonlinear constraints, there
is no need for a population of reference points. Out of the remaining four test

5Clearly, in different generations the same search point S can evaluate to different values
due to the random nature of the repair process.
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cases, we experimented with three (G2, G3, and G5); the problem G4 contains
nonlinear equations NE, and the current version of GENOCOP III does not
handle them yet.

GENOCOP III was run for 5,000 iterations (like other systems discussed
in section 7.3). The probabilities of all operators were set at 0.08, and both
population sizes were 70.

The results were very good. For example, for the problem G2 the best result
was 7286.650, much better than the best result of the best system from those
discussed in section 7.3.1 (for this problem, it was GENOCOP II with 7377.976).
Similar performance was observed on two other problems, G3 (with 680.640)
and G5 (with 25.883). Another interesting observation was connected with the
stability of the system. GENOCOP III had a very low standard deviation of
results. For example, for problem G3, all results were between 680.640 and
680.889; on the other hand, other systems produced a variety of results (between
680.642 and 689.660, see [266]).

Of course, all resulting points X were feasible, which was not the case with
other systems (e.g., GENOCOP II produced a value of 18.917 for the problem
G5, the systems based on the methods of Homaifar, Lai, and Qi, and Powell
and Skolnick gave results of 2282.723 and 2101.367, respectively, for the problem
G2).

Additional interesting test case emerged recently; the problem [220] is to
maximize a function:

1, cos'(ai) = 2112, cos’(z)

\/Zin=1 iz

fle) = B

where
Mz > 075,53 z; < 75n,and 0 < z; < 10 for 1 <4 < n.

The problem has 2 nonlinear constraints; the function f is nonlinear and its
global maximum is unknown.
Keane [220] noted:

“l am currently using a parallel GA with 12-bit binary encoding,
crossover, inversion, mutation, niche forming and a modified Fiacco-
McCormick constraint penalty function to tackle this. For n = 20 1
get values like 0.76 after 20,000 evaluations.”

GENOCOP III was run for cases of n = 20 and n = 50. In the former case, the
best solution found (in 10,000 generations) was

x = (3.16311359, 3.13150430, 3.09515858, 3.06016588, 3.03103566,
2.99158549, 2.95802593, 2.92285895, 0.48684388, 0.47732279,
0.48044473, 0.48790911, 0.48450437, 0.44807032, 0.46877760,
0.45648506, 0.44762608, 0.44913986, 0.44390863, 0.45149332),

where f(x) = 0.80351067. In the latter case (n = 50), the best solution found
(in 10,000 generations) was
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x = (6.28006029, 3.16155291, 3.15453815, 3.14085174, 3.12882447,
3.11211085, 3.10170507, 3.08703685, 3.07571769, 3.06122732,
3.05010581, 3.03667951, 3.02333045, 3.00721049, 2.99492717,
2.97988462, 2.96637058, 2.95589066, 2.94427204, 2.92796040,
0.40970641, 2.90670991, 0.46131119, 0.48193336, 0.46776962,
0.43887550, 0.45181099, 0.44652876, 0.43348753, 0.44577143,
0.42379948, 0.45858049, 0.42931050, 0.42928645, 0.42943302,
0.43294361, 0.42663351, 0.43437257, 0.42542559, 0.41594154,
(0.43248957, 0.39134723, 0.42628688, 0.42774364, 0.41886297,
0.42107263, 0.41215360, 0.41809589, 0.41626775, 0.42316407),

where f(z) = 0.83319378.5

Clearly, GENOCOP III is a promising tool for constrained nonlinear opti-
mization problems. However, there are many issues which require further at-
tention and experiments. These include investigation of the significance of the
ratio of p; note that it is possible to represent some linear constraints as nonlin-
ear constraints; this change in the input file would make the space of reference
points smaller and the space of linearly feasible search points larger. However,
it is unclear how these changes would affect the performance of the system.

Another group of experiments is connected with a single parameter: prob-
ability of replacement p.. In all experiments reported above, p, = 0.15.

Also, we plan (in a very near future) to extend GENOCOP III to handle
nonlinear equations. This would require an additional parameter (¢) to define
the precision of the system. All nonlinear equations h;(X) = 0 (for j = ¢ +
1,...,m) would be replaced by a pair of inequalities:

yoe

—-e< h]' (Y) <e
This new version of GENOCOP III should handle the problem G4 directly.

8This is not the global optimum; Bilchev [43] reported value of the objective function of
0.8348.
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It were not best that we should think alike;
it is difference of opinion
that makes horse races.

Mark Twain, Pudd’nhead Wilson

Evolution strategies {ESs) are algorithms which imitate the principles of natural
evolution as a method to solve parameter optimization problems [18], [348].
They were developed in Germany during the 1960s. As stated in [348]:

“In 1963 two students at the Technical University of Berlin met and
were soon collaborating on experiments which used the wind tun-
nel of the Institute of Flow Engineering. During the search for the
optimal shapes of bodies in a flow, which was then a matter of labori-
ous intuitive experimentation, the idea was conceived of proceeding
strategically. However, attempts with the coordinate and simple gra-
dient strategies were unsuccessful. Then one of the students, Ingo
Rechenberg, now Professor of Bionics and Evolutionary Engineer-
ing, hit upon the idea of trying random changes in the parameters
defining the shape, following the example of natural mutations. The
evolution strategy was born.”

(The second student was Hans-Paul Schwefel, now Professor of Computer Sci-
ence and Chair of System Analysis).

Early evolution strategies may be perceived as evolution programs where a
floating point number representation is used, with mutation being the only re-
combination operator. They have been applied to various optimization problems
with continuously changeable parameters. Only recently they were extended for
discrete problems [18], [178].

In this chapter we describe the early ESs based on a two-member population
and the mutation operator, and various multimembered population ESs (section
8.1). Section 8.2 compares ESs with GAs, whereas section 8.4 presents other
strategies proposed recently by various researchers.
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8.1 Evolution of evolution strategies

The earliest evolution strategies were based on a population consisting of one
individual only. There was also only one genetic operator used in the evolution
process: a mutation. However, the interesting idea (not present in GAs) was to
represent an individual as a pair of float-valued vectors, i.e., v = (x, o). Here,
the first vector a represents & point in the search space; the second vector o is
a vector of standard deviations: mutations are realized by replacing x by

! =zt + N(0,0),

where N(0,0) is a vector of independent random Gaussian numbers with a
mean of zero and standard deviations &. (This is in accordance with the biolog-
ical observation that smaller changes occur more often than larger ones.) The
offspring (the mutated individual) is accepted as a new member of the popula-
tion (it replaces its parent) iff it has better fitness and all constraints (if any) are
satisfied. For example, if f is the objective function without constraints to be
maximized, an offspring (z‘*!, o) replaces its parent (z*, o) iff f(z'*!) > f(=*).
Otherwise, the offspring is eliminated and the population remain unchanged.

Let us illustrate a single step of such an evolution strategy, considering a
maximization problem we used as an example (for a simple genetic algorithm)
in Chapter 2:

f(@1,29) = 21.5 4 z; - sin(47wz1) + z2 - sin(20mzy),

where —3.0 <z, <12.1 and 4.1 < z5 < 5.8.

As explained earlier, a population would consist of a single individual (z, o),
where & = (z1,z2) is a point within the search space (—3.0 < z; < 12.1 and
4.1 < 25 < 5.8) and o = (0y,02) represents two standard deviations to be
used for the mutation operation. Let us assume that at some time ¢ the single
element population consists of the following individual:

(&', o) = ((5.3,4.9), (1.0, 1.0)),
and that the mutation results in the following change:

it =2t + N(0,1.0) =53+ 0.4 =57
z5t! = 2b + N(0,1.0) = 4.9 - 0.3 = 4.6.

Since

f(z) = f(5.3,49) = 18.383705 < 24.849532 = f(5.7,4.6) =
f(mt-}-l)’

and both zi*' and z5*' stay within their ranges, the offspring will replace its
parent in the single-element population.
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Despite the fact that the population consists of a single individual which
undergoes mutation, the evolution strategy discussed above is called a “two-
membered evolution strategy”. The reason is that the offspring competes with
its parent and at the competition stage there are (temporarily) two individuals
in the population.

The vector of standard deviations o remains unchanged during the evolution
process. If all components of this vector are identical, i.e., & = (o,...,0), and
the optimization problem is reqular', it is possible to prove the convergence
theorem [18]:

Theorem 1 (Convergence Theorem.) For o > 0 and a regular optimiza-
tion problem with fo > —oo (minimalization) or fop < 0o (mazimization),

p{lim,o f(2*) = fou} =1
holds.

The Convergence Theorem states that the global optimum is found with
probability one for sufficiently long search time; however, it does not provide
any clues for the convergence rate (quotient of the distance covered towards the
optimum and the number of elapsed generations needed to cover this distance).
To optimize the convergence rate, Rechenberg proposed a “1/5 success rule”:

The ratio ¢ of successful mutations to all mutations should be 1/5.
Increase the variance of the mutation operator, if ¢ is greater than
1/5; otherwise, decrease it.

The 1/5 success rule emerged as a conclusion of the process of optimizing con-
vergence rates of two functions (the so-called corridor model and sphere model;
see [18] for details). The rule was applied every k generations (k is another
parameter of the method): 1/5 success rule

ca- o, if (k) <1/5,
ot =1{ ¢ .ot if p(k)>1/5,
ol if ps(k)=1/5,

where (k) is the success ratio of the mutation operator during the last &
generations, and ¢; > 1, ¢4 < 1 regulate the increase and decrease rates for the
variance of the mutation. Schwefel in his experiments [348] used the following
values: ¢4 = 0.82, ¢; = 1.22 = 1/0.82,

The intuitive reason behind the 1/5 success rule is the increased efficiency of
the search: if successful, the search would continue in “larger” steps; if not, the
steps would be shorter. However, this search may lead to premature convergence

1 An optimization problem is regular if the objective function f is continuous, the domain
of the function is a closed set, for all € > 0 the set of all internal points of the domain for which
the function differs from the optimal value less than ¢ is non-empty, and for all &g the set of
all points for which the function has values less than or equal to f(zo) (for minimalization
problems; for maximization problems the relationship is opposite) is a closed set.
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for some classes of functions — this resulted in a refinement of the method:
increased population size.

The multimembered evolution strategy differs from the previous two-mem-
bered strategy in the size of the population (pop_size > 1). Additional features
of multimembered evolution strategies are:

e all individuals in the populations have the same mating probabilities,

o possibility of introduction of a recombination operator (in the GA commu-
nity called “uniform crossover”), where two (randomly selected) parents,

)s(
At

(!, at) = ((},.. .,

T )) and
(22,0 = ((z},...,z

)i (01, 0p))
2),(a%,...,02)),

produce an offspring,
(z,0) = ((zf,...,20), (c,..., 00)),
where g; = 1 or ¢; = 2 with equal probability for all i =1,..., n.

The mutation operator and the adjustment of o remain without changes.

There is still a similarity between two-membered and multimembered evo-
lution strategies: both of them produce a single offspring. In the two-membered
strategy, the offspring competes against its parent. In the multimembered strat-
egy the weakest individual (among pop_size + 1 individuals; i.e., original pop_size
individuals plus one offspring) is eliminated. A convenient notation, which ex-
plains also further refinement of evolution strategies, is:

(1 4+ 1)-ES, for a two membered evolution strategy, and
(1 + 1)-ES, for a multimembered evolution strategy,

where u = pop_size.
The multimembered evolution strategies evolved further [348] to mature as
(4 + A)-ESs and (g, A)-ESs;

the main idea behind these strategies was to allow control parameters (like
mutation variance) to self-adapt rather than changing their values by some
deterministic algorithm.

The (pu+A)-ES is a natural extension of a multimembered evolution strategy
(¢ + 1)-ES, where p individuals produce A offspring. The new (temporary)
population of (u + A) individuals is reduced by a selection process again to
¢ individuals. On the other hand, in the (u, \)-ES, the g individuals produce
A offspring (A > p) and the selection process selects a new population of
individuals from the set of A offspring only. By doing this, the life of each
individual is limited to one generation. This allows the (u, A)-ES to perform
better on problems with an optimum moving over time, or on problems where
the objective function is noisy.
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The operators used in the (1 + A)~ESs and (i, A)-ESs incorporate two-level
learning: their control parameter o is no longer constant, nor it is changed by
some deterministic algorithm (like the 1/5 success rule), but it is incorporated
in the structure of the individuals and undergoes the evolution process. To
produce an offspring, the system acts in several stages:

e select two individuals,

(:1,'1,0'1) = ((CL‘{, . .,CL‘:I), (0’}, ,0’711)) and
(%, 0%) = ((z1,...,23), (01, .-, 02),

and apply a recombination (crossover) operator. There are two types of
CYOSSOVETS:

— discrete, where the new offspring is

(z,0) = ((zF,...,2%), (o', ..., 0P)),
where ¢; = 1 or ¢; = 2 (30 each component comes from the first or
second preselected parent),

— intermediate, where the new offspring is
(@,0) = (21 +2})/2,.... (2, +27)/2). (o} +0D)/2,...,
(o3 +02)/2))-

Each of these operators can be applied also in a global mode, where the
new pair of parents is selected for each component of the offspring vector.

e apply mutation to the offspring (x, o) obtained; the resulting new off-
spring is (x', 0"}, where

o =g -eN0A%) and
' =z + N(0,0'),

where Ao is a parameter of the method.

To improve the convergence rate of ESs, Schwefel [348] introduced an ad-
ditional control parameter 8. This new control correlates mutations. For the
ESs discussed so far (with the dedicated o; for each z;), the preferred direction
of the search can be established only along the axes of the coordinate system.
Now, each individual in the population is represented as

(x,0,0).

The recombination operators are similar to those discussed in the previous para-
graph, and the mutation creates offspring (x’,¢’,0’) from the (x,a,8) in the
following way:

o' = o - eNOAD),

6 = 0+ N(0,A8), and
a:' =+ C(O, al’ 01))
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where A8 is an additional parameter of the method, and C{0,0’,8’) denotes
a vector of independent random Gaussian numbers with mean zero and appro-
priate probability density (for details, see [348] or {18]).

Evolution strategies perform very well in numerical domains, since they were
(at least, initially) dedicated to (real) function optimization problems. They are
examples of evolution programs which use appropriate data structures (float
vectors extended by control strategy parameters) and “genetic” operators for
the problem domain.

It is interesting to compare genetic algorithms and evolution strategies,
their differences and similarities, their strengths and weaknesses. We discuss
these issues in the following section.

8.2 Comparison of evolution strategies and genetic
algorithms

The basic difference between evolution strategies and genetic algorithms lies in
their domains. Evolution strategies were developed as methods for numerical
optimization. They adopt a special hill-climbing procedure with self-adapting
step sizes o and inclination angles 8. Only recently have ESs been applied
to discrete optimization problems [178]. On the other hand, genetic algorithms
were formulated as (general purpose) adaptive search techniques, which allocate
exponentially increasing number of trials for above-average schemata. GAs were
applied in a variety of domains, and a (real) parameter optimization was just
one field of their applications.

For that reason, it is unfair to compare the time and precision performance
of ESs and GAs using a numerical function as the basis for the comparison.
However, both ESs and GAs are examples of evolution programs and some
general discussion of similarities and differences between them is quite natural.

The major similarity between ESs and GAs is that both systems maintain
populations of potential solutions and make use of the selection principle of the
survival of the fitter individuals. However, there are many differences between
these approaches.

The first difference between ESs and classical GAs is in the way they repre-
sent the individuals. As mentioned on several occasions, ESs operate on floating
point vectors, whereas classical GAs operate on binary vectors.

The second difference between GAs and ESs is hidden in the selection pro-
cess itself. In a single generation of the ES, u parents generate intermediate
population which consists of A offspring produced by means of the recombina-
tion and mutation operators (for (p + A)-ES), plus (for (¢, A)-ES) the original
i+ parents. Then the selection process reduces the size of this intermediate pop-
ulation back to p individuals by removing the least fit individuals from the
population. This population of p individuals constitutes the next generation. In
a single generation of the GA, a selection procedure selects pop_size individuals
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from the pop_size-sized population. The individuals are selected with repeti-
tion, i.e., a strong individual has a good chance to be selected several times to
a new population. In the same time, even the weakest individual has a chance
of being selected.

In ESs, the selection procedure is deterministic: it selects the best u out
of u+ A ((u + A)-ES) or XA ({12, \)-ES) individuals (no repetitions). On the
other hand, in GAs, the selection procedure is random, selecting pop_size out of
pop_size individuals (with repetition), the chances of selection are proportional
to the individual’s fitness. Some GAs, in fact, use ranking selection; however,
strong individuals can still be selected a few times. In other words, selection
in ESs is static, extinctive, and (for (i, A)-ES) generational, whereas in GAs
selection is dynamic, preservative, and on-the-fly (see Chapter 4).

The relative order of the procedures selection and recombination constitutes
the third difference between GAs and ESs: in ESs, the selection process follows
application of recombination operators, whereas in GAs these steps occur in the
opposite order. In ESs, an offspring is a result of crossover of two parents and
a further mutation. When the intermediate population of p + A (or A) individ-
uals is ready, the selection procedure reduces its size back to u individuals. In
GAs, we select an intermediate population first. Then we apply genetic oper-
ators (crossover and mutation) to some individuals (selected according to the
probabilities of crossover) and some genes (selected according to the probability
of mutation).

The next difference between ESs and GAs is that reproduction parameters
for GAs (probability of crossover, probability of mutation) remain constant
during the evolution process, whereas ESs change them (& and ) all the time:
they undergo mutation and crossover together with the solution vector &, since
an individual is understood as a triplet (x,o,@). This is quite important —
self-adaptation of control parameters in ESs is responsible for the fine local
tuning of the system.

ESs and GAs also handle constraints in a different way. Evolution strategies
assume a set of ¢ > 0 inequalities,

(@) 20,..., g () 2 0,

as part of the optimization problem. If, during some iteration, an offspring
does not satisfy all of these constraints, then the offspring is disqualified, i.e.,
it is not placed in a new population. If the rate of occurrence of such illegal
offspring is high, the ESs adjust their control parameters, e.g., by decreasing
the components of the vector . The major strategy for genetic algorithms
(already discussed in Chapter 7) for handling constraints is to impose penalties
on individuals that violate them. That reason is that for heavily constrained
problems we just cannot ignore illegal offspring (GAs do not adjust their control
parameters) — otherwise the algorithm would stay in one place most of the
time. At the same time, very often various decoders or repair algorithms are
too costly to be considered (the effort to construct a good repair algorithm is
similar to the effort to solve the problem). The penalty function technique has
many disadvantages, one of which is problem dependence.
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The above discussion implies that ESs and GAs are quite different with
respect to many details. However, looking closer at the development of ESs and
GAs during the last twenty years, one has to admit that the gap between these
approaches is getting smaller and smaller.

Let us talk about some issues surrounding ESs and GAs again, this time
from a historical perspective.

Quite early, there were signs that genetic algorithms display some diffi-
culties in performing local search for the numerical applications (see Chapter
6). Many researchers experimented with different representations (Gray codes,
floating point numbers) and different operators to improve the performance of
the GA-based system. Today the first difference between GAs and ESs is not
the issue any more: most GA applications for parameter optimization problems
use floating point representation [78], adapting operators in appropriate way
(see Chapter 4). It seems that the GA community borrowed the idea of vector
representation from ESs.

The results of our experiments with our evolution programs provide an in-
teresting observation: neither crossover nor mutation alone is satisfactory in the
evolutionary process. Both operators (or rather both families of these operators)
are necessary in providing a good performance of the system. The crossover op-
erators are very important in exploring promising areas in the search space and
are responsible for earlier (but not premature) convergence; in many systems—
in particular those who work on richer data structures (Part III of the book) a
decrease in the crossover rates deteriorates their performance. At the same time,
the probability of applying mutation operators is quite high: the GENETIC-2
system (Chapter 9) uses & high mutation rate of 0.2.

A similar conclusion was reached by ES community: as a consequence, the
crossover operator was introduced into ESs. Note that early ESs were based on a
mutation operator only and the crossover operator was incorporated much later
[348]. It seems that the score between GAs and ESs is even: the ES community
borrowed the idea of crossover operators from GAs.

There are further interesting issues concerning relationships between ESs
and GAs. Recently, some other crossover operators were introduced into GAs
and ESs simultaneously [269, 270, 352]. Two vectors, ¢, and x, may produce
two offspring, ¢, and y,, which are a linear combination of their parents, i.e.,

vi=a -1+ (1 —a) z; and
vo=(1—-a) -x; +a-x.

Such a crossover was called

e in GAs: a guaranteed average crossover [77] (when a = 1/2), or an arith-
metical crossover [269, 270], and

e in ESs: an intermediate crossover [352].

The self-adaptation of control parameters in ESs has its counterpart in GAs
research. In general, the idea of adapting a genetic algorithm during its run was
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expressed some time ago; the ARGOT system [354] adapts the representation
of individuals (see section 8.4). The problem of adapting control parameters
for genetic algorithms has also been recognized for some time {169, 77, 115]. It
was obvious from the start that finding a good settings for GA parameters for
a particular problem is not a trivial task. Several approaches were proposed.
One approach [169] uses a supervisor genetic algorithm to optimize the param-
eters of the “proper” genetic algorithm for a class of problems. The parameters
considered were population size, crossover rate, mutation rate, generation gap
(percentage of the population to be replaced during each generation), and scal-
ing window, and a selection strategy (pure or elitist). The other approach [77]
involves adapting the probabilities of genetic operators: the idea is that the
probability of applying an operator is altered in proportion to the observed per-
formance of the individuals created by this operator. The intuition is that the
operators currently doing “a good job” should be used more frequently. In [115]
the author experimented with four strategies for allocating the probability of
the mutation operator: (1) constant probability, (2) exponentially decreasing,
(3) exponentially increasing, and (4) a combination of (2) and (3).

Also, if we recall non-uniform mutation (described in Chapter 6), we notice
that the operator changes its action during the evolution process.

Let us compare briefly the genetic-based evolution program GENOCOP
(Chapter 7) with an evolution strategy. Both systems maintain populations of
potential solutions and use some selection routine to distinguish between ‘good’
and ‘bad’ individuals. Both systems use float number representation. They pro-
vide high precision (ES through adaptation of control parameters, GENOCOP
through non-uniform mutation). Both systems handle constraints gracefully:
GENOCOP takes advantage of the presence of linear constraints, ES works on
sets of inequalities. Both systems can easily incorporate the ‘constraint handling
ideas’ from each other. The operators are similar. One employs intermediate
crossover, the other arithmetical crossover. Are they really different?

An interesting comparison between ESs and GAs from the perspective of
evolution strategies is presented in [187].

A few years ago [117], evolutionary programming (EP) technique (see sec-
tion 13.1 for a description of the original evolutionary programming technique)
were generalized to handle numerical optimization problems. They are quite
similar to evolution strategies; they use floating point representation and the
mutation is the key operator. The basic differences between evolution strategies
and evolutionary programming techniques can be summarized as follows [19]:

e EP do not use any recombination operators,

e EP use a probabilistic selection (tournament selection), whereas ES select
the best u individuals for next generation,

e in EP, fitness values are obtained from objective function values by scaling
them and possibly by imposing some random alternation,
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o the standard deviation for each individual’s mutation is calculated as the
square root of a linear transformation of its own fitness value.

For more information on EP for numerical optimization and experimental com-
parison between ES and EP techniques, the reader is referred to {19, 117, 121].

8.3 Multimodal and multiobjective function
optimization

In most chapters of this book we present methods for locating the single, global
optimum of a function. However, in many cases either a function may have
several optima that we wish to locate (multimodal optimization) or there is more
than one criterion for optimization (multiobjective optimization). Clearly, new
techniques are necessary to approach these categories of problems; we discuss
them in turn.

8.3.1 Multimodal optimization

In many applications it might be important to locate all optima for a given
function.? A few methods based on evolutionary techniques have been proposed
for such multimodal optimization.

The first technique is based on iteration: we just repeat several runs of the
algorithm. As discussed in {30], if all optima have an equal likelihood of being
found, the number of independent runs should be

pEh 1 =~ p(y +logp),

where p is the number of optima, and 4 & 0.577 is Euler’s constant. Unfortu-
nately, in most real-world applications the optima are not equally likely, hence
the number of independent runs should be much higher. It is also possible to use
a parallel implementation of the iterative method, where several subpopulations
evolve (in independent way, i.e., no communication) at the same time.

Goldberg and Richardson {162] described a method based on sharing; the
method permits a formation of stable subpopulations (species) of different
strings—in this way the algorithm investigate many peaks in parallel (the paper
provides also an excellent review of other methods, which incorporated similar
ideas on niche methods and species formation). A sharing function determines
the degradation of an individual’s fitness due to a neighbor at some distance
dist [162).% A sharing function sh was defined as a function of the distance with
the following properties:

2By ‘all’ optima we understand all optima of interest, i.e., all optima above a certain
threshold.

3The distance dist can be defined over on the genotype or phenotype level, i.e., on strings
or their interpretation.
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e 0 < sh(dist) <1, for all distances dist,
e 3h(0) =1, and
o limgist 00 = 0;

there are many sharing functions which satisfy the above conditions. One pos-
sibility, as suggested in [162], is

[ 1= (dEt)e if dist <oy
sh(dist) = { 0 " otherwise

where oy, and o are constants (for a discussion of a significance of these con-
stants, see [162]).
The new (shared) fitness of an individual « is given by:

eval'(x) = eval(zx)/m(x),
where m(a) returns the niche count for a particular individual x:
m(x) = ¥, sh(dist(x,y)).

In the above formula the sum over all ¢ in the population includes the string
x itself; consequently, if string @ is all by itself in its own niche, it fitness value
does not decrease (m{x) = 1). Otherwise, the fitness function is decreased
proportionally to the number and closeness of neighboring points.

It means, that when many individuals are in the same neighborhood they
contribute to one another’s share count, thus derating one another’s fitness
values. As a result this technique limits the uncontrolled growth of particular
species within a population [154].

Recently, Beasley, Bull, and Martin [30] described a new (called: sequen-
tial niche) technique for multimodal function optimization, which avoids a few
disadvantages of the sharing method (e.g., time complexity due to fitness shar-
ing calculations, population size, which should be proportional to the number
of optima). The proposed algorithm also uses a distance function dist and a
fitness function eval, and is based on the following idea: once an optimum is
found, the evaluation function can be modified to eliminate this (already found)
solution, since there is no interest in re-discovering the same optimum again. In
some sense, the subsequent runs of genetic algorithm incorporate the knowledge
discovered in the previous runs (as opposed to the simple iterative technique,
where each run starts with a randomly generated population). The basic steps
of the algorithm are (from [30]):

1. Initialize: equate the modified fitness function with the raw fitness func-
tion.

2. Run the GA using the modified fitness function, keeping a record of the
best individual found in the run.
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3. Update the modified fitness function to give a depression? in the region
near the best individual, producing a new fitness function.

4. If the raw fitness of the best individual is of interest (i.e., it exceeds the
solution threshold), display this as a solution.

5. If not all solutions have been found, return to step 2.

For a detailed discussion of the algorithm and the experimental results, the
reader is referred to [30].

Yet another approach was proposed recently by Spears [365]. The proposed
algorithm implements the ideas of sharing and restrictive mating. However, the
idea of metic distance is dropped and replaced by a concept of labels: each
individual in the population has a label (in experiments reported in [365], a
label was a m-bit string, consequently, labels could be used to represent 2"
subpopulations). To explain the intuition behind the proposed algorithm, let us
cite from [365]:

“Suppose we have a simple function with two peaks, one peak twice
as high as the other, and further suppose we allow one tag bit for
each individual. Each tag bit is randomly initialized, so at the be-
ginning of the run we have two subpopulations of roughly equal
size. Due to random sampling both subpopulations could eventu-
ally settle in on the higher peak, or both could settle in on the lower
peak. However, in some cases (again, due to random sampling), each
subpopulation will head towards different peaks. If we do not have
fitness sharing, the individuals on the higher peak would always get
more children than individuals on the lower peak and eventually the
subpopulation on the lower peak would vanish. However, with fitness
sharing, the higher peak can support only twice as many individu-
als as can be supported on the lower peak (since it is only twice as
high). [...] The fitness sharing mechanism has dynamically adjusted
the perceived fitness so that the two peaks have the same perceived
height. The result is that both subpopulations can survive in a stable
fashion. Furthermore, restricted mating prevents crossover between
individuals on the two peaks, which could often result in low fitness
individuals.”

For more details and experimental results, the reader is referred to [365].

A recent paper by Mahfoud [249] compares several niching methods, which
are grouped into to categories: sequential and parallel. Parallel methods form
and maintain niches simultaneously within a population; sequential methods lo-
cate multiple niches temporally. The results indicate that parallel niching meth-
ods outperform sequential ones. For details on this comparison and a complete
discussion on advantages of parallel methods, see [249].

4The description of the algorithm assumes maximization problems.



8.3 Multimodal and multiobjective function optimization 171

8.3.2 Multiobjective optimization

For many real-world decision making problems there is a need for simultaneous
optimization of multiple objectives. As stated in [182]:

“One possible approach [...] is to use long-run profit maximization
as the sole objective. At first glance, this approach appears to have
considerable merit. In particular, the objective of long-run profit
maximization is specific enough to be used conveniently, and yet it
seems to be broad enough to encompass the basic goal of most orga-
nizations. In fact, some people tend to feel that all other legitimate
objectives can be translated into this one. However, this is such an
oversimplification that considerable caution is required! A number
of studies have found that, instead of profit maximization, the goal
of satisfactory profits combined with other objectives is characteris-
tic of American corporations. In particular, typical objectives might
be to maintain stable profits, increase (or maintain) one’s share of
the market, product diversification, maintain stable prices, improve
worker morale, maintain family control of the business, and increase
company prestige. These objectives might be compatible with long-
run profit maximization, but the relationship is sufficiently obscure
that it may not be convenient to incorporate them into this one
objective.”

Such multiobjective optimization problems require separate techniques, which
are very different to the standard optimization techniques for single objective
optimization. It is very clear that if there are two objectives to be optimized, it
might be possible to find a solution which is the best with respect to the first
objective, and another solution, which is the best with respect to the second
objective.

It is convenient to classify all potential solutions to the multiobjective opti-
mization problem into dominated solutions and nondominated ( Pareto-optimal)
solutions. As solution @ is dominated if there exits a feasible solution y not
worse than & on all coordinates, i.e., for all objectives f; (i =1,...,k):

filx) < fiy) forall 1 <4 <k

If a solution is not dominated by any other feasible solution, we call it non-
dominated (or Pareto-optimai) solution. All Pareto-optimal solutions might be
of some interest; ideally, the system should report back the set of all Pareto-
optimal points.

There are some classical methods for multiobjective optimization [369).
These include a method of objective weighting, where multiple objective func-
tions f; are combined into one overall objective function F'

5For maximization problems; otherwise the less equal inequality should be replaced by
greater equal.
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F(z) =Yt wifi(z),

where the weights w; € [0..1] and %, w; = 1. Different weight vectors provide
different Pareto-optimal solutions. Another method (method of distance func-
tions) combines multiple objective functions into one on the basis of demand-
level vector y:

F(e) = (T |fi(e) - wl)7,

where (usually) r = 2 (Euclidean metric).

Multiobjective optimization enjoyed some interest in the GA community.
In 1984 Schaffer [339] developed VEGA program (for Vector Evaluated Genetic
Algorithm), which was an extension of the GENESIS program [166] to include
multicriteria functions. The main idea behind the VEGA system was a divi-
sion of the population into (equal sized) subpopulations; each subpopulation
was “responsible” for a single objective. The selection procedure was performed
independently for each objective, but crossover was performed across subpop-
ulation boundaries. Additional heuristics were developed (e.g., wealth redistri-
bution scheme, crossbreeding plan) and studied to decrease a tendency of the
system to converge towards individuals which were not the best with respect to
any objective.

Recently [369] Srinivas and Deb proposed a new technique, NSGA (for Non-
dominated Sorting Genetic Algorithm), which is based on several layers of clas-
sifications of the individuals. Before the selection is performed, the population
is ranked on the basis of nondomination: all nondominated individuals are clas-
sify into one category (with a dummy fitness value, which is proportional to the
population size, to provide an equal reproductive potential for these individu-
als). To maintain the diversity of the population, these classified individuals are
shared with with their dummy fitness values (see previous subsection). Then
this group of classified individuals are ignored and another layer of nondomi-
nated individuals is considered. The process continues until all individuals in
the population are classified. For the full discussion on the system and first
experimental results the reader is referred to [369].

Recently, Fonseca and Fleming [127] published a survey of evolutionary al-
gorithms for multiobjective optimization. They provided an overview of both
categories of techniques (these, which combine many criteria into one objec-
tive function and return a signle value, and these, which are based on Pareto-
optimality and return a set of values), and identified several open research issues.

8.4 Other evolution programs

As we have already discussed earlier, (classical) genetic algorithms are not ap-
propriate tools for local fine tuning. For that reason, GAs give less precise so-
lutions to numerical optimization problems than, for example, ESs, unless the
representation of individuals in GAs is changed from binary into floating point
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and the (evolution) system provides specialized operators (like non—uniform
mutation: Chapter 6). However, in the last decade there have been some other
attempts to improve {directly or indirectly) this characteristic of GAs.

An interesting modification of GAs, called Delta Coding, was proposed re-
cently by Whitley et al. [400]. The main idea behind this strategy is that it
treats individuals in the population not as potential solutions to the problem,
but rather as additional (small) values (called: delta values), which are added
to the current potential solution. The (simplified) Delta Coding algorithm is
listed in Figure 8.1.

procedure Delta Coding
begin
apply GA on level z
save the best solution ()
while (not termination-condition) do
begin
apply GA on level §
save the best solution (6)
modify the best solution (z level):
r—x+6
end
end

Fig. 8.1. A (simplified) Delta Coding algorithm

The Delta Coding algorithm applies genetic algorithm techniques on two
levels: the level of potential solutions to the problem (level z) and (iterative
phase) the level of delta changes (level §). The best solution found on level z
by a single application of a GA is saved (x) and kept as a reference point. Then
several iterations of the inner (level §) GA are executed. A termination of a
single execution of a GA on this level (i.e., when GA converges) results in the
best modification vector §, which updates the values of @. After an update, the
next iteration takes place. Each application of GA during the iteration phase
reinitializes randomly the population of §’s. Of course, to evaluate individual
8, we evaluate = + 6.

The original Delta Coding algorithm is more complex, since it operates on
bit strings. By doing this, Delta Coding preserves the theoretical foundations
of genetic algorithms (since at each iteration there is a single run of GA). The
termination conditions for GAs on both levels are expressed by means of the
Hamming distance between the best and the worst element in the population
(the algorithms terminate if the Hamming distance is not greater than one).
Additionally, there is a variable len to denote the number of bits representing
a single component of the vector § (actually, only len—1 represent the absolute
value of the component; the last bit is reserved for the sign of the value). If the
best solution from the & level yields a vector
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6§=1(0,0,...,0),

(i.e., no change for the best potential solution &), the variable len is increased
by one (to increase the precision of the solution), otherwise it is decreased by
one. Note also that Delta Coding makes mutations unnecessary, due to reini-
tialization of populations on level § for each iteration.

We can simplify the original Delta Coding algorithm (Figure 8.1 provides
such a simplified view) and improve its precision and time performance, if we
represent both vectors & and é as sequences of floating point numbers.

Some of the ideas present in Delta Coding algorithm appeared earlier in
the literature. For example, Schraudoph and Belew [347] proposed a Dynamic
Parameter Encoding (DPE) strategy, where the precision of the encoded indi-
vidual is dynamically adjusted. In this system, each component of the solution
vector is represented by a fixed-length binary string; however, when (in some it-
eration) a genetic algorithm converges, the most significant bit of the solution is
dropped (of course, after saving it!), the remaining bits are shifted one position
left, and a new bit is introduced. This new bit in the least significant position
increases precision by a finer partitioning of the search space. The process is
repeated until some global termination condition is met.

The idea of reinitializing the population was discussed in [153], where Gold-
berg investigates the properties of systems which use small population size, but
reinitialize it every time the genetic algorithm converges (and save the best in-
dividuals, of course!). The outline of such a strategy (called serial selection) is
given in Figure 8.2.

procedure Serial Selection
begin
generate a (small) population
while (not termination-condition) do
begin
apply GA
save the best solution ()
generate a new population by transferring
the best individuals of the converged
population and then generating the
remaining individuals randomly
end
end

Fig. 8.2. GA based on re-initialization population

Reinitializations of populations introduce diversity among individuals with
a positive effect on system performance [153].

Some proposed strategies included a learning component, in a similar way
as in evolution strategies. Grefenstette [169] proposed optimizing control pa-
rameters of a genetic algorithm (population size, crossover and mutation rates,
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etc.) by another, supervisor genetic algorithm. Shaefer [354] discussed the AR-
GOT strategy (Adaptive Representation Genetic Optimizer Technique), where
the system learns the best internal representation for the individuals.

Another interesting evolution program, a selective evolutionary strategy
(IRM, for immune recruitment mechanism), was proposed recently [35] as an
optimization technique in real spaces (a similar system for optimizing functions
in Hamming spaces was called GIRM). The strategy combines some previously
seen ideas for directing the search in a desirable direction (e.g., tabu search).
As in all evolution programming techniques, an offspring is generated from the
current population. In classical genetic algorithms, such offspring replaces its
parent. In evolution strategies, the offspring competes with its parent (early
ESs), it competes with parents and other offspring ((1+ A\)-ES), or it competes
with other offspring ((u, A\)-ES). In IRM systems, an offspring has to pass an
additional test of affinity with its neighbors. The test checks whether it displays
sufficient similarity with its close neighbors.

In general, a possible candidate & would pass the affinity test, if

Ei m(k, Z) . fi > T,

where i indexes different species already present in the population, f; is the
concentration of the species ¢, m(k,%) is an affinity function for species & and %,
and T is the recruitment threshold.

The IRM strategy directs the search by accepting only individuals which
satisfy the affinity test. Similar ideas were formulated by Glover [142], [145] in
Scatter and Tabu Search. The Scatter Search techniques, like other evolution
programs, maintain a population of potential solutions (vectors ' are called
reference points). This strategy unites preferred subsets of reference points to
generate trial points (offspring) by weighted linear combinations, and selects the
best members to become the source of new reference points (new population).
A new twist here is the use of multicrossover (called weighted combination),
where several (more than two) parents contribute in producing an offspring. In
[145] Glover extended the idea of the Scatter Search by combining it with a
Tabu Search — a technique which restricts the selection of new offspring (it
requires memory where a historical set of individuals is kept) [143], [144]. The
structure of a scatter/tabu search algorithm is shown in Figure 8.3.

After initialization and evaluation, scatter/tabu search algorithm classifies
(classify P(t) step) population of solutions X1, ..., X pop_size into several sets.
These include (1) a set of elite historical generators V consisting of some (fixed)
number of best solutions through the whole process, (2) a set of tabu generators
T C V counsisting of solutions currently excluded from considerations, (3) a set
of selected historical generators V* consisting of the best elements of V — T,
and (4) a set of selected current generators S* consisting of the best elements of
S. The classification step (classify P(t)) is repeated later in the iteration phase
of the algorithm.

During each iteration a set R(t) of trial points is created. The trial points
correspond to offspring of the population P(¢); they are evaluated and (some of
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procedure scatter/tabu search
begin
t=20
initialize P(t)
evaluate P(t)
classify P(t)
while (not termination-condition) do
begin
t=t+1
create R(t)
evaluate R(t)
select P(t) from P(t — 1) and R(t)
classify P(t)
end
end

Fig. 8.3. Scatter/tabu search

them) are incorporated into the new population (select P(t) from P(t —1) and

R()).

Recently David Fogel applied the ideas of evolutionary programming [126] to
real-valued continuous optimization [119]; these extensions include self-adapting
independent variances and procedures for optimizing the covariance matrix.

Maniezzo developed the concept of granularity evolution [250], where the
algorithm allows a concurrent evolution of objective function samples and of
sampling resolution (i.e., granularity). Individuals become variable-length which
encoding is interpreted according to a specific resolution level specified within
the chromosome.

Also, a concept of a genetic algorithm which processes intervals (called In-
terval Genetic Algorithm) was investigated by Muselli and Ridella. [293] The
interval genetic algorithm combines the ideas of genetic algorithms and simu-
lated annealing; the genetic operators (crossover, which generates a new interval
out of two intervals; merging, which generates an offspring from two parents as
an intersection of the two intervals; and mutation, which searches the interval
(i.e., single parent) for a better point.

It seems that the most promising direction in the search for the “optimal
optimizer” lies somewhere among the above ideas. Each strategy provides a new
insight which might be useful in developing an evolution program for some class
of problems. As stated by Glover [145]:

“The use of structural combinations makes it possible to combine
component vectors in a way that is materially different from the
results of [classical] crossover operations. Integrating such an ap-
proach with genetic algorithms may open the door to new types
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of search procedures. The fact that weighted and adaptive struc-
tured combinations can readily be created to exploit contexts where
crossover has no evident meaning (or has difficulty insuring feasi-
bility) suggests that such integrated search procedures may have
benefits in settings where genetic algorithms presently have limited
applications.”

To see this clearly, let us move to the next chapter.



Part III

Evolution Programs



9. The Transportation Problem

Necessity knows no law.

Publilius Syrus, Moral Sayings

In Chapter 7 we compared different GA approaches for handling constraints.
It seems that for a particular class of problems (like the transportation prob-
lem) we can do better: we can use a more appropriate (natural) data struc-
ture (for a transportation problem, a matrix) and specialized genetic operators
which operate on matrices. Such an evolution program would be much stronger
method than GENOCOP: the GENOCOP optimizes any function with linear
constraints, whereas the new evolution program optimizes only transportation
problems (these problems have precisely n + k — 1 equalities, where n and k
denote the number of sources and destinations, respectively; see the description
of the transportation problem below). However, it would be very interesting to
see what can we gain by introducing extra problem-specific knowledge into an
evolution program.

Section 9.1 presents an evolution program for the linear transportation
problem!, and section 9.2 presents one for the nonlinear transportation problem.2

9.1 The linear transportation problem

The transportation problem (see, for example, [387]) is one of the simplest com-
binatorial problems involving constraints that has been studied. It seeks the de-
termination of a minimum cost transportation plan for a single commodity from
a number of sources to a number of destinations. It requires the specification of
the level of supply at each source, the amount of demand at each destination,
and the transportation cost from each source to each destination.

Since there is only one commodity, a destination can receive its demand
from one or more sources. The objective is to find the amount to be shipped

!Portions reprinted, with permission, from IEEE Transactions on Systems, Man, and Cy-
bernetics, Vol. 21, No. 2, pp. 445-452, 1991,

2Portlons reprinted, with permission, from ORSA Journal on Computing, Vol. 3, No. 4,
1991, pp. 307-316, 1991.
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from each source to each destination such that the total transportation cost is
minimized.

The transportation problem is linear if the cost on a route is directly pro-
portional to the amount transported; otherwise, it is nonlinear. While linear
problems can be solved by OR methods, the nonlinear case lacks a general
solving methodology.

Assume there are n sources and & destinations. The amount of supply at
source i is sour(i) and the demand at destination j is dest(j). The unit trans-
portation cost between source ¢ and destination j is cost(i, ). If z;; is the
amount transported from source i to destination j then the transportation prob-
lem is given as:

minimize Z?:I Z‘I;zl f”(x”)
subject to

Z;?:l zi; < sour(i), for t =1,2,... n,
S xi; >dest(f), for j=1,2,... )k,
z; >0, fori=1,2,...,nand j =1,2,... k.

The first set of constraints stipulates that the sum of the shipments from a
source cannot exceed its supply; the second set requires that the sum of the
shipments to a destination must satisfy its demand. If fi]-(acij) = cost;; - i for
all 7 and j, the problem is linear.

The above problem implies that the total supply S, sour(i) must at
least equal total demand 37, dest(j). When the total supply equals the total
demand, the resulting formulation is called a balanced transportation problem.
It differs from the above only in that all the corresponding constraints are
equations; that is,

Z?:l xy; = sour(d), for i =1,2,...,n,

Yr, ziy =dest(j), for j=1,2,... k.

If all sour(i) and dest(j) are integers, any optimal solution to a bal-
anced linear transportation problem is an integer solution, i.e., all z;; (¢ =
1,2,...,n, 3=1,2,...,k) are integers. Moreover, the number of positive inte-
gers among the z;; is at most £+ n — 1. In this section we assume a balanced
linear transportation problem. An example follows. For other information on the
transportation problem and balancing, the reader is referred to any elementary
text on operations research such as [387].

