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The probability for surface atomic recombination of a single gas is theoretically investigated, for a system that takes into
account atomic adsorption in physisorption and chemisorption sites, surface desorption, surface diffusion, and both Eley–
Rideal (E–R) and Langmuir–Hinshelwood (L–H) recombination mechanisms. Analytic asymptotic solutions are obtained for
the value of the recombination probability and are validated by their comparison with numeric calculations for the system of
equations describing the same sequence of elementary processes. The dependence of the recombination probability on the
value of the wall temperature is analysed in detail. [DOI: 10.1143/JJAP.45.8200]
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1. Introduction

The study of the surface kinetics of atomic species, such
as N and O atoms, and in particular of the elementary
processes leading to heterogeneous recombination, is nowa-
days an important subject of research in various problems of
rarefied gas dynamics, such as the aerodynamics of space
vehicles moving in rarefied gases. On the other hand, many
of the characteristics of plasma reactors are in practice
controlled by wall reactions. Therefore, there is a need to
address the questions of the role of surface processes in the
overall behavior of different gas discharges, as it was
pointed out, e.g., in refs. 1 and 2.

Many theoretical works have been done recently in order
to investigate surface recombination of atoms. For instance,
phenomenological models have been developed in refs. 3
and 4 and a dynamical Monte Carlo has been presented in
ref. 5. All these models provide important physical insight
into the various elementary mechanisms occurring at the
surface and, particularly for the case of the Monte Carlo,
allow to perform quite complete and detailed simulations.
The purpose of this work is to follow a different approach,
by obtaining asymptotic analytic solutions for the recombi-
nation probability. It is shown that the approximate analytic
solutions describe the system with very high accuracy. Thus,
for the system under analysis, the recombination probability
can be readily evaluated from a simple expression, with no
need for any numeric treatment. As a consequence, the
dependence of the recombination probability on different
surface parameters, such as the activation energies of the
various processes and the wall temperature, can be fully
understood.

2. Theoretical Model

The surface model was described in detail in ref. 5. It is
assumed that the surface is totally covered with adsorption
sites of radius a (typically �1 Å). Each adsorption site can
hold atoms either reversibly (physisorption) or irreversibly
(chemisorption), while the average distance between chem-
isorption sites is 2b. Physisorption basically corresponds to a
bond between surface and gas particles due to van der Waals
forces (so that, roughly, any place on the surface can hold a
physisorbed atom). Due to their low bond energy, phys-
isorbed atoms can desorb from the surface and/or diffuse

along it. On the other hand, in chemisorption there is a true
chemical bond between the adsorbed atom and the solid
surface. The atom remains trapped in the potential well of
the chemisorption site, and can be removed essentially by
atomic recombination.

The system under analysis was originally designed to
describe nitrogen and oxygen recombination on silica
surfaces as in ref. 3, but it will be kept in a very general
form. It includes adsorption and desorption of atoms at
reversible sites (2.1, 2.2), chemisorption on irreversible sites
(2.3), recombination of chemisorbed atoms with gas-phase
atoms—Eley–Rideal (E–R) recombination (2.4), surface
diffusion of physisorbed atoms (2.5), and recombination
between a diffusing physisorbed atom and a chemisorbed
one—Langmuir–Hinshelwood (L–H) recombination (2.6).
At the present stage, recombination involving only phys-
isorbed atoms is not considered, nor it is desorption from
chemisorption sites. Take note that such approximations
may influence the results for very low and very high surface
temperatures, respectively. The elementary processes taken
into account can be written schematically in the form

Aþ Fv ! Af ð2:1Þ
Af ! Aþ Fv ð2:2Þ

Aþ Sv ! As ð2:3Þ
Aþ As ! A2 þ Sv ð2:4Þ
Af þ Sv ! As þ Fv ð2:5Þ
Af þ As ! A2 þ Fv þ Sv ð2:6Þ

where A and A2 denote gas phase atoms and molecules, Fv

and Sv vacant physisorption and chemisorption sites, and Af

and As physisorbed and chemisorbed atoms, respectively.
The corresponding densities are herein represented by the
symbols [� � �].

