
Distributed Proxy:
A Design Pattern for the Incremental Development of Distributed Applications

António Rito Silva1, Francisco Assis Rosa2, Teresa Gonc¸alves2 and Miguel Antunes1
1 INESC/IST Technical University of Lisbon, Rua Alves Redol no9, 1000-029 Lisboa, PORTUGAL

2 HKS - Hibbitt, Karlsson & Sorensen, Inc. 1080 Main Street, Pawtucket, RI 02860, USA
fRito.Silva,Miguel.Antunesg@inesc.pt

Abstract

Developing a distributed application is hard due to the
complexity inherent to distributed communication. More-
over, distributed object communication technology is al-
ways changing, todays edge technology will become to-
morrows legacy technology. This paper proposes an in-
cremental approach to allow a divide and conquer strategy
that copes with these problems. It presents a design pat-
tern for distributed object communication. The proposed
solution decouples distributed object communication from
object specific functionalities. It further decouples logical
communication from physical communication. The solution
enforces an incremental development process and encapsu-
lates the underlying distribution mechanisms. The paper
uses a stage-based design description which allow design
description at a different level of abstraction than code.

1. Introduction

Developing a design solution for distributed object com-
munication is hard due to the complexity inherent to dis-
tributed communication. It is necessary to deal with the
specificities of the underlying communication mechanisms,
protocols and platforms. Moreover, the lack of performance
measures at the beginning of the project and the existence
of various distributed object communication technologies
providing different features, recommend that choosing and
introducing the technology should be delayed until perfor-
mance measures are obtained during tests and simulations.

Herein, we propose an incremental approach for this
problem which allows the transparent introduction of dis-
tributed object communication. In a first phase the ap-
plication is enriched with logical distribution, which con-
tains the distribution complexity in a non-distributed envi-
ronment where debugging, testing and simulation is easier.
This first step ignores the particularities of distributed com-

munication technologies. In a second phase, the application
is transparently enriched with physical distributed mecha-
nisms. During this second step the distributed communica-
tion technology is chosen and the implementation is tuned
for the specific application needs. The approach also allows
an intermediate step where a quick implementation using
a distributed communication technology is done to test the
application in a real distributed environment before the final
implementation. In this case the chosen distributed commu-
nication technology should allow a rapid prototyping.

Usually, object distributed communication involves the
definition of proxies which represent remote services in the
client space and encapsulate the remote object [14]. This
way, remote requests are locally answered by the proxy
which is responsible for locating the remote object and for
proceeding with invocation, sending arguments and receiv-
ing results.

This paper presents a design pattern [6] for distributed
object communication that uses the proxy approach. De-
sign patterns describe the structure and behavior of a set of
collaborating objects. They have become a popular format
for describing design at a higher level of abstraction than
code.

The rest of this paper is structured as follows. The next
sections presents a design pattern for distributed communi-
cation using the format in [6]. Related work is presented
and discussed in section 10 and section 11 presents the con-
clusions.

2. Intent

The Distributed Proxy pattern decouples the communi-
cation between distributed objects by isolating distribution-
specific issues from object functionality. Moreover, dis-
tributed communication is further decoupled into logical
communication and physical communication parts.

1



3. Motivation

3.1. Example

An agenda application has several users which manipu-
late agenda items, either private (appointments) or shared
(meetings). A meeting requires the participation of at least
two users. When an agenda session starts, it receives an
agenda manager reference from which the agenda user in-
formation can be accessed. It is simple to design a solution
ignoring distribution issues.

The UML [5] class diagram in Figure 1 shows the func-
tionalities design of the agenda application, where distribu-
tion issues are ignored.

Agenda Agenda
Manager

getUser()

Session

User

Meeting Appointment

*

*

*

Item

getItem() {abstract}

Figure 1. Agenda Functionalities Design.

Enriching this design with distribution is complex. For
example we must consider different address spaces. In
terms of our agenda application this means, that method
getUser in Agenda Manager should return to the re-
moteAgenda Session a User object across the net-
work. Distributed communication implementation is an-
other source of complexity. For instance, the communi-
cation betweenAgenda Session andAgenda Man-
ager might be implemented using CORBA.