Example 9.1. Assume 3 sources and 4 destinations. The supply is:
sour(1l) = 15, sour(2) = 25, and sour(3) = 5.
The demand is:

dest(l) = 5, dest(2) = 15, dest(3) = 15, and dest(4) = 10.
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Note that the total supply and demand equal 45.
The unit transportation cost cost(i,j) (¢ = 1,2,3, and j = 1,2, 3,4) is given
in the table below.

Cost

10(0 (2011
1217 |9 |20
0 14|16 18

The optimal solution is shown below. The total cost is 315. The solution
consists of integer values of z;;.

Amount transported

5|15| 15| 10
15105 (0 |10
25|/0110 |15 (0
5 {5/0 [0 |O

9.1.1 Classical genetic algorithms

By a “classical” genetic algorithm we mean, of course, one where the chromo-
somes (i.e., representations of solutions ) are bit strings — lists of 0s and 1s.
A straightforward approach in defining a bit vector for a solution in the trans-
portation problem is to create a vector (v1,vs,...,%) ( p = n- k), such that
each component v; (i = 1,2,...,p), is a bit vector (w},...,w) and represents
an integer associated with row j and column m in the allocation matrix, where
j=1G-1)/k+1] and m = (i — 1) mod k + 1. The length of the vectors w (pa-
rameter s) determines the maximum integer (2°*! — 1) that can be represented.

Let us discuss briefly the consequences of the above representation on con-
straint satisfaction, the evaluation function and genetic operators.

Constraint satisfaction: It is clear that every solution vector must satisfy
the following;:
ey, >0forallg=1,2,...,k-n,
o Y oktk vi=sourfc+1],forc=0,1,...,n—1,
o KT epr Vi =destm], form=12.. k.
Note that the first constraint is always satisfied (we interpret a sequence
of Os and 1s as a positive integer). The other two constraints provide the

totals for each source and each destination, though these formulas are not
symmetrical.
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Evaluation function: The natural evaluation function expresses the total cost
of transporting items from sources to destinations and is given by the
formula:

eval({vy,va, ..., Up)) = 20, v; - cost[f][m],
where j = | —1)/k+ 1] and m = (¢ — 1) mod k + 1.

Genetic operators: There is no natural definition of genetic operators for
the transportation problem with the above representation. Mutation is
usually defined as a change in a single bit in a solution vector. This would
correspond to a change of one integer value, v;. This, in turn, for our
problems, would trigger a series of changes in different places (at least
three other changes) in order to maintain the constraint equalities. Note
also that we always have to remember in which column and row a change
was made — despite a vector representation we think and operate in terms
of rows and columns (sources and destinations). This is a reason for quite
complex formulae; the first sign of this complexity is loss of symmetry in
expressing the constraints.

There are some other open questions as well. Mutation is understood as
a minimal change in a solution vector, but as we noted earlier, a single
change in one integer would trigger at least three other changes in appro-
priate places. Assume that two random points (v; and vy, where { < m)
are selected such that they do not belong to the same row or column. Let
us assume that v;, v, Uk, Um (¢ < § < k < m) are components of a solution
vector (selected for mutation) such that v; and v as well as v; and v,
belong to a single column, and v; and v; as well as v, and vy, belong to a
single row.

That is, in matrix representation:

Vi .. Yy

Ve ... Unm

Now in trying to determine the smallest change in the solution vector we
have a difficulty. Should we increase or decrease v;? We can choose to
change it by 1 ( the smallest possible change) or by some random number
in the range (0,1,...,v;). If we increase the value v; by a constant C we
have to decrease each of the values v; and v; by the same amount. What
happens if v; < C or vy < C? We could set C = min(v;, vy, vg), but
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then most mutations would result in no change, since the probability of
selecting three non-zero elements would be close to zero (less than 1/n for
vectors of size n?).

Thus methods involving single bit changes result in inefficient mutation
operators with complex expressions for checking the corresponding row or
column of the selected element.

The situation is even more complex if we try to repair a chromosome after
applying the crossover operator. Breaking a vector at a random point
could result in a pair of chromosomes violating numerous constraints. If
we try to modify these solutions to obey all constraints, they would lose
most similarities with the parents. Moreover, the way to do this is far from
obvious: if a vector v is outside the search space, “repairing” it might be as
difficult as solving the original problem. Even if we succeeded in building a
system based on repair algorithms, such a system would be highly problem
specific with little chances for generalizations.

We conclude that the above vector representation is not the most suitable

for defining genetic operators in constrained problems of this type.

9.1.2 Incorporating problem-specific knowledge

Can we improve the representation of a solution while preserving the basic
structure of this vector representation? We believe so, but we have to incorporate
problem-specific knowledge into the representation.

First let us describe a way to create a solution which satisfies all constraints.

We will call this procedure an initialization — it will be a fundamental com-
ponent of the mutation operator when we discuss genetic operators for two-
dimensional structures. It creates a matrix of at most k +n — 1 non-zero ele-
ments such that all constraints are satisfied. After sketching the algorithm we
explain it using the matrix from Example 9.1.

input: arrays dest[k], sour[n];

output: an array (v);; such that v;; > 0 for all ¢ and j,
Sk v =destli) fori=1,2,...,n, and

v = sourlj] for j=1,2...k
i.e., all constraints are satisfied.

)
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procedure initialization;
begin
set all numbers from 1 to k - n as unvisited
repeat
select an unvisited random number ¢
from 1 to k- n and set it as visited
set (row)i=|(g—1)/k+ 1]
set (column) j = (g—1) mod k+1
set val = min(sourli], dest[j])
set vi; = val
set sour[i] = sourli] — val
set dest|j] = dest[j] — val
until all numbers are visited.
end

Example 9.2. With the matrix from Example 9.1, i.e.,

sour(l] = 15, sour[2] = 25, and sour(3] =5
dest[1} = 5, dest[2] = 15, dest[3] = 15, and dest[4] = 10.

There are altogether 3 - 4 = 12 numbers, all of them are unvisited at the
beginning. Select the first random number, say, 10. This translates into row
number ¢ = 3 and column number j = 2. The val = min(sour(3], dest[2]) =5,
s0 vge = 5. Note also that after the first iteration, sour[3] = 0 and dest[2] = 10.

We repeat these calculations with the next three random (unvisited) num-
bers, say 8, 5, and 3 (corresponding to row 2 and column 4, to row 2 and column
1, and to row 1 and column 3, respectively). The resulting matrix v;; (so far)
has the following contents:

0{10|0 (O
0 15
105 10
0 5

Note that the values of sour[i] and dest[;] are those given after 4 iterations.

If the further sequence of random numbers is 1, 11, 4, 12, 7, 6, 9, 2, the final
matrix produced (with the assumed sequence of random numbers ( 10, 8, 5, 3,
1,11, 4,12,7,6,9,2)) is:

00 |0 |0
0{0|0 [15]0
05100 |10
005 |0 |0

Obviously, after 12 iterations all (local copies of ) sour[i] and dest[j] = 0.
Note also, that there are several sequences of numbers for which the procedure
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initialization would produce the optimal solution. For example, the optimal
solution (given in Example 1) can be achieved for any of the following sequences:
(7,9,4,2,6, % % % * * * ¥) (where * denotes any unvisited number), as
well as for many other sequences.

This technique can generate any feasible solution that contains at most
k +n — 1 non-zero integer elements. It will not generate other solutions which,
though feasible, do not share this characteristic. The initialization procedure
would certainly have to be modified when we attempt to solve non-linear ver-
sions of the transportation problem.

This knowledge of the problem and its solution characteristics gives us an-
other opportunity to represent a solution to the transportation problem as a
vector. A solution vector will be a sequence of k - n distinct integers from the
range (1,k - n), which (according to procedure initialization) would produce
an acceptable solution. In other words, we would view a solution-vector as a
permutation of numbers, and we would look for particular permutations which
correspond to the optimal solution.

Let us discuss briefly the implications of this representation on constraint
satisfaction, evaluation function and genetic operators.

Constraint satisfaction: Any permutation of &£-n distinct numbers produces
a unique solution which satisfies all constraints. This is guaranteed by
procedure initialization.

Evaluation function: This is relatively easy: any permutation would corre-
spond to a unique matrix, say, (vi;). The evaluation function is

S Xhy vy - costfi][5]

Genetic operators: These are also straightforward:

e inversion: any solution vector (z, Zo, . . ., Z4) (¢ = k-n) can be easily
inverted into another solution vector (zq,2,-1,.--,Z1)
e mutation: any two elements of a solution vector (z,, Z, ..., Zq), say

z; and z; can be swapped easily resulting in another solution vector.

e crossover: this is little more complex. Note that an arbitrary (blind)
crossover operator would result in illegal solutions: applying such a
crossover operator to sequences:

(1,2,3,4,5,6, 78,9, 10, 11, 12 ) and
(7,3,1,11,4,12] 5,2, 10, 9, 6, 8 )

would result (where the crossover point is after the 6th position) in

(1,2,3,4,56,5,2,10,9, 6,8 ) and
(7,3,1,11,4,12,7,8,9, 10, 11, 12 )

neither of which is a legal solution.



188

9. The Transportation Problem

Thus we have to use some form of heuristic crossover operator. There
is some similarity between these sequences of solution vectors and those
for the traveling salesman problem (see [170]). Here we use a heuristic
crossover operator (of the PMX family of crossover operators, see [160]
and Chapter 10), which, given two parents, creates an offspring by the
following procedure:

1. make a copy of the second parent,
2. choose an arbitrary part from the first parent,

3. make minimal changes in the offspring necessary to achieve the cho-
sen pattern.

For example, if the parents are as in the example above, and the chosen
part is

(4) 5’ 67 7)’
the resulting offspring is
(3,1,11,4,5,6,7,12,2, 10,9, 8).

As required, the offspring bears a structural relationship to both parents.
The roles of the parents can then be reversed in constructing a second
offspring.

A genetic system GENETIC-1 has been built on the above principles. The

results of experiments with it are discussed in the next section.

9.1.3 A matrix as a representation structure

Perhaps the most natural representation of a solution for the transportation
problem is a two-dimensional structure. After all, this is how the problem is
presented and solved by hand. In other words, a matrix V = (v;;) (1 < ¢ <
k, 1 £ j < n) may represent a solution.

Let us discuss the implications of the matrix representation on constraint

satisfaction, evaluation function and genetics operators.

Constraint satisfaction: It is clear that every solution matrix V = (v;)

should satisfy the following:
o vy; >0foralli=1,...,k,and j=1,...,n,
o 3F vy =dest]jlfor j=1,...,n,

o X7 v =souri] fori=1,... k.
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This is similar to the set of constraints in the straightforward approach
(section 9.1.2), but the constraints are expressed in an easier and more
natural way.

Evaluation function: The natural evaluation function expresses is the usual
objective function:

eval(vy) = S, Tr.y vy - cost[f][m]

Again, the formula is much simpler than in the straightforward approach
and faster than in the system GENETICS-1, where each sequence has to
be converted (initialized) into a solution matrix before evaluation.

Genetic operators: We define here two genetic operators, mutation and
crossover. It is difficult to define a meaningful inversion operator in this
case.

e mutation:

Assume that {i;,4y,...,%,} isasubset of {1,2,...,k}, and {51, j2,...,
Jq} is asubset of {1,2,...,n} such that 2<p <k, 2<g<n.

Let us denote a parent for mutation by (k x n) matrix V' = (v;;).
Then we can create a (p X ¢) submatrix W = (w;;) from all elements
of the matrix V in the following way: an element v;; € V is in W if
and only if ¢ € {i1,4,...,4p} and j € {71,70,...,7¢} (if i = i, and
J = Js, then the element vy is placed in the r-th row and s-th column
of the matrix W).

Now we can assign new values sourw|i] and destw[j] (1 <1 < p,
1 < j < ¢q) for matrix W: .

SOUTW[Z:] = zjé{j],jz ----- J q} vij’ 1 S 7’ S p)
destw[j] = Tieirin.apy Vis» 1 SJ <0

We can use the procedure initialization (section 9.1.3) to assign
new values to the matrix W such that all constraints soury[i] and
desty[j] are satisfied. After that, we replace appropriate elements
of matrix V by a new elements from the matrix W. In this way all
global constraints (sour[i] and dest[j]) are preserved.

The following example will illustrate the mutation operator.
Example 9.3. Given a problem with 4 sources and 5 destinations
and the following constraints:

sour[l] = 8, sour|2] = 4, sour[3] = 12, sour[4] = 6,
dest[l] = 3, dest[2] = 5, dest[3] = 10, dest[14] = 7, dest[5] = 5.

Assume that the following matrix V is selected as a parent for mu-
tation:
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0;0[5}0]3
01410100
0[(0[5]7]0
311({0]0(2

Select (at random) the two rows {2,4} and three columns {2, 3, 5}.
The corresponding submatrix W is:

41010
1/0(2

Note, that sourw(1] = 4, sourw[2] = 3, destw[l] = 5, destw(2] =0,
desty[3] = 2. After the reinitialization of matrix W, the matrix may
get the following values:

2102
3

So, finally, the offspring of matrix V' after mutation is:

0/0}5]0]|3
02,002
0[05]7]0
3/310|0|0

crossover:
Assume that two matrices V; = (v};) and V3 = (v3) are selected as
parents for the crossover operation. Below we describe the skeleton
of an algorithm we use to produce the pair of offspring V5 and Vj.
Create two temporary matrices: DIV = (div;;) and REM = (remy;).
These are defined as follows:

divy; = | (v}; + v5)/2)
remy; = (v} + vj;) mod 2

Matrix DIV keeps rounded average values from both parents, the
matrix REM keeps track of whether any rounding was necessary.
Matrix REM has some interesting properties: the number of 1s in
each row and each column is even. In other words, the values of
sourgem[i] and destresm|j] (the marginal sums of rows and columns,
respectively, of the matrix REM) are even integers. We use this
property to transform the matrix REM into two matrices REM,
and REM, such that

REM = REM, + REM,,
sourrem [i] = sourrEM,[i] = sourpeml|i]/2, fori=1,...,k,
dGStREMl [j] = destREMZ[j] = destREM[j]/Q, for J = 1, coey .
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Then we produce two offspring of V; and Va:

Vs = DIV + REM,
Va = DIV + REM,.

The following example will illustrate the case.

Example 9.4. Take the same problem as described in Example 9.1.

Let us assume that the following matrices V; and V5 were selected as
parents for crossover:

Vi Va
1{0|0]7]0 0105103
0/410]0]|0 014(0]0]0
211(410|5 0/0{5]7]0
0]0f6}0]0 3117002
The matrices DIV and REM are
DIv REM
01021311 1{0)1]1]1
0|4}10]0]|0 ojofojojo
1{0[4)3]|2 oj1j1(|1]1
1({0(3|01(1 1/1/07010
The two matrices REM, and REM, are:
REM, REM,;
0j0f(1]0(1 110j0f110
0j]0|0)O]|O 6|j0j0]0]0
ol1|0]l1]0 010f{1]0]1
11{0]0]0]0 oj1/10(0]|0
Finally, two offspring V3 and V} are:
V3 Vi
010332 1{o]2]4(1
0l4i0101(0 0({4/0|0]|0
1(114]14)2 110|5(3|3
2103|011 {1301

]

An evolution system GENETIC-2 has been built on the above principles. We
have carried out experiments in first tuning and then comparing the the mod-
ified classical (vector based) GENETIC-1 and the alternative (matrix based)
GENETIC-2 versions of the algorithm to solve the standard linear transporta-
tion problem.

Our purpose is not, of course, to compare the genetic methods with the
standard optimization algorithm, for on every efficiency measure we choose,
genetic methods will be unable to compete. This situation is different when we
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apply the methods to the nonlinear case. Rather, by using a range of problems of
different sizes with known solutions, we aim to investigate the effects of problem
representation (GENETIC-1 versus GENETIC-2).

Some randomly generated artificial problems and some published examples
comprise the test problems. The artificial problems had randomly generated
unit costs, supply and demand values, though the problems remained balanced.
We felt that published examples would contain more typical cost structures
than artificial problems. For example, a production-inventory problem has a
recognizable pattern of costs when represented as a transportation problem.

In every case the problem was first solved using a standard transportation
algorithm so that the optimum value was known for use as a stopping criterion
and for later comparison of the techniques.

The problems were limited in size by the computers we were using (Mac-
intosh SE/30, Macintosh I, AT&T 3B2 and Sun 3/60 machines, the latter
two running under versions of the Unix operating system). The problems are
referenced in Table 9.1.

Problem Name size Reference
prob01 to probl5 | 4 by 4 problems

to 10 by 10 | generated randomly
sas218 S5byb 338|, p.218
tahal70 3by4 387], p.170
tahal97 5 by 4 387}, p.197
win268 9by b 405}, p.268

Table 9.1. The problems used

In comparing optimization algorithms one first has to decide on the criteria
to be used. One obvious criterion is the number of generations required to reach
an optimum value, perhaps combined with the time or the number of operations
required to complete each generation. A serious problem is that in some cases
the genetic algorithms take many generations to reach an optimum. Moreover
with some settings of the parameters no optimum is reached before the run has
to be stopped. The number of generations needed also varies markedly with the
random number starting seed used as well as the problem being solved. We felt
that this measure, though natural, could not easily be used for these particular
experiments.

Alternative, and more practical, criteria are based on the closeness to the
optimum value reached in a fixed number of generations. We chose the percent-
age above the known optimum value reached in 100 generations. Observations
were also made for 1000 generations but in most cases, for the problems studied
here, the solution reached by then is at or very close to the optimum for both
algorithms and comparisons are inconclusive.
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Other workers have found (see, for example, [169]) that changing the pa-
rameters of the genetic algorithm can meke a difference to its performance. We
first deal with the results from experiments in tuning the parameters for the
two methods. We kept the population size fixed at 40 and the number of the
solutions chosen for reproduction in each generation fixed at 10 (25% of the
population). This latter number is also the number of solutions removed each
generation. We were then able to adjust the values of the mutation parame-
ters, cross, inv, and maut, i.e., the number of parents chosen to reproduce by
crossover, inversion, and mutation, respectively, keeping their sum at 10. The
number subject to crossover, cross, has to be even since crossovers occur be-
tween pairs of parents. Inversion is only possible in the vector-based version,
GENETIC-1. We also fixed the probability distribution parameter sprob that
controls the geometric distribution used for choosing parents and those to be
removed.

Over 1000 runs were carried out during the tuning process. Runs were made
for five different random number seeds for each chosen combination of parame-
ters. The average objective value of the five runs was converted into a percentage
above the known optimum.

Figure 9.1 shows an example of the effect of varying the number of crossover
pairs, cross, in the two programs for one particular published problem, sas218.
Similar, though not identical, results were found for other published problems
and for the artificial problems. Because we fixed the total number of parents,
more crossovers implies fewer mutations and, for the vector model, fewer inver-
sions. Each point in the figure is the average of five runs with different starting
seeds. The percentage above the known optimum reached in 100 generations is
graphed.

In general the matrix based GENETIC-2 version gave smoother curves as a
function of the number of crossover pairs. Usually, the fewer the crossovers the
better, with the best results occurring at zero crossover pairs. But results are
affected by the choice of problem. Problem sas218 is different from most others
in that the best results are obtained with 2 to 4 crossover pairs. The GENETIC-
1 results show generally increasing percentage values with crossovers, though,
again, this is not universal. In both cases, as the figure demonstrates, the situ-
ation deteriorates when all pairs are used in a crossover mode, leaving none for
random mutation. The GENETIC-2 model is particularly sensitive to this ef-
fect and in this case is much worse than GENETIC-1 for the runs demonstrated
here.

For the class of problems studied we find that, though results differ over the
problems, a small proportion of crossovers works best for both models, and, for
the vector model, zero inversions are best.

Once optimum tuning parameters had been obtained, we carried out com-
parisons between the models running on the collection of problems. Once again
the results quoted are in every case the average of five runs with different start-
ing seeds.
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Fig.9.1. Problem sas218 using the two algorithms

Figure 9.2 shows the results of runs on the whole set of problems for 2
crossover pairs graphed against problem size, (n * k). In every case the matrix-
based GENETIC-2 performs better (i.e., gets closer to the optimum in 100
generations) than the vector-based GENETIC-1. Never did the vector version
outperform the matrix version on the same problem. GENETIC-1 was also much
more unreliable than GENETIC-2. This effect is particularly striking with some
problems, as can be seen by the outliers in the figure.

9.1.4 Conclusions

We conclude that in these experiments the matrix based algorithm (GENETIC-
2) performs better than the vector based version (GENETIC-1) using our cri-
terion. Note that this comparison is between a matrix based version and a
specially developed vector based model. While the matrix based algorithm in-
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Fig. 9.2. GENETIC-1 versus GENETIC-2

cludes problem-specific knowledge in a natural manner, the vector based model
also must rely on additional assumptions in order to proceed: a special initial-
ization routine, based on a detailed analysis of the problem, had to be devised
in order to make the vector based version work at all. For that reason the special
vector based version (GENETIC-1) cannot easily be generalized but the matrix
approach (GENETIC-2) is potentially very fruitful for generalization, including
to the more complicated nonlinear versions of the transportation problem. Here,
GENETIC-1 cannot work properly: procedure initialization, which serves as
a basis of this system, depends heavily on knowledge of the solution form in the
linear case. When the optimal solution need not be a matrix of integers and the
number of non-zeros can be much larger than k+n—1, the GENETIC-1 system
must fail. Even if we change initialization (for example, for each selected i-th
row and j-th column, variable val is assigned a random number from the range
{0, min(sourfi], dest[j]))), a vector representing the sequence of initialization
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points should be extended to record all selected random numbers as well. We
conclude that all of these difficulties are due to the artificial representation of
a solution as a vector.

The genetic algorithm is very slow and can in no way be compared with
the special optimizing techniques based on the standard linear programming
algorithm. The latter solves the problem in a number of iterations of the order
of the problem size (n * k), whereas each generation of the genetic method
involves constructing a set of potential solutions to the problem. However it
holds promise of being useful for non-linear and fixed-charge problems where
the standard transportation methods cannot be used (next section).

9.2 The nonlinear transportation problem

We discuss our evolution program for the balanced nonlinear transportation
problem in terms of the five components for genetic algorithms: representation,
initialization, evaluation, operators, and parameters. The algorithm was named
GENETIC-2 (as in the linear case).

9.2.1 Representation

As with the linear case, we have selected a two-dimensional structure for rep-
resenting a solution (a chromosome) to the transportation problem: a matrix
V = (zi;) (1 <i<k, 1 <j<n). This time each z;; is a real number.

9.2.2 Initialization

The initialization procedure is identical to the one from the linear case (section
9.1.3). As in the linear case, it creates a matrix of at most k + n — 1 non-zero
elements such that all constraints are satisfied. Although other initialization
procedures are feasible, this method will generate a solution that is at a vertex
of the simplex which describes the convex boundary of the constrained solution
space.

9.2.3 Evaluation
In this case we have to minimize cost, a nonlinear function of the matrix en-

tries. A number of functions were selected (section 9.2.6) and the results of
experiments are presented in section 9.2.7.

9.2.4 Operators

We define two genetic operators, mutation and arithmetical crossover.
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e mutation:

Two types of mutation operators are defined. The first, mutation-1, is
identical to that used in the linear case and introduces as many zero entries
into the matrix as possible. The second, mutation-2, is modified to avoid
choosing zero entries by selecting values from a range. The mutation-
2 operator is identical to mutation-1 except that in recalculating the
contents of the chosen sub-matrix a modified version of the initialization
routine is used.

It is changed from that described in section 9.1.3 as follows: The line
set val = min(sourl[s], dest|j})
is replaced by:

set val; = min(sourli], dest[j])
if (¢ is the last available row) or
(j is the last available column)
then val = val;
else set val = random (real) number from (0, valy)

This change provides real numbers instead of integers and zeros but the
procedure must be further modified as it currently produces a matrix
which may violate the constraints.

For example, using the matrix from Example 9.1, suppose that the se-
quence of selected numbers is (3,6,12,8,10,1,2,4,9,11,7,5) and that the
first real number generated for number 3 (first row, third column) is 7.3
(which is within the range (0.0, min(sour[1], dest[3])) = (0.0,15.0)). The
second random real number for 6 (second row, second column) is 12.1, and
the rest of the real numbers generated by the new initialization algorithm
are: 3.3,5.0,1.0,3.0,1.9,1.7,0.4,0.3, 7.4, 0.5. The resulting matrix is:

5.0} 15.0 | 15.0 | 10.0
15.0(3.0 |19 |73 1.7
25.0 (05 | 121 |74 |50
50 (0410 |03 |33

Only by adding 1.1 to the element x;, can we satisfy the constraints. So
we need to add a final line to the mutation-2 algorithm:

make necessary additions
This completes the modification of the initialization procedure.

e Crossover

Starting with two parents (matrices U and V') the crossover operator will
produce two children X and Y, where
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X=c-U+c-VandY=c¢c; - V+ecs-

(where ¢1,c2 > 0 and ¢, + ¢, = 1). Since the constraint set is convex this
operation ensures that both children are feasible if both parents are. This
is a significant simplification of the linear case where there was an addi-
tional requirement to maintain all components of the matrix as integers.

9.2.5 Parameters

In addition to the set of control parameters used for the linear case (population
size, mutation and crossover rates, random number starting seed, etc.) a few
more are needed. These are the crossover proportions, ¢; and co, and my, a
parameter to determine the proportion of mutation-1 in the mutations applied.

9.2.6 Test cases

To get some indication of the usefulness of the proposed approach, we have
selected a single example of a 7 x 7 transportation problem (Table 9.2) and

experimented with various objective functions.

U,

20| 20| 20| 23| 26| 25| 26
27 I Ty Z3 T4 Ts Te I7
28 | xg| To9 | Two | ZTu | T2 | T13 | Tia
25 | T15 | Tig | 717 | T1s | Tig | Too | T;m
20 | Zog | To3 | Toa | Tas | Tos | Tov | Tos
20 [ z99 | T30 | T30 | T32 | T33 | T34 | T35
20 | T3¢ | Z37 | T3s | T30 | Tao | Tar | Tao
20 | 743 | Taa | Tas | Tag | Tar | Tag | Tao

Table9.2. The 7 x 7 transportation problem

The problem is to minimize a function

f(:z:) = f(ﬂ?l, N ,3749),

subject to fourteen (thirteen independent) equations:

X+ 29+ 3+ T4+ x5+ 26+ 17 =27

Tg+ ZTg+ T+ Ty +Zio+ Z13 + Ty = 28
15+ Tie + Ty7 + T1g + Tig + T20 + T2 = 25
Zgo + Toz + Tog + Tos + Tog + Ty + ZTos = 20
Tog + T30 + 31 + Taz + Taz + Tag + T35 = 20
T36 + T37 + Tag + T3g + Tao + Ta1 + T2 = 20
ZT43 + Taq + Tas + Tag + Tar + Tag + T49 = 20
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Ty + Zg + T15 + Tag + Tog + T3s + Taz = 20
Ty + Tg + Z16 + T2z + Tzo + T37 + Taa = 20
T3 + Tio + T17 + Tog + T31 + Tag + Zas = 20
T4+ T11 + Tig + Tas + Tao + Tag + Tag = 23
Ts + T12 + Tig + Toe + T33 + Tao + Ta7 = 26
Te + T13 + Tao + Tar + Taq + Tg1 + Tag = 25
Z7 + T1a + T + Tos + T35 + Ta2 + Tgg = 26

The behavior of nonlinear optimization algorithms depends markedly on
the form of the objective function. It is clear that different solution techniques
may respond quite differently.

For purposes of testing, we have arbitrarily classified potential objective
functions into those that might conceivably be seen in practical OR problems
(practical), those that are mainly seen in textbooks on optimization (reason-
able) and those that are more often seen as difficult test cases for optimization
techniques (other). In brief, these may be described as follows:

e practical functions
Typically piece-wise linear cost functions, these appear often in practice
either because of data limitations or because the operation of the facility
has domains where different costs apply. Often they are not smooth and
certainly the derivatives can be discontinuous. They will often cause dif-
ficulties for gradient methods though approximations to turn them into
differentiable functions are possible. Examples: A(z) and B(z).

e reasonable functions
These functions are smooth and often simple powers of the flows. They

can be further classified into convex and concave functions. Examples:
C(z) and D(z).

e other functions
These typically have multiple valleys (or peaks) with sub-optima that will
cause difficulties for any gradient method. They are invented as severe
tests of optimization algorithms and, we conjecture, infrequently appear
in practice. Examples: E(z) and F(z).

Listed below are the two examples from each group of objective functions
used in the tests. They are all separable functions of the components of the
solution vector with no cross terms. The continuous versions of their graphs
(already modified for the GAMS system) are presented in Figure 9.3.

e function A

0,if 0<z< S

Cij, if § <z S 25
261;]‘, if 2S <z < 35
36”‘, if 3S <z < 45
4ci;, if 45 <z <58
5cij7 if 58S <z

Alz) =
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where S is less than a typical z value.

e function B
cijg, f 0<z<S
B(z) =1 ¢y, if S<z<2S
cij(l1+22), if 28<«

where S is of the order of a typical z value.

e function C

C((II) = C,;]'Z'2
e function D
D(z) = cijv/z
o function E
1 1 1
Be) =l mr P Tr - 957 T 1 @ - 5P

where S is of the order of a typical z value.

e function F
b
48

where S is of the order of a typical z value.

F(z) = ¢jjz(sin(z—) + 1)

The objective function for the transportation problem is of the form
> flzy)
ij

where f(z) is one of the functions above, the parameters ¢;; are obtained from
the parameter matrix (see Figure 9.4), and S is obtained from the attributes of
the problem to be tested.

To derive S, it is necessary to estimate the value of a typical z value; this was
done by the way of preliminary runs to estimate the number and magnitudes
of non-zero z;;’s. In this way the average flow on each arc was estimated and
a value for S found. For function A we used § = 2, while for B, E, and F, we
used S = 5.

Note that the objective function is identical on each arc, so a cost-matrix was
used to provide a variation between arcs. The matrix provides the ¢;;’s which
act to scale the basic function shape, thus providing ‘one degree’ of variability.
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Fig. 9.3. Six test functions A - F

9.2.7 Experiments and results

In testing the GENETIC-2 algorithm on the linear transportation problem (sec-
tion 9.1) we can compare its solution with the known optimum found using the
standard algorithm. Hence we can determine how efficient the genetic algorithm
is in absolute terms. Once we move to nonlinear objective functions, the opti-
mum may not be known. Testing is reduced to comparing the results with those
of other nonlinear solution methods that may themselves have converged to a
local optimum.
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Number of Sources: 7
Number of Destinations: 7
Source Flows: 27 28 25 20 20 20 20

Destination Flows: 20 20 20 23 26 25 26

Arc Parameter Matrix (Source by Destination):

0 21 50 62 93 77 1000
21 0 17 54 67 1000 48
50 17 0 60 98 67 25
62 54 60 0 27 1000 38
93 67 98 2r 0 47 42
77 1000 67 1000 47 0 35

1000 48 25 38 42 35 0

Fig. 9.4. Example problem description

As usual, we compare the GENETIC-2 algorithm method with the GAMS
system as a typical example of an industry-standard efficient method of solution.
This system, being essentially a gradient-controlled method, found some of the
problems we set up difficult or impossible to solve. In these cases modifications
to the objective functions could be made so that the method could at least find
an approximate solution.

The objective for the transportation problem was then of the form

Z f(=zy)

where f(z) is one of the six selected functions, the ¢;; parameters are obtained
from the parameter matrix and S from the attributes of the problem to be
tested. S is approximated from the average non-zero arc flow determined from
a number of preliminary runs to make sure the flows occurred in the interesting
part of the objective function.

In some sense it is desirable to use completely randomly structured objective
functions on each arc. Given that our objective is to demonstrate how the
algorithm performs on a variety of problems the question reduces to asking how
much variation between arcs is required for a particular function form. When
the function is identical on each arc the problem may have many solutions with
the same cost, reducing the information obtained when analyzing the algorithm.

In our experiments a cost-matrix was used to provide variation between arcs.
The matrix provides the ¢;;’s which act to scale the basic function shape, thus
providing ‘one degree’ of variability. More matrices (providing more d-grees of
variability) were not required.

For functions C, E, and F, the GAMS application was straightforward: using
built-in nonlinear functions. Due to the requirement for gradient estimation of
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objective functions, GAMS could not handle functions A, B and D directly.
In the case of A and B, the expression could not be formulated in GAMS
while in the case of D (the square root function) difficulty was encountered in
measuring gradients near zero. Therefore, we made the following modifications
to the problem for the GAMS runs:

e function A
Separate arc-tangent functions are used to approximate each of the five
steps. A parameter, P4, was used to control the ‘tightness’ of the fit. The
cost on arc [i,j] is:

arctan(Pa(zi; — 8))/m + 3 +
arctan(Pa(ziy; — 25))/m + +
cij - | arctan(Pa(zi; — 35))/m + 1 +
arctan(Pa(zy — 45))/7 + 1 +
arctan(Py(z:; — 55))/m + 5 i

e function B
The arc-tangent function was again used, this time to approximate each
of the three gradients. A parameter, Pg, was used to control the tightness
of the fit. The cost on arc [i,]] is:

(%) - (arctan(Ppzi;) /7 + 3) +
cij - | (L—%¢)- (arctan(Pg(zi; — 5))/m + %)
(%1 2) - (arctan(Pg(z;; — 25))/m + 3 )

e function D
In order to avoid gradient problems at or near zero, the function D was
changed to:
D'(z) = D(z +e¢) .

As for the linear case, for each problem, multiple GAMS runs were made
under different values of the modification parameter and the best result chosen.
The best values for the three parameters were found to be: P4 between 1 and
20, Py very large (e.g., 1000), and ¢ (for function D) between 1 and 7. The final
result values were always calculated after the optimization using the unmodified
function, instead of the modified function.

For the main set of experiments, five 10 x 10 transportation matrices were
used with each function. They were constructed from a set of independent uni-
formly distributed ¢;; values and randomly chosen source and destination vec-
tors with a total flow of 100 units. Each function—matrix combination was given
5 runs using different random number starting seeds for the genetic algorithm.
Problems were run for 10,000 generations.

For function A, S was set to 2, while for functions B, E, and F a value of 5
was used.

The 10 x 10 node problems reach the limit of the student version of GAMS
(where allowable problem size is restricted). From a listing of some example
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problems tested on the GAMS system, it appears that with the full version
(where problem size is limited by available memory and internal limits) on
a 640k memory AT computer, a 25 X 25 node problem should be possible.
Note that an N x N node problem would be formulated by GAMS as having
N? variables, 2N constraints and a nonlinear objective function. Clearly, larger
problems could be formulated on bigger systems (especially a mainframe) or
with specialized solvers.

However, using much larger problems to compare the genetic system with
nonlinear programming type solvers may be of limited value. Results of the 10 x
10 runs demonstrate the tendency for GAMS (and presumably, similar systems)
to fall into local (non-global) optima. Ignoring the time spent evaluating the
objective function and using the number of solutions tested as the measure of
time it is clear that standard nonlinear programming techniques will always
‘finish’ faster than genetic systems. This is because they typically explore only
a particular path within the current local optimum zone. They will do well only
if the local optimum is a relatively good one.

A set of parameters were chosen for GENETIC-2 after experience with the
linear problems and on the basis of tuning runs with the nonlinear problems.
The population size was fixed at 40. The mutation rate was p,, = 20% with the
proportion of mutation-1 being 50%, and the crossover rate was p. = 5%. The
crossover proportions were ¢; = .35 and ¢ = .65.

It may appear that the chosen mutation rate is too high and the crossover
rate too low in comparison with classical genetic algorithms. However, our op-
erators are different from the classical ones, because (1) we select parents for
mutations and crossovers, i.e., the whole structure (as opposed to single bits)
undergoes mutation, and (2) mutation-1 creates an offspring ‘pushing’ the par-
ent towards the surface of the solution space, whereas crossover and mutation-2
‘push’ the offspring towards the center of the solution space.

The use of high mutation rates may also suggest that the algorithm is
nearly a random search. However, the random search algorithm (crossover rate
0%) performs quite poorly in comparison to the tuned algorithm used here. To
demonstrate this, we tabulate below (Table 9.3) some typical results for different
values of parameters p,, and p. using functions A and F and for a particular
7 x 7 transportation problem. The values given are the average minimum cost
achieved for 5 runs with different seeds in 10,000 generations.

Function | p.=0% p.=25% p.= 5%
Pm =25% pm=0% pm=20%
A 45.8 181.0 0.0
F 178.7 189.6 110.9

Table 9.3. Results for different values of p. and p,,
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The 7 x 7 transportation problem used is given in Figure 9.4; the solutions
found by the algorithm GENETIC-2 for different values of parameters p. and
Dm are given in Figure 9.5.

pc = 0%, pim = 28%, function A, Cost = 45.8 Pe = 0%, pm = 25%, function F, Cost = 178.7
20.00 0.00 0.00 1.00 .00 2.00 200 18.00 6.00 0.00 6.00 0.00 0.00 0.00
0.00 20.00 1.00 2.00 2.00 2.00 1.00 0.00 14.00 0.00 14.00 0.00 0.00 0.00
0.00 0.00 19.00 0.00 2.00 1.00 3.00 0.00 0.00 20.00 0.00 0.00 0.00 5.00
0.00 0.00 0.00 20.00 0.00 0.00 0.00 5.00 0.00 0.00 3.00 6.00 0.00 6.00
0.00 0.00 0.00 000 20.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00
0.00 0.00 0.00 0.00 000 20.00 0.00 0.00 0.00 0.00 0.00 000 20.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00 5.00 15.00

Pe = 25%, pm = OR, function A, Cost = 181.2 pe = 25%. pm = O%, function F, Cost = 189.6
18.25 0.00 0.11 1.81 3.30 3.53 0.00 20.00 0.25 0.00 0.75 0.00 6.00 0.00
0.00 18.21 3.94 3.05 0.00 1.97 0.82 0.00 5.75 0.00 2225 0.00 0.00 0.00
1.75 1.7 13.24 1.46 146 1.48 3.83 0.00 0.00 20.00 0.00 0.00 0.00 5.00
0.00 0.00 1.91 1487 1.18 0.35 1.69 0.00 14.00 0.00 0.00 6.00 0.00 0.00
0.00 0.00 0.72 097 1810 o2 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00
0.00 0.00 0.02 0.71 196 17.30 0.00 0.00 0.00 0.00 0.00 0.00 14.00 6.00
0.00 0.00 0.05 0.14 0.00 0.16 19.63 0.00 0.00 0.00 0.00 0.00 5.00 15.00

pe = 5K, pm = 20%, function A, Cost = 0.0 pe = 5%. pm = 20%. function F, Cost = 110.9
19.87 0.00 0.68 1.80 1.33 1.80 1.51 14.31 6.31 6.39 0.00 0.00 0.00 0.00
0.08 20.00 1.00 1.90 1.48 1.61 192 0.00 13.69 0.31 14.00 0.00 0.00 0.00
0.00 0.00 1832 1.89 1.08 1.78 1.93 0,00 0.00 1331 6.00 0.00 0.00 5.69
0.05 0.00 0.00 17.09 1.91 0.96 0.00 $.69 0.00 0.00 3.00 6.00 0.00 5.31
0.00 0.00 0.00 0.00 19.92 0.00 008 0.00 0.00 0.00 0.00 20.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 18.60 1.40 0.00 0.00 0.00 0.00 0.00 1931 0.69
0.00 0.00 0.00 0.31 0.28 025 18.16 0.00 0.00 0.00 0.00 0.00 569 1431

Fig. 9.5. Solutions found by GENETIC-2 for different values of p, and pm,

The GENETIC-2 system was run on SUN SPARCstation 1 computers while
GAMS was run on an Olivetti 386. Although speed comparisons between the
two machines are difficult it should be noted that in general GAMS finished each
run well before the genetic system. An exception is case A (in which GAMS
evaluates numerous arc-tangent functions) where the genetic algorithm took no
more than 15 minutes to complete while GAMS averaged about twice that. For
cases A B, and D, where the extra GAMS modification parameter meant that
multiple runs had to be performed to find its best solution, the genetic system
overall was much faster.

A typical comparison of the optima between GENETIC-2 (averaged over 5
seeds) and GAMS is shown in the Table 9.4 for a single 10 x 10 problem; its
description is given in Figure 9.6.

Figure 9.7 displays the results for all five considered problems. For the class
of ‘practical’ problems, A and B, GENETIC-2 is, on average, better than GAMS
by 24.5% in case A and by 11.5% in case B. For the ‘reasonable’ functions
the results were different. In case C (the square function), the genetic system
performed worse by 7.5% while in case D (the square-root function), the genetic
system was better by just 2.0%, on average. For the ‘other’ functions, E and F,
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Function | GAMS | GENETIC-2 | % difference
A 281.0 202.0 —28.1%
B 180.8 163.0 -9.8%
C 4402.0 4556.2 +3.5%
D 408.4 391.1 —4.2%
E 145.1 79.2 —45.4%
F 1200.8 201.9 —83.2%

Table 9.4. Comparison between GAMS and GENETIC-2

Number of Sources: 10
Number of Destinations: 10
Source Flows: 8 8 2 26 12 1 6 18 18 1

Destination Flows: 19 2 33 5 11 11 2 14 2 1

Arc Parameter Matrix (Source by Destination):

15 3 23 1 19 14 6 16 41 33
13 17 30 36 20 17 26 19 3 33
37 17 30 5 48 27 8 25 36 21
13 13 31 7 35 11 20 41 34 3
31 24 8 30 28 33 2 &8 1 8
32 36 12 9 18 1 44 49 11 11
49 6 17 0 42 45 22 9 10 47
2 21 18 40 47 27 27 40 19 42
13 16 25 21 19 0 32 20 32 35
23 42 2 0 9 30 5 29 31 29

Fig. 9.6. Example problem description

the genetic system dominates; it resulted in improvements of 33.0% and 54.5%
over GAMS, averaging over the five problems.

9.2.8 Conclusions

Our objective was to investigate the behavior of a type of genetic algorithm
on problems with multiple constraints and nonlinear objective functions. The
transportation problem was chosen for study as it provided a relatively simple
convex feasible set. This was to make it is easier to maintain feasibility in the
solutions. We were then able to examine the influence of the objective function
alone on the algorithm’s behavior.
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Fig. 9.7. Results

though GAMS did well on the smooth

The results demonstrate the efficiency of the genetic method in finding the

global optimum in difficult problems,
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monotonic, ‘reasonable’, functions. The gradient controlled techniques are most
suited to these situations. For function C, GAMS found better solutions much
faster than GENETIC-2.

For the ‘practical’ problems, the gradient techniques have difficulty ‘seeing
around the corner’ to new zones of better costs. The genetic type of algorithm,
taking a more global approach, is able to move to new zones readily, hence
generating much better solutions.

The ‘other’ problems, although they are both smooth, have significant struc-
tural features that were admittedly designed to cause real difficulties for the
gradient methods. GENETIC-2 excelled over GAMS here even more than in
the ‘practical’ cases.

It is also interesting to compare GENOCOP (Chapter 7) with GENETIC-2
(see Table 9.5). In general, their results are very similar. However, note again
that the matrix approach was tailored to the specific (transportation) problem,
whereas GENOCOP is problem independent and works without any hard-coded
domain knowledge. In other words, while one might expect the GENOCOP to
perform similarly well for other constrained problems, GENETIC-2 cannot be
used at all.

Function | GENETIC-2 | GENOCOP | % difference
A 00.00 24.15
B 203.81 205.60 0.87%
C 2564.23 2571.04 0.26%
D 480.16 480.16 0.00%
E 204.73 204.82 0.04%
F 110.94 119.61 7.24%

Table 9.5. GENETIC-2 versus GENOCOP: the results for the 7 x 7 problem, with trans-
portation cost functions A-F and cost matrix given in Figure 7.3

While comparing all three systems (GAMS, GENOCOP, GENETIC-2), it is
important to underline that two of them, GAMS and GENOCOP, are problem
independent: they are capable of optimizing any function subject to any set of
linear constraints. The third system, GENETIC-2, was designed for transporta-
tion problems only: the particular constraints are incorporated into matrix data
structures and special “genetic” operators (for further comparisons, see Chapter
14).

GENETIC-2 was specifically tailored to transportation problems but an
important characteristic is that it handles any type of cost function (which
need not even be continuous). It is also possible to modify it to handle many
similar operations research problems including allocation and some scheduling
problems. This seems to be a promising research direction which may result in a
generic technique for solving matrix based constrained optimization problems.