The rates for the elementary processes (2.1)–(2.6), r1 � r6,
are given in (site)�1 s�1 and their expressions can be found
in ref. 5. For the surface densities of reversible and
irreversible sites, [F] and [S], respectively, we have ½F� ¼
½Fv� þ ½Af� and ½S� ¼ ½Sv� þ ½As�. Then, for a surface
described by the set of processes (2.1)–(2.6), the fractional
coverage of reversible and irreversible sites, �f and �s, can be
calculated from expressions
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d�f

dt
¼ ð1� �fÞr1 � �fr2

� �fð1� �sÞ
½S�
½F�

r5 � �f�s
½S�
½F�

r6 ð2:7Þ

and
d�s

dt
¼ ð1� �sÞr3 � �sr4 þ �fð1� �sÞr5 � �f�sr6: ð2:8Þ

The recombination probability � of atoms of a certain
species A can be found from the creation-loss balance of gas-
phase A atoms at the wall,

d½A�
dt

� �
Wall

¼ �
2

Rt

ð½Fv�½A�k1 � ½Af�k2 þ ½Sv�½A�k3

þ ½As�½A�k4Þ ¼ �
hvAi�½A�

2Rt

: ð2:9Þ

In this expression we have used the reaction rates k1 � k6
given by r1 ¼ ½A�k1, r2 ¼ k2, r3 ¼ ½A�k3, r4 ¼ ½A�k4, r5 ¼
½F�k5, and r6 ¼ ½F�k6, Rt is the tube radius, hvAi is the
thermal speed of gas phase atoms A, and the roughness
factor, which is the ratio of the real surface area to the
geometric area (2�RtL for a tube of radius Rt and length L),
has been taken to be 1. Actually the roughness factor, ",
is bigger than one (ref. 3), but it is straightforward to include
it in the expressions from this work. As a matter of fact, the
corrected recombination probability is just obtained multi-
plying the expressions of � given in this work by ". Notice
that the quantities [F], [S], [Fv], [Sv], [Af], and [As] are
defined per unit area (for instance ½F� ¼ ½ ~FF�=2�RtL, where
[ ~FF] is the number of physisorption sites in a tube of radius Rt

and length L), whereas [A] is defined per unit volume
(½A� ¼ ½ ~AA�=�Rt

2L, [ ~AA] denoting the total number of gas
phase atoms in the considered volume). Moreover, the rate
coefficients ki are given in units of m3�s�1 for i ¼ 1; 3; 4,
in s�1 for i ¼ 2, and in m2�s�1 for i ¼ 5; 6. The factor (2=Rt)
in the middle part of equation (2.9) is simply a geometric
factor accounting for the definitions of volume and surface
densities.

Solving for � and using the steady-state conditions for the
fractional coverage �f and �s, it results

� ¼
2½As�ðr4 þ �fr6Þ

�A

¼ �E{R þ �L{H: ð2:10Þ

�E{R ¼ 2½As�r4=�A and �L{H ¼ 2½As��fr6=�A are, respec-
tively, the contributions of E–R and L–H recombination to
the total recombination probability, and �A is the flow of
gas-phase atoms A to the wall in m�2�s�1, �A ¼ hvAi½A�=4,
being hvAi the thermal speed of gas phase A atoms close to
the wall.

3. Results and Discussion

From the solution of the equations above, and noting that
for a system with no L–H recombination and at steady-state
�s ¼ r3=ðr3 þ r4Þ, it is possible to obtain the E–R recombi-
nation probability. As a matter of fact, it comes,

�E{R ¼
2½As�r4
�A

¼
2�sr4

�A

½S� ¼
2r3r4

r3 þ r4

½S�
�A

: ð3:1Þ

Substituting r3 and r4 as given in ref. 5, r3 ¼ �A’k
0
3
0=½S�

and r4 ¼ r3k
0
4 expð�Er=RTwÞ, where Er is the activation

energy for recombination, ’ ¼ ½S�=ð½S� þ ½F�Þ ¼ a2=b2, R is

the gas constant, and k03
0 and k04 are the sticking probabilities

on irreversible sites for processes (2.3) and (2.4), respec-
tively, usually assumed to be equal to one, one finally
obtains

�E{R ’
2’k03

0k04 exp

�
�

Er

RTw

�

1þ k04 exp

�
�

Er

RTw

� ; ð3:2Þ

That being so, �E{R is essentially proportional to
expð�Er=RTwÞ, as long as the wall temperature is not ‘‘too
high’’ so that the inequality expð�Er=RTwÞ � 1 holds.