3.2. Issues

The design solution for distributed object communica-
tion must consider the following issues:

� Complexity. The problem and respective solution is
complex. Several aspects must be dealt with: the
specificities of the distributed communication mech-
anisms; and the diverse name spaces.

� Object distribution. Object references may be trans-
parently passed between distributed nodes.

� Transparency. The incorporation of distributed com-
munication should be transparent for functional classes

by preserving the interaction model, object-oriented
interaction, and confining the number of changes nec-
essary in functionality code.

� Flexibility. The resulting applications should be flex-
ible in the incorporation and change of distribution
issues. The distributed communication mechanisms
should be isolated and it should be possible to provide
different implementations.

� Incremental development. Distributed communica-
tion should be introduced incrementally. Incremental
development allows incremental test and debug of the
application.

3.3. Solution

Figure 2 shows a layered distributed object communi-
cation which constitutes a design solution for the previous
problems. In this example theAgenda Session object
invokes methodgetUser onAgenda Manager.

The solution defines three layers: functional, logical,
and physical. The functional layer contains the applica-
tion functionalities and interactions that are normal object-
oriented invocations. At the logical layer, proxy objects are
introduced between distributed objects to convert object ref-
erences into distributed names and vice-versa. This layer is
responsible for the support of an object-oriented model of
invocation, where distributed proxies are dynamically cre-
ated whenever an object reference from another node is con-
tained in a distributed message. Finally, the physical layer
implements the distributed communication using the dis-
tributed communication mechanisms.

This solution takes into account the issues previously
named:

� Complexity is managed by layered separation of prob-
lems. Logical layer supports name spaces and phys-
ical layer implements the distributed communication
mechanisms.

� Object distribution is achieved because proxy objects
convert names into references and vice versa.

� Transparency is achieved since logical and physi-
cal layers are decoupled from the functional layer.
Functionality code uses transparently the logical
layer,Agenda Manager Client-Side Proxy
andAgenda Manager have the same interface.

� Flexibility is achieved by means of the physical layer,
which contains the distributed communication mecha-
nisms particularities, is decoupled from logical layer.

� Incremental Development is achieved sinceAgenda
Manager Client-Side Proxy and Agenda

2



LOGICAL

PHYSICAL

REFERENCES BYTES REFERENCES

FUNCTIONAL
: Agenda
Session Manager

: Agenda

: Agenda
Manager

Proxy

NAMES NAMES

Communicator Communicator

Proxy

Manager Manager

Manager

: Agenda : Agenda

: Agenda

Client-Side

Client-Side Server-Side

Server-Side

P2:getUser()

P3:send()

L1/P1:getUser() L3/P5:getUser()

P4:getUser()

L2:getUser()

F1:getUser()

P6:return()

Figure 2. Layered Distributed Object Communication.

Manager have the same interface, and the incor-
poration of the logical layer is done after the func-
tional layer is developed. Moreover, Agenda Man-
ager Server-Side Proxy and Agenda Man-
ager Client-Side Communicator have the
same interface, and the physical layer can be incor-
porated after the logical layer is developed. This way,
the application can be incrementally developed in three
steps: functional development, logical development,
and physical development. In the same incremental
way we define the interaction between the participat-
ing components of the pattern. First we define the in-
teraction F1 at the functional level, as if no distribution
was present. Then, when adding the logical layer we
define interactions L1 - L3. Finally, when imple-
menting the physical layer we establish the interaction
chain P1 - P6.

4. Applicability

Use the Distributed Proxy pattern when:

� An object-oriented interaction model is required be-
tween distributed objects. Distributed objects are fine-
grained entities instead of large-grained servers ac-
cessed by clients.

� Several distributed communication mechanisms may
be tested. Moreover, the communication mechanism
can be changed with a limited impact on the rest of the
application.

� Incremental development is required by the develop-
ment strategy. Incremental testing and debugging
should be enforced.

5. Structure and Participants

The UML class diagram in Figure 3 illustrates the struc-
ture of Distributed Proxy pattern. Three layers are con-
sidered: functional, logical, and physical. Classes are in-
volved in each layer: Client Object and Server
Object at the functional layer, Client-Side Proxy,
Server-Side Proxy and Reference Manager at
the logical layer, and Client-Side Communicator
and Server-Side Communicator at the physical
layer. Two abstract classes, Reference Interface
and Data Interface, define interfaces which integrate
functional and logical layers, and logical and physical lay-
ers.