10. The Traveling Salesman Problem

There is nothing worse for mortals
than a wandering life.

Homer, Odyssey

In the next chapter, we present several examples of evolution programs tailored
to specific applications (graph drawing, partitioning, scheduling). The traveling
salesman problem (TSP} is just one of such applications; however, we treat it as
a special problem — the mother of all problems — and discuss it in a separate
chapter, What are the reasons?

Well, there are many. First of all, the TSP is conceptually very simple:
the traveling salesman must visit every city in his territory exactly once and
then return to the starting point. Given the cost of travel between all cities,
how should he plan his itinerary for minimum total cost of the entire tour?
The search space for the TSP is a set of permutations of n cities. Any single
permutation of n cities yields a solution (which is a complete tour of n cities).
The optimal solution is a permutation which yields the minimum cost of the
tour. The size of the search space is nl.

The TSP is a relatively old problem: it was documented as early as 1759 by
Euler (though not by that name), whose interest was in solving the knights’ tour
problem. A correct solution would have a knight visit each of the 64 squares of
a chessboard exactly once in its tour.

The term ‘traveling salesman’ was first used in a 1932 a German book
The traveling salesman, how and what he should do to get commissions and be
successful in his business, written by a veteran traveling salesman (see [236]).
Though not the main topic of the book, the TSP and scheduling are discussed
in the last chapter.

The TSP was introduced by the RAND Corporation in 1948. The Corpora-
tion’s reputation helped to make the TSP a well known and popular problem.
The TSP also became popular at that time due to the new subject of linear
programming and attempts to solve combinatorial problems.

The Traveling Salesman Problem was proved to be NP-hard [134]. It arises
in numerous applications and the number of cities might be quite significant —
as stated in [207]:
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“Circuit board drilling applications with up to 17,000 cities are men-
tioned in [246], X-ray crystallography instances with up to 14,000
cities are mentioned in [44], and instances arising in VLSI fabri-
cation have been reported with as many as 1.2 million cities [227].
Moreover, 5 hours on a multi-million dollar computer for an optimal
solution may not be cost-effective if one can get within a few percent
in seconds on a PC. Thus there remains a need for heuristics.”

During the last decades, several algorithms emerged to approximate the optimal
solution: nearest neighbor, greedy algorithm, nearest insertion, farthest inser-
tion, double minimum spanning tree, strip, space-filling curve, algorithms by
Karp, Litke, Christofides, etc. [207] (some of these algorithms assume that the
cities correspond to points in the plane under some standard metric). Another
group of algorithms (2-opt, 3-opt, Lin-Kernighan) aims at a local optimization:
an improvement of a tour by local perturbations. The TSP also became a target
for the GA community: several genetic-based algorithms were reported [131],
[160], [168], [170], [206], [241], [288], [299], [353], [370], [375], [389], [402]. These
algorithms aim at producing near-optimal solutions by maintaining a popula-
tion of potential solutions which undergoes some unary and binary transfor-
mations (‘mutations’ and ‘crossovers’) under a selection scheme biased towards
fit individuals. It is interesting to compare these approaches, paying particular
attention to the representation and genetic operators used — this is what we
intend to do in this chapter. In other words, we shall trace the evolution of
evolution programs for TSP.

To underline some important characteristics of the TSP, let us consider the
CNF-satisfiability problem first. A logical expression in conjunctive normal form
(CNF) is a sequence of clauses separated by the Boolean operator A; a clause is
a sequence of literals separated by the Boolean operator V; a literal is a logical
variable or its negation; a logical variable is a variable that may be assigned
values TRUE or FALSE (1 or 0).

For example, the following logical expression is in CNF:

(@VbVe)A(bVevdVe)A(@aVe)A(aVeEVe),

where a, b, ¢, d, and e are logical variables; @ denotes the negation of variable
a (@ has the value TRUE if and only if a has the value FALSE).

The problem is to determine whether there exists a truth assignment for the .
variables in the expression, so that the whole expression evaluates to TRUE.
For example, the above CNF logical expression has several truth assignments,
for which the whole expression evaluates to TRUE, e.g., any assignment with a
= TRUE and ¢ = TRUE.

If we try to apply a genetic algorithm to the CNF-satisfiability problem, we
notice that it is hard to imagine a problem with better suited representation:
a binary vector of fixed length (the length of the vector corresponds to the
number of variables) should do the job. Moreover, there are no dependencies
between bits: any change would result in a legal (meaningful) vector. Thus we
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can apply mutations and crossovers without any need for decoders or repair
algorithms. However, the choice of the evaluation function is the hardest task.
Note that all logical expressions evaluate to TRUE or FALSE, and if a specific
truth assignment evaluates the whole expression to TRUE, then the solution to
the problem is found. The point is that during the search for a solution, all chro-
mosomes (vectors) in a population would evaluate to FALSE (unless a solution
is found), so it is impossible to distinguish between ‘good’ and ‘bad’ chromo-
somes. In short, the CNF-satisfiability problem has natural representation and
operators, without any natural evaluation function. For a further discussion on
the problems related to a selection of an appropriate evaluation function, the
reader is referred to [90)].

On the other hand, the TSP has an extremely easy (and natural) evaluation
function: for any potential solution (a permutation of cities), we can refer to the
table with distances between all cities and (after n — 1 addition operations) we
get the total length of the tour. Thus, in a population of tours, we can easily
compare any two of them. However, the choice of the representation of a tour
and the choice of operators to be used are far from clear.

An additional reason for treating the TSP in a separate chapter is that simi-
lar techniques were used for variety of other sequencing problems, like scheduling
and partitioning. Some of these problems are discussed in the next chapter.

There is an agreement in the GA community that the binary representation
of tours is not well suited for the TSP, It is not hard to see why: after all, we
are interested in the best permutation of cities, i.e.,

(il)i2)~ . ain)a

where (i), 12, . - -,1s) is a permutation of {1,2,...,n}. The binary code of these
cities will not provide any advantage. Just the opposite is true: the binary
representation would require special repair algorithms, since a change of a single
bit may result in a illegal tour. As observed in [402):

“Unfortunately, there is no practical way to encode a TSP as a bi-
nary string that does not have ordering dependencies or to which
operators can be applied in a meaningful fashion. Simply crossing
strings of cities produces duplicates and omissions. Thus, to solve
this problem some variation on standard genetic crossover must be
used. The ideal recombination operator should recombine critical
information from the parent structures in a non-destructive, mean-
ingful manner.”

It is interesting to note that a recent paper by Lidd [241] describes a GA
approach for the TSP with a binary representation and classical operators
(crossover and mutation). The illegal tours are evaluated on the basis of com-
plete (not necessarily legal) tours created by a greedy algorithm. The reported
results are of surprisingly high quality, however, the largest considered test case
consisted of 100 cities only.
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During the last few years there have been three vector representations con-
sidered in connection with the TSP: adjacency, ordinal, and path representa-
tions. Each of these representations has its own “genetic” operators — we shall
discuss them in turn. Since it is relatively easy to come up with some sort of
mutation operator which would introduce a small change into a tour, we shall
concentrate on crossover operators. In all three representations, a tour is de-
scribed as a list of cities. In the following discussions we use a common example
of 9 cities numbered from 1 to 9.

Adjacency Representation:

The adjacency representation represents a tour as a list of n cities. The city
j is listed in the position ¢ if and only if the tour leads from city ¢ to city 7. For
example, the vector

(248397156)
represents the following tour:
1-2-4-3-8-5-9-6-7

Each tour has only one adjacency list representation; however, some adjacency
lists can represent illegal tours, e.g.,

(248193576),
which leads to
1-2-4-1,

i.e., the (partial) tour with a (premature) cycle.

The adjacency representation does not support the classical crossover op-
erator. A repair algorithm might be necessary. Three crossover operators were
defined and investigated for the adjacency representation: alternating edges,
subtour chunks, and heuristic crossovers [168].

e alternating-edges crossover builds an offspring by choosing (at random) an
edge from the first parent, then selects an appropriate edge from the sec-
ond parent, etc. — the operator extends the tour by choosing edges from
alternating parents. If the new edge (from one of the parents) introduces
a cycle into the current (still partial) tour, the operator selects instead a
(random) edge from the remaining edges which does not introduce cycles.
For example, the first offspring from the two parents

P =(238791456) and
pr=(751692843)

might be
0, =(258791643),
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where the process started from the edge (1,2) from the parent p;, and the
only random edge introduced during the process of alternating edges was
(7,6) instead of (7,8), which would have introduced a premature cycle.

e subtour-chunks crossover constructs an offspring by choosing a (random
length) subtour from one of the parents, then choosing a (random length)
subtour from another parent, etc. — the operator extends the tour by
choosing edges from alternating parents. Again, if some edge (from one
of the parents) introduces a cycle into the current (still partial) tour, the
operator selects instead a (random) edge from the remaining edges which
does not introduce cycles.

e heuristic crossover builds an offspring by choosing a random city as the
starting point for the offspring’s tour. Then it compares the two edges
(from both parents) leaving this city and selects the better (shorter) edge.
The city on the other end of the selected edge serves as a starting point
in selecting the shorter of the two edges leaving this city, etc. If, at some
stage, a new edge would introduce a cycle into the partial tour, then the
tour is extended by a random edge from the remaining edges which does
not introduce cycles.

In [206], the authors modified the above heuristic crossover by changing
two rules: (1) if the shorter edge (from a parent) introduces a cycle in the
offspring tour, check the other (longer) edge. If the longer edge does not
introduce a cycle, accept it; otherwise (2) select the shortest edge from a
pool of ¢ randomly selected edges (g is a parameter of the method).

The effect of this operator is to glue together short subpaths of the parent
tours. However, it may leave undesirable crossings of edges — it is why the
heuristic crossover is not appropriate for fine local tuning of the tours. Suh
and Gucht [375] introduced an additional heuristic operator (based on 2-
opt algorithm [245]) appropriate for local tuning. The operator randomly
selects two edges, (i §) and (k m), and checks whether

dist(i, §) + dist(k,m) > dist(i,m) + dist(k, ),

where dist(a,b) is a given distance between cities a and b. If this is the
case, the edges (i j) and (k m) in the tour are replaced by edges (i m)
and (k 7).

An advantage of adjacency representation is that it allows schemata analysis
similar to one discussed in Chapter 3, where binary strings were considered.
Schemata correspond to natural building blocks, i.e., edges; for example, the
schema

(***3*7***)

denotes the set of all tours with edges (4 3) and (6 7). However, the main dis-
advantage of this representation is relatively poor results for all operators. The
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alternating-edges crossover often disrupts good tours due to its own operation
by alternating edges from two parents. The subtour-chunk crossover performs
better than alternating-edges crossover, since the disruption rate is lower. How-
ever, the performance is still quite low. The heuristic crossover, of course, is the
best operator here. The reason is that the first two crossovers are blind, i.e.,
they do not take into account the actual lengths of the edges. On the other
hand, heuristic crossover selects the better edgne out of two possible edges —
this is the reason it performs much better than the other two. However, the
performance of the heuristic crossover is not outstanding: in three experiments
reported [168] on 50, 100, and 200 cities, the system found tours within 25%,
16%, and 27% of the optimum, in approximately 15000, 20000, and 25000 gen-
erations, respectively.

Ordinal Representation:

The ordinal representation represents a tour as a list of n cities; the i-th
element of the list is a number in the range from 1 to n—4+ 1. The idea behind
the ordinal representation is as follows. There is some ordered list of cities C,
which serves as a reference point for lists in ordinal representations. Assume,
for example, that such an ordered list (reference point) is simply

C=(123456789).

A tour
1-2-4-3-8-5-9-6-7

is represented as a list { of references,
I=(112141311),

and should be interpreted as follows:

e the first number on the list [ is 1, so take the first city from the list C
as the first city of the tour (city number 1), and remove it from C. The
partial tour is

1

e the next number on the list [ is also 1, so take the first city from the
current list C as the next city of the tour (city number 2), and remove it
from C. The partial tour is

1-2

e the next number on the list [ is 2, so take the second city from the current
list C as the next city of the tour (city number 4), and remove it from C.
The partial tour is

1-2-4

.
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e the next number on the list / is 1, so take the first city from the current
list C' as the next city of the tour (city number 3), and remove it from C.
The partial tour is

1-2-4-3

e the next number on the list [ is 4, so take the fourth city from the current
list C' as the next city of the tour (city number 8), and remove it from C.
The partial tour is

1-2-4-3-8

e the next number on the list [ is again 1, so take the first city from the
current list C as the next city of the tour (city number 5), and remove it
from C. The partial tour is

1-2-4-3-8-5

e the next number on the list [ is 3, so take the third city from the current
list C' as the next city of the tour (city number 9), and remove it from C.
The partial tour is

1-2-4-3-8-5-9

e the next number on the list [ is 1, so take the first city from the current
list C' as the next city of the tour (city number 6), and remove it from C'.
The partial tour is

1-2-4-3-8-5-9-6

o the last number on the list [ is 1, so take the first city from the current
list C as the next city of the tour (city number 7, the last available city),
and remove it from C. The final tour is

1-2-4-3-8-5-9-6-7

The main advantage of the ordinal representation is that the classical
crossover works! Any two tours in the ordinal representation, cut after some
position and crossed together, would produce two offspring, each of them being
a legal tour. For example, the two parents

p=(1121[41311)and
pe=(5155|53321),

which correspond to the tours

1-2-4-3-8-5-

9 7 and
5-1-7-8-9-4-6 2

’

_ 6 —
— 3 —
with the crossover point marked by ‘|’, would produce the following offspring:



216 10. The Traveling Salesman Problem

00=1(112153321)and
0,=(515541311);

these offspring correspond to

1-2-4-3-9-7-8-6-5and
5-1-7-8-6-2-9-3-4.

It is easy to see that partial tours to the left of the crossover point do not
change, whereas partial tours to the right of the crossover point are disrupted
in a quite random way. Poor experimental results indicate [168] that this rep-
resentation together with classical crossover is not appropriate for the TSP,

Path Representation:
The path representation is perhaps the most natural representation of a
tour. For example, a tour

5-1-7-8~-9-4-6-2-3
is represented simply as
(617894623).

Until recently, three crossovers were defined for the path representation: partially
-mapped (PMX), order (OX), and cycle (CX) ¢rossovers. We will now discuss
them in turn.

e PMX — proposed by Goldberg and Lingle [160] — builds an offspring
by choosing a subsequence of a tour from one parent and preserving the
order and position of as many cities as possible from the other parent.
A subsequence of a tour is selected by choosing two random cut points,
which serve as boundaries for swapping operations. For example, the two
parents (with two cut points marked by ¢|’)

pr=(123|4567|89)and
pr=(452118761}93)

would produce offspring in the following way. First, the segments between
cut points are swapped (the symbol ‘x’ can be interpreted as ‘at present
unknown’):

01 =(xxx]|1876]xx)and
09 =(xxx|4567]xx).

This swap defines also a series of mappings:
1-4,8<5 7<6 andb«— 7.

Then we can fill further cities (from the original parents), for which there
is no conflict:
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00=(x23]|1876]|x9)and
0= (xx2]4567]|93)

Finally, the first x in the offspring o; (which should be 1, but there was
a conflict) is replaced by 4, because of the mapping 1 < 4. Similarly,
the second x in the offspring o; is replaced by 5, and the x and x in the
offspring o, are 1 and 8. The offspring are

0,=(423]|1876]|59)and
0,=(182]4567]93).

The PMX crossover exploits important similarities in the value and or-

dering simultaneously when used with an appropriate reproductive plan
{160].

OX — proposed by Davis [71] — builds offspring by choosing a sub-
sequence of a tour from one parent and preserving the relative order of
cities from the other parent. For example, two parents (with two cut points
marked by ‘')

pr=(123[4567|89)and
pe=(452]1876(93)

would produce the offspring in the following way. First, the segments
between cut points are copied into offspring;:

o= (xxx|4567|xx)and
0 =(xxx|1876]|xx).

Next, starting from the second cut point of one parent, the cities from
the other parent are copied in the same order, omitting symbols already
present. Reaching the end of the string, we continue from the first place
of the string. The sequence of the cities in the second parent (from the
second cut point) is

9-3-4-5-2-1-8-7-6;

after removal of cities 4, 5, 6, and 7, which are already in the first offspring,
we get

9-3-2-1-8

This sequence is placed in the first offspring (starting from the second cut
point):

01=1{218]4567]93).
Similarly we get the other offspring:

02=(345]1876]92).
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The OX crossover exploits a property of the path representation, that the
order of cities (not their positions) are important, i.e., the two tours

9-3-4-5-2-1-8-7-6and
4-5-2-1-8-7-6-9-3
are in fact identical.

CX — proposed by Oliver [299] — builds offspring in such a way that
each city (and its position) comes from one of the parents. We explain
the mechanism of the cycle crossover using the following example. Two
parents

pr=(1234567809)and
pp=(412876935)

would produce the first offspring by taking the first city from the first
parent:

01 = (1 XXXXXXXX).

Since every city in the offspring should be taken from one of its parents
(from the same position), we do not have any choice now: the next city to
be considered must be city 4, as the city from the parent p; just “below”
the selected city 1. In p; this city is at position ‘4’, thus

00 =(1xx4xxxXxX).

This, in turn, implies city 8, as the city from the parent p, just “below”
the selected city 4. Thus

op=(1xx4xxx8x)

Following this rule, the next cities to be included in the first offspring are
3 and 2. Note, however, that the selection of city 2 requires selection of
city 1, which is already on the list — thus we have completed a cycle

op=(1234xxx8x).

The remaining cities are filled from the other parent:
01 =(123476985).

Similarly,
0, =(412856739).

The CX preserves the absolute position of the elements in the parent
sequence.
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It is possible to define other operators for the path representation. For exam-
ple, Syswerda [383] defined two modified versions of the order crossover operator.
(However, this work was in connection with the scheduling problem and we will
discuss this problem in the next chapter). The first modification {called order-
based crossover) selects (randomly) several positions in a vector, and the order
of cities in the selected positions in one parent is imposed on the corresponding
cities in the other parent. For example, consider two parents

pr=(123456789)and
pr=(412876935).

Assume that the selected positions are 3rd, 4th, 6th, and 9th; the ordering of
the cities in these positions from parent p; will be imposed on parent p,. The
cities at these positions (in the given order) in p, are 2, 8, 6, and 5. In parent p,
these cities are present at positions 2, 5, 6, and 8. In the offspring the elements
on these positions are reordered to match the order of the same elements from
pa (the order is 2 — 8 — 6 - 5). The first offspring is a copy of p; on all positions
except positions 2, 5, 6, and &:

o0={1x34xx7x9).

All other elements are filled in the order given in parent py, i.e., 2, 8, 6, 5, so
finally,

01=(1234867509).
Similarly, we can construct the second offspring:
0, =(312874695).

The second modification (called position-based crossover) is more similar
to the original order crossover. The only difference is that in position-based
crossover, instead of selecting one subsequence of cities to be copied, several
cities are (randomly) selected for that purpose.

It is interesting to note that these two operators {(order-based crossover and
position based crossover) are, in some sense, equivalent to each other. An order-
based crossover with some number of positions selected as crossover points, and
a position-based crossover with compliment positions as its crossover points
will always produce the same result. This means that if the average number of
crossover points is m/2 (m is the total number of cities), these two operators
should give the same performance. However, if the average number of crossover
points is, say, m/10, then the two operators display different characteristics. For
more information on these operators and some theoretical and empirical results
comparing some of them, the reader is referred to [154], [131], [299], [370], and
[382].

In surveying different reordering operators which have emerged during the
last few years, we should mention the inversion operator as well. Simple inversion
[188] selects two points along the length of the chromosome, which is cut at
these points, and the substring between these points is reversed. For example,
a chromosome:
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(123456789
with two cut points marked by ‘|’, is changed into
(12]6543|789).

Such simple inversion guarantees that the resulting offspring is a legal tour;
some theoretical investigations [188] indicate that the operator should be useful
in finding good string orderings. It is reported [402] that in a 50-city TSP, a
system with inversion outperformed a system with a “cross and correct” opera-
tor. However, an increase in the number of cut points decreases the performance
of the system. Also, inversion (like a mutation) is a unary operator, which can
only supplement recombination operators — the operator is unable to recom-
bine information by itself. Several versions of the inversion operator have been
investigated [154]. Holland [188] provides a modification of a schema theorem
to include its effect.

At this point we should also mention recent attempts to solve the TSP
using evolution strategies [178], [352]. One of the attempts [178] experimented
with four different mutations operators (mutation is still the basic operator in
evolution strategies — see Chapter 8):

e nversion — as described above;
e insertion — selects a city and inserts it in a random place;
e displacement — selects a subtour and inserts it in a random place;

e reciprocal exchange — swaps two cities.

Also, a version of the heuristic crossover operator was used. In this modification,
several parents contribute in producing offspring. After selecting the first city of
the offspring tour (randomly), all left and right neighbors of that city (from all
parents) are examined. The city which yields the shortest distance is selected.
The process continues until the tour is completed.

Another application of evolution strategy [352] generates a (float) vector
on n numbers (n corresponds to the number of cities). The evolution strategy
is applied as for any continuous problem. The trick is in coding. Components
of the vector are sorted and their order determines the tour. For example, the
vector

v = (2.34,—-1.09,1.91,0.87,-0.12,0.99, 2.13,1.23, 0.55)
corresponds to the tour
2-5-9-4-6-8-3-7-1,
since the smallest number, —1.09 is the second component of the vector v, the

second smallest number, —0.12 is the fifth component of the vector v, etc.

Most of the operators discussed so far take into account cities (i.e., their
positions and order) as opposed to edges — links between cities. What might
be important is not the particular position of a city in a tour, but rather the
linkage of this city with other cities. As observed by Homaifar and Guan [194]:
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“Considering the problem carefully, we can argue that the basic
building blocks for TSP are edges as opposed to the position rep-
resentation of cities. A city or short path in a given position with-
out adjacent or surrounding information has little meaning for con-
structing a good tour. However, it is hard to argue that injecting
city a in position 2 is better than injecting it in position 5. Al-
though this is the extreme case, the underlying assumption is that
a good operator should extract edge information from parents as
much as possible. This assumption can be partially explained from
the experimental results in Oliver’s paper [299] that OX does 11%
better than PMX, and 15% better than the cycle crossover.”

Grefenstette [170] developed a class of heuristic operators that emphasizes edges.
They work along the following lines:

1. randomly select a city to be the current city c of the offspring,
2. select four edges (two from each parent) incident to the current city c,

3. define a probability distribution over selected edges based on their cost.
The probability for the edge associated with a previously visited city is 0,

4. select an edge. If at least one edge has non-zero probability, selection
is based on the above distribution; otherwise, selection is random (from
unvisited cities),

5. the city on ‘the other end’ of the selected edge becomes the current city
Cy

6. if the tour is complete, stop; otherwise, go to step 2.

However, as reported in [170], such operators transfer around 60% of the
edges from parents — which means that 40% of edges are selected randomly.

Whitley, Starweather, and Fuquay [402] have developed a new crossover
operator: the edge recombination crossover (ER), which transfers more than
95% of the edges from the parents to the single offspring. The ER operator
explores the information on edges in a tour, e.g., for the tour

(312874695),

the edges are (3 1), (12), (28), (87),(74),(46),(69), (95), and (5 3). After
all, edges — not cities — carry values (distances) in the TSP. The objective
function to be minimized is the total of edges which constitute a legal tour.
The position of a city in a tour is not important: tours are circular. Also, the
direction of an edge is not important: both edges (3 1) and (1 3) signal only
that cities 1 and 3 are directly connected.

The general idea behind the ER crossover is that an offspring should be built
exclusively from the edges present in both parents. This is done with help of the
edge list created from both parent tours. The edge list provides, for each city
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¢, all other cities connected to city ¢ in at least one of the parents. Obviously,
for each city c there are at least two and at most four cities on the list. For
example, for the two parents

p1=(123456789)and
p2=(412876935),

the edge list is

city 1: edges to other cities: 9 2 4
city 2: edges to other cities: 1 3 8
city 3: edges to other cities: 24 9 5
city 4: edges to other cities: 35 1
city 5: edges to other cities: 4 6 3
city 6: edges to other cities: 5 7 9
city 7: edges to other cities: 6 8
city 8: edges to other cities: 7 9 2
city 9: edges to other cities: 8 1 6 3.

The construction of the offspring starts with a selection of an initial city from
one of the parents. In [402] the authors selected one of the initial cities (e.g., 1
or 4 in the example above). The city with the smallest number of edges in the
edge list is selected. If these numbers are equal, a random choice is made. Such
selection increases the chance that we complete a tour with all edges selected
from the parents. With a random selection, the chance of having edge failure,
i.e., being left with a city without a continuing edge, would be much higher.
Assume we have selected city 1. This city is directly connected with three other
cities: 9, 2, and 4. The next city is selected from these three. In our example,
cities 4 and 2 have three edges, and city 9 has four. A random choice is made
between cities 4 and 2; assume city 4 was selected. Again, the candidates for the
next city in the constructed tour are 3 and 5, since they are directly connected to
the last city, 4. Again, city 5 is selected, since it has only three edges as opposed
to the four edges of city 3. So far, the offspring has the following shape:

(145xxxxxX).
Continuing this procedure we finish with the offspring
(1456782309),

which is composed entirely of edges taken from the two parents. From a series
of experiments [402], edge failure occurred at a very low rate (1% - 1.5%).

The ER operator was tested [402] on three TSPs with 30, 50, and 75 cities
— in all cases it returned a solution better than the previously “best known”
sequence.

Two years later, the edge recombination crossover was further enhanced
[370]. The idea was that the ‘common subsequences’ were not preserved in the
ER crossover. For example, if the edge list contains the row with three edges
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city 4: edges to other cities: 3 5 1,

one of these edges repeats itself. Referring to the previous example, it is the
edge (4 5). This edge is present in both parents. However, it is listed as other
edges, e.g., (4 3) and (4 1), which are present in one parent only. The proposed
solution [370] modifies the edge list by storing ‘flagged’ cities:

city 4: edges to other cities: 3 -5 1;

the character ‘-’ means simply that the flagged city 5 should be listed twice. In
the previous example of two parents

pr=(123456789)and
pp=(412876935),

the (enhanced) edge list is:

city 1: edges to other cities: 9-2 4
city 2: edges to other cities: -1 3 8
city 3: edges to other cities: 24 95
city 4: edges to other cities: 3 -5 1
city 5: edges to other cities: -4 6 3
city 6: edges to other cities: 5 -7 9
city 7: edges to other cities: -6 -8
city 8: edges to other cities: -7 9 2
city 9: edges to other cities: 8 1 6 3.

The algorithm for constructing a new offspring gives priority to flagged entries:
this is important only in the cases where three edges are listed — in two other
cases either there are no flagged cities, or both cities are flagged. This enhance-
ment (plus a modification for making better choices when random edge selection
is necessary) further improved the performance of the system [370].

The edge recombination operators indicate clearly that the path represen-
tation might be too poor to represent important properties of a tour — this
is why it was complemented by the edge list. Are there other representations
more suitable for the traveling salesman problem? Well, we cannot give a pos-
itive ‘yes’ for the answer. However, it is worthwhile to experiment with other,
possibly non-vector, representations.

During the last two years, there were at least three independent attempts to
construct an evolution program using matrix representation for chromosomes.
These were by Fox and McMahon [131], Seniw [353], and Homaifar and Guan
[194}, We discuss them briefly, in turn.

Fox and McMahon [131] represented a tour as a precedence binary matrix
M. Matrix element m;; in row ¢ and column j contains a 1 if and only if the
city 7 occurs before city j in the tour. For example, a tour

(312874695)
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Fig. 10.1. Matrix representation of a tour

is represented in matrix form in Figure 10.1.
In this representation, the n X n matrix M representing a tour (total order
of cities) has the following properties:

n{n—1)

1. the number of 1s is exactly ~=5—,

2. myu=0foralll <i<mn,and

3. if m; = 1 and Mjp = 1 then Mmip = 1.

If the number of 1s in the matrix is less than 229 and the two other require-

ments are satisfied, then the cities are partially ordered. This means that we
can complete such a matrix (in at least one way) to get a legal tour (total order
of cities). As stated in [131]:

“The Boolean matrix representation of a sequence encapsulates all
of the information about the sequence, including both the micro-
topology of individual city-to-city connections and the macro-topolo-
gy of predecessors and successors. The Boolean matrix representa-
tion can be used to understand existing operators and to develop
new operators that can be applied to sequences to produce desired
effects while preserving the necessary properties of the sequence.”

The two new operators developed in [131] were intersection and wunion.
Both are binary operators (crossover-like operators). As for other evolution
programs (e.g., GENETIC-2 for the transportation problem; Chapter 9), such
operators should combine the features of both parents and preserve constraints
(requirements) at the same time.

The intersection operator is based on the observation that the intersection
of bits from both matrices results in a matrix where (1) the number of 1s is not
greater than 221 and (2) the two other requirements are satisfied. Thus, we
can complete such a matrix to get a legal tour (total order of cities).
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For example, two parents
p1=(123456789 andp,=(412876935)

are represented by two matrices (Figure 10.2).
The intersection of these two matrices gives the matrix displayed in Figure
10.3.

1(2(3(4|5|6|7[{8|9 1/12|3/4|5(6{7|8]|9
101111111 1(0)]1]1]0]111)111]1
2io0f1o0y2ttfrl1fptrjtlt 210101110111 )21f1]1
3|0j0|0j1f1|1]1]1(1 3(0/0|j0|0|1|0]j0]|0O]0O
410700301 |Y)1 1|1 4|11 (1§01 |{L1y1}t1q1
5/0({0]0|0(0}1 |1 ]1(1 510[0j0|0|0]0]|0]|0O]O
6(0({0(0{0(0(0|1{1 1 6(0{0(1;0;1(0j0(0}1
7{0]10[0j0(0]0]0f1]1 7010|101t 1}010]1
8/0j0j0j0f0]jJ0J0]0]1 8]0|0|1(0|1|1]1|0]1
9(0({0]0]0]0]0]0}0]0 9101011101110} 0]0}0
Fig.10.2. Two parents
112|1314|5(6|7|81]9
101|101 |1]1]1|1
2(01011jJ0j1|L1}j1}j1j1
3|]0({0|0(0|1]O]0]0O]|O
41010101011 ]1]1[1}1
5000|001 0]0]0]0
6(0(0/0(0]10]0]0]01
710[0]0{0[{0{0]0]|0]1
8/0]0j06|0|0|J0]J0O]0]1
910!0/0j0f0j0f0}|0YO

Fig. 10.3. First phase of the intersection operator

The partial order imposed by the result of intersection requires that city 1
precedes cities 2, 3, 5, 6, 7, 8, and 9; city 2 precedes cities 3, 5, 6, 7, 8, and 9;
city 3 precedes city 5; city 4 precedes cities 5, 6, 7, 8, and 9; and cities 6, 7, and
8 precede city 9.

During the next stage of the intersection operator, one of the parents is
selected; some 1s (that are unique to this parent) are ‘added’, and the matrix
is completed into a sequence through an analysis of the sums of the rows and
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Fig. 10.4. Final result of the intersection

columns. For example, the matrix from Figure 10.4 is a possible result after
completing the second stage; it represents a tour (124876 359).

The union operator is based on the observation that the subset of bits
from one matrix can be safely combined with a subset of bits from the other
matrix, provided that these two subsets have empty intersection. The operator
partitions the set of cities into two disjoint groups (in [131] a special method
was used to make this partition). For the first group of cities, it copies the bits
from the first matrix; and for the second group of cities, it copies the bits from
the second matrix. Finally, it completes the matrix into a sequence through an
analysis of the sums of the rows and columns (as for intersection operator).

For example, the two parents p; and p, and the partition of cities into {1,
2,3, 4} and {5, 6, 7, 8, 9} produce the matrix shown in Figure 10.5, which is
completed as for the intersection operator.

|1]2[3]4|5(6]7|8|9]

10|11 |{x|x|x|x!X
2010]0 )11 ]x|xIx|x|x
3101010 x)x|{x]x|Xx
400010 |x|x|x|x|x
S5xx|xx{0{0101010
6lxix|x|x|{1[0]0j0(1
Tix|x|xjx|1|]1;0[0]|1
S|x|x|x|x|]1{1t]1]0]1
9lxix|x|x[1|0]0]0]0

Fig. 10.5. First phase of the union operator
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The experimental results on different topologies of the cities (random, clus-
ters, concentric circles) reveal an interesting characteristic of the union and
intersection operators, which makes progress even when the elitism (preserving
the best) option was not used. This was not the case for either ER or PMX op-
erators. A solid comparison of several binary and unary (swap, slice, and invert)
operators in terms of performance, complexity, and execution time is provided
in [131].

The second approach in using matrix representation was described by one
of my Master students, David Seniw [353]. Matrix element m;; in the row 7 and
column j contains a 1 if and only if the tour goes from city ¢ directly to city j.
This means that there is only one nonzero entry for each row and each column
in the matrix {for each city ¢ there is exactly one city visited prior to i, and
exactly one city visited next to ). For example, a chromosome in Figure 10.6(a)
represents a tour that visits the cities (1, 2, 4, 3, 8, 6, 5, 7, 9) in this order. Note
also that this representation avoids the problem of specifying the starting city,
i.e., Figure 10.6(a)} also represents the tours (2, 4, 3, 8,6, 5,7, 9, 1), (4, 3, 8, 6,
57,9, 1, 2), etc.

1(2|3{4|5|6|7|8|9 1/2(3|4|5/6|7|81]9
1]0|1,0]0)0[0]0]0O )0 1/0/1]0]0]0]0[|0j0]0
210)|0f0i1)j0ofojojo|o 2/0j0J0j1{0j0]J0O|0O}0O
3/0{0{0({0|0}]0]0}1]|0 3/0/0]0|0]j0]|0O|0|1]|0
4:0(0|1}j0(0f0}0|0]|0 4/0/0/0;0}1]0(0]0]0
5/0/0/0)0|0f0]|1]0/0 5(0(0|0|0j0}0]1]0}0
6/0/0|0j0|1[0]|0]|0O}O0 6/0|/0|0|0|0|O|0O[O]|1
7{0(0(0({0(0|0}]0O(0O|1 7(11010|0]0;0({0(0,0
8 0(0{0[0}J0|1]|0(0]O0 8 0|0f0Of0O|0|1;0]0]0
9|/1(0|0|0(0|0]|0O|0]0 9/010]|1|0y0j0|0]0}0

(@) (b)

Fig. 10.6. Binary matrix chromosomes

It is interesting to note that each complete tour is represented as a binary
matrix with only one bit in each row and one bit in each column set to one.
However, not every matrix with these properties would represent a single tour.
Binary matrix chromosomes may represent multiple subtours. Each subtour will
eventually loop back onto itself, without connecting to any other subtour in the
chromosome. For example, a chromosome from Figure 10.6(b) represents two
subtours (1, 2, 4, 5, 7) and (3, &, 6, 9).

The subtours were allowed in the hope that natural clustering would take
place. After the evolution program terminated, the best chromosome is reduced
to a single tour by successively combining pairs of subtours using a deterministic
algorithm. Subtours of one city (a tour leaving a city to travel right back to
itself}, having a distance cost of zero, were not allowed. A lower limit of ¢ = 3
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cities in a subtour was set in an attempt to prevent the GA from reducing a
TSP problem to a large number of subtours each with very few cities (g is a
parameter of the method).

Figure 10.7(a) depicts the subtours resulting from a sample run of the al-
gorithm on a number of cities intentionally placed in clusters. As expected, the
algorithm developed isolated subtours. Figure 10.7(b) depicts the tour after the
subtours have been combined.
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Fig. 10.7. Separate subtours and the final tour

Two genetics operators were defined: mutation and crossover. The mutation
operator takes a chromosome, randomly selects several rows and columns in that
chromosome, removes the set bits in the intersections of those rows and columns,
and randomly replaces them in possibly a different configuration.

For example, let us consider the tour from Figure 10.6(a), representing the
tour:

(1,2,4,3,8,6,5,7,9).

Assume that rows 4, 6, 7, 9 and columns 1, 3, 5, 8, and 9 are randomly selected
to participate in a mutation. The marginal sums for these rows and columns are
calculated. The bits at the intersections of these rows and columns are removed
and replaced randomly, though they must agree with the marginal sums. In
other words, the submatrix corresponding to rows 4, 6, 7, and 9, and columns
1, 3, 5, 8, and 9 from the original matrix (Figure 10.8(a)), is replaced by another
submatrix (Figure 10.8(b)).
The resulting chromosome represents a chromosome with two subtours:

(1, 2, 4,5, 7) and (3, 8, 6, 9)
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oJ1]JoJoTo oJo[1JoJo0
ojo[1]o]o0 0jo0[oo]1
ojojo]o]1 1{o]o]o]0
1[ofo]o]o 0j1]o]o]o
(a) (b)

Fig. 10.8. Part of chromosome before (a) and after (b) mutation

and is represented in Figure 10.6(b).

The crossover operator begins with a child chromosome that has all bits reset
to zero. The operator first examines the two parent chromosomes, and when it
discovers the same bit (identical row and column) set (i.e., 1} in both parents,
it sets a corresponding bit in the child (phase 1). The operator then alternately
copies one set, bit from each parent, until no bits exist in either parent which may
be copied without violating the basic restrictions of chromosome construction
(phase 2). Finally, if any rows in the child chromosome still do not contain a set
bit, the chromosome will be filled in randomly (final phase). As the crossover
traditionally produces two child chromosomes, the operator is executed a second
time with the parent chromosomes transposed.

The following example of crossover starts with the first parent chromosome
in Figure 10.9(a) representing two subtours:

(1,5, 3,7, 8) and (2, 4, 9, 6).
and the second parent chromosome (Figure 10.9(b)) representing a single tour:

(1,5,6,2,7,8,3, 4, 9).

1{2(3(4(5(6{7|8(9 1{23|14|5(6{7|8(9
110{0j0{0]1]0j0(0]0 1/0{0]j0|0]1L}|Of0O]O|O
2/0(0(0(1]0]|0|0|0]O 200100 (0]0jJ11010
310(0{01010J0]|1]0]0 3(0(0|0|1]0|0O}0O]|0; 0
4(0)j0[(0]j0|O0|O[OO]|1 410(0f0j0j0jO0fO|O]|1
5/010(11010}010]0¢}0 5/0{0|l0]j0]JOf1(0]|0]0
6(0(1]10(0J070]0]0]|0 6/0(1/0(0|0701010]0
710(0]0(0|0]|0]|O0O|1]O 710101000001 ]0
8§{1{0(0j0|0]0J10]070 8(0f(0j1|]0jO|JO}0]0}O
9(0(010(0(0]1]0]01|0 9{1({0j0|0j0;0(0}0]|O

@) )

Fig. 10.9. First (a) and second (b) parents

The first two phases of building the first offspring are displayed in Figure 10.10.
The first offspring for crossover, after the final phase, is displayed in Figure
10.11. It represents a subtour:
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1(2/3|4|5/6|7/8|9 1{2/3{4|5(6|7,8(9
1{0{0|0j0|1]|0O[0]00 110{0{0j0{1}l0[0[0]0O
2|]0]0]|0|0]0j0]j0O|O]O 2{0{0|1]0}j0]0]0]0]0
3/]0(0j0}j0f|0|0|0|O]0O 3(0(0|0]|0]|0]0}0]0]O0
410(0|0j0f0|0f0O|0O]|1 4|0f{0f0fojololofol1l
5/(0{0/0(0|0[0]|0};0|0 5/0{0]0|0|0]1|0|0]|O
6{0|1|0|0|0|O0|0O|O]O 6j0|(1|0|0|O]|O|O|0O]O
7/0[0]0]0/0O|0]0]|1]0 7/0]0]0]0]0[0jO]1]|0
8(0|010|0}0j0|0]O]|O 8(11010]0)0})070)00
9(0|0{0j0]0]0/0]0]|0 9(0]0f0]J0]0]|0|0|0]|O0

(a) (b)

Fig. 10.10. Offspring for crossover, after (a) phase 1 and (b) phase 2

1/2{3[4|5/6|7[8]|9
1{0]0(0}0j1(0(0]|0]0
2|0|0|tj0j0l0]010]0
3(0(0|0|1]0j0]0jO]|O
4({ofofofojojojojoil1
5/0/0{0{0{0|1|0f0|0
6(0|1|0|0O|0]|O|0O]|O0]O
7/0]0{0(0|0[0|0O|1|0
8{110/0}0,0)0]0|0|0
9{0]Jojoj0OfO0]O]1|O]|O

Fig. 10.11. Offspring for crossover, after the final phase

(1,5,6,2,3,4,9,7, 8).
The second offspring represents
(1,5, 3,4, 9 and (2, 7, 8, 6).

Note that there are common segments of the parent chromosomes in both off-
spring.

This evolution program gave a reasonable performance on several test cases
from 30 cities to 512 cities. However, it is not clear what is the influence of
the parameter ¢ (minimum number of cities in a subtour) on the quality of
the final solution. Also, the algorithms for combining several subtours into a
single tour are far from obvious. On the other hand, the method has some
similarities with Litke’s recursive clustering algorithm [246], which recursively
replaces clusters of size B by single representative cities until less than B cities
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remain, Then, the smaller problem is solved optimally. All clusters are expanded
one by one and the algorithm sequences the expanded set between the two
neighbors in the current tour. Also, the approach might be useful for solving the
multiple traveling salesman problem, where several salesman should complete
their separate (non-overlapping) tours.

The third approach based on matrix representation was recently proposed
by Homaifar and Guan [194]. As in the previous approach, the m;; element of
the binary matrix M is set to 1 if and only if there is an edge from city ¢ to
city j. However, they used different crossover operators and heuristic inversion
— we discuss them in turn.

Two matrix crossover (MX) operators were defined [194]. These operators
exchange all entries of the two parent matrices either after a single crossover
point (1-point crossover) or between two crossover points (2-point crossover). An
additional “repair algorithm” is run to (1) remove duplications, i.e., to ensure
that each row and each column has precisely one 1, and (2) cut and connect
cycles (if any) to produce a legal tour.

A 2-point crossover is illustrated by the following example. Two parent
matrices are given in Figure 10.12; they represent two legal tours:

(124386579 and (1436572809)

Two crossovers points were selected; these are points between columns 2 and
3 (first point), and between columns 6 and 7 (second point). The crossover points
cut the matrices vertically: for each matrix, the first two columns constitute the
first part of the division, columns 3, 4, 5, and 6 the middle part, and the last
three columns the third part. After the first step of the 2-point MX operator,
entries of both matrices are exchanged between the crossover points (i.e., entries
in columns 3, 4, 5, and 6). The intermediate result is given in Figure 10.13.

Both offspring, (a) and (b) are illegal; however, the total number of 1s in each
intermediate matrix is correct (i.e., 9). The first step of the “repair algorithm”
moves some ls in matrices in such a way that each row and each column has
precisely one 1. For example, in the offspring {rom Figure 10.13(a) the duplicate
1s occur in rows 1 and 3. The algorithm may move the entry m;y = 1 into
Mgy, and the entry mss = 1 into mog. Similarly, in the other offspring (Figure
10.13(b)) the duplicate 1s occur in rows 2 and 8. The algorithm may move the
entry maq = 1 into maq, and the entry mgs = 1 into mg. After the completion
of the first step of the repair algorithm, the first offspring represents a (legal)
tour,

(128436579),
and the second offspring represents a tour which consists of two subtours,
(1657289) and (3 4).