The pattern’s main participants are:

� Client Object. Requires a service from Server
Object, it invokes one of its methods.

� Server Object. Provides services to Client
Object.

� Client-Side Proxy. It represents the Server
Object in the client node. It is responsible for ar-
gument passing and remote object location. It uses
the Reference Manager to convert sending ob-
ject references to node independent names (distributed
names) and received distributed names to object ref-
erences. It also uses the Reference Manager to
obtain a Data Interface where it proceeds with
the invocation.

� Server-Side Proxy. It provides distribution sup-
port for the Server Object in the server node. It
is the entry point for remote requests to the Server
Object. As Client-Side Proxy, it is responsi-
ble for supporting argument passing semantics.

3



Reference
Interface
{abstract}

m()

Proxy

Client
Object

Server
Object

CONVERT ARGUMENTS

Client-Side

Client-Side
Communicator

Data
Interface
{abstract}

Server-Side
Proxy

Server-Side
Communicator

Manager
Reference

resolveReference()
name2Ref()
ref2Name()

CONVERT ARGUMENTSMARSHALING

MARSHALING
UNMARSHALING

UNMARSHALING

INVOKE

SEND MESSAGE

RETURN MESSAGE

Figure 3. Distributed Proxy Pattern Structure.

� Reference Manager. It is responsible for asso-
ciating object references, local and proxy, with dis-
tributed names and vice-versa. It creates new prox-
ies, when necessary. Method resolveReference
is responsible for returning to the Client-Side
Proxy a Server-Side Proxy, when at the log-
ical layer, or a Client-Side Communicator,
when at the physical layer.

� Distributed Name. It defines an identifier which
is valid across nodes. It is an opaque object provided
from outside to the Reference Manager.

� Client-Side Communicator and Server-
Side Communicator. They are responsible for
implementing the distributed physical communication.
For each called method it is responsible for MAR-
SHALING and UNMARSHALING to, respectively, con-
vert arguments to streams of bytes and vice-versa.

� Reference Interface. Defines an interface
common to Server Object and Client-Side
Proxy, an interface that supports method m.

� Data Interface. Defines an interface common to
Server-Side Proxy and Client-Side Com-
municator, an interface that supports INVOKE.

6. Collaborations

Three types of collaborations are possible: functional
collaboration, which corresponds to the direct invocation of
Client Object on Server Object; logical collabo-
ration, where invocation proceeds through Client-Side
Proxy and Server-Side Proxy; and physical collab-
oration, where invocation proceeds through the logical and
physical layers.

The UML sequence diagram in Figure 4 shows a physi-
cal collaboration which includes the functional and logical
collaborations.

After Client Object invokes m on Client-Side
Proxy, arguments are converted. According to the spe-
cific arguments passing semantics, it converts object ref-
erences to distributed names or it creates new objects
which may include distributed names. To invoke on
a Data Interface, the Client-Side Proxy ob-
tains a Client-Side Communicator by using re-
solveReference. In the case of a logical collabo-
ration resolveReference returns a Server-Side
Proxy. The invocation on Data Interface is instan-
tiated with the converted arguments.

When invoked, Client-Side Communicator
marshals its arguments, and sends a message to Server-
Side Communicator which unmarshals the message
and invokes on Server-Side Proxy. Server-Side
Proxy converts received arguments to object references
using Reference Manager according to the specific
argument passing semantics. Finally, m is invoked on the
Server Object.

After invocation on the Server Object, three other
similar phases are executed to return results to Client
Object.

In this collaboration two variations occur when transpar-
ently sending an object reference: there is no name associ-
ated with the object reference in the sending node; and there
is no reference associated with the distributed name in the
receiving node. In the former situation the object reference
corresponds to a local object, and Reference Manager
is responsible for creating a Server-Side Proxy and
associating it with a new distributed name. In the latter sit-
uation the distributed name corresponds to a remote object,
and Reference Manager is responsible for creating a
Client-Side Proxy and associating it with the dis-
tributed name. Note that in the physical collaboration proxy
creation includes communicator creation.

4



m()

Object
: Client

Communicator
: Client-Side

Communicator
: Server-Side

Proxy
: Server-Side

Object
: Server

Manager
: Reference

Proxy
: Client-Side

m()

name2Ref()

ref2Name()

name2Ref()

di = resolveReference()

REFERENCES->DATA->REFERENCES

DATA->BYTES->DATA

ref2Name()

CONVERT
ARGUMENTS

MARSHALING

UNMARSHALING

CONVERT
ARGUMENTS

CONVERT
ARGUMENTS

INVOKE

MARSHALING

UNMARSHALING

CONVERT
ARGUMENTS

RETURN MESSAGE

SEND MESSAGE

di->INVOKE

Figure 4. Distributed Proxy Pattern Collaborations.

7. Consequences

The Distributed Proxy pattern has the following advan-
tages:

� Decouples object-functionality from object-
distribution. Distribution is transparent for func-
tionality code and clients of the distributed object are
not aware whether the object is distributed or not.

� Allows an incremental development process. A non-
distributed version of the application can be built first
and distribution introduced afterwards. Moreover, it is
possible to simulate the distributed communication in
a non-distributed environment by implementing com-
municators which simulate the real communication.
Data can be gathered from these simulations to detect
possible bottlenecks and decide on the final implemen-
tation architecture.

� Encapsulation of distributed communication mecha-
nisms. Several implementations of distributed commu-
nication can be tested at the physical layer, e.g. sockets

and CORBA, without changing the application func-
tionalities. Portability across different platforms is also
achieved.

� Location transparency. The conversion of distributed
names into Data Interface objects, done by
method resolveReference, gives location trans-
parency of remote objects. That way it is possible to
re-configure the application and migrate objects.

This pattern has the following drawback:

� Overhead in terms of the number of classes and per-
formance. Four new classes are created or extended
for each distributed object depending on whether the
implementation uses delegation or inheritance, respec-
tively. The number of classes overhead can be reduced
if they are automatically generated. The performance
overhead due to indirections can be reduced if the im-
plementation uses inheritance, communicators are sub-
classes of proxies.

5



8. Implementation

When implementing the Distributed Proxy pattern the
following variations should be considered.

8.1. Arguments Passing

Arguments passing can have several semantics: (1) an
object argument may be transparently passed between dis-
tributed nodes, a proxy is created in the receiving node; (2)
an object argument may be copied (deep copy); (3) an ob-
ject argument is copied but proxies are created for some of
its internal references.

At the logical layer argument passing semantics are sup-
ported by CONVERT ARGUMENTS code blocks. For in-
stance before sending a message to the physical layer, CON-
VERT ARGUMENTS code block should implement the ar-
gument passing semantics: (1) to support transparent object
passing it interacts with Reference Manager to con-
vert references to distributed names; (2) to support deep
copy the object is passed to the physical layer where its
data will be marshaled and recursively the data of all the
objects it refers to; (3) to support partial copy a new object
is created that contains the object data and associates dis-
tributed names with some of the objects it refers to. After
receiving a message from the physical layer and before dis-
patching it to the functional layer, CONVERT ARGUMENTS
code block is responsible for converting distributed names
to references and data objects to objects with references.

8.2. Transparency

Transparency can be implemented if Client-Side
Proxy and Server Object have the same interface:
the interface defined by Reference Interface.

However, it can be the case that Client Object
should be aware of distribution. For instance, the Client
Object should deal with communication faults. In this
situation, transparency can be relaxed by enriching the
Client-Side Proxy interface according to Client
Object distribution requirements.

Note that losing transparency does not imply a mix of the
pattern layers but only a change of the interfaces between
layers. These interfaces must express, make visible, some
distribution aspects of the communication. This means that
even in the lack of transparency the pattern keeps the quali-
ties resulting from the decoupling it defines.

8.3. Naming Policies

There are several possibilities when implementing Ref-
erence Manager: distributed nodes can share a sin-
gle Reference Manager or have its own Reference
Manager.

As described in [17] there are several naming policies.
A distributed name is universal if it is valid, i.e. can be
resolved in all the distributed nodes. A distributed name
is absolute if it denotes the same object in all distributed
nodes. A distributed name is an identifier if remote objects
have a single distributed name and no two different remote
objects with the same distributed name exist. A distributed
name is pure if it does not contain location information. An
impure name allows immediate invocation without previous
resolution.