The second step of the repair algorithm should be applied to the second
offspring only. During this stage, the algorithm cuts and connects subtours to
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112(3(4(5|6|7[8|9 112/3|4|5(6{7|8|9
1|{0|1|0(0|0O|0J0]O]|O 1(0j0]0O|1|0JO|0O|O]|O
2|0|10]|0(f1]j0|0j0|O]|O 2(oj0j0|O|0jO|0O(|1]0
3(0|0|J0]|0]j0]J0O}O0O|L]|O 3/0(0]0)0|0Oj1]|0]|O0{0O
4{010j1|010|0]0]070 4(0f{0j1{0|0|0OfOf0O]O
5/|0(0(0|0f(0|0|1]0}0 5/0|/0|0}j0(0|0|1]0]0
6/0(0;0(0|1]0]|0|0}0 6|/0/0|0j0O|1]|0|0}O0]|O0
7|0{0(0|0]|0]0]|0]0]1 7{0]1|0|0|0|0|0f0]|O0
8/0(0|0J0j0{1]|0|0]0 8{0/0(0|0|0J0]0OO0{1
9|11|0|0;0]0;010|0]0 9!1|10(0|0|0|0]|0]0]0

(a) (b)
Fig. 10.12. Binary matrix chromosomes with crossover points marked

1/12/3(4(5|6|7|81]9 1{2(3(4|5/6|7|8|9
1{0;1/0|1}j0|0|0O|0O}O 1(0(0|0|0O|0Oj0O]0}0O]0O
2(0({0}(0|0]0|0(0]O0]|O 2|0/0|0|1{0|0]0 110
3j0j(0j0(0({0j1]|0]1]0 3|0/0|/0|0|0|0}0]0]0
4(0j0;1|0j0|0|0|0|O 4(0(0|1]0)0|0]0101]0O
5(0(0/0|0J0|0]1|0fO0 5/(0/0({0j0j0|0}1]010
6{0j0|0|0j1|0(0]0]|O 6/0/]0|/0|0|1]0]0}00
7101010 )10j0|0j0j0}1 7,011,0)0)0,;0|0,01460
g8|0|j0j0|0j0Of0]JO|O]O 8|/0(0|0f0|O]1|(0]0O 1
9|l1(0j0jo{ofO0|0|O0}]O 91110|0]|J0|J0]|J0Oj0O]|0O]0

(a) (b)

Fig. 10.13. Two intermediate offspring after the first step of MX operator

produce a legal tour. The cut and connect phase takes into account the existing
edges in the original parents. For example, the edge (2 4) is selected to connect
these two subtours, since this edge is present in one of the parents. Thus the
complete tour (a legal second offspring) is

(1657243809).

The second operator used by Homaifar and Guan [194] to complement MX
crossover was heuristic inversion. The operator reverses the order of cities be-
tween two cut points (just as simple inversion did — we discussed it earlier in
this chapter). If the distance between the two cut points is large (high order
inversion), the operator explores connections between ‘good’ paths, otherwise
(low order inversion), the operator performs local search. However, there are
two differences between classical and proposed inversion operators. The first is
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that the resulting offspring is accepted only if the new tour is better than the
original. The second difference is that the inversion procedure selects a single
city in a tour and checks for improvement for inversions of the (lowest possi-
ble) order 2. The first inversion which results in an improvement is accepted
and the inversion procedure terminates. Otherwise, inversions of the order 3 are
considered, and so on.

The reported results [194] indicate that evolution program with 2-point MX
and inversion operators performed successfully on 30-100-city TSP problems. In
the most recent experiment, the result of this algorithm for a 318-city problem
was only 0.6% away from the optimal solution.

In this chapter we did not provide the exact results of various experiments
for different data structures and ‘genetic’ operators. Rather, we made a general
overview of numerous attempts in building a successful evolution program for
the TSP. One of the reasons is that most of the quoted performance results
heavily depend on many details (population size, number of generations, size of
the problem, etc.). Moreover, many results were related to relatively small sizes
of the TSP (up to 100 cities); as observed in [207):

“It does appear that instances as small as 100 cities must now be
considered to be well within the state of the global optimization art,
and instances must be considerably larger than this for us to be sure
that heuristic approaches are really called for.”

However, most of the papers cited in this chapter compare the proposed ap-
proach with other approaches. For these comparisons, two families of test cases
were used:

e random collection of cities. Here, an empirical formula for the expected
length of L* of a minimal TSP tour is useful:

L*=kvn R,

where n is the number of cities, R is the area of the square box within
which the cities were randomly placed, and k is an empirical constant of
approximately 0.765 ! (see [372]).

! According to David Johnson [209|, such experimental comparison should be done very
carefully. First, currently he leans toward a slightly lower estimate of the asymptotic constant,
more like 0.7128 (£ 0.0005). Second, the ratio L*/y/n (for R = 1) converges very slowly —
even for n = 100000 it is 0.7134, and for n = 1000 it is something like 0.7306 (both estimates
are from David Johnson [209]). Third, the variations between instances are quite large for
the smaller sizes. For n = 1000 the standard deviation is 0.0064 or so, and for n = 100 it is
0.0224. The conclusion is that one should compare tour lengths to the Held-Karp bound for
the given instance, rather than an estimate of the expected optimal. The Held-Karp lower
bound [179, 180] requires an iterative process involving evaluations of several spanning trees
followed by Lagrangian relaxations.
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¢ publicly available collection of cities (partly with optimal solutions), ftp
softlib.rice.edu, directory /pub/tsplib. There are two files, tsplib.sh and
tsplib.tar; these are 6Mb and 2Mb respectively.

To get a complete picture of the application of genetic algorithm techniques
to the TSP, we should report the work of other researchers, e.g., [288] and [389],
who used GAs for local optimization of the TSP. Local optimization algorithms
(2-opt, 3-opt, Lin-Kernighan) are quite efficient. As stated in [207]:

“Given that the problem is NP-hard, and hence polynomial-time
algorithms for finding optimal tours are unlikely to exist, much at-
tention has been addressed to the question of efficient approximation
algorithms, fast algorithms that attempt only to find near-optimal
tours. To date, the best such algorithms in practice have been based
on (or derived from) a general technique known as local optimiza-
tion, in which a given solution is iteratively improved by making
local changes.”

Local optimization algorithms, for a given (current) tour, specify a set of neigh-
boring tours and replace the current tour by a (possibly) better neighbor. This
step is applied until a local optimum is reached. For example, the 2-opt algo-
rithm defines neighboring tours as tours where one can be obtained from the
other by modifying two edges only.

Local search algorithms served as the basis for the development of the ge-
netic local search algorithm [389], which

e uses a local search algorithm to replace each tour in the current population
(of size 1) by a (local optimum) tour,

e extends the population by additional A tours — offspring of the recombi-
nation operator applied to some tours in the current population,

¢ uses (again) a local search algorithm to replace each of the A offspring in
the extended population by a (local optimum) tour,

e reduces the extended population to its original size, i, according to some
selection rules (survival of the fittest),

e repeats the last three steps until some stopping condition is met (evolution
process).

Note that there are some similarities between the genetic local search algorithm
and the (u + A) evolution strategy (Chapter 8). As in the (1 + A)-ES, 4 in-
dividuals produce A offspring and the new (extended) population of (p + A)
individuals is reduced by a selection process again to p individuals.

The above genetic local search algorithm [389] is similar to a genetic al-
gorithm for the TSP proposed earlier by Miihlenbein, Gorges-Schleuter, and
Kramer [288], which encourages “intelligent evolution” of individuals. The al-
gorithm
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e uses a local search algorithm {opt-2) to replace each tour in the current
population by a (local optimum) tour,

e selects partners for mating (above-average individuals get more offspring),
e reproduces (crossover and mutation),

e searches for the minimum by each individual (reduction, problem solver,
expansion),

e repeats the last three steps until some stopping condition is met (evolution
process).

The crossover used in this algorithm is a version of the order crossover (0X).
Here, two parents (with two cut points marked by ‘|’),

pr=(123|456789)and
P=(452|1876]93),

would produce the offspring in the following way. First, the segments between
cut points are copied into offspring:

0p={(xxx|4567]|xx)and
0g=(xxx|1876|xx).

Next, (instead of starting from the second cut point of one parent as was the
case for OX), the cities from the other parent are copied in the same order from
the oeginning of the string, omitting symbols already present:

00=(218|4567]93)and
02=(234]|1876]509).

The experimental results were at least encouraging. The algorithm found a tour
for the 532 city problem and the length was found to be 27702, which is within
0.06% of the optimal solution (27686, found by Padberg and Rinaldi [302]).
Two additional approaches were reported recently. The first approach, by
Craighurst and Martin [68] concentrated on exploring a connection between in-
cest prevention (see also Chapter 4) and the performance of genetic algorithm
for the TSP. The authors used a GA with the following features for their ex-
periments: population size of 128, generation based selection based on ranking,
where 128 offspring compete with 128 parents, selection for MPX crossover is
rank based, local hill climbing (2-opt) is performed on offspring at creation, mu-
tation rate is 0.005, and the termination condition is 500 consecutive generations
without improvement. The approach to incest was family-oriented: the authors
were concerned only with ancestors of two individuals selected for crossover,
and they introduced several incest laws. The k-th incest law prohibits mating
of an individual with k£ — 1 ancestors (i.e., for k = 0, there are no restrictions,
for k = 1 an individual can not mate with itself, for £ = 2, it can not mate with
itself, with its parents, with children, nor with its siblings, and so on). Several
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experiments were made (on six test problems (from the softlib.rice.edu library
mentioned earlier in the chapter) with the number of cities from the range 48-
101). The results indicated a strong and interesting interdependence between
incest prohibition laws and the mutation rate: for low mutation rates incest pre-
vention improves the results, however, if mutation rate grows, the significance
of incest prevention mechanism decreases until (for high mutation rates = 0.1)
it impairs the results of the system. Also, different laws of incest prevention did
not influence the diversity of the population (where a similarity between two
individuals is measured as a ratio of a difference between the total number of
edges in a solution and the number of common edges shared between solutions,
and the total number of edges in a solution) in a significant way. The final con-
clusion was a negative answer for the following question: “is more prohibition
better?”. For more discussion of the results, see [68].

Valenzuela and Jones [390] proposed an interesting approach for apply-
ing evolutionary algorithms to hard combinatorial problems; their method was
based on the idea of the divide and conquer technique of Karp-Steele algo-
rithms for the TSP [219, 379]. Their Evolutionary Divide and Conquer (EDAC)
algorithm can be applied to any problem in which some knowledge of good
solutions of subproblems is useful in constructing a global solution, however,
they applied this technique to the geometric TSP. Several bisection methods
can be considered; these methods cut a rectangle with n cities into two smaller
rectangles (e.g., one of the methods partition the problem by exactly bisecting
the area of the rectangle parallel to the shorter side; other method intersects
the int(n/2) closest city to the shorter edge of the rectangle, thus providing a
“shared” city between two sub-rectangles). Final subproblems are quite small
(typically between 5 and 8 cities), which are relatively easy to solve (2-opt was
chosen as the method for this case because of its speed and simplicity). The
patching algorithm replaces some edges in two separate tours to get one larger
tour. Now, the major role of a genetic algorithm is to determine the direction
of bisection (horizontal or vertical) used at each stage. It is interesting to note
that the data structure used for chromosomal representation of individuals was
a p X p? binary array M, which was correlated with the geometric regions of
the TSP square. If, at some stage of the divide and conquer algorithm, a rect-
angle is to be bisected, a bit is selected from the matrix M which most closely
corresponds to the center of the rectangle; the value of this bit determines a
direction of the current cut (horizontal versus vertical). The genetic operators
used in [390] were straightforward: crossover swaps binary elements between
two arrays, which are cut (in two points) along z or y axis® Mutation flips all
bits of array with constant probability (0.1 was used, i.e., 10% of bits in the
array are mutated). For experimental results and a discussion on the overall
contribution of genetic algorithm in this approach, see [390].

2The authors considered a square region, hence the matrix has equal dimensions.

3The authors used the additional restriction that the distance between these two cutting
points was between one third and two thirds along the axis to ensure a reasonable proportion
of genetic material from each parent.
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It seems that a good evolution program for the TSP should incorporate local
improvement operators (mutation group), based on algorithms for local opti-
mization, together with carefully designed binary operator(s) (crossover group),
which would incorporate heuristic information about the problem. We conclude
this chapter by a simple observation: the quest for an evolution program for the
TSP, which would include ‘the best’ representation and ‘genetic’ operators to
be performed on them, is still going on!



11. Evolution Programs for Various Discrete
Problems

Said a disappointed visitor,
‘Why has my stay here yielded
no fruit?’

‘Could it be because you lacked
the courage to shake the tree?’
said the Master benignly.

Anthony de Mello, One Minute Wisdom

As stated in the Introduction, it seems that most researchers modified their
implementations of genetic algorithms either by using non-standard chromo-
some representation and/or by designing problem-specific genetic operators
(e.g., [141], [385], [65], [76], etc.) to accommodate the problem to be solved,
thus building efficient evolution programs. Such modifications were discussed in
detail in the previous two chapters (Chapters 9 and 10) for the transportation
problem and the traveling salesman problem, respectively. In this chapter, we
have made a somewhat arbitrary selection of a few other evolution programs de-
veloped by the author and other researchers, which are based on non-standard
chromosome representation and/or problem-specific knowledge operators. We
discuss some systems for scheduling problems (section 11.1), the timetable prob-
lem (section 11.2), partitioning problems (section 11.3), and the path planning
problem in mobile robot environment (section 11.4). The chapter concludes with
an additional section 11.5, which provides some brief remarks on a few other,
interesting problems.

The described systems and the results of their applications provide an ad-
ditional argument to support the evolution programming approach, which pro-
motes creation of data structures together with operators for a particular class
of problems.

11.1 Scheduling

A job shop is a process-organized manufacturing facility; its main characteristic
is a great diversity of jobs to be performed [182]. A job shop produces goods
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(parts); these parts have one or more alternative process plans. Each process
plan consists of a sequence of operations; these operations require resources and
have certain (predefined) durations on machines. A job shop processes orders,
where each order is for some number of the same part. The task of planning,
scheduling, and controlling the work is very complex, and only limited analytical
procedures are available to assist in these tasks [182], [132].

The job shop scheduling problem is to select a sequence of operations to-
gether with an assignment of start/end times and resources for each operation.
The main considerations to be taken into account are the cost of having idle
machine and labor capacity, the cost of carrying in-process inventory, and the
need to meet certain order completion due dates. As stated in [182]:

“Unfortunately, these considerations tend to conflict with each
other. One can have a low cost of idle machine and labor capacity
by providing only a minimum amount of machinery and manpower.
However, this would result in considerable work waiting to be done
and, therefore, large in-process inventories and difficulty in meeting
completion due dates. On the other hand, one can essentially guar-
antee meeting completion due dates by providing so much machine
and labor capacity that orders usually would not have to wait to
be processed. However, this would result in excessive costs for idle
machine and labor capacity. Therefore, it is necessary to strive for
an economic compromise between these considerations.”

There are various versions of the job shop scheduling problem, each char-
acterized by some additional constraints (e.g., maintenance, machine down and
setup times, etc.).

Let us consider a simple example of a job shop problem to illustrate the
above description.

Example 11.1. Assume there are three orders, o,, 03, and o03. For each order,
the parts and the number of units to be produced are:

0) : 30X part a;
09 : 45% part b;
03 : 60x part a.

Each part has one or more alternative process plans:

: plan # 1, (opra, opre, opre);

: plan # 2, (opr1, oprs, opry, oprs);
: plan # 3, (oprs, oprs);

: plan # 1, (opra, opre, 0pre);

: plan # 2, (opr1, opro);

SOt R 09

where terms opr; denote the required operations to be performed. Each opera-
tion requires some times on one or more machines; these are:
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opry : (my 10) (m3 20);

oprs : (ma 20);

oprs : (mgy 20} (m3 30);

opry : (my 10) (mg 30)(m3 20);
oprs : (my 10) (mg 30);
opre (
opry : (M3 20)
oprg : (my 50) (mg 30) (ms 10);
opry : (ma 20) (m3 40).

Finally, each machine has its setup time necessary for changes in operation:

my 3
Mo : B;
ma: 7.

O

The job shop problem enjoyed some interest in GA community. One of the
first attempts to approach this problem was reported by Davis [72]. The main
idea of his approach was to encode the representation of a schedule in such a
way, that (1) the genetic operators would operate in a meaningful way, and (2)
a decoder would always produce a legal solution to the problem. This strategy,
to encode solutions for operations and to decode them for evaluation, is quite
general and might be applied to a variety of constrained problems — the same
idea was used by Jones [211] to approach the partitioning problem (see section
11.5).

In general, we would like to represent information on schedules, e.g., “ma-
chine my performs operation o; on part a from time #; to time ¢5”. However,
most operators (mutations, crossovers) applied to such a message would result
in illegal schedules — this is why Davis [72] used an encoding/decoding strategy.

Let us see how the encoding strategy was applied to the job shop problem.
The system developed by Davis [72] maintained a list of preferences for each
machine; these preferences were linked to times. An initial member of a list is
a time at which the list went into effect, the remaining part of the list is made
up of some permutation of the orders, plus two additional elements: ‘wait’ and
‘idle’. The decoding procedure simulated the job’s operations in such way that
whenever a machine was ready to make a choice, the first allowable operation
from its preference list was taken. So if the preference list for the machine m,
was

1 1 (40 03 0; 09 ‘wait’ ‘idle’),

then the decoding procedure at time 40 would search for a part from the order
03 for the machine m; to work on. If unsuccessful, the decoding procedure would
search for a part from the orders o, and o, (i.e., first from o,; in the case of
failure, from o02). This representation guarantees a legal schedule.

The operators were problem specific (they were derived from deterministic
methods):
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run-idle: this operator is applied only to preference lists of the machines that
have been waiting for more than an hour. It inserts the ‘idle’ as the second
member of the preference list and reset the first member (time) of the
preference list to 60 (minutes);

scramble: the operator “scrambles” the members of a preference list;
crossover: the operator exchanges preference lists for selected machines.

The probabilities of these operators varied, from 5% and 40% for scramble and
crossover, respectively, at the beginning of a run, down to 1% and 5%. The
probability of run-idle was set to the percentage of the time the machine spent
waiting, divided by the total time of the simulation.

However, the experiments were made on a small example of two orders, six
machines, and three operations [72], thus it is difficult to evaluate the usefulness
of this approach.

Another group of researchers approached the job shop problem from the
TSP point of view [62], [383], [384], [402]. The motivation was that most oper-
ators developed for the TSP were ‘blind’, i.e., they did not use any information
about the actual distances between cities (see Chapter 10). This means that
these operators might be useful in other sequencing problems, where there is no
distance between two points (cities, orders, jobs, etc.). However, it need not be
the case. Although both problems, the TSP and the scheduling problem, are se-
quencing problems, they display different (problem-specific) characteristics. For
the TSP the important information is adjacency information on cities, whereas
in the scheduling problem the relative order of items is the main concern. The
adjacency information is useless for the scheduling problem, whereas the rela-
tive order is not important for the TSP due to the cyclic nature of the tours:
tours (12345678) and (456781 23) are, in fact, identical. This is why
we need different operators for different applications. As observed in [370]:

“Gil Syswerda [383] conducted a study in which ‘edge recombina-
tion’ (a genetic operator specifically designed for the TSP) per-
formed poorly relative to other operators on a job sequence schedul-
ing task. While the population size used by Syswerda was small (30
strings) and good results were obtained on this problem using muta-
tion alone (no recombination), Syswerda’s discussion of the relative
importance of position, order, and adjacency for different sequenc-
ing tasks raises an issue that has not been adequately addressed.
Researchers, including ourselves [402], [403], seem to tacitly assume
that all sequencing tasks are similar and that one genetic operator
should suffice for all types of sequencing problems.”

A similar observation was made one year earlier by Fox and McMahon [131]:!

11991, Reprinted with permission from Rawlins, G., Foundations of Genetic Algorithms.
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“An important concern is the applicability of each genetic operator
to a variety of sequencing problems. For example, in the TSP, the
value of a sequence is equivalent to the value of that sequence in
reverse order. This trait is not true of all sequencing problems. In
scheduling problems, this is a gross error.”

In [370] six sequencing operators (order crossover, partially mapped cross-
over, cycle crossover, enhanced edge recombination, order-based crossover, and
position-based crossover — all these operators were discussed in the previous
chapter) were compared on two different sequencing tasks: a 30-city (blind) TSP
and a 195-element sequencing task for a scheduling application. As expected,
the results of schedule optimization (as far as the ‘goodness’ of the six operators
is concern) were almost the opposite of the results from the TSP. In the case of
schedule optimization, the enhanced edge recombination operator was the best,
followed closely by order crossover, order-based crossover, and position-based
crossover, with PMX and cycle crossovers being the worst. On the other hand,
in the case of the TSP, the best were position-based and order-based crossovers,
followed by the cycle crossover and PMX, with order crossover and enhanced
edge recombination being the worst. These differences can be explained by ex-
amining how these operators preserve adjacency (for the TSP) and order (for
the scheduling problem) information.

Similar observations can be made for other sequencing (ordering) problems.
In [78] Davis describes an order-based genetic algorithm for the following graph
coloring problem:

Given a graph with weighted nodes and n colors, achieve the highest
score by assigning colors to nodes, such that no pair of connected
(by a direct link) nodes can have the same color; the score is the
total of weights of the colored nodes.

A simple greedy algorithm would sort the set of nodes in order of decreasing
weights and process nodes (i.e., assigning the first legal color to the node from
the list of colors) in this order. Clearly, this is a sequencing problem — at least
one permutation of nodes would return the maximum profit, so we search for
the optimal sequence of nodes. It is also clear that the simple greedy algorithm
does not guarantee the optimum solution: some other techniques should be used.
Again, on the surface, the problem is similar to the TSP, where we were after
the best order of cities to be visited by a salesman. However, the ‘nature’ of the
problem is very different: for example, in the graph coloring problem there are
weights for nodes, whereas in the TSP the weights are distributed between nodes
(as distances). In [78] Davis represented an ordering as a list of nodes (e.g., (2 4
7148359), as the path representation for the TSP) and used two operators:
the order-based crossover (discussed in the previous chapter as an operator used
for the TSP) and scramble sublist mutation. Even mutation, which should carry
out a local modification of a chromosome, seems to be problem dependent [78]:
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“It is tempting to think of mutations as the swapping of the values
of two fields on the chromosome. I have tried this on several different
problems, however, and it doesn’t work as well for me as an operator
I call scramble sublist mutation.”

The scramble sublist mutation selects a sublist of nodes from a parent and
scrambles it in the offspring, i.e., the parent (with the beginning and the end of
the selected sublist marked by |):

p=(24]7148|3509)
may produce the offspring
0=(24]48171359).

However, it remains to be seen how this operator performs for other ordering
or scheduling problems. Again, let us cite from [78]:

“Many other types of mutations can be employed on order-based
problems. Scramble sublist mutation is the most general one I have
used. To date nothing has been published on these types of opera-
tors, although this is a promising topic for future work.”

Let us return to the scheduling problems. As mentioned earlier, Syswerda
[383] developed an evolution program for scheduling problems. However, a sim-
ple chromosome representation was chosen:

“In choosing a chromosome representation for the [...] scheduler, we
have two basic elements to choose from. The first is the list of tasks
to be scheduled. This list is very much like the list of cities to be
visited in the TSP problem. [...] An alternative to using a sequence
of tasks is directly to use a schedule as a chromosome. This may
seem like an overly cumbersome representation, necessitating com-
plicated operators to work on them, but is has a decided advantage
when dealing with complicated real-world problems like scheduling.
[...] In our case, the appeal of a clean and simple chromosome rep-
resentation won over the more complicated one. The chromosome
syntax we use for the scheduling problem is what was described
above for the TSP, but instead of cities we will use orderings of
tasks.”

The chromosome was interpreted by a schedule builder — a piece of software
which ‘understands’ the details of the scheduling task. This representation
was supported with specialized operators. Three mutations were considered:
position-based mutation (two tasks are selected at random, and the second task
is placed before the first), order-based mutation (two tasks selected at ran-
dom are swapped), and scramble mutation (same as Davis’ scramble sublist
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mutation described in the previous paragraph). All three performed much bet-
ter than random search, with order-based mutation being the clear winner. As
mentioned earlier, the best crossover operators for the scheduling problem were
order-based and position-based crossovers.

It seems, however, that the choice of a simple representation was not the
best. Judging from other (unrelated) experiments, e.g., transportation problem
{Chapter 9), we feel that the chromosome representation used should be much
closer to the scheduling problem. It is true that in a such cases a significant effort
must be placed in designing problem-specific ‘genetic’ operators; however, this
effort would pay off in increased speed and improved performance of the system.
Moreover, some operators might not be quite so simple [383):

“A simple greedy algorithm running over the schedule could find a
place for the high-priority task by removing a low-priority task or
two and replacing them with the high-priority task.”

We believe that in general, and for the scheduling problems in particular,
this is the direction to follow: to incorporate the problem-specific knowledge
not only in operators (as was done for a simple chromosome representation),
but in the chromosome structures as well. The first attempts to apply such an
approach have already emerged. In their study, Husbands, Mill, and Warrington
[198] represented a chromosome as a sequence

(opry m1 s1) (opra my sq) (oprs ms 83) ... ,

where opr;, m;, and s; denote the i-th operation, machine, and setup, respec-
tively.

In [21] the authors compared three representations, from the simplest (rep-
resentation-1):

(01) (02) (03) .-,

through intermediate (representation-2):

(o) plan # 1,) (02 plan # 2;) (03 plan # 2,) ...,

to the most complex (representation—3):

(01 {opra : Mg, opre : ma, oprg : Ma)) (02 {opry : m3, opre : Ma))
(03 (opry : my, opr3 : Ma, 0pry : M3, OpTs : My)) ...

The results for representation—3 were significantly better than for the two other
representations. In the concluding discussion, the authors observed [21]:

“The operators themselves must be adjusted to suit the domain
requirements. The chromosome representation should contain all the
information that pertain to the optimization problem.”

In summary, it is possible to classify all GA-based approaches as various
scheduling problems on the basis of chromosome representations. These fall
into two categories [21}]:
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e indirect representations, where a transformation from a chromosome
representation to a legal production schedule has to be performed by a
special decoder (schedule builder); only then an individual solution can be
evaluated. Further, these representations can be divided [53] into domain
independent and problem-specific representations; we have seen both these
cases in earlier paragraphs.

e direct representations, where the production schedule itself is used
as a chromosome (e.g., [198]). Usually this representation requires some
problem-specific operators [53].

For a complete survey of evolutionary algorithms for scheduling problems, see,
for example, [54].

11.2 The timetable problem

One of the most interesting problems in Operations Research is the timetable
problem. The timetable problem has important practical applications: it has
been intensively studied and it is known to be NP-hard [106].

The timetable problem incorporates many nontrivial constraints of various
kinds — this is probably why it was only recently that the first (as far as the
author is aware) attempt was made [63] to apply genetic algorithm techniques
to approach this problem. There are many versions of the timetable problem;
one of them can be described by

o a list of teachers {T1,..., T},
o®a list of time intervals (hours) {Hi,..., H,},
e a list of classes {C},...,Ci}.

The problem is to find the optimal timetable (teachers — times — classes); the
objective function aims to satisfy some goals (soft constraints). These include
didactic goals (e.g., spreading some classes over the whole week), personal goals
(e.g., keeping afternoons free for some part-time teachers), and organizational
goals (e.g., each hour has an additional teacher available for temporary teaching
post).

The constraints include:

e there is a predefined number of hours for every teacher and every class; a
legal timetable must “agree” with these numbers,

e there is only one teacher in a class at a time,
e a teacher cannot teach two classes at a time,

e for each class scheduled at some time slot, there is a teacher.
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It seems that the most natural chromosome representation of a potential
solution of the timetable problem is a matrix representation: a matrix (R);;
(1 <i< myand 1 < j < n), where each row corresponds to a teacher,
and each column to an hour; the elements of the matrix R are classes (r;; €
{Ci,...,Ck}).2

In [63] the constraints were managed mainly by genetic operators (the au-
thors used also a repair algorithm to eliminate cases where more than one
teacher is present in the same class at the same time). The following genetic
operators were used:

mutation of order k: the operator selects two contiguous sequences of k ele-
ments from the same row in the matrix R, and swaps them,

day mutation: this operator is a special case of the previous one: it selects two
groups of columns (hours) of the matrix R which correspond to different
days, and swaps them,

crossover: given two matrices R) and Rp, the operator sorts the rows of the
first matrix in order of decreasing values of a so-called local fitness function
(a part of the fitness function due only to characteristics specific to each
teacher) and the best b rows (b is a parameter determined by the system
on the basis of the local fitness function and both parents) are taken as a
building block; the remaining m — b rows are taken from the matrix R,.

The resulting evolution program was successfully tested on data for a large
school in Milan, Italy [63].

Timetable problems have been also studied by Paechter, Luchian, and
Petriuc (303}, who compared two evolutionary methods (time-space permuta-
tion method and the place and seek method) for a large, real world timetable
problem. Recently, Burke et al. [57] described a hybrid genetic algorithm for
highly constrained timetabling problems. This approach combines a direct rep-
resentation of a timetable with a few heuristic crossover operators and heuristic
mutation operator. Thus the algorithm maintains the feasibility of solutions by
specialized data structures and operators.

11.3 Partitioning objects and graphs

There is an interesting class of partitioning® problems, which require partition-
ing n objects into k categories. This class contain many well-known problems,
like bin packing problem (assigning items to bins), graph coloring problem (as-
signing nodes of a graph to specific colors), etc. Many different systems have
been developed for various types of partitioning problems; in this section we
discuss some of them.

2Actually, in [63] the elements of the matrix R were classes with three possible subscripts
to include the concepts of sections, temporary teaching posts, etc.
3Sometimes these problems are called grouping problems [109].
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One of the categories of evolution programs was based on representing all
objects (e.g., items in the bin packing problem, or nodes in the graph col-
oring problem) as a permutation list; special operators can be applied, and a
decoder makes the decisions on the assignments. For example, for the graph col-
oring problem, Davis [78] represents a permutation of nodes in a chromosome
and applies specialized operators {uniform order-based crossover, order-based
mutation) to this structure. In the same time, a greedy decoder is used for in-
terpretation of a structure, which works as follows: consider a particular color
and paint (if possible) all nodes (in the order given in the chromosome) using
this color. When no more coloring is possible, switch to the next color. Davis
provides [78] experimental results for a 100-node graph coloring problem.

An interesting approach to the partitioning problem* is presented in [235].
Von Laszewski encodes partitions using group-number encoding, i.e., partitions
are represented as n-strings of integer numbers,

(t1y- -y in),

where the j-th integer i; € {1,...,k} indicates the group number assigned to
object j. However, this representation is supported by “intelligent structural
operators”: structural crossover and structural mutation. We discuss them in
turn.

structural drossover: the mechanism of the structural crossover is explained
by the following example. Assume, there are two selected parents (12-
strings)

» = (112311232233) and p, = (112123122333).
These strings decode into the following partitions:

D1 {172’576}a {3’7a 97 10}, {4787 111 12}7 and
p2: {1,2,4,7}, {3,5,8,9}, {6, 10, 11, 12}.

First, a random partition is chosen: say, partition #2. This partition is
copied from p; into po:

Py = (112123222233).

The copying process (as seen in the above example) usually destroys the
requirement of equal partition sizes, hence we apply a repair algorithm.
Note that in the original ps there were elements assigned to partition #2,
which were not elements of the copied partition: these were elements 5
and 8. These elements are erased,

Py = (1121 » 32 x 2233),

4The additional requirement in this version of the partitioning problem was that the sizes
of the partitions are equal or nearly equal.
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and replaced (randomly) by numbers of other partitions, which were over-
written in the copying step. Thus the final offspring might be

P = (112133212233).

As mentioned earlier, in the group-number coding, two identical parti-
tions may be represented by different strings due to different numbering
of partitions. To take care of this, before the crossover is executed, the
codings are adapted to minimize the difference between the two parents.

structural mutation: typically, a mutation would replace a single component
of a string by some random number; however, this would destroy the re-
quirement of the equal sizes of partitions. Structural mutation was defined
as a swap of two numbers in the string. Thus a parent

p = (112133212233)

may produce the following offspring (the numbers on positions 4 and 6
are swapped):

p' = (112331212233).

The algorithm was implemented as a parallel genetic algorithm enhanced
with additional strategies (such as a parent replacement strategy); on random
graphs of 900 nodes with maximum node degree of 4, this evolution program
significantly outperformed other heuristic algorithms [235]. A similar approach
was tried by Miihlenbein [287], who experimented with the same group-number
encoding, and who also used “intelligent” crossover, which transmits whole par-
titions rather than separate objects.

Several evolution programs were constructed by Jones and Beltramo [211]
for this class. These programs used different representations and several op-
erators to manipulate them. It is interesting to observe the influence of the
incorporation of the problem-specific knowledge on the performance of the de-
veloped evolution programs. Two test problems were selected:

e to divide n numbers into k groups to minimize the differences among the
group sums, and

e to partition the 48 states of the continental U.S. into 4 color groups to
minimize the number of bordering state pairs that are in the same group.

The first group of evolution programs encoded partitions as n-strings of integer
numbers

(i1, -y in),

where the j-th integer i; € {1,...,k} indicates the group number assigned to
object 7; this is a group-number encoding.
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The group-number encoding creates a possibility of applying standard op-
erators. A mutation would replace a single (randomly selected) gene i; by a
(random) number from {1,...,k}. Crossovers (single-point or uniform) would
always produce a legitimate offspring. However, as pointed out in [211], an off-
spring (after mutation or crossover) may contain less than k groups; moreover,
an offspring of two parents, both representing the same partition, may represent
a totally different partition, due to different numbering of groups. Special repair
algorithms (rejection method, renumbering the parents) were used to eliminate
these problems. Also, we can consider applying edge-based crossover (defined
in the previous chapter). Here we assume that two objects are connected by an
edge, if and only if they are in the same group. Edge-based crossover constructs
an offspring by combining edges from the parents.

It is interesting to note that several experiments on the two test problems
indicate the superiority of the edge-based operator [211]; however, the repre-
sentation used does not support this operator. As reported, it took 2-5 times
more computation time per iteration than the other crossover methods. This is
due to inappropriate representation: for example, two parents

p1 = (11222233) and
p2 = (12222333)

represent the following edges:

edges for p;: (12), (34), (35), (36), (45), (46), (56), (78),
edges for py: (23), Q4), (25), (34), (35), (45), (67), (68), (78).

An offspring should contain edges present in at least one parent, e.g.,
(11222333)

represents the following edges:
(12), (34), (35), (45), (67), (68), (78).

However, the process of selection of edges is not straightforward: the selection
of (56) and (67) — where both these edges are represented above — implies the
presence of the edge (57), which is not there.

It seems that some other representations might be more suitable for the
problem. The second group of evolution programs encoded partitions as n+k—1-
strings of distinct integer numbers

(G- s Intk—1);

integers from the range {1,...,n} represent the objects, and integers from the
range {n + 1,...,n + k — 1} represent separators; this is a permutation with
separators encoding. For example, the 7-string

(1122233)

is represented as a 9-string
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(128345967),

where 8 and 9 are separators.

Of course, all k—1 separators must be used; also, they cannot appear at the
first or last position, and they cannot appear together, one next to the other
(otherwise, a string would decode into less than k groups).

As usual, care should be taken in designing operators. These would be simi-
lar to some operators used for solving the traveling salesman problem, where the
TSP is represented as a permutation of cities. A mutation would swap two ob-
jects (separators are excluded). Two crossovers were considered: order crossover
(OX) and partially matched crossover (PMX) — these were discussed in Chap-
ter 10. A crossover would repeat its operation until the offspring® decodes into
a partition with k groups.

Generally, the results of the evolution programs based on permutation with
separators encoding were better than for the programs based on group-number
encoding. However, neither coding method makes significant use of the problem-
specific knowledge. One can build a third family of evolution programs, incor-
porating knowledge in the objective function. This very thing was done in [211]
in the following way.

The representation used was the simplest one: each n-string represents n
objects:

(i1ye v ytn),

where the ¢; € {1,...,n} denotes the object number — hence i; # i, for j # p.
The interpretation of this representation uses a greedy heuristic: the first &
objects in the string are used to initialize k& groups, i.e., each of the first &
objects is placed in a separate group. The remaining objects are added on first-
come first-go basis, i.e., they are added in the order they appear in the string;
they are placed in a group which yields the best objective value.

This greedy heuristic also simplifies operators: every permutation encodes
a valid partition, so we can use the same operators as for the traveling sales-
man problem. Needless to say, the “greedy decoding” approach significantly
outperforms evolution programs based on other decodings: group-number and
permutation with separators [211].

Recently, Falkenauer [109] proposed so-called Grouping Genetic Algorithm
(GGA) to deal with a variety of grouping (partitioning) problems; his efforts
aimed at designing appropriate chromosomal representation to capture the
structure of the problem. In this approach a chromosome consists of two parts:
an object part and a group part. The object part uses the group-number encoding
{discussed earlier in this section): it consist of a n-string of integer numbers

(Z1y e in),

5Jones and Beltramo [211] produced only one offspring per crossover.
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where the j-th integer i; € {1,...,k} indicates the group number assigned to
object j. The group part of the chromosome is of variable length and represents
only groups. For example, the following chromosome:

(121333112:123)

is interpreted in the following way. The second part of the chromosome indicates
that there are 3 groups (1, 2, and 3 — as specified). The first part of the
chromosome allows for interpretation of allocations: group number 1 includes
objects {1, 3, 7, 8}; group number 2 has objects {2, 9}; and group number 3
— objects {4, 5, 6}. Note that we can replace digit ‘3’ by digit ‘5’ in the above
representation (in both parts, of course), and the meaning of the allocations
remains unchanged.

The key concept behind such a representation is that the genetic operators
work with the group part (i.e., second part) of the chromosomes, whereas the
first part of the chromosomes is just used for identification of allocations.

For example, for the bin packing problem (i.e., pack n objects into a mini-
mum number of bins of constant capacity), the proposed Bin Packing Crossover
Operator BPCX works as follows. Assume that the two parent chromosomes are:

(121333112:123),and
(233514226:234586).

Two crossing sites are selected (at random) for each group part of the chromo-
somes; say:

(121333112:1]23]), gnd
(233514226:2|3456).

Then the contents of the crossing section of the first parent are inserted at the
first crossing of the second parent (for another offspring, the roles of first and
second parent are switched):

( . 22 21 31 32 42 52 62)

(subscripts denote the parent). Now we can eliminate conflicts; note that the
contents of bins listed above are as follows:

bin 2, — objects 1, 7, and 8
bin 2; — objects 2 and 9
bin 3, — objects 4, 5, and 6
bin 33 — objects 2 and 3
bin 4, — object 6

bin 5, — object 4

bin 62 — object 9.

Since there are common objects in “new” bins (from the first parent) and “old”
bins — from the second parent, we remove these “old” bins (responsible for
conflicts) from the second part of the chromosome, which is now:
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( : 22 21 31)

Note, that, we removed bin 6, (because of object 9 already in 2y ), bin 5, (because
of object 4 already in 3,), bin 4, (because of object 6 already in 31), and bin 3,
(because of object 2 already in 2;). At this stage the offspring chromosome has
the following shape:

(22 21 7 31 31 31 22 22 21 : 22 21 31)

After renaming bin numbers 25, 2;, and 3; as 1, 2, and 3, respectively, the
chromosome is

(127333112:123).

Note that due to the above method of conflict resolution, the third object lost
its allocation (this is marked by a question mark ‘?’ in the first part of the
chromosome). Thus we may use some heuristic repair algorithm to complete
a feasible individual; Falkenauer [109] used the first fit descending heuristic to
insert missing objects. If there is no room for the object number 3 in any of the
three bins in the above chromosome, it is necessary to create an additional bin:

(124333112:1234).

Note that such a crossover is responsible for transmitting as much as possible
of the meaningful information from both parents.

In the above approach, the mutation operator was very simple and useful.
It selects and eliminates a few bins (at random). Objects without allocation are
re-inserted into bins by the first fit heuristic (in random order).

The experimental results were very good; Falkenauer concluded his paper
by the following remark {109]:

“We also hope to have made a convincing case for the importance
of adequate encoding (and, consequently, genetic operators) for a
successful application of the GA paradigm.”

It is hard not to agree.

11.4 Path planning in a mobile robot environment

Navigation is the science (or art) of directing the course of a mobile robot as
it traverses the environment. Inherent in any navigation scheme is the desire to
reach a destination without getting lost or crashing into any objects.

Often, a path is planned off-line for the robot to follow, which can lead
the robot to its destination assuming that the environment is perfectly known
and stationary and the robot can track perfectly. Early path planners were
such off-line planners or were only suitable for such off-line planning (e.g.,
(248, 218, 205]). However, the limitations of off-line planning led researchers
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to study on-line planning, which relies on knowledge acquired from sensing the
local environment [222] to handle unknown obstacles as the robot traverses the
environment.

The evolution program that we describe here, i.e., the Evolutionary Naviga-
tor (EN), unifies off-line and on-line planning with a simple map of high fidelity
and an efficient planning algorithm [243, 244]. The first part of the algorithm
(off-line planner) searches for the optimal global path from the start to the des-
tination, whereas the second part {on-line planner) is responsible for handling
possible collisions or previously unknown objects by replacing a part of the orig-
inal global path by the optimal subtour. It is important to point out that both
parts of the EN use the same evolutionary algorithm, just with different values
of various parameters.

During the last five years other researchers have been experimenting with
evolutionary computation techniques for the path planning problem. Davidor
[69] used dynamic structures of chromosomes and a modified crossover opera-
tor to optimize some real world processes (including robot paths applications).
In [355] a genetic algorithm to the path planning problem is described, and in
[356] a genetic algorithm for the development of real-time multi-heuristic search
strategies is presented. Both approaches assume a predefined map consisting of
knot points. Other researchers used classifier systems [414] or genetic program-
ming paradigm [176] to approach the path planning problem. Our approach is
unique in the sense that the Evolutionary Navigator (1) operates in the entire
free space and does not make any a priori assumptions about feasible knot points
of a path, and (2) it combines together off-line and on-line planning algorithms.

Before we explain the algorithm in detail, lqg us first explain the map struc-
ture. In order to support path search in the entire, continuous free space, vertex
graphs are used to represent objects in the environment. Currently, we restrict
the environment to be two-dimensional with polygonal objects only and motions
of the robot to be translational only. Therefore, the robot can be shrunk to a
point while the objects in the environment “grow” accordingly [248]. A mobile
robot equipped with ultrasonic sensors (e.g., a Denning robot) is assumed for
the EN. A known object is represented by the ordered list (clockwise fashion)
of its vertices. On-line encountered unknown obstacles are modeled by pieces of
“wall”, where each piece of “wall” is a straight-line and represented by the list
of its two end points. This representation is consistent with the representation
of known objects, while it also accommodates the fact that only partial infor-
mation about an unknown obstacle can be obtained from sensing at a particular
location. Finally, the entire environment is defined as a rectangular area.

Now it is important to define paths that the EN generates. A path consists of
one or more straight-line segments, with the starting location, the goal location,
and (possibly) the intersection locations of two adjacent segments defining the
nodes. A feasible path consists of feasible nodes; an infeasible path contains at
least one infeasible node. Assume there is a path p = {m1,ms,...,m,) (n = 2),
where m; and 1, denote start and goal nodes, respectively. A node m; (i =
1,...,n—1) is infeasible if it is either not connectable to the next node m;,; due
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to obstacles, or it is located inside (or too close to) some obstacle. We assume
that the start and goal nodes are located outside the obstacles, and not too
close to them. Note, however, that the start node need not be feasible (it may
be not connectable to the next node), whereas the goal node is always feasible.
Note also that different paths may have different numbers of nodes.

Now we are ready to go through the EN procedure (Figure 11.1).

procedure Evolutionary Navigator
begin
begin (off-line planner)
get map
obtain the task
perform planning:
current path := FEG(start, goal)
end (off-line planner)
if current path is feasible then
begin (on-line planner)
repeat )
move along the current path while
sensing the environment
if too close to any object then
begin
local_start := current location
local_goal := next node on the current path
if the object is new
then update the object map
else virtually grow the object
at the closest spot
perform planning:
local path := NEG(local_start, local_goal)
update current path
end
until (at goal) or (failure condition)
end (on-line planner)
end

Fig. 11.1. The structure of the Evolutionary Navigator

The EN first reads the map and obtain the start and goal locations of the
task. Then the oFf-line Evolutionary alGorithm (FEG) generates a near-optimal
global path, a piece-wise straight-line path consisting of feasible knot points or
nodes. Figure 11.2 shows such a global path generated by FEG. (The filled circle
simulates the robot).

As the robot starts to follow the path to move towards the goal, it senses
the environment for its proximity to nearby objects, and the oN-line Evolution-
ary alGorithm (NEG) is used to generate local paths to deal with unexpected
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Goal

Fig.11.2. An environment and a global path

collisions and objects. To simulate the effect of unknown objects in the environ-
ment, additional data files were created to represent such obstacles (like pieces
of “wall” as explained earlier). We experimented with five different sets of un-
known objects; Figure 11.3a-d presents the actions of the robot on one of these
sets.