A distributed name can be sent to any distributed node if
it is universal and absolute. Names with such properties can
be supported by a single Reference Manager shared
by all distributed nodes or by several cooperating Refer-
ence Managers which enforce their properties.

Identifier distributed names can be supported if the Ref-
erence Manager only generates new distributed names
and whenever generating a new distributed name verifies
that the object does not already have another distributed
name.

When performance is a requirement Reference
Managers can support impure names at the price of loos-
ing object migration. Resolution of reference associated
with a pure name requires that the Reference Manager
collaborates with a name service that associates pure names
with physical addresses where the invocation should oc-
cur. Name services are centralized or replicated entities.
Impure distributed names avoid the need for a name ser-
vice because during reference resolution the Reference
Manager obtains the physical address from the distributed
name.

8.4. Reference Resolution

Location of remote objects can either be at proxy cre-
ation time or at invocation time. The latter allows the re-
mote objects to change their location.

Location of remote objects variations are supported be-
cause resolveReference can either be invoked only
once or before each invocation. When performance is a
requirement and remote objects do not migrate, reference
resolution at proxy creation time can be used.

Location of remote objects may dependent on the name
policies used. If names are impure then reference resolution
at proxy creation time should be used.

8.5. Data Interface Implementation

The definition of the Data Interface is crucial
since it establishes the physical layer interface which will
be used by proxies. Two major variations are possible when
defining Data Interface and they are related with the
goals of using the Distributed Proxy pattern:

6



� Technology Encapsulation. Distributed object com-
munication technology, such as DCOM, CORBA and
JAVA RMI, is used to develop a distributed application
without tangling the functional code with distribution
code.

� Technology Implementation. The pattern can be also
applied to implement a distributed object communica-
tion mechanism like a CORBA compliant ORB.

Using the technology encapsulation approach a Data
Interface is defined for each Reference Inter-
face. In the Data Interface all object references are
replace by distributed names references. Concrete client
communicators must be defined for each defined Data
Interface (see Section 8.6). In this way the code that
uses the communication technology will be encapsulated in
the client and server communicators and each client proxy
will use its corresponding Data Interface class.

Using the technology implementation approach Data
Interface will define a fixed interface for the physi-
cal layer and all the client proxies will use that interface.
That interface should offer methods for marshaling and un-
marshaling and to send requests and receive results. In
this approach the Data Interface will correspond to
the Forward class of the Forward-Receiver pattern [2]
such that the replacement of the underlying communica-
tion technology does not have repercussions on the proxies
code. Different communication mechanism will be imple-
mented by different pairs of client-server communicators.
Each client communicator implements the Data Inter-
face. In this way the implementation details of the under-
lying communication is encapsulated in the communicators.
Also, by defining a fixed interface to the physical layer au-
tomatic generation of communicators is simplified.

It is also possible to use a hybrid solution where for
some classes the communication is done using a commer-
cial distributed object communication technology and for
other classes the communication is done using a specific
communication mechanism implemented by the applica-
tion programmer itself. This may be useful in applications
where some of the application’s remote classes have specific
requirements that are not covered by the distributed object
communication technology being used.

All three implementations provide a clean separation of
the physical layer from the logical layer, allowing program-
mers to change the communication mechanisms without
having to change the proxy´s code.

8.6. Implementation of Communicators

The implementation of the communicators depends on
how Data Interface was defined.

Using the technology encapsulation approach the com-
municator implementation is very simple. Consider a
CORBA implementation. CORBA IDL interfaces are de-
fined for each Data interface classes. The Server-
Side Communicator implements the IDL interfaces
delegating to the Server-Side Proxy. Client-
Side Communicators contain a CORBA reference and
invoke on the IDL interface. The code that interacts
with CORBA is within communicators. Catching excep-
tions and manipulating the CORBA types (CORBA::Any,
CORBA::Octet) code is encapsulated in the communica-
tors and therefore separated from the functional code.

Using the technology implementation approach, for each
type of communication, e.g., ISIS, TCP, UDP, IIOP, a con-
crete client/server communicator pair is defined. The com-
plexity of communicators implementation will depends on
the communication mechanisms. In this case design pat-
terns such Forward-Receiver or Acceptor, Connector and
Reactor [12] can be used.

9. Sample Code

The code below shows the distributed communication
associated with method getUser of class Agenda Man-
ager which given the user’s name, returns a User object.
The code emphasizes the logical layer of communication
and the physical layer using the technology encapsulation
approach for CORBA.

A client-side proxy of Agenda Manager,
CP Agenda Manager, which returns client-side proxies
of User, CP User, is defined. A CP User is a subtype
of Reference Interface User. In this case it is not
necessary to convert send arguments since the only entity
sent, string name, is not an object. Before invocation, a
Data Interface Agenda Manager, where the invo-
cation should proceed, is obtained from the Reference
Manager. After invocation, CP Agenda Manager
converts the received distributed name into a Refer-
ence Interface User reference. The down-casts
are necessary because object Reference Manager
manipulates objects of type Data Interface and
Reference Interface.

Reference_Interface_User* CP_Agenda_Manager::
getUser(const String* name)
{

// empty convert send arguments

// get data interface
Data_Interface_Agenda_Manager*
diam = static_cast<Data_Interface_Agenda_Manager*>(

referenceManager_-
>resolveReference(this));

// invoke
Distributed_Name* dn = diam->getUser(name);

// convert received arguments

7



Reference_Interface_User*
riu = static_cast<Reference_Interface_User*>(

referenceManager_->name2Ref(dn));

// return result
return riu;

}

A server-side proxy of Agenda Manager,
SP Agenda Manager, which returns a distributed name
of a User, is defined. The SP Agenda Manager is a
subtype of Data Interface Agenda Manager and
User is a subtype of Reference Interface User.
In this case it is not necessary to convert received argu-
ments since the only entity received, string name, is not an
object. After invocation, the User object is converted to a
distributed name.

Distributed_Name* SP_Agenda_Manager::
getUser(const String* name)
{
// empty convert received arguments

// invoke
User* user = agendaManager_->getUser(name);

// convert send arguments
Distributed_Name*

dn = referenceManager_->ref2Name(user);

// return result
return dn;

}

The following code shows the CORBA IDL definition
for the Agenda Manager server-side communicator.

interface SC_User
{
// CORBA IDL interface for server-side
// communicator of the User class

}

interface SC_Agenda_Manager
{
SC_User getUser(in string name);

};

The client-side communicator implementation of the
getUser method is straightforward. Each client-side
communicator inherits from its corresponding Data In-
terface class and from CorbaCComm that defines be-
havior to all the CORBA client-side communicators. In the
example below the class CorbaCC Agenda Manager
inherits from Data Interface Agenda Manager. It
simply narrows its CORBA::Object ptr of the corre-
sponding server communicator to the correct interface type,
and then delegates the execution to the CORBA proxy. The
method getDName, defined in CorbaCComm, obtains a
distributed name for the received remote reference. In this
case the distributed name is just a container for a CORBA
reference that also contains some type information that is
used by the Reference Manager to create the correct
proxies.

Distributed_Name* CorbaCC_Agenda_Manager::
getUser(const String* name)
{

SC_Agenda_Manager_ptr access;
SC_User_ptr user_corba_ref;

// Get the concrete CORBA reference
access = SC_Agenda_Manager::_narrow(obj_ptr_);
// Remote invocation
user_corba_ref = access->getUser(name);
return this->getDName(user_corba_ref);

}

Each server-side communicator is the implementation of
a CORBA IDL interface. It inherits from the IDL gener-
ated class and from CorbaSComm. It contains a reference
to its server-side proxy where it delegates the method exe-
cution. The method getCorbaRef, defined in CorbaS-
Comm, given a distributed name returns a CORBA refer-
ence.