When the robot moved too close to the lower left corner of the nearby object
‘A’ the NEG virtually “grew” ‘A’ at the spot and generated a local path to
steer away from ‘A’ which was also a piece-wise straight-line path. The robot
then followed the current path successfully to reach tje point ‘a’. While the
robot moved from ‘a’ to ‘b’, it detected an unknown or new object ‘B’. Now the
EN updated the map, and again, the NEG generated a local path with the knot
point ‘d’ (Figure 11.3a). As the robot moved from ‘d’ towards ‘b’, it became
too close to the object ‘B’: consequently, another local path was generated as
represented by the knot point ‘e’ (Figure 11.3b). The robot then moved from
‘d’ to ‘e’ and finally reached the subgoal ‘b’. The next step was to move from
‘b’ towards the goal; as shown in Figure 11.3¢c, the path segment was too close
to the lower right corner of the object ‘C’. Therefore, another local path was
generated as represented by the knot point ‘f* and then to the ‘goal’. Figure
11.3d shows the original global path and the actual path traveled. Note that
the navigation process terminates when the robot arrives at the goal or a failure
condition is reported, i.e., when the EN fails to find a feasible path in certain
time period (i.e., within specified number of generations of the NEG).

As we already mentioned, the EN combines off-line and on-line planning
with the same data structure and the same planning algorithm. That is, the
only difference between FEG and NEG is in the parameters they use: population
size pop_size,, number of generations T}, maximum length of a chromosome 7,
etc. for FEG, and pop-size;, T;, ny, etc. for NEG. Note that both FEG and
NEG do global planning; even if NEG usually generates a local path, it operates
on the updated global map. Moreover, if no object is initially known in the
environment, or no initially known object is between the start location and the
goal location, then FEG will generate a straight-line path with just two nodes:
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Fig.11.3. An actual path traveled

the start and the goal locations. It will solely depend on the NEG to lead the
robot towards the goal while avoiding unknown obstacles.
In the following, we discuss components of FEG and NEG in detail.
Chromosomes are ordered lists of path nodes as shown in Figure 11.4. Each
of the path nodes, apart from the pointer to the next node, consists of z and
y coordinates of an intermediate knot point along the path, and a Boolean
variable b, which indicates whether the given node is feasible or not.

L

Fig. 11.4. Chromosome representing a path

The length of the chromosomes (the number of the path nodes represented
in a chremosome) is variable. In off-line planning, the maximum length of a
chromosome is set to be the number ng of vertices representing known objects
in the environment. It is unlikely that all feasible paths would require a large
number of (e.g., n,) intermediate nodes: even in complex environments a. feasible
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path might be quite simple. Therefore, we make the length of the chromosomes
variable to deal with such situations gracefully.

During the on-line planning, the local path for getting around an obstacle
is likely to contain only a small number of nodes, consequently, the parameter
ny, as the maximum length of the chromosome in this phase, is relatively small
at the beginning of the local search. However, if the evolution process fails to
find a feasible path after some number of generations, the maximum length of
the chromosome should grow: in such situation it is quite likely that feasible
paths have more complex structures. In the EN system we assumed that the
parameter n; was a function of the current generation number ¢, more precisely,
ny(t) = t.

The initial populations of (pop_size, for FEG, and pop_size; for NEG) chro-
mosomes were generated randomly. For each chromosome, a random number
was generated from the range 2..maz(2,ng) (for the off-line planner) to deter-
mine its length. The coordinates z and y were created randomly for each node
of such a chromosome (the values of coordinates were restricted to be within
the confine of the environment, of course).

For each node of each chromosome, the value of the Boolean variable b is
determined (feasibility check). If the node is feasible, its b value is set to TRUE,
otherwise, it is set to FALSE. The methods for checking the feasibility of a
node (i.e., location validity, clearance from nearby objects, and connectivity)
are relatively simple and are based on algorithms described by Ravlidis [310].

The fitness (the total path cost) of a chromosome p = (my,ms,...,my)
is determined by two separate evaluation functions (for feasible and infeasible
individuals):

o for a feasible path p:
Path_Cost(p) = wq - dist(p) + ws - smooth(p) + w, - clear(p),
where the weights wy, w,, and w, normalize the total cost of a path, and

— dist(p) = Y75 d(my, mig1), where d(m;,m;y1) is the distance be-
tween knot points m; and my41; i.e., the function dist(p) returns the
total length of the path p.

- smooth(p) = max?=} s(m;), where

0;
-~ min{d(m;-1, ms), d(m;, miy1)}

s(m;)

i.e., the function smooth(p) returns the largest curvature of p at a
knot point.

— clear(p) = max?>) ¢;, where

Ci = d-,' - T if di >T
‘ a(r — d;) otherwise,
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d; is the minimum distance between the segment (m;, m; 1) of the
path and all known objects, 7 defines a safe distance, and a is a co-
efficient; i.e., the function clear(p) returns the largest number which
measures clearance between all segments of p and the objects.

o for an infeasible path p:
Path_Cost(p) = a + 38 + v,

where « is the number of intersections of the path p with all walls of the
objects, 0 is the average number of intersections per infeasible segment,
and ~ provides the cost of the worst feasible path in the current popula-
tion; because of this last variable, any feasible path in the population is
better than any infeasible one (see also section 15.3, part C).

Several operators (crossover, two mutations, insertion, deletion, smooth,
and swap) were included in the FEG and NEG. We discuss them in turn.

Crossover. This operator is similar to the classical one-point crossover widely
used in genetic algorithms. It recombines “good” parts of the paths present
in both parents to produce hopefully better path represented by the offspring.
Two selected chromosomes are cut in some positions and glued together: the first
part of the first chromosome with the second part of the second chromosome,
and the first part of the second chromosome with the second part of the first
chromosome, However, the crossing points in both chromosomes are not selected
randomly: if infeasible nodes are present in the chromosome, the crossing points
fall after one of them.

Mutation_1. This mutation is responsible for fine tuning values of coordinates
of the nodes listed in the chromosome. If a node of a chromosome is selected
for this mutation, its coordinates are modified. For example, the coordinate
z € {a,b) (as well as coordinate y) is changed in the following way:

,_ Je-btz—a), if r=0
Tl z+6tb—x), if r=1

where r is a random bit, and the function §(t, z) returns a value in the range
of [0..2] such that the probability of (¢, 2) being close to zero increases as t
increases (¢ is the current generation number of the evolution process). The
operator is modeled on non-uniform mutation used in evolutionary systems for
nonlinear optimization (Chapter 7). This mutation is responsible for “smoothing
over” the shape of the path.

Mutation_2. This mutation is useful in cases when a larger change in a value
is required (this situation occurs often during the on-line planning phase, when
an obstacle is blocking the path). If a node of a chromosome is selected for this
mutation, its coordinates are modified. For example, the coordinate = € (a, b)
(as well as coordinate y) is changed in the following way:
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, | xz—Alt,z—a), if T=0
Tl z+ARfb-2), if r=1

where 7 is a random bit, and the function A(%, z) returns a value in the range of
[0..2] such that the probability of A(¢, z) being close to z increases as generation
number ¢ increases.

Insertion. This operator inserts a new node into the existing path; every place
between two nodes has the same probability of such insertion.

Deletion. This operator deletes a node from the path; every node has the same
probability for such deletion.

Smooth. This operator smooths a part of the path by cutting sharp turns. For
selected knot point m; (with a high curvature), the operator selects two new
knot points k; and ko (from segments (m;_;, m;) and (m;, m;y1), respectively),
inserts them into the path, removes m;; so it creates a new path p':

!
p = (ml,...,m,«_l,k,,kQ,miH,.‘ . ,mn).

Swap. This operator splits the selected chromosome into two parts (the splitting
point is determined at random) and swaps these parts.

Based on the preliminary experimental results, the EN has proved to be ef-
ficient and effective in comparison with navigators using traditional approaches
(e.g., [130]). Results of the current version of the system on two different envi-

ronments are presented in Figures 11.5 and 11.6. .
|
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Fig. 11.5. Results of the EN on two environments

Of course, there is a need to explore the EN’s potential by conducting
more tests under different environments, most importantly, by implementation
of the EN on a real robot. At the same time, several issues of such evolutionary
navigators remain to be resolved; these include (1) design of smarter termination
conditions for FEG and NEG to better realize the optimization goals (currently
the algorithms terminate either when a feasible path is found or some fixed
number of generations have elapsed), (2) introduction of adaptive frequencies
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Fig.11.6. Results of the EN on another two environments

of the genetic operators, as opposed to the constants in the current version of
the system (this modification should enhance the performance of the system and
is based on the simple observation that different operators may play different
roles at different stages of the evolution process), (3) extension of the EN to
operate in an environment with non-polyhedral objects, (4) incorporation of the
knowledge of the current stage of the search into workings of operators (e.g., it
might be more meaningful to cross two paths at infeasible knot, points), and (5)
exploration of some learning mechanism so that the EN can take advantage of
past experiences.

Despite its efficiency and effectiveness in many cases, however, the EN has
a major limitation: it assumes that a feasible and sufficiently good actual path
can be obtained by minor perturbation from the current best path; the system
is not designed to be able to replace the current global path, at some stage of
the traversal, by another (possibly better) global path entirely. Thus it might
be worthwhile to experiment with other solutions; for example, an adaptive
navigator {AN) is currently under construction. Unlike the EN, which consists of
off-line and on-line planners, an adaptive navigator would be an on-line planner
completely; it would constantly adapt the path connecting the current location
of the robot and the goal based on newly gathered sensing information.

11.5 Remarks

In this final section we discuss briefly a few relatively recent applications of
evolutionary techniques, which, for various reasons, are interesting (from the
perspective of constructing an evolution program). We discuss them in turn.

There are some applications (e.g., network design problems), in which a
solution is a graph. The problem of representing graphs in genetic algorithms is
quite interesting as such. Recently, Palmer and Kershenbaum [304] reported on
experiments with various ways of representing trees. They identified desirable
properties for a good representation; these inctude:
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1. Completeness: ability to represent all possible trees,
No bias: all trees should be represented by the same number of encodings,

Soundness: representing only trees,

Ll

Efficiency: the ease of transformations between the encoded representa-
tion of the tree and the tree’s representation in a more conventional form
suitable for evaluating the fitness function and constraints,

5. Locality: small changes in the representation of a tree make small changes
in the tree.

Of course, an ideal representation of a tree should have all of the above
properties. However, this is not the case with most of the representations. In
[304] the authors consider a few representations. These include

e characteristic vector representation, where a tree is represented as a binary
vector of the length equal to the number of edges in the underlying graph,

o predecessors representation, where a node is designated as a root and the
predecessor of each node is recorded: here, a tree is encoded as an integer
vector of the length equal to the number of nodes,

o Priifer numbers representation, where a tree is coded as a n — 2-“digit”
number (n is the number of nodes in a tree), where each “digit” is integer
determined by a special algorithm (for details, see [304].

The authors proposed also a new representation, which was based on a simple
observation, that certain nodes should be interior nodes and others should be
leaf nodes. In this representation the chromosome holds a bias value for %ach
node and each possible edge (thus a tree is represented as a vector of n + QQ"Q;I)
numbers); the biases modify the cost matrix C;; of the graph:

C}; = Cij + Pi(Cinaz)bij + P2(Crmaz)(Bi + bj),

where P, and P, are parameters of the method, and C,,; is the maximum
link cost. The tree that the chromosome represents is found by applying Prim’s
algorithm to find a minimum spanning tree over nodes using the biased cost
matrix. This representation also can encode any tree given suitable values of the
b;. It has quite interesting properties: for a full discussion the reader is referred
to [304].

Another paper by Abuali et al. [3] investigated a new encoding scheme
for representing spanning trees (for the probabilistic minimum spanning tree
problem). This encoding scheme is based on so-called determinant codes, which
are vectors of n—1 integers; the i-th number k in a determinant code corresponds
to an edge from vertex k to i + 1.5 For experimental results and comparison of
this encoding with other methods, see [3].

5The determinant encoding schemes may produce graphs which are not spanning trees; in
the work reported in (3], a repair algorithm is used.
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Esbensen {101] reports on a genetic algorithm for finding optimal Steiner
trees. The Steiner tree problem (its decision version is NP-complete) is formu-
lated as follows: given a graph and a specified subset of vertices, the task is to
find a minimum cost subgraph spanning the specified vertices. The author used
a deterministic decoder which interprets any set of selected Steiner vertices as a
valid Steiner tree. Thus each chromosome is a binary string, where each bit cor-
responds to a vertex; such a binary string represents a subset of Steiner vertices.”
This subset of vertices together with specified vertices constitutes the starting
point for the decoder, which (1) constructs the subgraph induced by these ver-
tices; (2) computes a minimum spanning tree for this subgraph; (3) constructs
(from this minimum spanning tree) another subgraph by substituting each edge
by the corresponding shortest path in the original graph; (4) computes a min-
imum spanning tree for the resulting subgraph; and (5) computes the Steiner
tree by repeatedly deleting (from the latest minimum spanning tree) all vertices
not included in the original list of vertices of degree 1. For experimental results
(which include cases of graphs having up to 2500 vertices), see [101].

The set covering problem (SCP) is the problem of covering the rows of a
n X k binary matrix A = (a;;) by a subset of the columns at minimal cost; the
problem has many practical applications (location of facilities, crew scheduling,
etc). Each column 1 < j < k has associated cost c;; thus the SCP can be
expressed as

minimize Z;?:l ¢,

where z; denotes a binary decision variable (z; = 1 iff column j is selected in
the cover), subject to

k
Y105 > 1,

foralll1 <i<n.

Beasley [31] experimented with modified genetic algorithm on many SCPs,
from 200 rows by 1,000 columns to 1,000 rows by 10,000 columns. The results
were very good; the algorithm generated optimal solutions for smaller size prob-
lems and high-quality solutions for large size problems.

Note that the SCP has “an ideal” representation from the perspective of
a GA: a binary string of z;’s (1 < j < k) represents a potential solution to
the problem. No additional coding is necessary. The evaluation function (for
feasible individuals) is also straightforward; it is just

f(w) = Z‘I;:l cj$j7

The major challenge in the SCP is the issue of feasibility; any operators
applied to such binary strings can produce offspring which violate the problem

7Steiner vertices consist of additional vertices, which should be added to the specified set.
Thus the length of the chromosome is determined by the difference between the total number
of nodes and the number of specified nodes.
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constraints (i.e., some rows may not be covered). Beasley [31] used a repair algo-
rithm (see Chapter 15 for a general discussion on repair algorithms) to maintain
feasibility of solutions. This repair algorithm was responsible for covering uncov-
ered rows; the search for additional columns was based on the ratio between cost
of a column and the number of uncovered rows which it covers. It it interesting
to note that once the repair process is completed and an infeasible individual is
converted into a feasible one, a local optimization step is performed, in which
redundant columns are removed (i.e., columns which can be removed without
violation of constraints).

Bui and Eppley [55] describe a hybrid genetic algorithm for the maximum
clique problem and provide its experimental results on test cases up to 1500
vertices and over half million edges. The maximum clique problem is to find a
complete subgraph (i.e., clique) of a given graph of maximum size (measured in
number of vertices). The decision version of the problem is NP-complete [134];
not surprisingly, many various approximation methods have been proposed.
Note that the task is to find a subset of vertices, hence it is possible to use
straightforward binary representation: a binary vector

(b, ..., ba)

defines such a subset (for all n vertices arranged in an arbitrary order,® where
all vertices were b; = 1 implies selection of the i-th node). Instead of designing
sophisticated operators which would maintain feasibility of solutions (i.e., which
would guarantee that an offspring is a clique) or instead of designing a repair
algorithm (which would correct an arbitrary solution into a clique), the authors
constructed a clever objective function, which distinguishes between non-cligyes
and (almost)-cliques; this function was defined as

F(X) = ol X| + BB,

where o and ( are integers (called cardinality weight and completeness weight,
respectively), and e(X) returns the number of edges in the subgraph induced by
X. It is interesting to note that the ratio 3/« is variable: at the beginning of the
algorithm it stays small (exploration phase, where cardinality of a solution is
emphasized) and as the algorithm progresses, the ratio increases (completeness
of a solution is emphasized). It is important to underline that the algorithm was
extended by incorporation of a local optimization routine. This heuristic routine
(1) determines whether removing a particular vertex (vertices are considered in
a special order) would improve the fitness of the solution (if yes, the vertex
is removed) and (2) tries also to increase the cardinality of the solution; it
determines whether an addition of a vertex would increase the fitness value of
the solution (if so, the vertex is added). For a full discussion of the details of
the system and experimental results, see [55].

8In [55], however, the authors experimented with two different preprocessing steps; these
steps order the vertices either in decreasing order of their degrees or take the order resulting
from the depth first search.
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An interesting application of an evolutionary technique for pallet loading
was described by Juliff {215]. The pallet loading problem is a special scheduling
problem which involves (1) packing of cartons onto pallets and (2) stacking of
the pallets on a truck. The requirements are quite complex due to maintaining
a balance of the load (at all times) during the delivery, and maximizing the
efficiency of loading and unloading cartons. As for other scheduling problems
(see section 11.1), it is possible to build a system with direct or indirect repre-
sentations; in the latter one, a scheduler (or, in this case, load-builder), would
complete the job. However, both these approaches have some disadvantages:
highly problem-specific operators (direct representation) or limited search (in-
direct representation): usually one chromosome represents a single feature and
other features are not explicitly represented (the knowledge of these additional
features is just incorporated in the load-builder), so the genetic search is not
fully guided.

Juliff developed a few systems for pallet loading [215] based on indirect
representation and intelligent load-builders; one of these systems incorporates a
multi-chromosome structure to handle various features of the problem (actually,
three chromosomes were used); not surprisingly, a multi-chromosome system
outperformed other, single-chromosome systems.

Recently, many interesting applications of evolutionary techniques to vari-
ous problems in management science (including scheduling and timetable prob-
lems) have been reported. A recent survey by Nissen of such applications pro-
vides a complete reference [297].

Also, there is a growing interest in evolutionary techniques for industrial
engineering; many papers address particular issues and provide descriptions
of particular solutions in this area. For more information, see for example, a
special issue on genetic algorithms and industrial engineering of Computers
and Industrial Engineering Journal [135).

Let us conclude this chapter by a general observation that more and more
various applications of evolutionary techniques to combinatorial optimization
problems (including the TSP, see Chapter 10) incorporate some heuristic local
search algorithms to improve their performance (for an excellent up-to-date
survey of local search techniques, see [2]). Either this is done as a separate
step of the algorithm, or such algorithms are adopted as clever (intelligent)
mutations. The results reported by Yagiura and Ibaraki in their recent study
[411] indicate that such genetic local search algorithms are powerful techniques
which compare very well with other techniques (random multi-start local search
or pure genetic algorithms).

These results emphasize also the importance of mutation operators, which
should not be just background operators, but are essential components of any
evolutionary system. This is in agreement (in some sense) with recent results of
Jones [213], who experimented with macro-mutations and indicated their sig-
nificance in binary codings (with respect to the crossover operator). Anyway,
it seems that the higher the cardinality of the alphabet used for encoding of
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individuals, the greater the role of mutation operator(s). This was the case for
algorithms where individuals were represented as floating-point vectors, inte-
gers, matrices, finite state machines, etc. It will not be surprising to see a new
trend in the genetic programming approach (see Chapter 13), which would em-
phasize the role of various mutation operators; this may allow also a significant
decrease in population sizes in genetic programming methods, hence further
increasing their efficiency.
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The real problem is not
whether machines think,
but whether men do.

B.F. Skinner, Contingencies of Reinforcement

Machine learning is primarily devoted towards building computer programs able
to construct new knowledge or to improve already possessed knowledge by us-
ing input information; much of this research employs heuristic approaches to
learning rather than algorithmic ones. The most active research area in recent
years [284] has continued to be symbolic empirical learning (SEL). This area is
concerned with creating and/or modifying general symbolic descriptions, whose
structure is unknown a priori. The most common topic in SEL is developing con-
cept descriptions from concept examples [234], [284]. In particular, the problems
in attribute-based spaces are of practical importance: in many such domains it
is relatively easy to come up with a set of example events, on the other hand
it is quite difficult to formulate hypotheses. The goal of a system implementing
this kind of supervised learning is:

Given the initial set of example events and their membership in con-
cepts, produce classification rules for the concepts present in the in-
put set.

Depending on the output language, we can divide all approaches to automatic
knowledge acquisition into two categories: symbolic and non-symbolic. Non-
symbolic systems do not represent knowledge explicitly. For example, in sta-
tistical models knowledge is represented as a set of examples together with
some statistics on them; in a connectionist model, knowledge is distributed
among network connections [335]. On the other hand, symbolic systems pro-
duce and maintain explicit knowledge in a high-level descriptive language. The
best known examples of this category of system are AQ and ID families [281]
and [314].

In this chapter we describe two genetic-based machine learning methodolo-
gies and discuss an evolution program (GIL, for Genetic Inductive Learning),
proposed by Janikow [200]. The first two approaches fall somewhere between
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symbolic and non-symbolic systems: they use (to some extent) a high-level de-
scriptive language, on the other hand, the operators used are not defined in that
language and operate at the non-symbolic level. Even in some recent problem-
oriented representations ([149],[363],[340], [91]) the operators still operate at the
conservative traditional subsymbolic level. The third system GIL is an evolu-
tion program tailored to “learning from examples”; the system incorporates the
problem-specific knowledge in data structures and operators.
Let us consider an example, which will be used throughout the chapter.

Example 12.1. This is taken from the world of Emerald’s robots (see [217] and
[407]). Each robot is described by the values of six attributes; the attributes with
their domains are:

Attributes: Values of Attributes:

Head_Shape Round, Square, Octagon
Body_Shape Round, Square, Octagon
Is.Smiling Yes, No

Holding Sword, Balloon, Flag
Jacket_Color Red, Yellow, Green, Blue
Has_Tie Yes, No

The boldface letters are used to identify attributes and their values, e.g., (J
=Y) means “Jacket_Color is Yellow”. The examples of concepts descriptions
(where each concept C; is described in terms of these six attributes and their
values) are:

C), Head is round and jacket is red, or head is square and is holding a
balloon

C,; Smiling and holding balloon, or head is round

Cs Smiling and not holding sword

C; Jacket is red and is wearing no tie, or head is round and is smiling

Cs Smiling and holding balloon or sword ”
O

Attributes are of three types: nominal (their domains are sets of values),
linear (their domains are linearly ordered), and structured (their domains are
partially ordered). Events represent different decision classes: events from a
particular class constitute its positive examples, all other events its negative -
examples. Learning examples are given in the form of events, and each event is
a vector of attribute values.

The concept descriptions are represented in VL, (simplified version of the
Variable Valued Logic System) [281] — a widely accepted language to represent
input events for any program operating in an attribute-based space.

A description of a concept C is a disjunction of complexes

ciV...Va = C,
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each complex (c¢;) is expressed as a conjunction of selectors, which are (attribute
relation set_of values) triplets (e.g., {J = R) for “Jacket_Color is red”).

The concepts C; — Cs can be expressed as

(S=RYA(J=R)V(S=S)A(H=B)=C
(I=YYA(H=B)V(S=R)=C,
(I=YYA(H#S) = C
(J=RAT#Y)V(S=RA{I=Y)=C,
(I=Y)A(H={B,S}) = Cs.

Note that the selector (T' # Y) can be interpreted as (" = N}, since the
attribute T is a Boolean (nominal) attribute, and the selector (H = {B, §}) is
interpreted as “Holding Balloon or Sword” (internal disjunction).

The problem is to construct a system to learn the concepts, i.e., to determine
decision rules that account for all positive examples and no negative ones. We
can evaluate and compare systems on all robot descriptions in terms of error
rates and complexities of generated rules. The system should be able to predict
a classification of previously unseen examples, or suggest (possiblv more than
one) classifications of partially specified descriptions.

During the past two decades there has been a growing interest in applying
evolution programming techniques to machine learning (GBML systems, for ge-
netics based machine learning systems) [88]. This was due to the attractive idea
that chromosomes, representing knowledge, are treated as data to be manip-
ulated by genetic operators, and, at the same time, as executable code to be
used in performing some task. However, early applications, although partially
successful (e.g.,[323],[340],[341]), also encountered many problems [86]. In gen-
eral, in the GA community there are two competing approaches to address the
problem. As stated by De Jong [86]:

“To anyone who has read Holland {191], a natural way to proceed is
to represent an entire rule set as a string (an individual), maintain
a population of candidate rule sets, and use selection and genetic
operators to produce new generations of rule sets. Historically, this
was the approach taken by De Jong and his students while at the
University of Pittsburgh (e.g., see Smith [363], [364]), which gave
rise to the phrase ‘the Pitt approach’.

However, during the same time period, Holland developed a model
of cognition (classifier systems) in which the members of the popu-
lation are individual rules and a rule set is represented by the en-
tire population (e.g., see Holland and Reitman, [189]; Booker [45]).
This quickly became known as ‘the Michigan approach’ and initi-
ated a friendly but provocative series of discussions concerning the
strengths and weaknesses of the two approaches.”

We believe that a third approach based on evolution programming tech-
niques should be the most fruitful one. The idea of incorporating problem-
specific knowledge, as usual by (1) careful design of appropriate data structures,
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and (2) problem-specific “genetic” operators, must pay off in system precision
and performance. However, the Pitt approach is closer to our idea of evolu-
tion programming, since it maintains a population of complete solutions (set
of rules) to the problem, whereas the Michigan approach (classifier systems),
through bidding, the bucket brigade algorithm, and a genetic component in
modifying rules, establishes a new methodology very different to evolution pro-
gramming technique. On the other hand, implementations of the Pitt approach,
even when they represent a chromosome in a high-level description language, do
not use any learning methodology to modify their operators. This is the basic
difference between the Pitt approach and the evolution program approach.

In the sequel, we discuss the basic principles behind the classifier systems
(the Michigan approach, section 12.1), the Pitt approach (section 12.2), and
Janikow's [200] evolution program (section 12.3) for inductive learning of deci-
sion rules in attribute-based examples.!

12.1 The Michigan approach

Classifier systems are a kind of rule-based system with general mechanisms
for processing rules in parallel, for adaptive generation of new rules, and for
testing the effectiveness of existing rules. Classifier systems provide a framework
in which a population of rules encoded as bit strings evolves on the basis of
intermittently given stimuli and reinforcement from its environment. The system
“learns” which responses are appropriate when a stimulus is presented. The rules
in a classifier system form a population of individuals evolving over time.
A classifier system (see Figure 12.1) consists of the following components:

» detector and effector,
e message system (input, output, and internal message lists),
¢ rule system (population of classifiers),

e apportionment of credit system (bucket brigade algorithm), and

[ 4
e genetic procedure (reproduction of classifiers).

The environment sends a message (a move on a board, an example of a new
event, etc.), which is accepted by the classifier system’s detectors and placed
on the input message list. The detectors decode the message into one or more
(decoded) messages and place them on the (internal) message list. The messages
activate classifiers; strong, activated classifiers place messages on the message
list. These new messages may activate other classifiers or they can send some
messages to the output message list. In the latter case, the classifier system’s

1EFor more information on classifier systems, see [107); a recent special issue of Evolutionary
Computation journal.
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Fig.12.1. A classifier system and its environment

effectors code these messages into an output message (a move on a board, deci-
sion, etc.), which is returned to the environment. The environment evaluates the
action of the system (environment feedback), and the bucket brigade algorithm
updates the strengths of the classifiers.

We discuss some of these actions in more detail using the world of Emer-
ald’s robots as example. Let us provide some basic preliminaries first. A single
classifier consists of two parts: (1) a condition part, and (2) a message. The con-
dition part is a finite-length string over some alphabet; the alphabet includes
the “don’t care” symbol, “*”. The message part is a finite length string over
the same alphabet; however, it does not contain the “don’t care” symbol. Each
classifier has its own strength. The strength is important in the bidding process,
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where classifiers compete to post their messages — we discuss it later in this
section. Now, we return to the world of Emerald’s robots. We can express a
decision rule as one or more classifiers. Each classifier has a form

(p17p27p3ap41p53p6) : d:

where p; denotes the value of the i-th attribute (1 < ¢ < 6) for the domains
described above (e.g., ps € {5, B, F, *} (Holding)) and d € {C1, Cs, C3, Cy, Cs}.

For example, the classifier
(Rxxx Rx): C)

represents the following: “If head is round and jacket is red then concept C;”.
The set of classifiers for five concepts given in this chapter is:

(Rx+xRx) : .
(S*x+Bx*%) : O
(xxYBxx) :
(Rxx*xx) : (o

*xYBx*x) : (s
xxYFxx) 1 C
xxxx RN) : C4

(
(
(
(R+Y x#x) : Cy
(xxYBxx) : Cs
(xxYSxx) : Cs.

To simplify the example, we assume the system learns a single concept C\;
any system can be easily generalized to handle multiple concepts. In that case
each classifier has a form

(plap2ap3ap4>p5ap6) : d7

where d = 1 (membership to the concept C;) or d = 0 (otherwise).

Let us assume that at some stage of the learning process there is a small
(random) population of classifiers ¢ in the system (each classifier is given with
its strength s):

g1 = (** *SR %) 1, s1 = 12.3,
ga=(x*xY xxN) : 0, s = 10.1,
g3 = (SR ** %) 1, s3 = 8.7,
qs = (%O x % % %) 0, 84 = 2.3.

Assume further that an input message arrives from the environment (a new
example event):

(RRY SRN)
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It is a description of a single robot with round (R) head, round (R) body, smiling
(Y), holding sword (8), in red (R) jacket and without tie (N). Obviously, this
robot constitutes the positive example of the concept C; due to its round head
and red jacket.

Three classifiers are activated by this message: q1, g2, and g4. These classifiers
bid; each bid is proportional to the classifier’s strength (bid_i = b-s;). The
strongest classifier ¢; wins and posts its message; since the message is decoded
into the correct classification, the classifier gets a reward r > 0; the strength of
the classifier becomes

$1:=8, —bidi +r

(if the message was decoded into wrong answer, the “reward” r would be neg-
ative), For coeflicients b = 0.2 and r = 4.0, the new strength of the classifier ¢
is 8y =123 —-2.46+4.0 = 13.84.

One of the parameters of the classifier system is the GA period, ¢4, which
specifies the number of time steps (number of cycles just described above) be-
tween GA calls. Of course, ¢,, can be a constant, it can be generated randomly
(with the average equal to t,,), or it need not be even specified and the decision
of invocation of GA can be made of the basis of the performance of the system.
Anyway, let us assume that the time has come to apply the genetic algorithm
to the classifiers.

We consider the strengths of the classifiers as their fitness — a selection
process can be performed using roulette wheel selection (Chapter 2). However,
in the classifier systems we are no longer interested in the strongest (the most
fit) classifier, but rather in a whole population of classifiers that perform the
classification task. This implies that we should not generate the whole popu-
lation and that we should be careful in selecting individuals for replacement.
Usually, the crowding factor model (Chapter 4) is used, since it replaces similar
population members.

The operators used are, again, mutation and crossover. However, some mod-
ifications are necessary. Let us consider the first attribute, Head _Shape — its
domain is the set {R, S, 0, *}. Thus, when mutation is called, we would change
the mutated character to one of the other three characters (with equal proba-
bility):

R - {S7O7 *})
S — {R,0,x},
O i {R’Sa *}7
* — {R,S,0}.

The strength of the offspring usually is the same as its parent.

The crossover does not require any modification. We take advantage of the
fact that all classifiers are of equal length; to crossover two selected parents, say
¢1 and gq:

(#%*|SR+) : 1, and (x*Y|*xN) : 0,
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we generate a random crossover position point (say, we crossover after the third
character, as marked), and the offspring are

(*****N) : 0, and (**YSR*) N

The strengths of the offspring are a (possibly weighted) average of those of the
parents.

Now, the classifier system is ready to continue its learning process and
start another cycle of £y, steps, accepting further positive and negative events
as examples, modifying the strengths of classifiers. We hope that finally the
population of classifiers converges to some number of strong individuals, e.g.,

(R % * x Rx) 1
(S * *B * %) 1,
(O**%xx) : 0,
(* * *SY'x) 0

2

The example discussed above was very simple: we aimed at explaining the
basic components of the classifier system using a learning paradigm for the
world of Emerald’s robots. Note, however, that we used the simplest bidding
system (e.g., we did not use effective bid variable e_bid = bid + N(0, 0y;q), which
introduces some random noise with standard deviation o,y and expected value
zero), that we did not use any taxation system (usually each classifier is taxed
to prevent biasing the population towards productive rules), and that we se-
lect only a single winner (the strongest classifier) at each step — in general,
more then one classifier can be a winner, placing its message on the message
list. Moreover, the bucket brigade algorithm was not used in the sense that the
reward was available at every time step (for every provided example). There
was 1o relationship between examples and there was no need to trace a chain of
rewards to apportion credit to the classifiers whose messages activated the cur-
rent (winner) classifier. For some problems, like planning problems, the length
of the message part is the same as the length of the condition part. In such
cases, an activated classifier (old winner) would place its message on the (in-
ternal) message list, which, in turn, may activate some other classifiers (new
winners). Then the strength of the old winners is increased by a reward — a
payment from the new winners. ’

For a full discussion on different versions of the classifier systems and the
historical perspective, the reader is referred to [154].

12.2 The Pitt approach

The Michigan approach can be perceived as a computational model of cognition:
the knowledge of a cognitive entity is expressed as a collection of rules which
undergo modifications over a time. We can evaluate the whole cognitive unit
in terms of its interaction with the environment; an evaluation of a single rule
(i.e., a single individual) is meaningless.
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On the other hand, the Pitt approach adopts the view that each individual
in a population represents the whole set of rules (a separate cognitive entity).
These individuals compete among themselves, the weak individuals die, the
strong survive and reproduce: this is done by means of natural selection pro-
portional to the their fitness, crossover, and mutation operators. In short, the
Pitt approach applies the genetic algorithm to the learning problem. By doing
this, Pitt approach avoids the delicate credit assignment problem, for which
a heuristic method (such as the bucket brigade algorithm) should distribute
(positive or negative) credit among the rules which cooperated in produced
(desirable or undesirable) behavior.

However, there are some interesting issues to be addressed. The first one
is representation. Should we use fixed-length binary vectors (with a fixed field
format) to represent set of rules? Such a representation would be ideal for gen-
erating new rules, since we can use classical crossover and mutation for that
purpose. However, it seems to be too restrictive and appropriate only for sys-
tems which work at a lower sensory level. What about genes in a chromosome
representing values of attributes (i.e., number of genes equal to number of at-
tributes)? This decision (not supported by specialized operators) does not seem
to work: if the cardinalities of some domains are large, the probability that the
system would converge prematurely is very high [86], even with much higher
mutation rates than usual. It seems that some internal representational struc-
ture is necessary to provide punctuation marks between units in a chromosome,
together with operators which are aware of chromosomal representation. Such
an approach was implemented and discussed in [364] and [340].

Smith [363] went even further and experimented with variable-length indi-
viduals. He generalized many results previously valid only for GAs with fixed
length strings to apply to GAs with variable length strings.

However, it seems that some other bold decisions are necessary to address
the complex issues of representation and operators. Only recently [24] was the
need for such decisions recognized:

“A solution to this problem is to select different genetic operators
that are more appropriate to ‘natural representation’. There is noth-
ing sacred about the traditional string oriented genetic operators.
The mathematical analysis of GAs shows that they work best when
the internal representation encourages the emergence of useful build-
ing blocks that can be subsequently combined with other to produce
improved performance. String representations are just one of many
ways of achieving this.”

In the next section, we present an evolution program (based on the Pitt
approach), which does just this: the representation is rich and natural, with
specialized, representation sensitive operators, taken directly from a learning
methodology.
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12.3 An evolution program: the GIL system

The implemented evolution program GIL [200] moves the genetic algorithm (the
Pitt approach) closer to the symbolic level — mainly by defining specialized op-
erators manipulating at the problem level. Again, the basic components of GIL,
like any other evolution program, are data structures and genetic operators.
The system was designed for learning single concepts only. However, it can be
easily extended to learn in multi-concept environments by introducing multiple
populations.

12.3.1 Data structures

One chromosome represents a solution to the concept description being learned;
the assumption is that any event not covered by such a description belongs to
the negation of the concept (does not belong to the concept). Each chromosome
is a set (disjunction) of a number of complexes. The number of complexes in
a chromosome can vary — the assumption that all chromosomes are of equal
length (as GAs maintain populations of fixed-length strings) would be, to say
the least, artificial, so it would be contrary to evolution programming technique.
This decision, however, is not new in the GA community: as described in the
previous section, Smith [363] has extended many formal results on genetic al-
gorithms to variable-length strings and implemented a system that maintained
a population of such (variable-length) strings.

Each complex, as defined in V Ly, is a conjunction of a number of selectors
corresponding to different attributes. Each selector, in turn, is the internal dis-
junction from the domain of its attribute. For example, the following might be
a chromosome (and therefore a description of the concept C}):

{S=R)A(J=R))V({(S=5)A(H=B)

Mostly for efficiency reasons, binary representation for selectors was used for
internal representation of chromosomes. A binary 1 at position ¢ implies the
inclusion of the i-th domain value in this selector. This means that the size
of the domain of an attribute is equal to the length of the binary substying
corresponding to this attribute. Note that a collection of all 1s for some selector
is equivalent to the don’t care symbol for this attribute. Thus the chromosome
describing concept C; in a notation similar to one used for classifier systems is
represented as

(R*x* R V 8x**Bxx%),
whereas its internal representation in the GIL system is
(100]111{11]111[1000|11 v 010[111|11|010[1111|11),

where bars separate selectors. Note that such a representation handles internal
disjunction gracefully, e.g., the concept Cjs
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(I=Y)AN(H={B,S}),
can be represented as

(111]111]10]110[1111]11).

12.3.2 Genetic operators

The operators of the GIL system are modeled on the methodology of induc-
tive learning provided by Michalski [280]; the methodology describes various
inductive operators that constitute the process of inductive inference. These in-
clude: condition dropping, e.g., dropping a selector from the concept description,
adding alternative rule and dropping a rule, extending reference — extending
an internal disjunction, closing interval — for linear domains filling up missing
values between two present values, and climbing generalization — for structured
domains climbing the generalization tree.

The GIL system defines inductive operators separately on three abstract
levels: chromosome level, complex level, and selector level. We discuss some of
them in turn.

Chromosome level: the operators act on the whole chromosomes:

o RuleExchange: the operator is similar to a crossover of the classical
GA, as it exchanges selected complexes between two parent chromo-
somes. For example, two parents

(100[111|11|111{1000{11 v 010{111]11/010{1111|11) and
(111]001/01[111|1111]01 Vv 110100]10]111]0010]01)
may produce the following offspring:

(100]112{11{111{1000]11 v 111]001{01|111|1111{01) and
(010111]11/010]1111)11 v 110/100|10|111|0010|01).

e RuleCopy: the operator is similar to RuleExchange; however, it copies
random complexes from one parent to another. For example, two
parents

(100{111]11{111/1000|11 V 010|111]11]010{1111|11) and
(111]001|01|111/1111[01 v 110{100|10]111|0010}01)

may produce the following offspring:

(100{111]11[111{1000{11 V 111]001]01[111[1111]01V
110|100/10|111]0010/01) and
(010/111|11]0101111]11).

e NewPEvent: this unary operator incorporates a description of a pos-
itive event into the selected chromosome. For example, for a parent
(100[111|11|111/1000{11 V 010|111]11]010|1111]11)

and an uncovered event
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(100|010|10|010]0010|01),
the following offspring is produced:
{100]111{11|111|1000{11 Vv 010|111|11|010|1111|11V
100}010(10]010}0010|01).

RuleGeneralization: this unary operator generalizes a random subset
of complexes. For example, for a parent

{(100|111]11|111]1000|11 v 010|111|11|010[1111]11V
100{010{10/010|0010|01)
and the second and third complexes selected for generalization, the
following offspring is produced:
(100[111|11|111|1000|11 V 110]111|11}010]|1111|11).

RuleDrop: this unary operator drops a random subset of complexes.
For example, for a parent

(100|111|11}111{100011 V 010{111{11]010|1111{11V
100/010/10}010]0010}01),

the following offspring might be produced:
(100[111|11|111]1000|11).

RuleSpecialization: this unary operator specializes a random subset
of complexes. For example, for a parent

(100]111)11{111/1000|11 v 010|111{11]010|1111|10V
111]010/10{010[1111|11)

and the second and third complexes selected for specialization, the
following offspring is produced:

(100]111/11/111/1000|11 Vv 010]010|10]010|1111|10).

Complex level: the operators act on complexes of the chromosomes:

o RuleSplit: this operator acts on a single complex splitting it into a

number of complexes. For example, a parent

(100[111]11/111{1000|11) ’
may produce the following offspring (the operator splits the second
selector):

(100/011}11|111{1000|11 V 100|100|11[111]1000|11).

SelectorDrop: this operator acts on a single complex and “drops” a
single selector, i.e., all values for selected selector are replaced by a
string ‘11...1". For example, a parent

(100|010|11]111]1000|11)

may produce the following offspring (the operator works on the fifth
selector):
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(100/010{11[111|1111)11).
o IntroSelector: this operator acts by “adding” a complex, i.e., it elim-
inates a selector with a string ‘11...1°. For example, a parent
(100j010)11/111j1111/11)
may produce the following offspring (the operator works on the fifth
selector):
(100/010{11{111j000111).
e NewNEvent: this unary operator incorporates a description of a neg-
ative event to the selected chromosome. For example, for a parent

(110/010[11|111]1111]11)

and the covered negative event
(100]010]10/010]0100]10),

the following offspring is produced:

(010j010J11|111{1111|11 v 110|010}01|111|1111|11V
110{010|11{101}1111]11Vv110}010]11|111}1011}11V
110]010|11]111]1111}01).

Selector level: the operators act on selectors:

e ReferenceChange: the operator adds or removes a single value (0 or
1) from the chromosome, i.e., from the domain of one of the selectors.
For example, a parent

(100]010]11|111|0001{11)
may produce the following offspring (note the difference in the fourth
selector):

(100]010J11|110j0001]11)

e ReferenceEzrtension: the operator extends the domain of a selector
by allowing a number of additional values. For different types of
attributes (nominal, linear, structured) it uses different probabilities
of selecting values. For example, a parent

(100{010]11{111j1010{11)

may produce the following offspring (the operator “closes” the do-
main of the fifth selector):

(100]010|11|111]1110J11).

o ReferenceRestriction: this operator removes some domain values from
a selector. For example, a parent

(100[010(11|111{1011/11)
may produce the following offspring:
{100[010|11j111{1000]11).
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The GIL system is quite complex and requires a number of parameters
(e.g., the probabilities of applying these operators). For a discussion of these
and other implementational issues, the reader is referred to [200]. It is inter-
esting to note, however, that the operators are given a priori probabilities, but
the actual probabilities are computed as a function of these probabilities and
two other parameters: an (a priori) desired balance between specialization and
generalization, and a (dynamic) measure of the current coverage. This idea is
similar to one discussed earlier (last section of Chapter 8).

At each iteration all chromosomes are evaluated with respect to their com-
pleteness and consistency (and possibly cost if desired), and a new population
is formed with those better ones more likely to appear. Then, the operators are
applied to the new population, and the cycle repeats.

12.4 Comparison

A recent publication [407] provides an evaluation of a number of learning strate-
gies, including a classifier system (CFS), a neural net (BpNet), a decision tree
learning program (C4.5), and a rule learning program (AQ15). The systems
used examples from the world of Emerald robots; the systems were supposed
to learn five concepts (C; — Cs) given at the beginning of this chapter, while
seeing only a varying percentage of the positive and negative examples (there
were a total of 432 different robots present, i.e., all possible combinations of
the attribute values were there). The systems were compared by providing an
average error in recognizing all of the 432 (seen and unseen) robots; the results
(from [407]) are given in Table 12.1.

System Learning Scenario (Positive % / Negative %)

6% /3% | 10% / 10% | 15% / 10% | 25% / 10% | 100% / 10%
AQ15 22.8% 5.0% 4.8% 1.2% 0.0%
BpNet 9.7% 6.3% 4.7% 7.8% 4.8%
C4.5 9.7% 8.3% 11.3% 2.5% 1.6%
CFS 21.3% 20.3% 21.5% 19.7% 23.08%

Table 12.1. Summary of the error rates for different systems

Table 12.2 provides a recognition rate for the GIL system on the individual
concepts basis (from [200]). As expected, the evolution program GIL performs
much better than system CFS based on the classifier system approach; surpris-
ingly, GIL outperformed other learning systems as well. Its superiority is most
visible in the cases with a small percentage of seen and unseen examples.

For a further discussion on comparison of these systems (e.g., complexity of
the generated rules), implementational issues of the GIL system, and results of
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Concept Learning Scenario (Positive % / Negative %)

6% / 3% | 10% / 10% | 16% / 10% | 25% 7 10% | 100% / 10%
C, 11.1% 5.3% 0.0% 0.0% 0.0%
Cs 0.0% 0.0% 0.0% 0.0% 0.0%
Cs 0.0% 0.0% 0.0% 0.0% 0.0%
Cy 10.4% 0.0% 0.0% 0.0% 0.0%
Cs 0.0% 0.0% 0.0% 0.0% 0.0%

Table 12.2. Summary of the error rates for the evolution program GIL

the other experiments (multiplexers, breast cancer, etc.), the reader is referred
to [200].

12.5 REGAL

An interesting approach for inducing concept descriptions from examples was
reported recently by Giordana and Saitta [139]. The developed system REGAL
learns concept descriptions in disjunctive normal form:

clv...ka=>C;

each complex (¢;) is expressed as a conjunction of selectors, which may contain
internal disjunctions, e.g.,

(S=RVO)A(J=RVY)V(S=S)A(H=BVF)=C.

The key issue is, again, representation. The REGAL system works on fixed
length binary strings, hence the necessity of mapping disjunctive normal form
expressions into such strings. This has been achieved by imposing limits on the
formula complexity, which is defined through the language template A repre-
senting the maximally complex formula. Then, any other well formed formula
is obtained by deleting some literal from A; in this way the literals in A can
be set in correspondence with the bits of a string. The REGAL system uses 2-
point and uniform crossovers as well as generalizing and specializing crossovers
specifically designed for the task at hand.

The system was tested in “learning one disjunct at a time” mode and “learn-
ing many disjuncts at one time” mode, where sharing functions were used. For
more detailed description of the system and the results of experiments the reader
is referred to [139]; further experiments are described in [140).






13. Evolutionary Programming and Genetic
Programming

The past is present, isn’t it?
It’s the future too.

Eugene O’Neill, Long Day’s Journey Into Night

In this chapter we review briefly two powerful evolutionary techniques; these
are evolutionary programming (section 13.1) and genetic programming (section
13.2). These two techniques were developed a quarter of a century apart from
each other; they aimed at different problems; they use different chromosomal
representations for individuals in the population, and they put emphasis on
different operators. Yet, they are very similar from our perspective of “evolution
programs”: for particular tasks they aim at, they use specialized data structures
(finite state machines and tree-structured computer programs) and specialized
“genetic” operators. Also, both methods must control the complexity of the
structure {some measure of the complexity of a finite state machine or a tree
might be incorporated in the evaluation function). We discuss them in turn.

13.1 Evolutionary programming

The original evolutionary programming (EP) techniques were developed by
Lawrence Fogel [126]. They aimed at evolution of artificial intelligence in the
sense of developing ability to predict changes in an environment. The environ-
ment was described as a sequence of symbols (from a finite alphabet) and the
evolving algorithm supposed to produce, as an output, a new symbol. The out-
put symbol should maximize the payoff function, which measures the accuracy
of the prediction.

For example, we may consider a series of events, marked by symbols
ai, ag,...; an algorithm should predict the next (unknown) symbo), say a,i1
on the basis of the previous (known) symbols, a;, as, ..., a,. The idea of evolu-
tionary programming was to evolve such an algorithm,

Finite state machines (FSM) were selected as a chromosomal representation
of individuals; after all, finite state machines provide a meaningful representa-
tion of behavior based on interpretation of symbols. Figure 13.1 provides an
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example of a transition diagram of a simple finite state machine for a parity
check. Such transition diagrams are directed graphs that contain a node for each
state and edges that indicate the transition from one state to another, input
and output values (notation a/b next to an edge leading from state S; to the
state S, indicates that the input value of a, while the machine is in state S,
results in output b and the next state Ss.

0/0 . 1/1 . 0/1

' EVEN | . oDD

1/0 oL
Fig.13.1. A FSM for a parity check

There are two states EVEN and ODD (machine starts in state EVEN); the
machine recognizes a parity of a binary string.

The technique of evolutionary programming is to maintain a population of
finite state machines; each such individual represents a potential solution to
the problem (i.e., represents a particular behavior). As already mentioned, each
FSM is evaluated to give some measure of its “fitness”. This is done in the
following way: each FSM is exposed to the environment in the sense that it
examines all previously seen symbols. For each subsequence, say, a;,aq,...,q;
it produces an output a;,,, which is compared with the next observed symbol,
aiy1. For example, if n symbols were seen so far, a FSM makes n predictions
(one for each of the substrings a,, a1, a2, and so on, until ay,as,...,a,); the
fitness function takes into account the overall performance (e.g., some weighted
average of accuracy of all n predictions).

As in evolution strategies (section 8.1), the evolutionary programming tech-
nique first creates offspring and later selects individuals for the next generation.
Each parent produces a single offspring; hence the size of the intermediate popu-
lation doubles (as in (pop-size, pop_size)-ES). Offspring (new FSMs) are created
by random mutations of the parent population (see Figure 13.2). There are five
possible mutation operators: change of an output symbol, change of a #ate
transition, addition of a state, deletion of a state, and change of the initial state
{there are some additional constraints on the minimum and maximum number
of states). These mutations are chosen with respect to some probability distri-
bution (which can change during the evolutionary process); also it is possible
to apply more than one mutation to a single parent (a decision on the number
of mutations for a particular individual is made with respect to some other
probability distribution).

The best pop_size individuals are retained for the next generation; i.e., to
qualify for the next generation an individual should rank in the top 50% of the
intermediate population. In the original version [126] this process was iterated
several times before the next output symbol was made available. Once a new
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Fig.13.2. A FSM and its offspring. Machines start in state 1

symbol is available, it is added to the list of known symbols, and the whole
process is repeated.

Of course, the above procedure can be extended in many way; as stated in
[121]:

“The payoff function can be arbitrarily complex and can posses tem-
poral components; there is no requirement for the classical squared
error criterion or any other smooth function. Further, it is not re-
quired that the predictions be made with a one-step look ahead.
Forecasting can be accomplished at an arbitrary length of time into
the future. Multivariate environments can be handled, and the en-
vironmental process need not be stationary because the simulated
evolution will adapt to changes in the transition statistics.”

As mentioned in section 8.2, evolutionary programming techniques were
generalized to handle numerical optimization problems; for details see {117} or
[121]. For other examples of evolutionary programming techniques, see also [126]
(classification of a sequence of integers into primes and nonprimes), [120] (for
application of EP technique to the interated prisoner’s dilemma), as well as
[123, 124, 378, 254] for many other applications.

13.2 Genetic programming

Another interesting approach was developed relatively recently by Koza [228],
[231]. Koza suggests that the desired program should evolve itself during the
evolution process. In other words, instead of solving a problem, and instead of
building an evolution program to solve the problem, we should rather search the
space of possible computer programs for the best one (the most fit). Koza devel-
oped a new methodology, named Genetic Programming (GP), which provides
a way to run such a search. A population of executable computer programs is
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created, individual programs compete against each other, weak programs die,
and strong ones reproduce (crossover, mutation)...

There are five major steps in using genetic programming for a particular
problem. These are

e selection of terminals,

e selection of a function,

identification of the evaluation function,

o selection of parameters of the system,

selection of the termination condition.

It is important to note that the structure which undergoes evolution is a
hierarchically structured computer program.! The search space is a hyperspace
of valid programs, which can be viewed as a space of rooted trees. Each tree
is composed of functions and terminals appropriate to the particular problem
domain; the set of all functions and terminals is selected a priori in such a way
that some of the composed trees yield a solution.

For example, two structures e; and e, (Figure 13.3) represent expressions
2z + 2.11 and z - sin(3.28), respectively. A possible offspring e3 (after crossover
of e; and ey) represents z - sin(2z).

PV

\

\QQ

*4./

el

4
Fig. 13.3. Expression e3: an offspring of e; and es. Broken line includes areas being exchanged
during the crossover operation

The initial population is composed of such trees; construction of a (random)
tree is straightforward. The evaluation function assigns a fitness value which
evaluates the performance of a tree (program). The evaluation is based on a
preselected set of test cases; in general, the evaluation function returns the sum
of distances between the correct and obtained results on all test cases. The
selection is proportional; each tree has a probability of being selected to the

!Actually, Koza has chosen LISP’s S-expressions for all his experiments. Currently, how-
ever, there are implementations of GP in C and other programming languages.
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next generation proportional to its fitness. The primary operator is a crossover
that produces two offspring from two selected parents. The crossover creates
offspring by exchanging subtrees between two parents. There are other operators
as well: mutation, permutation, editing, and a define-building-block operation
[228]. For example, a typical mutation selects a node in a tree and generates a
new (random) subtree which originates in the selected node.

In addition to five major steps for building a genetic program for a particular
problem, Koza [232] recently considered the advantages of adding a further
feature: a set of procedures. These procedures are called Automatically Defined
Functions (ADF). It seems that this is an extremely useful concept for genetic
programming techniques, which makes its major contribution in the area of code
reusability. ADFs discover and exploit the regularities, symmetries, similarities,
patterns, and modularities of the problem at hand, and the final genetic program
may call these procedures at different stages of its execution.

Probably it would be a mistake to classify genetic programming as another
version of evolution programming which special chromosomal representation of
individuals. The fact that genetic programming operates on computer programs
has a few interesting aspects. For example, the operators can be viewed also as
programs, which can undergo a separate evolution during the run of the system.
Additionally, a set of functions can consist of several programs which perform
complex tasks; such functions can evolve further during the evolutionary run
(e.g., ADF). Clearly, it is one of the most exciting areas of the current devel-
opment in the evolutionary computation field, and has already accumulated a
significant amount of experimental data (see, for example, apart from {231] and
[232], also [225] and [8)).
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A wise man does not trust
all his eggs to one basket.

Cervantes, Don Quizote

In this book we discussed different strategies, called Evolution Programs, which
might be applied to hard optimization problems and which were based on the
principle of evolution. Evolution programs borrow heavily from genetic algo-
rithms. However, they incorporate problem-specific knowledge by using “natu-
ral” data structures and problem-sensitive “genetic” operators. The basic differ-
ence between GAs and EPs is that the former are classified as weak, problem-
independent, methods, which is not the case for the latter.

The boundary between weak and strong methods is not well defined. Differ-
ent evolution programs can be built which display a varying degree of problem
dependence. For a particular problem P, in general, it is possible to construct
a family of evolution programs EP;, each of which would ‘solve’ the problem
(Figure 14.1). The term ‘solve’ means ‘provide a reasonable solution’, i.e., a so-
lution which need not, of course, be optimal, but is feasible (it satisfies problem
constraints).

The evolution program E Ps (Figure 14.1) is the most problem specific and it
addresses the problem P only. The system E Py will not work for any modified
version of the problem (e.g., after adding a new constraint or after changing
the size of the problem). The next evolution program, EP;, can be applied
to some (relatively small) class of problems, which includes the problem P;
other evolution programs EP; and EP, work on larger domains, whereas EP,
is domain independent and can be applied to any optimization problem.

We have already seen a part of such a hierarchy in various places of the book.
Let us consider a particular 20 x 20 nonlinear transportation problem, P. There
are 400 variables with 20 + 20 = 40 equations (of which 39 are independent).
Additional constraints require that the variables must take nonnegative values.
In principle, it is possible to construct an evolution program, say EPs, which
would solve this particular problem. It might be a genetic algorithm with 39
penalty functions tuned very carefully for these constraints or with decoders
and/or repair algorithms. Any change in the size of the problem (moving from
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Fig. 14.1. A hierarchy of evolution programs

20 x 20 to 20 x 21) or any change in a transportation cost from one source to
one destination would result in a failure of the £ Ps system.

There is also an evolution program, GENETIC-2 (Chapter 9), which can
be applied to any transportation problem. Let us call this system FP;. This
system still belongs to the class of strong methods, since it can be applied only
for nonlinear transportation problems. However, it is much weaker than E P,
since it can handle any transportation problem.

Another evolution program, say EP;, applicable to the problem P, is
GENOCOP (Chapter 7). It optimizes any function with the presence of any
set of linear constraints, which is the case for the transportation problem, P.
Obviously, EP; is a weaker method than EP;. However, it can still be consid-
ered as a relatively strong method, since it can be applied only to numerical
optimization problems with linear constraints. ’

Yet another evolution program (let us call it EP,) can be applied to our
20 x 20 transportation problem, P: an evolution strategy (Chapter 8). Evolu-
tion strategies can be applied to any numerical optimization problem with (not
necessarily linear) inequality constraints. Clearly, the problem P belongs to the
domain of EPs; also, EP; is a weaker method than E Pj, since it handles any
type of inequalities (for the problem P, equalities can be easily replaced by
inequalities using the method discussed in Chapter 7).

We can also construct a general purpose evolution program, EP;, which
might be just a classical genetic algorithm with a standard set of penalty func-
tions; each penalty function would correspond to one of the problem’s con-
straints. The system EP; is domain independent — it can approach any opti-
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mization problem with any set of constraints. For numerical optimization prob-
lems, the constraints may include nonlinear equalities, which makes this system
a weaker method than EP,, which is restricted to inequalities only. Moreover,
EP, can be applied also to other (non-numerical) problems as well. Here we
assume that the program EP, always return a feasible solution. We can en-
force it easily, if the initial population consists of feasible solutions and penalty
functions, decoders, or if repair algorithms keep individuals within the search
space.

Let us denote by dom(EF;) a set of all problems to which the evolution pro-
gram EP; can by applied, i.e., the program returns a feasible solution. Clearly,

dom(EP;) C dom(EPy) C dom(EPs) C dom(EP,) C dom(EP).

Obviously, the above example is by no means complete; it is possible to
create other evolution programs which would fit between EP, and EP,, for
some 1 < ¢ < 4. Of course, there might be also other evolution programs
which overlap with others in the above hierarchy. For example, we can build
systems to optimize transportation problems with the cost functions restricted
to polynomials, or to optimize problems restricted to a convex search space, or
problems with constraints in the form of nonlinear equations. In other words, the
set of evolution programs is partially ordered; we denote the ordering relation by
< with the following meaning: if EF, < EP, then the evolution program EF,
is a weaker method than EF,, i.e., dom(EP,) C dom(EPF,). Referring to our
example of a transportation problem, P, and a hierarchy of evolution programs,
EP;,:

EP, < EP, < EP; < EP, < EP;.

The hypothesis is that if EF, < EF,, then the stronger method, EF,,
should in general perform better than a weaker system, EP,. We do not have
any proof of this hypothesis, of course, since it is based solely on a number of
experiments and the simple intuition that problem-specific knowledge enhances
an algorithm in terms of performance (time and precision) and at the same
time narrows its applicability. We have already seen the better performance of
GENETIC-2 against GENOCOP, and we discussed how GENOCOP outper-
forms classical GA on a particular class of problems. If this hypothesis is true,
GENOCOP should give better results than an evolution program based on evo-
lution strategy for problems with linear constraints, since ES is a weaker method
than GENOCOP. Some other researchers support the above hypothesis; let us
cite from Davis [77):

“It is a truism in the expert system field that domain knowledge
leads to increased performance in optimization, and this truism has
certainly been borne out of my experience applying genetic algo-
rithms to industrial problems. Binary crossover and binary mutation
are knowledge-blind operators. Hence, if we resist adding knowledge
to our genetic algorithms, they are likely to underperform nearly
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any reasonable optimization algorithm that does take into account
such domain knowledge.”

Goldberg [156], [154], provides an additional perspective. Let us quote from
[156]:

“Certainly humans have developed very efficient search procedures
for narrow classes of problems -— genetic algorithms are unlikely
to beat conjugate direction or gradient methods on continuous,
quadratic optimization problems — but this misses the point. [...]
The breadth combined with relative — if not peak — efficiency de-
fines the primary theme of genetic search: robustness.”

We visualize this observation in Figure 14.2, where a (classical) method, @,
works well for a problem, P, and nowhere else, whereas GAs perform reasonably
across the spectrum. (Figure 14.2 is a simplification of similar figures given in
[156] and [154].)

Efficiency

i o
AN

[l
1

Problems P

Fig. 14.2. Efficiency/problem spectrum and GAs

However, in the presence of nontrivial, hard constraints, the performance
of GAs deteriorates quite often. On the other hand, evolution programs, by
incorporating some problem-specific knowledge, may outperform even classical
methods (Figure 14.3).

We should emphasize, again, that most evolution programs presented in
the book do not have much theoretical support. There is neither a Schema
Theorem (as for classical genetic algorithms) nor are there convergence theorems
(as for evolution strategies). It is also important to underline that evolution
programs are generally much slower than other optimization techniques. On
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Fig. 14.3. Efficiency/problem spectrum and EPs

the other hand, their time complexity quite often grows in a linear (or nlogn)
manner together with the problem size — which is not the case for most of the
other techniques. Also, recent work by Nick Radcliff {315, 316, 317] on formal
analysis and properties of genetic operators (e.g., respectful recombinations)
applied to arbitrary data structures, is an important step towards providing
some theoretical justification for evolution programs.

The above discussion was supported recently [261] by a series of experi-
ments. The idea of stronger and weaker evolution programs was tested on one
particular problem P (nonlinear transportation problem) and five evolution
programs EP; (i = 1,...,5). We discuss these experiments in the following
paragraphs.

Let us define a particular nonlinear balanced transportation problem P.
Assume 3 sources and 4 destinations. The supply is:

source(1) = 10, source(2) = 15, and source(3) = 20.

The demand is:
dest(1) = 3, dest(2) = 20, dest(3) = 5, and dest(4) = 17.

The total flow in the problem P is 45. As discussed in Chapter 9, the
optimum solution for the nonlinear transportation problem may contain neither
zeros nor integer values (as it is the case in the linear transportation problem).
For example, for some transportation cost functions f;; the following solution
might be optimal:
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Amount transported

3.0 |20.0 | 5.0 |17.0
10.0 ) 1.34 ] 1.52 ] 0.01]7.13
15.0 |} 1.15 | 10.39 | 0.39 | 3.07
20.0 || 0.51 | 8.09 | 4.60 | 6.80

For our test problem P we have used the same function f for each flow fi;;
a cost-matrix was used to provide variation between flows. The matrix provides
the c;;’s which act to scale the basic function shape.

We adopted the following function f of the flows z;;:

B 0 lf xij = 0,
f(wij) = { d+ ¢+ /Ti; otherwise,

fori=1,2,3,7=1,2,3,4, where d = 5.0, and

C11 = 0.0 Ci2 = 21.0 Ciz = 50.0 Clg = 62.0
ca1 =21.0 ¢y =0.0 3 =17.0 94 =54.0
C31 = 50.0 C3g = 17.0 C3gz = 0.0 C3qg = 60.0.

So the problem P is to minimize
2?:1 2;:1 f(xij))
subject to the following constraints:

Ty + T2+ T3+ 114 = 10
To1 + oo + Toz + T4 = 15
Z31 + T3z + T3 + T34 = 20
Ty +To + 23 =3

Tia+ T + X352 = 20

T3+ T3 +I33 =5

T14 + Tog + T3y = 17,

We solved the above problem P using GAMS (see Chapter 6). The GAMS’
best solution was:

Yo Ty flmy) = 43064,
which was achieved for

I = 3.0 Tip = 0.0 T3 = 0.0 Tig = 7.0
91 = 0.0 I = 5.0 Toz = 0.0 Tgy = 10.0
T3 = 0.0 Tgo = 15.0 T3z = 5.0 T34 = 0.0.

This result would serve us as a convenient reference point in evaluation of
evolution programs presented here. We refer to GAMS as a classical (gradient—
based) method @ for a problem P (see Figure 14.3).
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For a fair comparison of the evolution programs EP; (i = 1,...,5), we set
population size to 70 and the number of generations to 5,000 for all our ex-
periments. Fach experiment was repeated 20 times; all averages for a particular
experiment reported in the following subsections refer to averages obtained from
these 20 runs. It is also important to point out that the presented evolution pro-
grams use different initialization techniques, however, we discuss them little bit
later.

Evolution Program EP,

The weakest evolution program E P, used in the experiments was the GEN-
ESIS 1.2ucsd system! developed by Nicol Schraudolph at the University of Cal-
ifornia, San Diego (the system is based on GENESIS 4.5, a genetic algorithm
package written by John Grefenstette). In principle, one can use such generic
tool to optimize a variety of problems and the dom(EP,) is virtually unlimited.

Let us exercise the usefulness of this evolution program on our test case,
problem P. It is clear that the system will not provide any useful solutions if
constraints are not incorporated by means of penalty functions. For example,
we performed several runs of EP,, defining only a domain for each of the twelve
variables. Here we did not have much choice—the domain for each variable was
selected as a range from zero to the smaller marginal sum for a given row and
column:

0.0 S T < 3.0 0.0 S T < 10.0 0.0 < T3 < 50 0.0 < T4 < 10.0

Obviously, none of the solutions found by the program satisfied constraints of
the problem; a typical output is given below:

T = 2.05 T — 0.00 713 =000 4= 0.00
To1 — 0.00 Tog — 10.65 Toz = 0.00 Toq — 0.00
T3y = 0.00 T39 = 0.00 T3z = 0.00 T34 = 0.00.

As expected, the above nonfeasible solution is without any value for the user. It
can be “improved” even further: a solution z;; = 0.0 forall 1 <4 <3,1<j <4
yields the optimum transportation cost (zero)!

Clearly, it is necessary to incorporate some penalties on constraints. Since
the evolution program E P, should not depend on the problem to be solved, we
experimented only with some standard penalty functions. We have considered
two sets of such penalty functions. The first one (p;’s, moderate penalties) mea-
sures each penalty as a linear function of the violation of the constraint, the
other set (g;’s, high penalties) squares the violation of the constraint. For our
problem P with seven linear equalities, these functions are given below:

'The system was run with the dynamic parameter encoding option (Schraudolph, & Belew,
1992); however, this option did not improve the performance of the system because the pre-
cision was not the issue here. The same comment applies to the evolution program EP;
discussed later.
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P1=cC-|Ty + T+ 213 + T — 10],
P2 = C- |To1 + Ta2 + Toz + Tog — 15|,
P3 = C- |T31 + Ta2 + T3z + T34 — 20},
pa=c: Ty + Ty + T3 — 3|,

D5 = C+|T12 + Tog + T32 — 20|,

Pe = C- 213 + o3 + T3z — 5,
Pr=cC|T1a+ Tos + Tza — 17],

and q; = p?/c (i = 1,...,7). In all experiments we used ¢ = 10.0; for this
number the penalties constitute a significant percentage of the total cost (which,
as indicated by the results of the GAMS system, is around 400). The results of
the experiments were quite interesting.

The following point represents a typical output for experiments with penal-
ties p;:

Iy = 3.00 T = 3.77 T3 = 0.00 T4 = 0.00
Iz = 0.00 Iog = 1.23 I3 = 0.00 T4 = 13.77
I3 = 0.00 T3g = 15.00 33 = 5.00 T34 = 0.00.

The above solution is just ‘typical’: we are unable to provide the best output due
to the fact that it is relatively hard to evaluate the goodness of nonfeasible so-
lutions. To get a feasible solution from a nonfeasible one, we have to make a few
adjustments and the final transportation cost depends on these. For example,
the above solution may be corrected into the following feasible solution:

I = 3.00 T = 3.77 I3 = 0.00 Tya = 3.23
Tl = 0.00 Tog = 1.23 Toz = 0.00 Toqg = 13.77
T3 = 0.00 T3 = 15.00 I3z = 5.00 T34 = 000,

which yields the total transportation cost of 453.43. Of course, some other
corrections yield better or worse transportations costs. (The above correction
was done manually. It was based on a simple observation that the totals of the
first row and the fourth column are smaller than the corresponding marginal
sums by 3.23; hence we added 3.23 to z14).

In the above example, a manual correction of the nonfeasible solution re-
sulted in a respectable value 453.43. However, it is important to stress%hat it
was possible only because of low dimensions of the problem. The process of
finding a ‘good’ correction of a nonfeasible solution for a 20 x 20 transporta-
tion problem might be as difficult as solving the original problem. It seems that
stronger penalties should be used to force the solution into a feasible region.

Indeed, the approach of stronger penalties provided solutions which were
“almost” feasible. The following point represents the best output for experi-
ments with penalties ¢;:

Iy = 3.00 T12 = 6.98 I3 = 0.00 T4 = 0.00
Top = 0.00 Too = 0.00 Toz = 3.06 Tog = 11.93
z31 = 0.00 13, =13.02 x33=193 z34 =5.03.
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The above solution can be transformed easily (manual rounding) into a feasible
solution:

rmn = 3.00 Tyo = 7.00 T3 = 0.00 T14 = 0.00
X9 = 0.00 Ty = 0.00 To3 = 3.00 Tog — 12.00
I3 = 0.00 T3 = 13.00 T3z = 2.00 T34 = 5.00,

which yields 502.53 as the total transportation cost. This cost is worse than
the cost of 453.43 we obtained from the moderate penalties approach, how-
ever, it should be stressed again that the process of finding a ‘good’ correction
in the moderate penalties approach can be quite complex for high dimensional
problems. We can think about this step as & process of solving a new transporta-
tion problem with modified marginal sums (which represent differences between
actual and required totals), where variables, say, 6;;, represent respective correc-
tions to original variables z;;. Thus, in general, stronger penalties provide better
results. At the same time these results are still worse than the results obtained
from the commercial software GAMS (system @ in Figure 14.3). Also, it should
be pointed out that ‘very strong’ penalties do not improve the performance of
the program. In extreme, if we assign zero fitness to individuals which violate
a constraint, very often the system would settle for the first feasible solution
found.

The final (and predictable) conclusion from experiments with EP; is that
the use of penalty functions does not guarantee feasible solutions and that a
‘good’ repair may be expensive.

Evolution Program EP,

As discussed in Chapter 8, evolution strategies assume a set of ¢ > 0 in-
equalities,

91(®) 2 0,....,g(x) 2 0,

as part of the optimization problem. If during some iteration an offspring does
not satisfy all of these constraints, then the offspring is disqualified, i.e., it
is not placed in a new population. If the rate of occurrence of such illegal
offspring is high, the ESs adjust their control parameters, e.g., by decreasing
the components of the vector o

We have used KORR 2.1, Hans-Paul Schwefel and Frank Hoffmeister’s im-
plementation of a (u+A)-ES and (u, A)-ES, as our next evolution program, EP;.
Clearly, evolution strategies are applicable to parameter optimization problems,
hence dom(EP;) C dom(EP,) and consequently, EP, < EP,.

As stated earlier, EP, handles only inequality constraints. Because of that
the problem P was rewritten to eliminate the equalities. As a result the objective
function has only six variables: ¥, y2, y3, y4, s, and ye, and the transportation
problem P is given as:

min f(y1)+f(y2)+f (ys)+F(10.0—y1 —yo—ys) + f (ya) + f (ys )+ f (ye) +
f(15.0 —ya — ys — ve) + f(3.0 =1 —yu) + f(20.0 — 9o — ys)+
F(5.0—ys —we) + f(v1r + Y2+ ¥a+ys + ys +ys — 8.0),
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where

Y1 =, Y2 = Ta2, Y3 = Zy3, Y4 = T2, Y5 = T2, Yo = T23,
and the following eighteen constraints hold:

g1: » >0(ie,z; >0),

g2: y2 >0 (ie., 212 >0),

g93: ys >0 (e, z13>0),

gs: ys >0 (ie., 291 > 0),

g5 Ys Z 0 (i.e., Tag Z 0),

g6 Ys Z 0 (i.e., To3 Z 0),

g7t 100 —y —ya —y3 >0 (Le., z14 2 0),
gs: 15.0—ys—ys— s >0 (ie, 94 >0),
g9 : 3.0 - Y1 —Yq Z 0 (i.e., 31 Z 0),

g0 200 -y —ys >0 (i.e., 232 > 0),

gi1 ¢ 5.0 — Ys — Y Z 0 (i.e., Z33 Z 0),

Gi2: N+ t+ys+yatys+ye—80>0 (ie, 234 > 0),
Gi3: 30—y >0(ie, zy <3),

gua: 10.0—yy 20 (i.e., 212 < 10),

g15 50 — Y3 2 0 (i.e., Z13 S 5),

g6 : 3.0 - Ya Z 0 (i.e., Toy _<_ 3),

917 . 150 - Ys Z 0 (i.e., Tog S 15),

gis ¢ 50— Ye Z 0 (i.e., Zo3 _<_ 5)

The average value of the best transportation cost found (out of 20 indepen-
dent runs) by EP» was 460.75, whereas the best solution found (which yields
the total value of 420.74) was

Ty = 3.00 T = 2.00 T3 = 5.00 T4 = 0.00
Zo1 =0.00 zoo=0.00 1293=0.00 x4 =15.00
Ta1 = 0.00 z3p =18.00 z33 =0.00 z34 = 2.00.

As expected, the results of EP; are better than results from the previous evo-
lution program EP,. An additional point for EP, is that there is no need for
correcting the results to move them into the feasible region. On the other hand
it seems that the performance of E P, depends on a starting point in the®earch
space (which is given by the user). For that reason, it is quite hard to provide
a complete analysis of the system.

Evolution Program EP;

The third evolution program E P; described here is GENOCOP (Chapter
7). Since the GENOCOP (as our evolution program EP;) can handle only
linear constraints, it is clear that dom(EP;) C dom(EP,) and consequently,
EP, < EP;.

The transportation problem P is a problem with m = 12 variables; each
chromosome is coded as a vector of twelve floating point numbers (yi,...,¥12).
Then, the problem P is
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min 32, f(w),
where

N =Tu, Y2=7i12, Y3=7T13, Y4=7Tu4,
Ys = T21, Y6 = T22, Y7 = T23, Yg= Ty,
Yo = Z31, Y10 = T32, Y11 = T33, Y12 = T34,

with six independent linear constraints:

nmt+y2+ys+ys=10
ys+yYs+yr+ys =15
Yo+ yo+yn+y2=20
Y1+ys+yo=3

Y2 + Y5 + y10 =20
Ys+yr+yn=29

(the seventh equation, ys+ys+712 = 10, is unnecessary, as is linearly dependent
on the given six equations); additional linear inequalities are

y >0 fori=1,...,12

We performed 20 runs of GENOCOP. The values of the total transportation
cost varied from 420.74 (the worst case) for the following solution (rounded to
the second digit after the decimal point):

11 = 3.00 T2 = 4.38 13 = 2.62 T4 = 0.00
Ty = 0.00 Tog = 15.00 Toz = 0.00 Toy = 0.00
T3 = 0.00 T3o = 0.62 I3z = 2.38 T3g = 17.00,

to the value of 356.98 (the best case) for a solution:

;1 =300 z1o=700 =z13=000 z,4=0.00
o1 = 0.00 Tog = 13.00 Taz = 2.00 Toy = 0.00
T3 = 0.00 I3 = 0.00 T3z = 3.00 T34 = 17.00.

The average (out of 20 runs) transportation cost returned by the GENOCOP
system was 405.45. Of course, all obtained solutions were feasible. Clearly,
GENOCOP as a more problem-specific system performed much better than
evolution strategies EP;.

Evolution Program EP,

The next evolution program EP; described here is GENETIC-2. As dis-
cussed in Chapter 9, the system was built to optimize any nonlinear transporta-
tion problem, so clearly dom(EP,) C dom(FE P;) and consequently, EPy; < EP;.
In GENETIC-2 a matrix represents a potential solution; appropriate operators
were defined for this representation.

We performed 20 runs of GENETIC-2. The values of the total transporta-
tion cost varied from 397.02 (the worst case) for a solution (rounded to the
second digit after the decimal point):
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Ty = 3.00 o = 5.00 i3 = 0.00 T4 = 2.00
z91 = 0.00 Ty = 15.00 Tog = 0.00 Tog = 0.00
T3 = 0.00 3o = 0.00 T3z = 5.00 T34 — 1500,

to the value of 356.98 (the best case) for a solution:

) = 3.00 T2 = 7.00 i3 = 0.00 T4 = 0.00
91 = 0.00 Loy = 13.00 Ioz = 2.00 Tog = 0.00
31 — 0.00 T3z = 0.00 T33 = 3.00 T34 = 17.00

(the same solution found by GENOCOP). However, the average (again, out
of 20 runs) transportation cost returned from the GENETIC-2 system was
391.65, much better than 405.45 of GENOCOP. Again, all solutions were feasi-
ble. Clearly, GENETIC-2 (EPF,) as a more problem-specific system performed
better than GENOCOP (EP;).

Evolution Program EPF;

The final evolution program E Ps described here is based again on GENESIS
1.2ucsd system, the very same system we used for experiments described earlier.
This time, however, we tried to “tune up” the set of penalty functions to focus
the system just on problem P. Additionally, we eliminated all equations: the
intuition being that it should be easier to maintain inequality than equality
constraints.

So again, the problem P was rewritten as:

min f(y1)+f(y2)+f(ys)+f(10.0=y1—ya—ys)+f (ya)+f (ys)+ f (v6)+
F(15.0 —ya —ys —ys) + f(3.0 — 1 — ya) + f(20.0 — y2 — y5)+
F(5.0 -y —we) + fsn + 12 + ys + ¥a + y5 + s — 8.0),

where i = T11, Y2 = T12, Y3 = T13, Ys = Ta1, Y5 = T22, Y = T23, and

0.0 <y <309,

0.0 <y <100,

0.0 S Y3 < 50a

0.0 < y4 < 3.0

0.0 <ys <15.0,

0.0 <ys <5.0. 'S

The six penalty functions we tried to tune were:

wy-{e1+ 1 + 92 +ys —10.0)2 if 100 -y, —ys —y3 < 0.0

P1=19 00 otherwise
_Jwr(etyatuys+ys— 1500 if 150 —ys—ys — 3 <00

P2 = 0.0 otherwise
_Jws-(es+wm+ya—3.0) if 3.0—y —ya <00

P3=19 0.0 otherwise
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[ wy-(ca+ya +us —20.0)% if 20.0 -y —y5 < 0.0
PA=10 0 otherwise

_ w5-(C5+y;3+y<3—5.0)2 if 50—y3—1ys <0.0
P5=1 0.0 otherwise
we- (cs+8.0—y1 —Yo— Ys — Ys — Ys — Ys)°
Pe = f yi+yp+ys+yat+ys+ys—80<00
0.0 otherwise,

where w;’s and ¢;’s are additional weights.

As usual, all penalties are added to the objective function. After many ex-
periments (during which we increased and decreased the corresponding weights
for constraints which were violated or satisfied, respectively), we arrived at the
following set:

C = 25, w) = 20,
Co = 03, Wy = 1.3,
c3 =5.0, ws=2.5,
ct =5.0, wy=20,
Cy = 02, Wy = 13,
Cg = 01, W = 2.0.

We do not claim, of course, the the above set of weights represents the
optimal configuration: the tuning was done just “by hand”; if some constraint
was not satisfied, we gradually increased the corresponding weights. However,
we can make the following two observations:

e the system EP; with the above weights performs quite well on the problem
P, and

o if we change the problem P by adding another source or destination, or
just by changing the problem specific weights c;;, the evolution program
E Py would not produce meaningful results.

It is clear then that dom(EP;s) C dom(EP,) and consequently, EPy < EP;.

One of the runs of the EPs system gave the following solution:

T = 2.93 192 = 6.91 i3 = 0.16 Ty = 0.00
To) = 0.07 Loz = 13.09 To3 = 1.84 Tog = 0.00
I3 = 0.00 T3o = 0.00 T3z = 3.00 T34 = 17.00.

Note that all constraints are satisfied, and the value of the objective function

is 391.2. The above solution can be manually corrected into the best solution
found by GENOCOP and GENETIC-2:

I = 3.00 Tig = 7.00 T3 = 0.00 T4 = 0.00
To1 = 0.00 Too = 13.00 Toz = 2.00 Toq4 = 0.00
T3 = 0.00 I3g = 0.00 T3z = 300 T34 = 17.00.
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However, the system EP5 found also a solution with a better value than 391.2,
namely 378.25, for the following transportation plan:

Iy = 2.53 Tio = 7.47 13 = 0.00 T4 = 0.00
X9 = 0.47 Tog = 12,53 To3 = 2.00 Ty = 0.00
Ty = 0.00 T30 = 0.00 T33 = 3.00 T34 = 1700,

which is much harder to correct (remember that the optimal solution need
not consist of integers; for example, one of the solutions we obtained from
GENETIC-2 was

13 =300 z2=700 <z3=000 z,4=0.00
To1 = 0.00 Igg = 12.25 T3 = 2.75 Tog4 = 0.00
T3l = 0.00 T3y = 0.75 T3z = 2.25 T34 = 1700,

with the total transportation cost equal to 380.86).

In general, it should be possible to construct a “perfect” evolution program
which is tailored to the problem P. We can add further knowledge to such a
system by incorporating the transportation costs ¢;;, characteristics of six inde-
pendent constraints, possibly with some additional heuristic to modify a feasible
solution. Additional constraints can be added “to guide” the system in a desir-
able direction. However, it should be noted that the difficulty in constructing
such a system grows with the dimensions of the problem, and its usefulness
would be quite limited (to the problem P only).

The experimental results presented earlier confirmed the intuitive hypothesis
that the problem-specific knowledge enhances the performance of the algorithm,
narrowing its applicability.

As mentioned earlier, for a fair comparison of the evolution programs we set
population size to 70 and the number of generations to 5,000 for all our experi-
ments, and all runs were repeated 20 times. However, these evolution programs
used different techniques in their initialization steps. The first evolution pro-
gram EP) generates its population in a way that the individuals need not be
feasible (since the constraints include equations, it would be very surprising if
even one generated individual was feasible). The second evolution program E P,
uses a single (feasible) individual as its starting point; twenty different §nitial
feasible points were generated for these tests. The third program E P; makes
some number (which is a parameter of the system) of attempts to find an ini-
tial feasible individual in the search space. If successful, the initial population
would consist of population_size identical copies of the found individual. If un-
successful, the system would prompt the user for a feasible initial point; the
set of initial feasible points for these runs was the same one as used for EP;.
The fourth program E P, generates and maintains a population of feasible in-
dividuals, whereas EPs (like EP;) generates an initial population of (possibly)
nonfeasible individuals.

In comparing our evolution programs it is important to know about these
differences in initialization techniques; however, the results of our experiments
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indicated that the influence of a particular initialization technique on the system
performance was negligible. This is not surprising: for a highly constrained prob-
lem in general (and for the transportation problem in particular), a ‘feasible’
point in the search space does not mean a ‘good’ point. A heuristic initialization
works only in cases where a user has a good heuristic to incorporate in the sys-
tem (and even then it must be done carefully to avoid premature convergence!).
There was no improvement in EP; or EPs when they were initialized by feasible
individuals unless one feasible individual was really good. The ‘clever’ initial-
ization presented in connection with the evolution program EP; generated a
set of feasible points with average evaluation of 456. This initialization did not
enhance the algorithm: it was simply necessary to start with a feasible popula-
tion, since the operators of F P, just maintain the feasibility. Other programs
(EP, and EP;) used a collection of relatively poor feasible points with fitness
values from the range (493,610) (with the average of 562).

We conclude that the initialization process has not influenced the presented
results.

After these introductory remarks, we are ready to address two practical
issues connected with evolution programming: For a given problem, P,

(1) how weak (or strong) should an evolution program be?
(2) how should we proceed to construct an evolution program?

There are no easy answers for these questions. In the sequel, we provide some
general comments and intuition developed on the basis of various experiments,
mixed with a dose of wishful thinking.

The first question is on optimizing the selection of an evolution program to
be constructed. For a given problem, P, how weak (or strong) should an evolu-
tion program be? In other words, for a given problem, P, should we construct
EP,, or rather EP,? Our hypothesis suggests that incorporation of problem-
specific knowledge gives better results in terms of precision. However, as in-
dicated in the Introduction, the development of a stronger, high-performance
system may take a long time if it involves extensive problem analysis to de-
sign specialized representation, operators, and performance enhancements. On
the other hand, we may have already some standard packages, like Grefen-
stette’s GENESIS, Whitley’s GENITOR, Davis’s OOGA, Schraudolph’s GEN-
ESIS 1.2ucsd, or one of Schwefel’s evolution strategy systems. And if we try to
find an effective binary representation for a given problem, this may result in
little or no software adaptation!

Well, sometimes yes, sometimes no. If one is solving a transportation prob-
lem with hard constraints (i.e., constraints which must be satisfied), there is very
little chance that some standard package would produce any feasible solution,
or, if we start with a population of feasible solutions and force the system to
maintain them, we may get no progress whatsoever — in such cases the system
does not perform better than a random search routine. On the other hand, for
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some other problems such standard packages may produce quite satisfactory re-
sults. In short, the responsibility for making a decision on question (1) lies with
the user; the decision is a function of many factors, which include the demands
of the precision of the required solution, time complexity of the algorithm, cost
of developing a new system, feasibility of the solution found (i.e., importance of
the problem constraints), frequency of using the developed system, and others.

Assume, then, that (for some reason) we have to {or wish to) build a new
system to solve a nontrivial optimization problem. This might be the case when
standard GA packages do not provide acceptable feasible solutions and there
are no computational packages available appropriate for the problem. Then we
have to make a choice: either we can try to construct an evolution program or
we can approach the problem using some traditional (heuristic) methods. It is
interesting to note that in a traditional approach it usually takes three steps to
solve an optimization problem:

1. understand the problem,
2. solve the problem,
3. implement the algorithm found in the previous step.

In the traditional approach, a programmer should solve the problem — only
then may a correct program be produced. However, very often an algorithmic
solution of a problem is not possible, or at least is very hard. On the top of that,
for some applications, it is not important to find the optimal solution — any
solution with a reasonable margin of error (relative distance from the optimum
value) will do. For example, in some transportation problem one may look only
for a good transportation plan — finding the optimal value is not required. In our
experiments some evolution systems which were developed proposed (relatively
quickly) a solution with a value, say, 1109, where the optimum value was 1102.
In such a case (error less than 1%), the approximate solution might be more
desirable.

An evolution programming approach usually eliminates the second, most
difficult step. Just after we understand the problem, we can move to the imple-
mentational issues. The major task of a programmer in constructing an evolu-
tion program is a selection of appropriate data structures as well as “genetic”
operators to operate on them (the rest is left for the evolution process). This
task need not be trivial, since apart from the variety of data structures which
can be used for chromosomal representation, each data structure may provide a
wide selection of genetic operators. This would involve an understanding of the
nature of the problem by a programmer; however, there is no need to solve the
problem first. To construct an evolution program, a programmer would follow
five basic steps:

1. First, (s)he selects a genetic representation of solutions to the problem.
As we have already observed, this requires some understanding of the
nature of the problem. However, there is no need to solve the problem.
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Selected representation of solutions to the problem should be “natural”
and this decision is left to the programmer (note that in the current pro-
gramming environments, programmers select the appropriate data struc-
tures on their own). It seems that this is the most important step, which
influences the remaining components of an evolution program. The rep-
resentation should be able to carry all important information about the
solution; unfortunately, there are no ready guidelines for such selection.
Note that the basic differences between many paradigms of evolutionary
computation concentrate on this issue (binary strings, vectors of floating
point numbers, finite state machines, computer programs, etc.).

2. The second task of a programmer is the creation of an initial population
of solutions. This can be done in many ways (random, output from some
heuristic algorithm, etc.). Some care should be taken in the cases when
a set of problem-specific constraints must be satisfied; often a population
of feasible solutions is accepted as a good starting point of an evolution
program (see next chapter). However, in many cases we do not know any
feasible solution to the problem; sometimes, to repair an infeasible solution
is as hard as to find a feasible one (e.g., heavily constrained timetable
problems).

3. Selection of an evaluation function (which rates solutions in terms of their
fitness) should not pose a serious difficulty for many optimization prob-
lems. However, sometimes this task is far from trivial (see next chapter).

4. The ‘genetic’ operators should be designed carefully — the design should
be based on the problem itself and its constraints. Here, it is essential to
investigate the meaning of the information transmitted by the operators.
If we search only a feasible part of the search space, the operators should
transform a feasible solution(s) into another feasible solution. It is also
possible to use repair algorithms, penalty functions, or other methods (see
next chapter) to handle problem-specific constraints. For many real-world
problems, it is more than helpful to incorporate local search heuristics
into some of the operators.

5. Values for various parameters that the program uses may be provided
by a programmer. However, in the more advanced versions of evolution
programming environments, these may be controlled by a supervisor meta-
process (like one discussed in [169]), whose only task is to tune all parame-
ters. More and more research is directed into self-adaptation of parameters
of evolution programs.