SC_User_ptr CorbaSC_AgendaManager::
getUser(const String* name)
{

Distributed_Name *dn =
static_cast<Data_Interface_Agenda_Manager*>

(sp_)->getUser(name);

return SC_User::_narrow(this->getCorbaRef(dn));
}

10. Related Work

In [14] the proxy principle is described : ”In order to
use one service, potential clients must first acquire a proxy
for this service; the proxy is the only visible interface of
the service”. The presented design applies and extends this
principle by relaxing transparency and defining the logi-
cal layer. The former allows several argument passing se-
mantics, transparency is preserved from a syntactic point of
view because the server class and client-side proxy have the
same interface, but different semantics occurs when com-
munication duplicates non-constant objects. The latter al-
lows incremental introduction of distribution with testing,
debugging and simulation in a non-distributed environment.

The system presented in [9] also identifies the need of an
interaction model which is independent of the transport pro-
tocol that is used to transmit messages between endpoints.
This decoupling permits performance improvements by tak-
ing advantage of the facilities provided by the specific trans-
port protocol. DeLine [3] also defines an approach that al-
lows a component´s functional and interactive concerns to
be separated. DeLine emphasizes reuse, a component´s in-
teraction is captured in a packager, which may either be
reused directly or automatically generated from an high-
level description.

Distributed communication is addressed by technology
like CORBA [15] and JAVA/RMI [1]. In CORBA the im-
plementation of distributed communication is encapsulated
by an IDL (Interface Definition Language) and object ref-
erences are dynamically created and passed across nodes.

8



JAVA RMI (Remote Method Invocation) defines remote in-
terfaces which can dynamically resolve distributed methods
invocations. Both, RMI and most of the existing CORBA
implementations apply the Distributed Proxy pat-
tern or some of its variations.

The D Framework [8] defines a remote interface lan-
guage, which allows the specification of several copying se-
mantics. It is based on code generation. Due to the lack of
level of detail provided by the interface language it is not
possible to do optimizations at the physical layer.

The Distributed Proxy patterns is related to the follow
design patterns:

� The Proxy pattern [6, 2] makes the clients of an object
communicate with a representative rather than to the
object itself. In particular the Remote Proxy variation
in [2] corresponds to the logical layer of Distributed
Proxy. However, Distributed Proxy allows dynamic
creation of new proxies and completely decouples the
logical layer from the physical layer.

� The Broker pattern [2] defines a distributed archi-
tecture with decoupled components that interact by
remote service invocations. The Broker architec-
ture hides system- and implementation-specific details
from the users of components and services. The Dis-
tributed Proxy pattern separates functional, logical and
physical communications but allows programmers to
write code in any of the layers.

� The Client-Dispatcher-Server pattern [2] supports lo-
cation transparency by means of a name service. The
Distributed Proxy pattern also provides location trans-
parency when method resolveReference is in-
voked on Reference Manager before each dis-
tributed invocation.

� The Forwarder-Receiver pattern [2] supports the en-
capsulation of the distributed communication mecha-
nisms. This pattern can be used to implement the Dis-
tributed Proxy physical layer.

� The Serializer pattern [10] streams objects into data
structures and as well creates objects from such data
structures. It decouples stream-specific issues, as
backends, from the object being streamed. This pat-
tern can be used to implement the Communicators
marshaling and unmarshaling methods.

� The Reactor pattern [12], Acceptor pattern and Con-
nector pattern [13] can be used in the implementation
of the Distributed Proxy physical layer.

� The Naming pattern [17] describes an architecture cen-
tered on names, naming contexts and name spaces

in which object denotation and identification is sup-
ported. The Naming pattern can be applied to im-
plement class Reference Manager and its dis-
tributed naming policies.

11. Conclusions

This paper describes a design pattern for distributed
communication. It defines three layers of interaction: func-
tionality, logical and physical.

The design patterns allows an incremental development
process. A functionality version of the application can
be built first and logical and distribution introduced after-
wards. The functionality version allows the test and de-
bug of application functionalities ignoring distribution is-
sues. The logical layer introduces distributed communica-
tion ignoring distribution communication mechanisms and
preserving the object-oriented communication paradigm.
At the logical layer testing and debugging is done in a
non-distributed environment. Moreover, simulation of the
distribution communication mechanisms can also be done
in a non-distributed environment by implementing proxies
which simulate the real communication mechanisms. Fi-
nally, at the physical layer the application is enriched with
distributed communication mechanisms. Note that data
gathered from simulations at the logical layer may help to
decide on the final implementation.