As seen in the above recipe for constructing an evolution program, the gen-
eral idea behind it lies within “natural” data structures and problem-sensitive
“genetic operators”. However, it still might be difficult to build such a system
(for a particular problem) from secratch. An experienced programmer would
manage this task; however, the resulting program might be quite inefficient. To
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assist the user in this task, it might be worthwhile to create a new program-
ming methodology supported by software (special programming languages) and
hardware (parallel computers) — this is where our wishful thinking starts.

Currently, there are a number of different programming methodologies in
computer science: structured programming, logic programming, object-oriented
programming, functional programming. None of these fully support the con-
struction of an evolution program. The goal of the new methodology would be
the creation of appropriate tools for learning (here optimization is understood
as a learning process) using a parallel processor architecture.

We hope to develop this idea to design a programming language PROBIOL
(for PROgramming in BIOLogy) to support an EVA programming environment
(EVA for EVolution progrAmming). An important issue in this methodology is
an implementation of programs to control the evolution of the evolution process
occurring in the “evolution engine” — the evolution engine is represented by a
“society of microprocessors” [296]; some of these issues were briefly discussed in
[204]). The key motivation of the new programming environment is to provide
programming tools based on a parallel architecture. This is significant; as stated
in [6):

“Parallelism is sure to change the way we think about and use com-
puters. It promises to put within our reach solutions to problems
and frontiers of knowledge never dreamed of before. The rich va-
riety of architectures will lead to the discovery of novel and more
efficient solutions to both old and new problems.”



15. Evolution Programs and Heuristics

‘The time has come,” the Walrus said,
“To talk of many things:

Of shoes—and ships—and sealing wax—
Of cabbages—and kings—

And why the sea is boiling hot—

And whether pigs have wings.’

Lewis Carroll, Through the Looking-Glass

As we already discussed in the previous chapters, the best known evolution pro-
grams include genetic algorithms, evolutionary programming, evolution strate-
gies, and genetic programming. There are also many hybrid systems which in-
corporate various features of the above paradigms, and consequently are hard
to classify; anyway, we refer to them just as evolution programs (or evolutionary
algorithms, or evolutionary computation techniques).

As we mentioned a few times in this text, it is generally accepted that any
evolutionary algorithm to solve a problem must have five basic components:

e a genetic representation of solutions to the problem,
e 3 way to create an initial population of solutions,

e an evaluation function (i.e., the environment), rating solutions in terms
of their ‘fitness’,

e ‘genetic’ operators that alter the genetic composition of children during
reproduction, and

e values for the parameters (population size, probabilities of applying ge-
netic operators, etc.).

It is common knowledge that for a successful implementation of an evo-
lutionary technique for a particular real-world problem, the basic components
listed above require some additional heuristics. These heuristic rules apply to
genetic representation of solutions, 1o ‘genetic’ operators that alter their com-
position, to values of various parameters, to methods for creating an initial
population. It seems that one item only from the above list of five basic compo-
nents of the evolutionary algorithm—the evaluation function—usually is taken
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“for granted” and does not require any heuristic modifications. Indeed, in many
cases the process of selection of an evaluation function is straightforward (e.g.,
classical numerical and combinatorial optimization problems). Consequently,
during the last two decades, many difficult functions have been examined; of-
ten they served as test-beds for different selection methods, various operators,
different representations, and so forth. However, the process of selection of an
evaluation function might be quite complex by itself, especially, when we deal
with feasible and infeasible solutions to the problem; several heuristics usu-
ally are incorporated in this process. In this section we examine some of these
heuristics and discuss their merits and drawbacks.

As indicated in the Introduction, all evolution programs have the same
structure (Figure 0.1, Introduction) but there are also many differences between
them (often hidden on a lower level of abstraction). They use different data
structures for their chromosomal representations, consequently, the ‘genetic’
operators are different as well. They may or may not incorporate some other
information (to control the search process) in their genes. There are also other
differences; for example, the two lines of Figure 0.1:

select P(t) from P(t —1)
alter P(¢)

can appear in the reverse order: in evolution strategies first the population is al-
tered and later a new population is formed by a selection process. Moreover, even
within a particular technique, say, within genetic algorithms, there are many
flavors and twists. For example, there are many methods for selecting individ-
uals for survival and reproduction. As discussed in Chapter 4, these methods
include (1) proportional selection, where the probability of selection is propor-
tional to the individual’s fitness, (2) ranking methods, where all individuals in
a population are sorted from the best to the worst and probabilities of their se-
lection are fixed for the whole evolution process,! and (3) tournament selection,
where some number of individuals (usually two) compete for selection to the
next generation: this competition (tournament) step is repeated population-size
number of times. Within each of these categories there are further important
details. Proportional selection may require the use of scaling windows or trun-
cation methods, there are different ways for allocating probabilities in ranking
methods (linear, nonlinear distributions), the size of a tournament plays a sig-
nificant role in tournament selection methods. It is also important to decide on
a generational policy. For example, it is possible to replace the whole popula-
tion by a population of offspring, or it is possible to select the best individuals
from two populations (population of parents and population of offspring)—this
selection can be done in a deterministic or nondeterministic way. It is also
possible to produce few (in particular, a single) offspring, which replace some

IFor example, the probability of selection of the best individual is always 0.15 regardless
its precise evaluation; the probability of selection of the second best individual is always 0.14,
etc. The only requirements are that better individuals have larger probabilities and the total
of these probabilities equals to one.
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{the worst?) individuals (systems based on such a generational policy are called
‘steady state’). Also, one can use an ‘elitist’ model which keeps the best indi-
vidual from one generation to the next?; such a model is very helpful for solving
many kinds of optimization problems. Recently, Ronald [333] experimented with
an extension of a selection process by allowing fit individuals to choose their
mates (so called selection-seduction approach). In this approach, individuals
are still selected on the basis of their fitness, however, at the time of breeding
an individual is allowed to select its mate on the basis of its own preferences
(these preferences are formulated in terms of phenotypic characteristics and can
constitute a part of the phenotype).

For a particular chromosomal representation there is a variety of differ-
ent genetic operators. In this text we considered various types of mutation; in
some of these types the probability of mutation depends on generation number
and/or location of a bit. As indicated in Chapters 10 and 11, many ‘mutation’
operators incorporate some heuristic local-search algorithm to enhance the per-
formance of the evolutionary algorithm. Also, apart from 1-point crossover, we
have 2-point, 3-point, etc. crossovers, which exchange an appropriate number of
segments between parent chromosomes, as well as ‘uniform crossover’, which ex-
changes single genes from both parents. When a chromosome is a permutation of
integer numbers 1,. .., n, there are also many ways to mutate such chromosome
and crossover two chromosomes (e.g., PMX, OX, CX, ER, EER crossovers).?
Recently, Bui and Moon [56] formally generalized linear-string crossovers to
n-dimensional binary encodings.

The variety of structures, operators, selection methods, etc. indicate clearly
that some versions of evolutionary algorithms perform better than other versions
on particular problems; many comparisons of different sort have been reported
in the literature (e.g., evolutionary strategies versus genetic algorithms, 1-point
crossover versus 2-point crossover versus uniform crossover, etc.) As a result, in
building a successful evolutionary algorithm for a particular problem (or class
of problems) the user uses ‘common knowledge’: a set of heuristic rules which
emerged during the last two decades as a summary of countless experiments
with various systems and various problems. The next section describes briefly
some heuristics for selecting appropriate components of an evolutionary algo-
rithm, whereas section 15.3 provides a detailed discussion of heuristics used for
evaluating an individual in a population.

15.1 Techniques and heuristics: a summary

The data structure used for a particular problem and a set of ‘genetic’ operators
constitute the most essential components of any evolutionary algorithm. For

2This means that if the best individual from a current generation is lost due to selection
or genetic operators, the system forces it into the next generation anyway.

3In most cases, crossover involves just two parents; however, this need not be s0; see
Chapter 4.
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example, the original genetic algorithms devised to model adaptation processes
mainly operated on binary strings and used a recombination operator with
mutation as a background operator. Mutation flips a bit in a chromosome and
crossover exchanges genetic material between two parents: if the parents are
represented by five-bits strings, say (0,0,0,0,0) and (1,1,1,1,1), crossing the
vectors after the second component would produce the offspring (0,0,1,1,1)
and (1,1,0,0,0).

Evolution strategies were developed as a method to solve parameter opti-
mization problems; consequently, a chromosome represents an individual as a
pair of float-valued vectors, i.e., v = (z, o). Here, the first vector « represents a
point in the search space; the second vector e is a vector of standard deviations:
mutations are realized by replacing v by (x', o), where

o’ = o - V02 gnd
z'=x+ N(0,0"),

where N(0,0) is a vector of independent random Gaussian numbers with a
mean of zero and standard deviations o and Ao is a parameter of the method.

The original evolutionary programming techniques aimed at evolution of
artificial intelligence and finite state machines were selected as a chromosomal
representation of individuals. Offspring (new FSMs) are created by random mu-
tations of parent population. There are five possible mutation operators: change
of an output symbol, change of a state transition, addition of a state, deletion
of a state, and change of the initial state (with some additional constraints on
the minimum and maximum number of states).

Genetic programming techniques provide a way to run a search of the space
of possible computer programs for the best one (the most fit).

Many researchers further modified evolutionary algorithms by ‘adding’
problem-specific knowledge to the algorithm. Several papers have discussed
initialization techniques, different representations, decoding techniques (map-
ping from genetic representations to ‘phenotypic’ representations), and the use
of heuristics for genetic operators. Such hybrid/nonstandard systems enjoy a
significant popularity in the evolutionary computation community. Very often
these systems, extended by the problem-specific knowledge, outperform other
classical evolutionary methods as well as other standard techniques (as discussed
in the previous chapter).

There are few heuristics to guide a user in selection of appropriate data
structures and operators for a particular problem. It is common knowledge that
for numerical optimization problem one should use an evolutionary strategy? or
genetic algorithm with floating point representation, whereas some versions of
genetic algorithms would be best to handle combinatorial optimization prob-
lems. Genetic programs are great in discovery of rules given as a computer
program, and evolutionary programming techniques can be used successfully
to model the behavior of a system (e.g., the prisoner’s dilemma problem, see

4Evolutionary programming techniques have been generalized also to handle numerical
optimization problems, see [117].
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[120]). An additional popular heuristic in applying evolutionary algorithms to
real-world problems is based on modifying the algorithm by the problem-specific
knowledge; this problem-specific knowledge is incorporated in chromosomal data
structures and specialized genetic operators For example, a system GENETIC-2
(Chapter 9) constructed for the nonlinear transportation problem used a matrix
representation for its chromosomes, a problem-specific mutation (main opera-
tor, used with probability 0.4) and arithmetical crossover {background operator,
used with probability 0.05). It is hard to classify this system: it is not really
a genetic algorithm, since it can run with mutation operator only without any
significant decrease of quality of results. Moreover, all matrix entries are float-
ing point numbers. It is not an evolution strategy, since it did not encode any
control parameters in its chromosomal structures. Clearly, it has nothing to do
with genetic programming or evolutionary programming approaches. It is just
an evolutionary technique aimed at a particular problem.

Another possibility is based on hybridization; this technique [78] incorpo-
rates existing algorithms to enhance the results of the evolutionary system. This
can be done by using the output of other algorithms to seed the initial popula-
tion of evolutionary system, by incorporating some local search operators into
‘genetic’ operators, or by ‘borrowing’ some encoding strategy.

Some of these ideas were embodied earlier in the evolutionary procedure
called scatter search (Chapter 8). The process generates initial populations by
screening good solutions produced by heuristics. The points used as parents
are then joined by linear combinations with context-dependent weights, where
such combinations may apply to multiple parents simultaneously. The linear
combination operators are further modified by adaptive rounding processes to
handle components required to take discrete values. (The vectors operated on
may contain both real and integer components, as opposed to strictly binary
components.) Finally, preferred outcomes are selected and again subjected to
heuristics, whereupon the process repeats. The approach has been found useful
for mixed integer and combinatorial optimization.

There are a few heuristics available for creating an initial population: one
can start from a randomly created population, or use an output from some
deterministic algorithm to initialize it (with many other possibilities in between
these extremes). There are also some general heuristic rules for determining
values for the various parameters; for many genetic algorithms applications,
population size stays between 50 and 100, probability of crossover—between
0.65 and 1.00, and probability of mutation—between 0.001 and 0.01. Additional
heuristic rules are often used to vary the population size or probabilities of
operators during the evolution process.

It seems that neither of the evolutionary techniques is perfect (or even
robust) across the problem spectrum; only the whole family of algorithms based
on evolutionary computation concepts (i.e., evolutionary algorithms) have this
property of robustness. But the main key to successful applications is in heuristic
methods which are mixed skillfully with evolutionary techniques.
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15.2 Feasible and infeasible solutions

In evolutionary computation methods the evaluation function serves as the only
link between the problem and the algorithm. The evaluation function rates
individuals in the population: better individuals have better chances for survival
and reproduction. Hence it is essential to define an evaluation function which
characterize the problem in a ‘perfect way’. In particular, the issue of handling
feasible and infeasible individuals should be addressed very carefully: very often
a population contains infeasible individuals but we search for a feasible optimal.
Finding a proper evaluation measure for feasible and infeasible individuals is of
great importance; it directly influences the outcome (success or failure) of the
algorithm.

The issue of processing infeasible individuals is very important for solving
constrained optimization problems using evolutionary techniques. For exampie,
in continuous domains, the general nonlinear programming problem?® is to find
x so as to

optimize f(z), = (%1,...,%n) € R,

where £ € F C S. The set S C R" defines the search space and the set 7 C §
defines a feasible search space. Usually, the search space S is defined as a n-
dimensional rectangle in R™ (domains of variables defined by their lower and
upper bounds):

I6) <z <ufi), 1<i<n,

whereas the feasible set JF is defined by an intersection of S and a set of addi-
tional m > 0 constraints:

9i(®) <0,for j=1,...,q,and hj(z) =0, for j=q+1,...,m.

Most research on applications of evolutionary computation techniques to
nonlinear programming problems was concerned with complex objective func-
tions with F = S. Several test functions used by various researchers during the
last 20 years consider only domains of n variables; this was the case with five
test functions F1-F5 proposed by De Jong [82], as well as with many other test
cases proposed since then.

In discrete domains the problem of constraints was acknowledged much ear-
lier. The knapsack problem, set covering problem, and all types of scheduling
and timetabling problems are constrained. Several heuristic methods emerged
to handle constraints; however, these methods have not been studied in a sys-
tematic way.

In general, a search space S consists of two disjoint subsets of feasible and
infeasible subspaces, F and U, respectively (see Figure 15.1). We do not make
any assumptions about these subspaces; in particular, they need not be convex
and they need not be connected (e.g., as is the case in the example in Figure 15.1

5We consider here only continuous variables.
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Fig.15.1. A search space and its feasible and infeasible parts

where the feasible part F of the search space consists of four disjoined subsets).
In solving optimization problems we search for a feasible optimum. During the
search process we have to deal with various feasible and infeasible individuals;
for example (see Figure 15.2), at some stage of the evolution process, a popu-
lation may contain some feasible (b, c, d, e, i, j, k, p) and infeasible individuals
(a, f, g, h, |, m, n, o), while the (global) optimum solution is marked by ‘X’.

Fig. 15.2. A population of 16 individuals, a - o

The presence of feasible and infeasible individuals in the population influ-
ences other parts of the evolutionary algorithm; for example, should the elitist
selection method consider a possibility of preserving the best feasible individual,
or just the best individual overall? Further, some operators might be applicable
to feasible individuals only. However, the major aspect of such a scenario is the
need for evaluation of feasible and infeasible individuals. The problem of how
to evaluate individuals in the population is far from trivial. In general, we have
to design two evaluation functions, evaly and eval,, for feasible and infeasible
domains, respectively. There are many important questions to be addressed (we
discuss them in detail in the next section):



314 15. Evolution Programs and Heuristics

A. How should two feasible individuals be compared, e.g., ‘¢’ and ‘j’ from Fig-
ure 15.27 In other words, how should the function eval; be designed?

B. How should two infeasible individuals be compared, e.g., ‘a’ and ‘n’? In other
words, how should the function eval, be designed?

C. How are the functions eval; and eval, related to each other? Should we
assume, for example, that eval;(s) > eval,(r) for any s € F and any r € U (the
symbol > is interpreted as ‘is better than’, i.e., ‘greater than’ for maximization
and ‘smaller than’ for minimization problems)?

D. Should we consider infeasible individuals harmful and eliminate them from
the population?

E. Should we ‘repair’ infeasible solutions by moving them into the closest point
of the feasible space (e.g., the repaired version of ‘m’ might be the optimum
‘X", Figure 15.2)?

F. If we repair infeasible individuals, should we replace an infeasible individ-
ual by its repaired version in the population or rather should we use a repair
procedure for evaluation purpose only?

G. Since our aim is to find a feasible optimum solution, should we choose to
penalize infeasible individuals?

H. Should we start with initial population of feasible individuals and maintain
the feasibility of offspring by using specialized operators?

1. Should we change the topology of the search space by using decoders?

J. Should we extract a set of constraints which define the feasible search space
and process individuals and constraints separately?

K. Should we concentrate on searching for a boundary between feasible and
infeasible parts of the search space?

L. How do we find a feasible solution?

Several trends for handling infeasible solutions have emerged in the area
of evolutionary computation. We discussed some of them in Chapter 7 in the
context of numerical optimization; here we discuss them using examples from
discrete and continuous domains.

15.3 Heuristics for evaluating individuals

In this section we discuss several methods for handling feasible and infeasible
solutions in a population; most of these methods emerged quite recently. Only
a few years ago Richardson et al. {332] claimed: “Attempts to apply GA’s with
constrained optimization problems follow two different paradigms (1) modifica-
tion of the genetic operators; and (2) penalizing strings which fail to satisfy all
the constraints.” This is no longer the case as a variety of heuristics have been
proposed. Even the category of penalty functions consists of several methods



15.3 Heuristics for evaluating individuals 315

which differ in many important details on how the penalty function is designed
and applied to infeasible solutions. Other methods maintain the feasibility of
the individuals in the population by means of specialized operators or decoders,
impose a restriction that any feasible solution is ‘better’ than any infeasible
solution, consider constraints one at a time in a particular linear order, repair
infeasible solutions, use multiobjective optimization techniques, are based on
cultural algorithms, or rate solutions using a particular co-evolutionary model.
We discuss these techniques in turn by addressing questions A — L from the
previous section.

A. Design of eval;

This is usually the easiest issue: for most optimization problems, the evaluation
function f for feasible solutions is given. This is the case for numerical optimiza-
tion problems and for most operations research problems (knapsack problems,
traveling salesman problems, set covering problems, etc.) However, for some
problems the selection of an evaluation function might be far from trivial. For
example, in building an evolutionary system to control a mobile robot (Chapter
11) there is a need to evaluate a robot’s paths. It is unclear whether path #1 or
path #2 (Figure 15.3) should have better evaluation (taking into account their
total distance, clearance from obstacles, and smoothness): path #1 is shorter,
but path #2 is smoother. For such problems there is a need for some heuristic
measures to be incorporated into the evaluation function. Note that even the
subtask of measuring the smoothness or clearance of a path is not simple.

Fig.15.3. Paths in an environment

This is also the case in many design problems, where there are no clear
formulae for comparing two feasible designs. Clearly, some problem-dependent
heuristics are necessary in such cases, which should provide a numerical measure
evaly(z) of a feasible individual .

One of the best examples to illustrate the problem of the need to evaluate
feasible individuals is the satisfiability (SAT) problem. For a given conjunctive
normal form formula, say
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F(JI)=(£E1 V$_2VI3)/\(TTVJS_3)/\(CC2V$3),

it is hard to compare two feasible individuals p = (0,0,0) and ¢ = (1,0,0)
(in both cases F(p) = F(q) = 0). De Jong and Spears [90] examined a few
possibilities. For example, it is possible to define eval, to be a ratio of the
number of conjuncts which evaluate to true; in that case

evaly(p) = 0.666 and eval;(g) = 0.333.

It is also possible [305] to change the Boolean variables z; into floating point
numbers y; and to assign:

eval;(y) = [y — 1ly2 + Ulys — 1| + y1 + L|ys + 1] + |y — 1[lys — 1]
or

evali(y) = (y1 — 1% (32 + 1)%(ys — 1)* + (1 + 1)*(y3 + 1)*+
(2 — 1)*(ys — 1)*.

In the above cases the solution to the SAT problem corresponds to a set of global
minimum points of the objective function: the true value of F(z) is equivalent
to the global minimum value 0 of eval,(y).

Let us also cite from [109], where the author rejected the idea of constructing
a straightforward eval; for the bin packing problem (BBP):

“Let’s us define a suitable cost function for the BPP. The objective
being to find the minimum number of bins required, the first cost
function that comes to mind is simply the number of bins used to
‘pack’ all the objects. This is correct from a strictly mathematical
point of view, but it is unusable in practice. Indeed, such a cost
function leads to an extremely unfriendly landscape of the search
space: a very small number of optimal points in the space are lost in
an exponential number of points where this purported cost function
is just one unit above the optimum. Worse, those slightly suboptimal
points yield the same cost. The trouble is that such a cost function
lacks any capacity of guiding an algorithm in the search, making the
problem a ‘needle in a haystack’.

We thus settled for the following cost function for the BPP [...]:

maximize
fonn — ZEA(R/C)
BPP N >

with N being the number of bins actually used in the solution being

evaluated, F; the sum of sizes of the objects in (the fill of) the bin
1, C is the bin capacity, k£ a constant, k£ > 1.

The constant k expresses our concentration on the ‘extremist’ bins
in comparison to the less filled ones. The larger % is, the more we
prefer well-filled ‘elite’ groups as opposed to a collection of about
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equally filled bins. In fact, the value of k gives us the possibility to
vary the ‘ruggedness’ of the function to optimize, from the ‘needle in
a haystack’ (k =1, fgpp = 1/N) up to the ‘best-filled bin’ (k¥ — oo,
fepp — maxi[(F}/C)k]).”

Clearly, the problem of selecting “perfect” evaly is far from trivial.

There is also another possibility: in some cases we do not need to define the
evaluation function eval; at alll This function is necessary only if the evolu-
tionary algorithm uses proportional selection (see Chapter 4). For other types
of selection routines it is possible to establish only a linear ordering relation on
individuals in the population. If a linear ordering relation p handles decisions of
the type “is a feasible individual z better than a feasible individual 4?”,% then
such a relation p is sufficient for tournament and ranking selections methods,
which require either a selection of the best individual out of some number of
individuals, or linear ordering of all individuals, respectively.

Of course, it might be necessary to use some heuristics to build such a linear
ordering relation p. For example, for multi-objective optimization problems it
is relatively easy to establish a partial ordering between individual solutions;
additional heuristics might be necessary to order individuals which are not
comparable by the partial relation.

In summary, it seems that tournament and ranking selections give some ad-
ditional flexibility to the user: sometimes it is easier to compare two solutions
than to provide their evaluation values as numbers. However, in these methods
it is necessary to resolve additional problems of comparing two infeasible indi-
viduals (see part B) as well as comparing feasible and infeasible individuals (see
part C).

B. Design of eval,

This is a quite hard problem. We can avoid it altogether by rejecting infeasi-
ble individuals (see part D). Sometimes it is possible to extend the domain of
function evaly to handle infeasible individuals, i.e., eval,{z) = eval;(z) £ Q(x),
where Q(x) represents either a penalty for infeasible individual z, or a cost for
repairing such an individual (see part G). Another option is to design a separate
evaluation function eval,, independent of evaly, but in a such case we have to
establish some relationship between these two functions (see part C).

It is difficult to evaluate infeasible individuals. This is the case for the knap-
sack problem, where the amount of violation of capacity need not be a good
measure of the individual’s ‘fitness’ (see part G). This is also the case for many
scheduling and timetable problems as well as the path planning problem: it is
unclear whether path #1 or path #2 is better (Figure 15.4), since path #2
has more intersection points with obstacles and is longer than path #1; on the
other hand most infeasible paths are “worse” using the above criteria than the
straight line (path #1).

SThe statement p(z,y) is interpreted as z is better than y, for feasible x and y.
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path #1

path #2

Fig. 15.4. Infeasible paths in an environment

As was the case with feasible solutions {part A}, it is possible to develop
an ordering relation for infeasible individuals (as opposed the construction of
evaly); in both cases it is necessary to establish a relationship between evalua-
tions of feasible and infeasible individuals (part C).

C. Relationship between eval; and eval,

Assume that we process both feasible and infeasible individuals in the popu-
lation and that we evaluate them using two evaluation functions, eval; and
evaly, respectively. In other words, evaluations of a feasible individual z and
infeasible individual y are evals(z) and eval,(y), respectively. Now it is of great
importance to establish a relationship between these two evaluation functions.

One possibility (as mentioned already in part B) is to design eval, by means
of evaly, i.e., evaly(y) = eval;(y) £Q(y), where Q(y) represents either a penalty
for infeasible individual ¥, or a cost for repairing such an individual (we discuss
this option in part G).

Another possibility is as follows, We can construct a global evaluation func-
tion eval as

| @ -evalg(p) if peF
eval(p) = { g2 - eval,(p) if pelU.

In other words, two weights, g; and g, are used to scale the relative importance
of evaly and eval,.

Both above methods allow infeasible individuals to be “better” than feasi-
ble individuals. In general, it is possible to have a feasible individual z and an
infeasible one, y, such that eval(y) > eval(x).” This may lead the algorithm
to converge to an infeasible solution; it is why several researchers experimented
with dynamic penalties @ (see part G) which increase pressure on infeasible

"The symbol > is interpreted as ‘is better than’, i.e., ‘greater than’ for maximization and
‘smaller than’ for minimization problems.
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individuals with respect to the current state of the search. An additional weak-
ness of these methods lies in their problem dependence; often the problem of
selecting Q(z) (or weights q; and g) is almost as difficult as solving the original
problem.

On the other hand, some researchers [312, 279] reported good results of their
evolutionary algorithms, which worked under the assumption that any feasible
individual was better than any infeasible one. Powell and Skolnick [312] applied
this heuristic rule for numerical optimization problems (see Chapter 7): evalua-
tions of feasible solutions were mapped into the interval (—oo, 1) and infeasible
solutions into the interval (1, c0) (for minimization problems). Michalewicz and
Xiao [279] experimented with the path planning problem (Chapter 11) and
used two separate evaluation functions for feasible and infeasible individuals.
The values of eval, were increased (i.e., made less attractive) by adding such
a constant, so that the best infeasible individual was worse that the worst fea-
sible one. However, it is not clear whether this should always be the case. In
particular, it is doubtful whether the feasible individual ‘b’ (Figure 15.2) should
have higher evaluation than infeasible individual ‘m’, which is “just next” to
the optimal solution. A similar example can be drawn from the path planning
problem: it is unclear whether a feasible path #2 (see Figure 15.5) deserves
better evaluation than infeasible path #1!

Fig. 15.5. Infeasible and feasible paths in an environment

The issue of establishing a relationship between evaluation functions for
feasible and infeasible individuals is one of the most challenging problems to
resolve while applying an evolutionary algorithm to a particular problem.

D. Rejection of infeasible individuals

This “death penalty” heuristic is a popular option in many evolutionary tech-
niques (e.g., evolution strategies). Note that rejection of infeasible individuals
offers a few simplifications of the algorithm: for example, there is no need to
design eval, and to compare it with eval;.
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The method of eliminating infeasible solutions from a population may work
reasonably well when the feasible search space is convex and it constitutes a
reasonable part of the whole search space {e.g., evolution strategies do not allow
equality constraints since with such constraints the ratio between the sizes of
feasible and infeasible search spaces is zero). Otherwise such an approach has
serious limitations. For example, for many search problems where the initial
population consists of infeasible individuals only, it might be essential to improve
them (as opposed to rejecting them). Moreover, quite often the system can reach
the optimum solution more easily if it is possible to “cross” an infeasible region
(especially in non-convex feasible search spaces).

E. Repair of infeasible individuals

Repair algorithms enjoy a particular popularity in the evolutionary computa-
tion community: for many combinatorial optimization problems (e.g., traveling
salesman problem, knapsack problem, set covering problem, etc.) it is relatively
easy to ‘repair’ an infeasible individual. Such a repaired version can be used
either for evaluation only, i.e.,

eval,(y) = evaly(x),

where z is a repaired (i.e., feasible) version of y, or it can also replace (with
some probability) the original individual in the population (see part F). Note,
that the repaired version of solution ‘m’ (Figure 15.2) might be the optimum
‘X

The process of repairing infeasible individuals is related to a combination
of learning and evolution (so-called Baldwin effect [399]). Learning (as local
search in general, and local search for the closest feasible solution, in particular)
and evolution interact with each other: the fitness value of the improvement is
transferred to the individual. In that way a local search is analogous to learning
that occurs during one generation of a particular string.

The weakness of these methods is in their problem dependence. For each
particular problem & specific repair algorithm should be designed. Moreover,
there are no standard heuristics on design of such algorithms: usually it is pos-
sible to use a greedy repair, random repair, or any other heuristic which would
guide the repair process. Also, for some problems the process of repairing infea-
sible individuals might be as complex as solving the original problem. This is the
case for the nonlinear transportation problem, most scheduling and timetable
problems, and many others. On the other hand, the GENOCOP III system
{Chapter 7) for constrained numerical optimization (nonlinear constraints) is
based on repair algorithms.

F. Replacement of individuals by their repaired versions

The question of replacing repaired individuals is related to so-called Lamarckian
evolution [399], which assumes that an individual improves during its lifetime
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and that the resulting improvements are coded back into the chromosome. As
stated in [399]:

“Our analytical and empirical results indicate that Lamarckian
strategies are often an extremely fast form of search. However, func-
tions exist where both the simple genetic algorithm without learning
and the Lamarckian strategy used [...] converge to local optima while
the simple genetic algorithm exploiting the Baldwin effect converges
to a global optimum.”

This is why it is necessary to use the replacement strategy very carefully.

As discussed in section 4.5.2, Orvosh and Davis reported a so-called 5%-rule,
which states that in many combinatorial optimization problems, an evolution-
ary computation technique with a repair algorithm provides the best results
when 5% of repaired individuals replace their infeasible originals. In continu-
ous domains, a new replacement rule is emerging. The GENOCOP III system
(Chapter 7) for numerical optimization problems with nonlinear constraints is
based on a repair approach. The first experiments (based on 10 test cases which
have various numbers of variables, constraints, types of constraints, numbers of
active constraints at the optimum, etc.) indicate that the 15% replacement rule
is a clear winner: the results of the system are much better than with either
lower or higher values of the replacement rate.

At present, it seems that the ‘optimal’ probability of replacement is problem-
dependent and it may change over the evolution process as well. Further research
is required for comparing different heuristics for setting this parameter, which
is of great importance for all repair-based methods.

G. Penalizing infeasible individuals

This is the most common approach in the genetic algorithms community. The
domain of function evaly is extended; the approach assumes that

eval,(p) = eval(p) £ Q(p),

where ()(p) represents either a penalty for infeasible individual p, or a cost for
repairing such an individual. The major question is, how should such a penalty
function Q(p) be designed? The intuition is simple: the penalty should be kept as
low as possible, just above the limit below which infeasible solutions are optimal
(so-called minimal penalty rule [239]. However, it is difficult to implement this
rule effectively.

The relationship between infeasible individual ‘p’ and the feasible part F
of the search space S plays a significant role in penalizing such individuals: an
individual might be penalized just for being infeasible, the ‘amount’ of its infea-
sibility is measured to determine the penalty value, or the effort of ‘repairing’
the individual might be taken into account. For example, for the knapsack prob-
lem with capacity 99 we may have two infeasible solutions yielding the same
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profit, where the total weight of all items taken is 100 and 105, respectively.
However, it is difficult to argue that the first individual with the total weight
100 is ‘better’ than the other one with the total weight 105, despite the fact
that for this individual the violation of the capacity constraint is much smaller
than for the other one. The reason is that the first solution may involve 5 items
of the weight 20 each, and the second solution may contain (among other items)
an item of a low profit and weight 6—removal of this item would yield a feasible
solution, possibly much better than any repaired version of the first individual.
However, in such cases a penalty function should consider the “easiness of re-
pairing” an individual as well as the quality of its repaired version; designing
such penalty functions is problem-dependent and, in general, quite hard.

In Chapter 7 we discussed many methods based on penalty functions; these
include static methods [195], dynamic methods [210, 267}, and adaptive methods
(360, 27]. Also, in Chapter 7, we discussed segregated genetic algorithms [239],
where low and high penalties are applied to two populations, which are run “in
parallel”.

It seems that the appropriate choice of the penalty method may depend on
(1) the ratio between sizes of the feasible and the whole search space, (2) the
topological properties of the feasible search space, (3) the type of the objective
function, (4) the number of variables, (5) number of constraints, (6) types of
constraints, and (7) number of active constraints at the optimum. Thus the use
of penalty functions is not trivial and only some partial analysis of their proper-
ties is available. Also, a promising direction for applying penalty functions is the
use of self-adaptive penalties: penalty factors can be incorporated in the chro-
mosome structures in a similar way as some control parameters are represented
in the structures of evolution strategies and evolutionary programming.

H. Maintaining feasible population by special representations and
genetic operators

It seems that one of the most reasonable heuristics for dealing with the issue
of feasibility is to use specialized representations and operators to maintain the
feasibility of individuals in the population. This was the original idea behind
this text, which was reflected in its title.

During the last decade several specialized systems were developed for partic-
ular optimization problems; these systems use a unique chromosomal represen-
tations and specialized ‘genetic’ operators which alter their composition. Some
such systems were described in [78]; many other examples are described in this
text. For example, GENOCOP system (Chapter 7} assumes linear constraints
only and a feasible starting point (or feasible initial population). A closed set
of operators maintains feasibility of solutions. For example, when a particular
component z; of a solution vector & is mutated, the system determines its cur-
rent domain dom(z;) (which is a function of linear constraints and remaining
values of the solution vector ) and the new value of z; is taken from this do-
main (either with flat probability distribution for uniform mutation, or other
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probability distributions for non-uniform and boundary mutations). In any case
the offspring solution vector is always feasible. Similarly, arithmetic crossover

az + (1 —a)Y

of two feasible solution vectors & and y yields always a feasible solution (for
0 < a < 1) in convex search spaces (the system assumes linear constraints only
which imply convexity of the feasible search space F). Consequently, there is no
need to define the function eval,; the function eval; is (as usual) the objective
function f.

Very often such systems are much more reliable than any other evolution-
ary techniques based on a penalty approach (e.g., Chapter 14), consequently,
this is a quite popular trend. Many practitioners use problem-specific repre-
sentations and specialized operators in building very successful evolutionary
algorithms in many areas; these include numerical optimization, machine learn-
ing, optimal control, cognitive modeling, classic operations research problems
(traveling salesman problem, knapsack problems, transportation problems, as-
signment problems, bin packing, scheduling, partitioning, etc.), engineering de-
sign, system integration, iterated games, robotics, signal processing, and many
others.

Also, it is interesting to note that original evolutionary programming tech-
niques [126] and genetic programming techniques [231] fall into this category
of evolutionary algorithms: these techniques maintain feasibility of finite state
machines or hierarchically structured programs by means of specialized repre-
sentations and operators.

I. Use of decoders

Decoders offer an interesting option for all practitioners of evolutionary tech-
niques. In these techniques a chromosome “gives instructions” on how to build
a feasible solution. For example, a sequence of items for the knapsack problem
can be interpreted as: “take an item if possible”—such interpretation would
lead always to feasible solutions. Let us consider the following scenario: we try
to solve the 0-1 knapsack problem with 7 items; the profit and weight of the
i-th item are p; and wy;, respectively. We can sort all items in decreasing order
of p;/w;’s and interpret the binary string

(1100110001001110101001010111010101...0010)

in the following way: take the first item from the list (i.e., item with the largest
ratio profit per weight) if the item fits in the knapsack. Continue with second,
fifth, sixth, tenth, etc. items from the sorted list, until the knapsack is full or
there are no more items available. Note that the sequence of all 1’s corresponds
to a greedy solution. Any sequence of bits would translate into a feasible so-
lution, every feasible solution may have many possible codes. We can apply
classical binary operators (crossover and mutation): any offspring is clearly fea-
sible.
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However, it is important to point out that several factors should be taken
into account while using decoders. Each decoder imposes a relationship T be-
tween a feasible solution and decoded solution (see Figure 15.6).

@ ) ®)

Fig. 15.6. Transformation T between solutions in original (a) and decoder’s (b) space

It is important that several conditions are satisfied: (1) for each solution
s € F there is a decoded solution d, (2) each decoded solution d corresponds
to a feasible solution s, and (3) all solutions in F should be represented by the
same number of decodings d. Additionally, it is reasonable to request that (4)
the transformation T is computationally fast and (5) it has locality feature in
the sense that small changes in the decoded solution result in small changes in
the solution itself. An interesting study on coding trees in genetic algorithms
was reported by Palmer and Kershenbaum [304], where the above conditions
were formulated.

J. Separation of individuals and constraints

This is a general and interesting heuristic. The first possibility would include
utilization of multi-objective optimization methods, where the objective func-
tion f and constraint violation measures f; (for m constraints) constitute a
(m + 1)-dimensional vector v:

v=(f7fly-~-afm)'

Using some multi-objective optimization method, we can attempt to minimize
its components: an ideal solution x would have fj(x) = 0for 1 < i < m and
f(z) < f(y) for all feasible y (minimization problems). As indicated in Chapter
7, a successful implementation of this approach was presented recently in {376].

Another heuristic is based on the idea of handling constraints in a partic-
ular order; Schoenauer and Xanthakis [346] called this method a “behavioral
memory” approach. The initial steps of the method are devoted to sampling
the feasible region; only in the final step is the objective function f optimized
(see Chapter 7).
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In Chapter 7 we also discussed briefly the possibility of incorporating the
knowledge of the constraints into the belief space of cultural algorithms [325];
such algorithms provide a possibility of conducting an efficient search of the
feasible search space [329].

K. Exploring boundaries between feasible and infeasible parts of the
search space

One of the most recently developed approaches for constrained optimization is
strategic oscillation. Strategic oscillation was originally proposed in conjunction
with the evolutionary strategy of scatter search, and more recently has been
applied to a variety of problem settings in combinatorial and nonlinear opti-
mization (see, for example, the review of Glover [147]). The approach is based
on identifying a critical level, which for our purposes represents a boundary
between feasibility and infeasibility, but which also can include such elements
as a stage of construction or a chosen interval of values for a functional. In the
feasibility /infeasibility context, the basic strategy is to approach and cross the
feasibility boundary, by a design that is implemented either by adaptive penal-
ties and inducements (which are progressively relaxed or tightened according
to whether the current direction of search is to move deeper into a particular
region or to move back toward the boundary) or by simply employing modified
gradients or subgradients to progress in the desired direction. Within the con-
text of neighborhood search, the rules for selecting moves are typically amended
to take account of the region traversed and the direction of traversal. During
the process of repeatedly approaching and crossing the feasibility frontier from
different directions, the possibility of retracing a prior trajectory is avoided by
mechanisms of memory and probability.

The application of different rules (according to region and direction) is gen-
erally accompanied by crossing a boundary to different depths on different sides.
An option is to approach and retreat from the boundary while remaining on a
single side, without crossing. One-sided oscillations are especially relevant in a
variety of scheduling and graph theory settings, where a useful structure can be
maintained up to a certain point and then is lost (as by running out of jobs to
assign or by going beyond the conditions that define a tree or tour, etc.). In these
cases, a constructive process for building to the critical level is accompanied by
a destructive process for dismantling the structure.

It is frequently important in strategic oscillation to spend additional search
time in regions close to the boundary. This may be done by inducing a sequence
of tight oscillations about the boundary as a prelude to each larger oscillation to
a greater depth. If greater effort is allowed for executing each move, the method
may use more elaborate moves (such as various forms of “exchanges”) to stay
at the boundary for longer periods. For example, such moves can be used to
proceed to a local optimum each time a critical proximity to the boundary is
reached. A strategy of applying such moves at additional levels is suggested by
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a prorimate optimality principle, which states roughly that good constructions
at one level are likely to be close to good constructions at another.

One of the useful forms of strategic oscillation operates by increasing and
decreasing bounds for a function g(z). Such an approach has been effective in
a number of applications where g(z) has represented such items as workforce
assignments and function values (as well as feasibility/infeasibility levels), to
guide the search to probe at various depths within the associated regions. In
reference to degrees of feasibility and infeasibility, g(z) may represent a vector-
valued function associated with a set of problem constraints (which may be
expressed, for example, as g(z) < b). In this instance, controlling the search
by bounding g(z) can be viewed as manipulating a parameterization of the se-
lected constraint set. An often-used alternative is to make g(z) a lagrangean or
surrogate constraint penalty function, avoiding vector-valued functions and al-
lowing tradeoffs between degrees of violation of different component constraints
according to their importance. Surrogate constraint approaches are particularly
useful for isolating such tradeoffs, accompanied by special memory to keep track
of behavior that discloses the relative influence of constraints. Approaches that
embody such ideas may be found, for example, in [133, 136, 221, 393, 410, 148].

L. Finding feasible solutions

There are problems for which any feasible solution would be of value. In such
problems we are not really concern with the optimization issues (finding the
best feasible solution) but rather we try to find any point in the feasible search
space F. Such problems are called constraint satisfaction problems. A classical
example of a problem in this category is the well-known N-queens problem,
where the task is to position N queens on a chess board with N rows and N
columns in such a way that no two queens attack each other.

A few researchers have experimented with evolutionary systems to approach
constraint satisfaction problems. Bowen and Dozier [48] designed a hybrid ge-
netic algorithm with a complex chromosomal structure. Each chromosome,
apart from values v; of all variables, stores also (1) a so-called pivot (which
tells the heuristic-based mutation which gene to mutate), (2) an individual’s
“family number”, (3) a vector (for each gene there is one number) which rep-
resents numbers of violated constraints when it is assigned a value v;, and (4)
some heuristic value which is used to determine which gene should be the pivot.
The system was successfully tested on many randomly generated constraint
satisfaction problems [48] and compared with other constraint programming
techniques.

Eiben et al. [99] approached the problem by designing specialized operators;
the authors investigated several heuristic operators: mutations and crossovers
(including multi-parent crossovers). Mutation operators select a number of po-
sitions in the parent chromosome and select new values for these positions,
where the number of modified values, the criteria for identifying the position of
the values to be modified, and the criteria for defining the new values are pa-
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rameters of the operator. Multi-parent crossovers are based on scanning, which
examine the positions of the parents consecutively and choose one of the values
on the marked positions for the child. A system with such heuristic operators
was implemented and tested on the N-queens problem and the graph coloring
problem.

Paredis experimented with two different approaches to the constraint satis-
faction problem. The first approach [306, 307] was based on clever representation
of individuals; each gene was allowed to take, on top of values from the domain,
an additional value ‘?’, which represented choices left open. The initial popu-
lation consisted of strings of all ‘?’s; a selection-assignment-propagation cycle
replaced some ‘?’ by values from the appropriate domain (this was done by se-
lecting a variable whose domain had more than one element available), selecting
a value from the domain and assigning it to the variable, and finally perform-
ing a propagation step, which ensured that the domains were consistent with
the assignment made so far. The fitness of such partially-defined individuals
was defined as the value of the objective function of the best complete solution
found (when we start the search from a given partial individual). Operators
were extended to incorporate a repair process {(constraint checking step). The
system was implemented and run on several N-queens problems [307] and some
scheduling problems [306].

In the second approach {308] Paredis investigated a co-evolutionary model,
where a population of potential solutions co-evolves with a population of con-
straints: fitter solutions satisfy more constraints, whereas fitter constraints are
violated by more solutions. This means that individuals from the population
of solutions are considered from the whole search space, and that there is no
distinction between feasible and infeasible individuals. The evaluation of an in-
dividual is determined on the basis of constraint-violation measures f;’s; how-
ever, better f;’s (e.g., active constraints) would contribute more towards the
evaluation of a solution. The approach was tested on the N-queens problem and
compared with other single-population approaches [309, 308].
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You ain’t heard nothin’ yet, folks.

Al Jolson, The Jazz Singer

The field of evolutionary computation has been growing rapidly over the last few
years. Yet, there are still many gaps to be filled, many experiments to be done,
many questions to be answered. In the final chapter of this text we examine a
few important directions in which we can expect a lot of activity and significant
results; we discuss them in turn.

Theoretical foundations

As indicated in this text, some evolution programs enjoy some theoretical foun-
dations: for evolution strategies applied to regular problems (Chapter 8) a con-
vergence property can be shown. Genetic algorithms, on the other hand, have
a Schema Theorem {Chapter 3) which explains why they work. However, many
techniques are modified when applied to particular real world problems. For ex-
ample, to adapt a GA to the task of function optimization it was necessary to ex-
tend them by additional features (e.g., dynamic scaled fitness, rank-proportional
selection, inclusion of elitist strategy, adaptation of various parameters of the
search, various representations, new operators, etc.). Evolution strategies, ap-
plied to constrained numerical optimization problems, usually incorporate some
heuristic method for constraint handling. Most of these modifications pushed
simple algorithms away from their theoretical bases, but usually they enhanced
the performance of the systems in a significant way. In the context of genetic
algorithms, these modifications [89]:

“... had pushed the application of simple GAs well beyond our initial
theories and understanding, creating a need to revisit and extend
them.”

As indicated in the Preface to this edition, this might be one of the most chal-
lenging tasks for researchers in the field of evolutionary computation.

It is also important to continue research on factors affecting the ability
of evolutionary systems to solve various (usually optimization) problems. What
makes a problem hard or easy for an evolutionary method? This is a fundamental
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issue of evolutionary computation; some results related to deceptive problems,
rugged fitness landscapes, epistasis, or royal road functions, are steps towards
approximating an answer for this challenging question.

Function optimization

For many years, most evolutionary techniques were evaluated and compared
with each other in the domain of function optimization. It seems also that this
domain of function optimization would remain the primary test-bed for many
new comparisons and new features of various algorithms. It is expected that
new theories of evolutionary techniques for function optimization would emerge
(e.g., breeder genetic algorithms [289]). Additionally, we should see progress in

e development of constraint-handling techniques. This is a very important
area in general, and for function optimization in particular; most real
problems of function optimization involve constraints. However, so far
relatively few techniques have been proposed, analyzed, and compared
with each other.

o development of systems for large-scale problems. Until now, most exper-
iments have assumed a relatively small number of variables. It would be
interesting to analyse how evolutionary techniques scale up with the prob-
lem size for problems with thousand variables.

e development of systems for mathematical programming problems. Very
little work has been done in this area. There is a need to investigate evo-
lutionary systems to handle integer/Boolean variables, and to experiment
with mixed programming as well as integer programming problems.

Representation and operators

Traditionally, GAs work with binary strings, ESs with floating point vectors,
and EPs with finite state machines (represented as matrices), whereas GP tech-
niques use trees as a structure for the individuals. However, there is a need for
systematic research on

e representation of complex, nonlinear objects of varying size, and, in par-
ticular, representation of ‘blueprints’ of complex objects, and

e development of evolutionary operators for such objects at the genotype
level.

This direction can be perceived as a step towards building complex hybrid evo-
lutionary systems which incorporate additional search techniques. For example,
it seems worthwhile to experiment with Lamarckian operators, which would im-
prove an individual during its lifetime—consequently, the improved, “learned”
characteristics of such an individual would be passed to the next generation.

Additional issues to be resolved are connected with understanding the in-
fluence of various factors (representation and operators being the major two
components) which affect the performance of evolutionary methods. In partic-
ular, we should come closer to answering the basic questions:
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which problems are easy for evolutionary techniques?

which problems are hard?

why?

» how to select the best representation and operators for a particular prob-
lem?

Research on deceptiveness [152], royal road functions [192, 212], properties of
operators [315, 316, 317], or fitness distance correlation [214] are steps in this
direction.

Non-random mating

Most current techniques which incorporate crossover operator use random mat-
ing, i.e, mating where individuals are paired randomly. It seems that with the
trend of movement from simple to complex systems, the issue of non-random
mating would be of growing importance. There are many possibilities to explore;
these include introduction of sex or “family” relationships between individuals,
or establishing some preferences (e.g., seduction [333]). Some simple schemes
were already investigated by several researchers (e.g., Eshelman’s incest pre-
vention technique [105]), however, the ultimate goal seems to be to evolve rules
for non-random mating. A few possibilities (see section 8.3.1) in the context of
multimodal optimization were already explored; these include sharing functions,
which permit the formation of stable subpopulations, and tagging, where indi-
viduals are assigned labels. However, very little has been done in this direction
for complex chromosomal structures.

Self-adapting systems

Since evolutionary algorithms implement the idea of evolution, it is more than
natural to expect some self-adapting characteristics of these techniques. Apart
from evolutionary strategies, which incorporate some of their control param-
eters in the solution vectors, most other techniques use fixed representations,
operators, and control parameters. One of the most promising research areas is
based on inclusion of self-adapting mechanisms within the system for

o representation of individuals (as proposed by Shaefer {354]; the Dynamic
Parameter Encoding technique [347) and messy genetic algorithms [155]
also fall into this category).

e operators. It is clear that different operators play different roles at differ-
ent stages of the evolutionary process. The operators should adopt (e.g.,
adaptive crossover [341, 367]). This is true especially for time-varying fit-
ness landscapes.

e control parameters. There were already experiments aimed at these issues:
adaptive population sizes {12] or adaptive probabilities of operators [77,
216, 368]. However, much more remains to be done.
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It seems that this is one of the most promising directions of research; after all,
the power of evolutionary algorithms lies in their adaptiveness.

Co-evolutionary systems

There is a growing interest in co-evolutionary systems, where more than one
evolution process takes place: usually there are different populations there (e.g.,
additional populations of parasites or predators) which interact with each other.
In such systems the evaluation function for one population may depend on the
state of the evolution processes in the other population(s). This is an important
topic for modeling artificial life, some business applications, etc.

Co-evolutionary systems might be important for approaching large-scale
problems [311], where a (large) problem is decomposed into smaller subprob-
lems; there is a separate evolutionary process for each of the subproblems, how-
ever, these evolutionary processes are connected with each other. Usually, eval-
uation of individuals in one population depends also on developments in other
populations.

We have seen also (Chapter 7) a co-evolutionary algorithm (GENOCOP
[1) where two populations (of not necessarily feasible search points and fully
feasible reference points) co-exist with each other. In this system, evaluation
of search points depends on the current population of reference points. In the
same chapter we presented also an approach proposed by Le Riche et al. [239],
where two populations of individuals co-operate with each other and approach a
feasible, optimum solution from two directions (from the feasible and infeasible
parts of the search space). Also, Paredis [307] experimented with co-evolutionary
systems in the context of constraint satisfaction problems (see sections 7.4 and
15.3 L).

Recently, a co-evolutionary system was used [295] to model the strategies
of two competing companies (bus and rail companies) competing for passengers
on the same routes. Clearly, the profits of one company depend on the current
strategy (capacities and prices) of the other company; the study investigated
the interrelationship between various strategies over time.

Diploid/polyploid versus haploid structures

Diploidy (or polyploidy) can be viewed as a way to incorporate memory into the
individual’s structure. Instead of a single chromosome {haploid structure) repre-
senting precise information about an individual, a diploid structure is made up
of a pair of chromosomes: the choice between two values is made by some domi-
nance function. The diploid (polyploid) structures are of particular significance
in non-stationary environments (i.e., for time-varying objective functions) and
for modeling complex systems (possibly using co-evolution models). However,
there is no theory to support the incorporation of a dominance function into
the system; there is also very little experimental data in this area.

Parallel models
Parallelism promises to put within our reach solutions to problems untractable
before; clearly, it is one of the most important areas of computer science. Evolu-
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tionary algorithms are very suitable for parallel implementations; as Goldberg
[154] observed:

“In a world where serial algorithms are usually made parallel through
countless tricks and contortions, it is no small irony that genetic
algorithms (highly perallel algorithms) are made serial through
equally unnatural tricks and turns.”

However, there is no standard methodology for incorporating parallel ideas into
GAs: existing parallel implementations can be classified into one of the following
categories:

o masswely parallel GAs. Such algorithms use a large number of processors
(usually 2'° or more). Often a single processor is assigned to an indi-
vidual in the population. In this model there are many possibilities for
the selection method and mating (combining strings for crossover). Some
experimental work in this area is reported by Miihlenbein [286].

o parallel island models. Such algorithms assume that several subpopula-
tions evolve in parallel. The models include a concept of migration (move-
ment of an individual string from one subpopulation to another) and
crossovers between individuals from different subpopulations. There are
many reported experiments in this parallel model; the reader is referred
to Whitley’s work [396] for full discussion.

o parallel hybrid GAs. This model is similar to the first (massively paral-
lel GAs) in that there is one-to-one correspondence between processors
and individuals. However, only a small number of processors is used. Ad-
ditionally, such algorithms incorporate other (heuristic) algorithms (e.g.,
hillclimbing) to improve the performance of the system. Usually the ex-
perimental results are reported [286] [164], but an analysis of such systems
is far from trivial.

Parallel models can also provide a natural embedding for other paradigms
of evolutionary computation, like non-random mating, some aspects of self-
adaptation, or co-evolutionary systems.

Other developments

There are also many other interesting developments in the field of evolutionary
computation; one of them is an emergence of so-called Cultural Algorithms (see
also section 7.4). As stated in [330):

“Cultural algorithms support two models of inheritance, one at the
microevolutionary level in terms of traits, and the other at the
macroevolutionary level in terms of beliefs. The two models interact
via a communications channel that enables the behavior of individ-
uals to alter the belief structure and allows the belief structure to
constrain the ways in which individuals can behave. Thus, cultural
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algorithms can be described in terms of three basic components; the
belief structure, the population structure, and the communication
channel.”

The basic structure of a cultural algorithm is shown in Figure 16.1.

procedure cultural algorithm
begin
t—0
initialize population P(t)
initialize belief network B(t)
initialize communication channel
evaluate P(t)
while (not termination-condition) do
begin
communicate (P(t), B(t))
adjust B(t)
communicate {B(t), P(t))
modulate fitness P(t)
t—1t+1
select P(t) from P(t — 1)
evolve P(t)
evaluate P(t)
end
end

Fig. 16.1. The structure of a cultural algorithm

Additionally, cultural algorithms seem to be appropriate for controlling the
“evolution of evolution”. The term “evolution of evolution” means that some
elements in the evolution space (such as a man in sociological evolution, or
a gene in biological evolution, or some units in the evolution of the matter)
improve their learning abilities through their experience in the evolution process.
This idea is a generalization of the idea of the analogy between the genetic
evolution of biological species and the cultural evolution of human societies, for
the abstract adaptive evolution process. These analogies have been brilliantly
explored by Richard Dawkins in his book [81]. One of the arguments which
supports the above ideas might be observed in Figure 16.2. The first column
symbolizes the time from the beginning of the universe until the present. Every
other column is an enlargement of the last 20 percent of the previous column.
The star points represent the key events in the evolution process which leads
to our current civilization. Note that the curve given by the star points grows
much faster than exponential functions, say 5%, since if the star points were on
the same level, the growth would be precisely 5°.

Let us quote from [371]:
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Fig.16.2. The extra-exponential growth in the speed of evolution. The left column of this
figure represents the entire time span from the origin of the universe to the present. The
second column is an enlargement of the part of the first column, that is above the diagonal

line connecting the two, and so on.

“Most physicists, chemists, and biological evolutionists agree that
the evolution of organic molecules began about 4 billion years ago.
The first living cell appeared about 3.5 billion years ago, and the
first simple many-celled animal appeared roughly 6000 million years
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ago. The common ancestor of apes and humans appeared some 6
million years ago, and the beginning of recorded history was about
6000 years ago”.

Clearly, this is an area which deserves some further investigations; several in-
teresting results of applying cultural algorithms to a variety of problems are
described in [60, 326, 327, 328, 330, 331, 377].

It is worthwhile to note that there are many other approaches to learning,
optimization, and problem solving, which are based on other natural metaphors
from nature — the best known examples include neural networks and simulated
annealing. There is a growing interest in all these areas; the most fruitful and
challenging direction seems to be a “recombination” of some ideas at present
scattered in different fields. As Schwefel and Manner wrote in the introduction
to the proceedings of the First Workshop on Parallel Problem Solving from
Nature [351]:

“It is a matter of fact that in Europe evolution strategies and in
the USA genetic algorithms have survived more than a decade of
non-acceptance or neglect. It is also true, however, that so far both
strata of ideas have evolved in geographical isolation and thus not
led to recombined offspring. Now it is time for a new generation of
algorithms which make use of the rich gene pool of ideas on both
sides of Atlantic, and make use too of the favorable environment
showing up in the form of massively parallel processor systems”.

There were two main goals of this text. The first one was to convince the
reader that evolution is a powerful and general concept which should find its
place in many problem-solving techniques. In particular, the whole field of artifi-
cial intelligence should lean towards evolutionary techniques; as Lawrence Fogel
stated [125] in his plenary talk during the World Congress on Computational
Intelligence (Orlando, 27 June — 2 July 1994):

“If the aim is to generate artificial intelligence, that is, to solve new
problems in new ways, then it is inappropriate to use any fixed set
of rules. The rules required for solving each problem should simply
evolve,..”

The second goal was to emphasize similarities between various evolutionary
techniques; these techniques were discussed in the book from the perspective of
constructing evolutionary programs for particular classes of problems. In that
way all differences between these techniques (e.g., genetic algorithms, evolution
strategies, evolutionary programming, genetic programming, etc.) were hidden
on a lower level; various techniques use just different chromosomal representa-
tions and appropriate sets of (more or less genetic) operators.
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This is a very simple real-coded genetic algorithm built by Denis Cormier (North
Carolina State University) and modified by Sita S. Raghavan (University of
North Carolina at Charlotte). The code is minimal and virtually no error check-
ing is performed; in many instances, efficiency has been sacrificed for clarity. To
modify the code for a particular application, change the constants definitions
and the user defined “evaluation function”. Note that the code is designed for
maximization problems where the objective function takes positive values only;
there is no distinction between the objective value and the fitness of the individ-
ual. The system uses proportional selection, elitist model, one point crossover
and uniform mutation (much better results can be obtained if uniform muta-
tion is replaced by a Gaussian mutation; the reader is encouraged to incorporate
such changes in the system — see exercise 6 from Appendix D).

The code does not make use of any graphics or even screen output, and
should be highly portable between platforms; it is available from ftp.uncc.edu,
directory coe/evol, file prog.c.

The required input file should be named as ‘gadata.txt’; the system produces
the output file ‘galog.txt’. The input file consists of several lines: number of lines
correspond to number of variables. Each line provides lower and upper bound
for a variable in order (i.e., first line provides lower and upper bounds for the
first variable, second line—for the second variable, etc.).

/***************************************************************/
/* This is a simple genetic algorithm implementation where the */

/* evaluation function takes positive values only and the */
/* fitness of an individual is the same as the value of the */
/* objective function */

/***************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
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/* Change any of these parameters to match your needs x/

#define
#define
#define
#define
#define
#define
#define

POPSIZE 50
MAXGENS 1000
NVARS 3
PXOVER 0.8
PMUTATION 0.15
TRUE 1

FALSE 0O

int generation;
int cur_best;
FILE *galog;

/* population size x*/

/* max. number of generations */
/* no. of problem variables x*/
/* probability of crossover */
/* probability of mutation */

/* current generation no. */
/* best individual */
/* an output file */

struct genotype /* genotype (GT), a member of the population */

{
double gene[NVARS]; /* a string of variables */
double fitness; /* GT’s fitness */
double upper[NVARS]; /* GI’s variables upper bound */
double lower [NVARS]; /* GT’s variables lower bound */
double rfitness; /* relative fitness */
double cfitness; /* cumulative fitness */

};

struct genotype population[POPSIZE+1]; /* population */

struct genotype newpopulation[POPSIZE+1]; /* new population; */

/* replaces the */
/* old generation */

/* Declaration of procedures used by this genetic algorithm */

void initialize(void);
double randval(double, double);
void evaluate(void);

void keep_the_best(void);

void elitist(void);

void select(void);

void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);
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/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) =/
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file ‘gadata.txt’. It randomly generates values */

/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file ‘gadata.txt’ is */
/* varl_lower_bound varl_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/

void initialize(void)

{
FILE *infile;
int i, j;

double 1bound, ubound;

if ((infile = fopen("gadata.txt","r"))==NULL)
{
fprintf (galog, "\nCannot open input file!\n");
exit(1);
}

/* initialize variables within the bounds */

for (i = 0; i < NVARS; i++)
{
fscanf (infile, "%1f",&lbound);
fscanf (infile, "%1f",&ubound);

for (j = 0; j < POPSIZE; j++)
{
population(j].fitness = 0;
population(j].rfitness = 0;
population(j].cfitness = 0;
population(j].lower[i] = lbound;
population([j] .upper[il= ubound;
population[j].gene[i] = randval (populationl[j].lower[i],
population[j].upper(il);

}
1

fclose(infile);
¥
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/***********************************************************/

/* Random value generator: Generates a value within bounds */
/***********************************************************/

double randval(double low, double high)

{

double val;

val = ((double) (rand()%1000)/1000.0)*(high - low) + low;
return(val);

}

/*************************************************************/
/* Evaluation function: This takes a user defined functiom. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1]"2-x[1]*x[2]+x[3] x/
/*************************************************************/

void evaluate(void)
{

int mem;

int i;

double x[NVARS+1];

for (mem = O; mem < POPSIZE; mem++)
{
for (i = 0; i < NVARS; i++)
x[i+1] = population[mem].gene([il;

population[mem] .fitness = (x[11*x[1]) - (x[11*x[2]) + x[3];
1
¥

/***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */
/* the array Population holds a copy of the best individual */
/***************************************************************/

void keep_the_best()

{

int mem;

int i;

cur_best = 0; /* stores the index of the best individual */
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for (mem = 0; mem < POPSIZE; mem++)

{
if (population{mem].fitness > population(POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE] .fitness = population[mem].fitness;
}
}

/* once the best member in the population is found, copy the genes */
for (i = 0; i < NVARS; i++)

population [POPSIZE] .gene[i] = population([cur_best].gene[il;
}

/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the x*/
/* previous generation, the latter one would replace the worst x*/
/* member of the current population */
/****************************************************************/

void elitist()

{

int i;

double best, worst; /* best and worst fitness values */
int best_mem, worst_mem; /% indexes of the best and worst member */

best = populationf0].fitness;
worst = population[0].fitness;
for (i = 0; i < POPSIZE - 1; ++i)

{
if (population[i] .fitness > population[i+1].fitness)
{
if (population[i].fitness> = best)
{
best = population[i].fitness;
best_mem = i;
}
if (population[i+1] .fitness <= worst)
{

worst = population[i+1].fitness;
worst_mem = i + 1;

}



342 Appendix A

else
{
if (population[i].fitness < = worst)
{
worst = population(il.fitness;
worst_mem = i;
}
if (population[i+1].fitness >= best)
{
best = population([i+1].fitness;
best_mem = i + 1;
}
}
}
/% if best individual from the new population is better than */
/* the best individual from the previous population, then */
/* copy the best from the new population; else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */

if (best >= population[POPSIZE].fitness)
{
for (i = 0; i < NVARS; i++)
population[POPSIZE] .gene[i] = population{best_mem].gene[i];
population[POPSIZE] .fitness = population[best_mem] .fitness;
3
else
{
for (i = 0; i < NVARS; i++)
population[worst_mem] .gene{i] = population[POPSIZE].genel[il;
population[worst_mem] .fitness = population[POPSIZE].fitness;
}

}

/**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */

/**************************************************************/

void select(void)
{

int mem, i, j, k;
double sum = O;
double p;
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/* find total fitness of the population */
for (mem = O; mem < POPSIZE; mem++)

{

sum += population[mem].fitness;

}

/* calculate relative fitness */
for (mem = O; mem < POPSIZE; mem++)
{
population[mem] .rfitness = population[mem].fitness/sum;

}

population[0] .cfitness = population[0] .rfitness;

/* calculate cumulative fitness */
for (mem = 1; mem < POPSIZE; mem++)

{

population[mem] .cfitness = population[mem-1].cfitness +
population[mem] .rfitness;

X

/% finally select survivors using cumulative fitness. */

for (i = 0; i < POPSIZE; i++)
{
p = rand()%1000/1000.0;
if (p < population[0].cfitness)
newpopulation[i] = population[0];
else
{
for (j = 0; j < POPSIZE;j++)
if (p >= population(j].cfitness &&
p<population[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}

/* once a new population is created, copy it back */

for (i = 0; i < POPSIZE; i++)
population(i] = newpopulationl[i];
}

343
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/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
[ Rk Ak ke ko s sk ksl sk ok ok ko ke ke ok sk sekolok ko sk ok ksl Rk R o sk ok ok ok /

void crossover(void)

{

int i, mem, one;

int first = 0; /* count of the number of members chosen */
double x;

for (mem = 0; mem < POPSIZE; ++mem)
{
x = rand()%1000/1000.0;
if (x < PXOVER)
{
++first;
if (first % 2 == Q)
Xover(one, mem);
else
one = mem;

X
)

/**************************************************************/

/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/

void Xover(int ome, int two)

{

int i;

int point; /* crossover point */

/* select crossover point */
if(NVARS > 1)

{

if (NVARS == 2)
point = 1;

else

point = (rand() % (NVARS - 1)) + 1;
for (i = 0; i < point; i++)

swap (&population[onel .gene(i], &population(two].gene[il);
}
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/*************************************************************/

/* Swap: A swap procedure that helps in swapping 2 variables =/
P e L R P e R PR LR PR PR

void swap(double *x, double *y)

{
double temp;

temp = *Xx;
xY = *y;
*y = temp;
}

A6k KRR K KRR KR K KRR R KA KR K K K ok Kk KKk k
/* Mutation: Random uniform mutation. A variable selected for x/
/* mutation is replaced by a random value between lower and  */

/* upper bounds of this variable */
ek ook R KRR R R K ORI KR KRR AR IR o kR R R Sk K ok Kok /

void mutate(void)

{

int i, j;

double lbound, hbound;
double x;

for (i = 0; 1 < POPSIZE; i++)
for (j = 0; j < NVARS; j++)

{

x = rand()%1000/1000.0;

if (x < PMUTATION)
{
/* find the bounds on the variable to be mutated */
1bound = population{i].lower(j];
bhbound = populationfi].upper(j]l;
population[i].gene(j] = randval(lbound, hbound);
}
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[ A EAFAARAAA AR IRAK R AAAFRAA AR AAARAA KA AR AR A HHAAKAAAFHAHAAANK [
/* Report function: Reports progress of the simulation. Data  */

/* dumped into the output file are separated by commas */
[ HHAA KA AR A AR KA A A AR AR FRR AR AR KA HA AR AR AR AR AR KA Ak ]

void report(void)

{

int i;

double best_val; /* best population fitness x*/

double avg; /* avg population fitness */

double stddev; /* std. deviation of population fitness */
double sum_square; /* sum of square for std. calc */

double square_sum; /* square of sum for std. calc */

double sum; /* total population fitness */

sum = 0.0;

sum_square = 0.0;

for (i = 0; i < POPSIZE; i++)
{
sum += populationf[i].fitness;
sum_square += population[i].fitness * population(i].fitness;

}

avg = sum/(double)POPSIZE;

square_sum = avg * avg * (double)POPSIZE;

stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
best_val = population[POPSIZE].fitness;

fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation,
best_val, avg, stddev);
}
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/**************************************************************/
/* Main function: Each generation involves selecting the best */

/* members, performing crossover & mutation and then */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied x/

/**************************************************************/

void main(void)
{

int i;

if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}

generation = 0;

fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");

initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)

{

generation++;

select();

crossover();

mutate();

report();

evaluate();

elitist();

}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");

for (i = 0; i < NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene(i]);
}
fprintf(galog,”\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");

}

/***************************************************************/
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There are several test functions which can be used for various experiments (for
additional problems, see also Appendix A in [350], [186], and [113]):!

1. De Jong function F1:
% 172, where —5.12 < z; < 5.12,
The function has a global minimum value of 0 at (2, 22, 23) = (0,0, 0).
2. De Jong function F'2:
100(z% — z2)2 + (1 — z1)?, where —2.048 < ; < 2.048.
The function has a global minimum value of 0 at (23, 22) = (1,1).
3. De Jong function F'3:
5, integer(z;), where —5.12 < z; < 5.12.

The function has a global minimum value of —30 for all
-5.12 < z; < —5.0.

4. De Jong function F4:
530 izt+ Gauss(0,1), where —1.28 < z; < 1.28

The function (without Gaussian noise) has a global minimum value of 0
at ($1,IL‘2,...,IL‘30) = (0,0,,0)

5. De Jong function F5:

1 . = c. 2 . )6
1/K+ﬁ1 fj_l(zx,rcz)’ where fJ (xl’x2) ¢+ Eml(:ﬂl a']) ’

where —65.536 < z; < 65.536, K = 500, ¢; = j, and

[ay] = -32 -16 0 6 32 -32 -16 ... 0 16 32
4 -32 =32 -32 -32 -32 -16 —-16 ... 32 32 32

The function has a global minimum value of 0.998 at (z;, z2) = (—32, —32).

1See also [401] for a discussion on building test functions.
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Schaffer function F6:

05+ SRVEEE0S e 100 < ; < 100

0+ [1‘O+0‘001(z1+z2)]2’ where — LT < .

The function has a global minimum value of 0 at (1, z2) = (0, 0).
Schaffer function F7:

(23 + 22)°B[sin?(50(z? + 72)°1) + 1.0], where —100 < z; < 100.
The function has a global minimum value of 0 at (z,z2) = (0,0).
Goldstein-Price function:

(14 (z1 + 22+ 1)2(19 — 14z, + 32?2 — 1425 + 62179 + 323)]
[30+ (21‘1 - 3:122)2(18 b 32?[;1 + 12513% —*—485132 — 361‘15132 +27SE§)],

where —2 < z; < 2.
The function has a global minimum value of 3 at (z1,z2) = (0, —1).
Branin RCOS function:

a(zy — ba? +cx; — d)? +e(1 — f)cos(z;) +e,

where —5 < z; < 10,0 <z, < 15, and a = 1, b = 5.1/(47?), ¢ = 5/,
d=6,e=10, f = 1/(8m).

The function has a global minimum value of 0.397887 at three different
points: (z;,z2) = (—7,12.275), (m,2.275), and (9.42478,2.475).

The Shekel SQRN5, SQRN7, SQRN10 family of 4-dimensional functions:

5 1
S3($1,l’2, 1'3,1'4) == Zj=l Z (zi—aij)%+c;
i=1
7 1
s4(21, 2, B, 24) = = Xy s
i=1

10
=t Yimi (T’

where 0 < z; < 10 for ¢ = 1,2,3,4, and a;;’s and ¢;’s are listed in Table
B.1.

These functions have a global minimum value at the point (z;, z2, T3, 24) =

(4,4,4,4), with the following values: $3,,;, = —10.15320,
$4min = —10.402820, and $5,,;, = —10.53628.

s5(z1, To, T3, T4) = —

The six-hump camel back function:
(4—-2122 + %i)z? + z173 + (—4 + 4x2)23,

where =3 <z;<3and —-2< 1z, < 2.

The function has a global minimum value of —1.0316 at two different
points: (z1,z2) = (—0.0898,0.7126) and (0.0898, —0.7126).
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J_ Ay a4y G G4y G

1 40 40 40 40 0.1
2 1.0 1.0 10 10 02
3 80 80 80 80 02
4 6.0 6.0 60 60 0.4
5 3.0 70 30 7.0 06
6 20 90 20 90 06
7 50 50 30 30 03
8§ 80 1.0 80 10 0.7
9 6.0 20 6.0 20 05
10 70 36 70 3.6 05

Table B.1. Data for functions s3, s4, and s5

12.

13.

14.

Shubert function:
3 icos[(i 4+ Dz +14) - 5, icos[(i + 1)zq + 1],

where —10 < z; < 10fori= 1,2

The function has 760 local minima, 18 of which are global minima with
—186.73.

The Stuckman function:

1( +1)sin(a1)/ay} if 0<z <b
f8en,22) = { L(mj + g)sin(zz)/azj if b< ; <10

where 0 < z; < 10 for ¢ = 1,2, and m; is a random variable between 0

and 100 (i = 1,2), b is a random variable between 0 and 10, and
a; = [|z1 = rul] + [lz2 — raill,

where r1; is a random variable between 0 and b, 7,5 is a random variable
between b and 10, ry; is a random variable between 0 and 10, and 74 is a
random variable between 0 and 10 (all random variables are uniform).

The global maximum is located at

_ (7‘11,7'21) if my > M
(Ih IQ) - { (7‘12,7‘22) otherwise

The Easom function:
— cos(z )COS(I2)6_(“4'")2—(@—7,)2,

where —100 < z; < 100 for i = 1, 2.

The function has a global minimum at (z,z2) = (7, w) with —1.
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the Bohachevsky function #1:
22 + 222 — 0.3 cos(37mz;) — 0.4 cos(dmzy) + 0.7

where —50 < z; < 50.

The function has a global minimum value of 0 at (z;,z3) = (0,0).
the Bohachevsky function #2:
z? + 222 — 0.3(cos(37z; ) cos(4nzy)) + 0.3
where —50 < z; < 50.
The function has a global minimum value of 0 at (z1,z2) = (0,0).
the Bohachevsky function #3:
z? + 222 — 0.3 cos(3mz;) + cos(4rzy) + 0.3
where —-50 < z; < 50.
The function has a global minimum value of 0 at (z;,z;) = (0,0).

the Colville function:

100(z2 — 22)% 4+ (1 — 21)* + 90(z4 — 23)2 + (1 — 23)%+
+10.1((m — 1?2+ (z4 — 1)?) + 19.8(z0 — 1)(z4 — 1),
where —10 < z; < 10.

The function has a global minimum value of 0 at
(mly T2, T3, 334) = (17 17 1’ 1)
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There are several test functions which can be used for various experiments for
constrained optimization (for additional problems, see also Appendix A in [350],
[186], and [113]):

1. The problem [114] is
minimize G1(x,y) = 5z, 4522+ 523+ 524 —5 X, 22— 0, wi,
subject to:

2z1 + 222 + ys + 37 < 10, 2zy + 223 + ye +ys < 10,

229 + 273 + Y7 + ys < 10, ~8zy +ys <0,

—8z2 +yr < 0, —8z3 +ys <0,
—2z4—y1+y <0, 2y —y3+y7 <0,
—2y4_y5+y8507 OS$1§1,Z'=1,2:3,4,

0<y,<1,i= 1,2,3,4,5,9, OS?J:J=6»7,8

The global solution is (z*,y*) =(1,1,1,1,1,1,1,1,1,3,3,3,1), and
Gl(z*, y*) = —15.

2. The problem [186] is to minimize a function:

G2(X) = 7 + T2 + z3,

where
1 —0.0025(z4 + z6) > 0, 126 — 833.33252z4 — 100z, + 83333.333 > 0,
1-— 00025($5 + x7 — :1:4) >0, Taz7— 1250x5 — zo4 + 1250z4 > 0,
1—0.01(zs — z5) > 0, z3z3 — 1250000 — 2375 + 250025 > 0,
100 < z; < 10000, 1000 < z; < 10000, ©=2,3,

10 < z; <1000, i=4,...,8.

The problem has 3 linear and 3 nonlinear constraints; the function G2 is
linear and has its global minimum at

X" = (579.3167,1359.943,5110.071, 182.0174,
295.5985, 217.9799, 286.4162, 395.5979),
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where G2(X ™) = 7049.330923. All six constraints are active at the global
optimum.

The problem [186] is to minimize a function:

G3(X) = (z1 — 10)® + 5(zs — 12)% + 23 + 3(z4 — 11)% + 1028 + 722+
1’; - 4I6$7 — 10$6 - 8(1)7,

where

127 — 223 — 324 — 3 — 4235 — 525 > 0,

282 — Ty — 329 — 10I§ —z4+x5 20,

196 — 23z, — 72 — 622 + 8z7 > 0,

—4z? — 22 + 32179 — 228 — zg + 1127 > 0
~100<2;,<100,i=1,...,7.

The problem has 4 nonlinear constraints; the function G3 is nonlinear and
has its global minimum at

X" = (2.330499, 1.951372, —0.4775414, 4.365726,
—0.6244870, 1.038131, 1.594227),

where G3(X") = 680.6300573. Two (out of four) constraints are active at
the global optimum (the first and the last one).

. The problem [186] is to minimize a function:

G4(y) —_ 6111223241‘5 ,

subject to
22+ a2+l 422 =10, 2923 — 5z4m5 =0, z$+ 23 =1,
—23< 1z <23, i=1,2, —32<z,<32, i=234,5

The problem has 3 nonlinear equations; nonlinear function G4 has its
global minimum at

X" = (—1.717143,1.595709, 1.827247, —0.7636413, —0.7636450),
where G4(X ™) = 0.0539498478.

The problem [186] is to minimize a function:

G5(X) = 22+ 23 + 2122 — 14z, — 1679 + (73 — 10)2 +4(z4 — 5)2 + (25 — 3)°+
2(xe — 1) + 522 + (zs — 11)? + 2(zg — 10)2 + (z10 — 7)* + 45,

where

105 — 4z, — 5xzy + 327y — 925 > 0,
=3(z, — 2)? — 4(z9 — 3)% — 223 + Tx4 + 120 > 0,
—10z, + 8z9 + 1727 — 225 > 0,
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—1? — 2(zy — 2)? + 22125 — 1475 + 675 > O,

8z, — 2x9 — 5z + 2x59 + 12 > 0,

~522 — 829 — (T3 — 6)? + 224 + 40 > 0,

3z, — 6z — 12(zg — 8)% + T30 > 0,

—0.5(x; — 8)% — 2(zy — 4)% — 322 + 76 + 30 > 0,
-100<2; <100, i=1,...,10.

The problem has 3 linear and 5 nonlinear constraints; the function G5 is
quadratic and has its global minimum at

X" = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,
1.430574, 1.321644, 9.828726, 8.280092, 8.375927),

where G5(X ™) = 24.3062091. Six (out of eight) constraints are active at
the global optimum (all except the last two).

. The problem [220] is to maximize a function:

_ |E?=1 cos*(z;) — 211}, cos?(z;)

G6(x) \/ZLl P

l

where
2z >075 Y0, 5 <75n,and0<z; <10for 1 <i<n.

The problem has 2 nonlinear constraints; the function G6 is nonlinear and
its global maximum is unknown. Some good solutions (found by Genocop
111, see Chapter 7) are the following. For n = 20:

x = (3.16311359, 3.13150430, 3.09515858, 3.06016588, 3.03103566,
2.99158549, 2.95802593, 2.92285895, 0.48684388, 0.47732279,
0.48044473, 0.48790911, 0.48450437, 0.44807032, 0.46877760,
0.45648506, 0.44762608, 0.44913986, 0.44390863, 0.45149332),

where G6(x) = 0.80351067. For n = 50:

x = (6.28006029, 3.16155291, 3.15453815, 3.14085174, 3.12882447,
3.11211085, 3.10170507, 3.08703685, 3.07571769, 3.06122732,
3.05010581, 3.03667951, 3.02333045, 3.00721049, 2.99492717,
2.97988462, 2.96637058, 2.95589066, 2.94427204, 2.92796040,
0.40970641, 2.90670991, 0.46131119, 0.48193336, 0.46776962,
(0.43887550, 0.45181099, 0.44652876, 0.43348753, 0.44577143,
0.42379948, (.45858049, 0.42931050, 0.42928645, 0.42943302,
0.43294361, 0.42663351, 0.43437257, 0.42542559, 0.41594154,
(0.43248957, 0.39134723, 0.42628688, 0.42774364, 0.41886297,
0.42107263, 0.41215360, 0.41809589, 0.41626775, 0.42316407),

where G6(x) = 0.83319378.
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7. The problem [114] is to minimize

10.

G7(xz,y) = —10.5z, — 7.522 — 3.523 — 2.5z4 — 1.5z5 — 10y—
0.5%2, 1,

subject to:

6zy + 3z2 + 3x3 + 224 + 15 < 6.5, 10z + 1025 + y < 20,
0_<_xiS17 Osy'

The global solution is (z* y*) = (0,1,0,1,1, 20), and G7{z*, y*) = —213.
The problem [186] is to minimize
GB(:E) = 2]1?__1 $j(C]‘ +1n ZT?«TE)’

subject to:

1+ 204223+ 15+ T =2, T4+2x5+Te+a7=1,
Ty + T +2g+ 209 +210=1, z;>0.00000L, (i=1,...,10),

where

¢y = —6.089; c; = —17.164; ¢35 = —34.064; ¢y = —5.914; c5 = —24.721,
Ce = —-14.986; Cr = —-24.100; Cg = —-10.708; Cg = —26662, C19g = —22.179;
The best solution found by Genocop (Chapter 7) is

x* = {.04034785, .15386976, .77497089, .00167479, .48468539,
.00068965, .02826479, .01849179, .03849563, .10128126),

for which the value of the objective function is equal to —47.760765.

The problem [113] is to maximize

Gg(w) — 3Sz1tzo—22340.8 + dz1—2xo+73

- 2x1—x24a3 Tz1+3x2—x3"*

subject to:

Ty +x9—23< 1, —I1+ 2Ty —23 < -1,

12z, + 5z + 1223 < 34.8, 12zy 4+ 1225 + 723 < 29.1,

‘—6.’151 + x4+ 23 < —4.1, OSl’i,i=1,2,3.
The global solution is * = (1,0, 0), and G9(x*) = 2.471428.
The problem[114] is to minimize

G10(x) = 296 + 296 — 63, — 4z;3 + 34,

subject to:
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=3z, + 29— 323 = 0, z+2z3<4,
Tg + 224 < 4, 7 <3,
z4 <1, 0<z;,t=1,23,4

The best known global solution is z* = (5,4,0,0), and
G10(z*) = —4.5142.

The problem [114] is to minimize
Gll(z,y) = 6.5z — 0.52% — y1 — 2y — 3ys — 2ys — ¥s,
subject to:

T + 2y + 8y2 + y3 + 3yq + Sys < 16,

=8z —4dy) —2y2 +2ys +4ys —ys < -1,
2z + 0.5y1 + 0.2y2 — 3ys — ya — 4ys < 24,
0.2z + 2y; + 0.1y, — 4ys + 2y, + 2ys < 12,
—0.1z — 0.541 + 2y2 + Sys — Sya + 3ys < 3,
y3S1vy451)a'ndy5S2)
2>0,y;>0,for 1 <i<5.

The global solution is (z,y*) = (0,6,0,1,1,0), and G11(z,y*) = —11.
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The problem was constructed from three separate problems [186] in the

following way: minimize

fi=z2+ 10_5(1}2 - 1‘1)2 —10 if 0<1; <2
G12(z) =3 f2 = 5((z1 = 3)* = 9)z3 if 2<z <4
=z -2+ - 4 if 4<z, <6

subject to:
£1/V3— 2220,
—Zy— \/§I2+620,
OS.’IJ1S6, andeZO
The function G12 has three global solutions:
x} = (0,0), =3 = (3,+/3), and =} = (4,0),
in all cases G12(z}) = -1 (i = 1,2, 3).
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Probably the best way to run a course on evolutionary computation techniques
is to organize it as a project-oriented course. After some preliminary project (to
implement, say, a simple genetic algorithm), which would allow the students
to grasp the basic concepts of this evolutionary technique (this can be done
during the first few weeks of the semester), the class is ready for something
more challenging.

There are several possible experimental projects one can try; after all, this
text should provide more questions than answers! The last chapter, Conclu-
sions, gives a list of the current research areas; several projects can emerge from
there. Of course, projects can vary in complexity and time needed for their
completion; some of them are quite simple, others may require a team of a few
students working together. Anyway, it is important to remember that the list of
projects contains just an arbitrary collection of possible problems, which may
{(and should) trigger some other ideas.

So in this appendix we provide a list of various projects together with a few
remarks on reporting computational experiments — usually it happens that
some results are quite interesting and are worth publishing!

A few possible projects

1. Compare several algorithms: hill-climbing, stochastic hill-climbing, simu-
lated annealing, genetic algorithms, evolutionary strategies on several test
functions.

2. Compare several selection methods for GAs (proportional, ranking, tour-
nament) on a few test cases.

3. Compare 3 versions of genetic algorithms with different chromosomal cod-
ing (binary, Gray, and floating point numbers) on a few test cases.

4. For a typical constrained problem (e.g., knapsack problem) experiment
with different constraint-handling methods (decoders, repair algorithms,
penalty functions, etc.).
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Compare different operators for floating point representation (e.g., Gaus-
sian mutation versus non-uniform mutation, experiments with heuristic
crossover, etc.).

Take a simple code from Appendix A and make it useful for numerical
optimization problems. This can be done in many ways:

(a) provide a better input file, where a user can define the number of
variables as well as other parameters of the method,

(b) modify the system to handle minimization problems,

(c) modify the system to handle all values of the objective function (not
only positive),

(d) replace uniform mutation by Gaussian mutation (to approximate a
random number ¢ which follows the normal distribution with ex-
pected value of p and the variance 02, you may generate 12 random
numbers R; , 1 = 1,2,...,12, from the range [0..1] (uniform distri-
bution); then Q@ = u + o(T!2, R; — 6)),

(e) replace one-point crossover by arithmetical crossover,

(f) introduce additional operators, including multiple-parent crossovers
(e.g., calculate a ‘center’ of a few parents as an average of their coor-
dinates and move from the weakest individual towards this center),

(g) introduce various types for variables (Boolean, integer),
(h) etc.

Compare evolutionary strategies against genetic algorithm with floating
point representation and appropriate operators.

Design and experiment with adaptive mechanism for parameters of some
evolutionary method (probabilities of operators, population size, step of
mutation, type of crossover, etc.).

Take the current public software (like GENOCOP) and adopt it to han-
dle integer and Boolean variables. Experiment with integer programming
problerns.

Introduce and experiment with some non-standard features of GAs (sex,
family relationships, cooperation between individuals, couples producing
multiple children). Develop a justification for such additional heuristics
and experiment with them on some test problems. Be careful to take
into account the tradeoff between possible improvements and increased
complexity of the system.

Consider a problem where the objective function varies over time. Exper-
iment with haploid versus diploid chromosomal structures.
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12. Develop a graphical interface to some evolutionary system to display the
current statistics of the search.

13. Take any nontrivial optimization problem from your area of expertise
(databases, operations research, image processing, engineering design,
fuzzy controllers, artificial neural networks, games, robotics, etc.). De-
velop an evolutionary application for this class of problems. Compare it
with the other known methods for this problem (see the following section).

A few remarks on reporting computational experiments
with heuristic methods

Many evolutionary techniques are evaluated by experimenting with several test
cases (such as those listed in Appendices B and C); very often it is quite difficult
to generalize these experimental results to make some “global” claim about a
particular technique. It is possible, however, to demonstrate the usefulness of
a new method on several, carefully selected cases, by comparing the method
against other well-established techniques. Following [26], contributions of a new
heuristic method may include the following:

e it produces high-quality solutions more quickly than other approaches,

it identifies higher-quality solutions than other approaches,

it is less sensitive to differences in problem characteristics, data quality,
or tuning parameters than other approaches,

e it is easy to implement,

it has applications to a broad range of problems.
Additionally [26]:

“research reports about heuristics are valuable if they are reveal-
ing — offering insight into general heuristic design or the problem
structure by establishing the reasons for an algorithm’s performance
and explaining its behavior, and theoretical — providing theoretical
insights, such as bounds on solution quality.”

The paper by Barr et al. [26] gives excellent overview material on how to
design and report on computational experiments with heuristic methods. For
example, in preparing and reporting your experiments, it might be desirable if
you follow five steps (listed in [26]):

e define the goals of the expefiment,

e choose measures of performance and factors to explore,
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e design and execute the experiment,
e analyse the data and draw conclusions,
e report the experiment’s results.

It is important to address all these issues. For example, the goal of experiments
may vary; as stated in [26]:

“Computational experiments with algorithms are usually under-
taken (a) to compare the performance of different algorithms for
the same class of problems, or (b) to characterize or describe an al-
gorithm’s performance in isolation. While these goals are somewhat
interrelated, the investigator should identify what, specifically, is to
be accomplished by the testing (e.g., what questions are to be an-
swered, what hypotheses are to be tested).”

Also, you may select as a measure of performance the quality of the best solution
found, or the time to get there, or the algorithm’s time to reach an “acceptable”
solution, or the robustness of the method, to list a few possibilities. In most cases
it is essential to compare the new method with the established techniques for a
given class of problems. It is important to remember to analyze the key factors
(like the influence of the problem size on the quality of the solution and the
computational effort). The final report should contain also all information to
allow the reader to reproduce the results.

There are many libraries of standard test problems available on the World
Wide Web; these should be frequently used by any experimental research
(e.g., for a collection of operations research test problems, see the OR-Library
(orlibrary@ic.ac.uk); it has ftp access available at mscmga.ms.ic.ac.uk and
WWW access available at http://mscmga.ms.ic.ac.uk).
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