The Distributed Proxy pattern was defined in the context
of an approach to the development for distributed appli-
cations with separation of concerns (DASCo) initially de-
scribed in [18]. Distributed communication is a DASCo
concern and the presented design pattern define a solution
for it. Moreover, it is part of a pattern language for the in-
cremental introduction of partitioning into applications [16]
which also includes configuration [11], replication [7] and
naming [17].

The Distributed Proxy pattern was experimented in the
DISGIS project [4]. DISGIS aims at providing effective and
efficient development of Geographical Information Sys-
tems, where functions and data are increasingly distributed.
Due to the large amount of data that is transmitted the Dis-
tributed Proxy was applied to provide an object-oriented in-
teraction model while allowing performance improvements
by adapting the logical and physical layers independently of
the communication technology.

References

[1] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley, 1996.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System
of Patterns. John Wiley and Sons, 1996.

9



[3] R. DeLine. Avoiding packaging mismatch with flexible
packaging. In 22th International Conference on Software
Engineering, pages 97–106, Los Angeles, CA, USA, May
1999.

[4] DISGIS. Esprit Project 22.084: DIStributed Geographical
Information Systems: Models, Methods, Tools and Frame-
works, 1996. http://www.gis.dk/disgis/Intro.htm.

[5] M. Fowler and K. Scott. UML Destilled: Applying the Stan-
dard Object Modeling Language. Addison-Wesley, 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[7] T. Goncalves and A. R. Silva. Passive Replicator: A Design
Pattern for Object Replication. In The 2

nd European Con-
ference on Pattern Languages of Programming, EuroPLoP
’97, pages 165–178, Kloster Irsee, Germany. Siemens Tech-
nical Report 120/SW1/FB, 1997, July 1997.

[8] C. V. Lopes and G. Kiczales. D: A language framework
for distributed programming. Technical Report SPL97-010,
PARC Technical report, February 1997.

[9] N. Pryce and S. Crane. Component Interaction in Dis-
tributed Systems. In IEEE Fourth International Conference
on Configurable Distributed Systems, pages 71–78, Annapo-
lis, Maryland, USA, May 1998.

[10] D. Riehle, W. Siberski, D. Baumer, D. Megert, and H. Zul-
lighoven. Serializer. In R. Martin, D. Riehle, and
F. Buschman, editors, Pattern Languages of Program De-
sign 3, chapter 17, pages 293–312. Addison-Wesley, 1997.

[11] F. A. Rosa and A. R. Silva. Functionality and Partition-
ing Configuration: Design Patterns and Framework. In
IEEE Fourth International Conference on Configurable Dis-
tributed Systems, pages 79–89, Annapolis, Maryland, USA,
May 1998.

[12] D. C. Schmidt. Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching. In J. Coplien and D. C. Schmidt, editors, Pattern
Languages of Program Design, pages 529–545. Addison-
Wesley, 1995.

[13] D. C. Schmidt. Acceptor and Connector. In R. Martin,
D. Riehle, and F. Buschman, editors, Pattern Languages of
Program Design 3, chapter 12, pages 191–229. Addison-
Wesley, 1997.

[14] M. Shapiro. Structure and Encapsulation in Distributed Sys-
tems: The Proxy Principle. In The 6th International Con-
ference on Distributed Computer Systems, pages 198–204,
Cambridge, Mass., 1986. IEEE.

[15] J. Siegel. CORBA Fundamentals and Programming. Wiley,
1996.

[16] A. R. Silva, F. Hayes, F. Mota, N. Torres, and P. Santos. A
Pattern Language for the Perception, Design and Implemen-
tation of Distributed Application Partitioning, October 1996.
Presented at the OOPSLA’96 Workshop on Methodologies
for Distributed Objects.

[17] A. R. Silva, P. Sousa, and M. Antunes. Naming: De-
sign Pattern and Framework. In IEEE 22nd Annual Inter-
national Computer Software and Applications Conference,
pages 316–323, Vienna, Austria, August 1998.

[18] A. R. Silva, P. Sousa, and J. A. Marques. Development of
Distributed Applications with Separation of Concerns. In

IEEE Asia-Pacific Software Engineering Conference, pages
168–177, Brisbane, Australia, December 1995.

10