The Langmuir-Hinshelwood recombination probability
exhibits a much more complex behavior with the wall
temperature. Each chemisorption site is surrounded by a
‘‘collection zone’’, whose size depends on the surface
parameters (activation energies of the different elementary
processes) and wall temperature. Basically, only atoms that
impinge the surface within a collection zone can reach, by
diffusion, a chemisorption site (refs. 3 and 5). Let k0D denote
the probability for a physisorbed atom to reach an
irreversible site (vacant or occupied).

Using a similar procedure as the one leading to expression
(3.2),

�L{H ¼
2½S��fr6
�A

’
2

�A

r1

r1 þ r2
r6

’
2

�A

r1

r1 þ r2
r2k

0
Dk

0
4 exp �

Er

RTw

� �
½F�; ð3:3Þ

where it has been used �f ’ r1=ðr1 þ r2Þ and r6 has been
substituted according to the expressions given in ref. 5.

For 0 < k0D < 1 this probability is given in ref. 5 by

k0D ¼
½S�
½F�

�D

�d

� �
exp

Ed � DD

RTw

� �
�

1

4

� �
; ð3:4Þ

where �d and �D are the frequency factors associated with
desorption and surface diffusion of physisorbed atoms,
respectively, and Ed and ED are the corresponding activation
energies.

The range of high temperatures corresponds to small
collection zones (desorption is very efficient) and hence
k0D < 1. It also corresponds to a low fractional coverage
�f . In this case, it can be shown from the expressions above
that

�L{H / exp
Ed � ED � Er

RTw

� �
: ð3:5Þ

Starting from high temperatures, the collection zones start to
expand as Tw decreases. One could then expect L–H
recombination would become more effective. This is in fact
what happens when Ed � ED � Er > 0. However, if recom-
bination is too difficult and Er is large, it can be seen from
the previous equation that Ed � ED � Er < 0 and �L{H

always goes down with ðTwÞ�1, in spite of the enlargement
of the collection zones.

At ‘‘intermediate values’’ of Tw, the collection zones start
to overlap, k0D ¼ 1, and all physisorbed atoms reach the
chemisorption sites. The second condition defining this
temperature range is that the inequality r2 � r1 still holds.
Under these conditions,
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�L{H / exp �
Er

RTw

� �
; ð3:6Þ

like �E{R. As a matter of fact, in this situation it makes no
difference if an atom is adsorbed in a reversible or
irreversible site, since all physisorbed atoms diffuse to
chemisorption sites.

Finally, at ‘‘low temperatures’’, k0D ¼ 1 and thermal
desorption becomes difficult. Since physisorbed atoms
practically do not desorb, the physisorption sites are almost
entirely occupied. The dependence of �L{H on Tw in this
case is

�L{H / exp �
Ed þ Er

RTw

� �
; ð3:7Þ

and �L{H decreases with ðTwÞ�1 faster than �E{R. Notice that,
because reversible adsorption sites are occupied, almost
none of the atoms arriving at the surface become phys-
isorbed and L–H recombination stops working.

Figure 1 shows the analytic solution for the set of
parameters indicated in ref. 3 as corresponding to nitrogen
recombination in silica, namely ½F� ¼ 1016 cm�2, ½S�=ð½S� þ
½F�Þ ¼ 2� 10�3, Ed ¼ 51 kJ/mol, Er ¼ 14 kJ/mol, ED ¼
0:5Ed, �d ¼ 1015 s�1, �D ¼ 1013 s�1, and k03

0 ¼ k01
0 ¼ k04 ¼

1. All the calculations were performed for a gas temperature
Tg ¼ 500K and a gas phase atomic density ½N� ¼ 1015

cm�3. This figure clearly shows the domination of E–R
recombination at high temperatures, the increase of L–H
recombination as a result of the increase of the collection
zones as Tw decreases, and finally the subsequent decrease of
�L{H at low temperatures, when k0D becomes equal to unity.
Also shown in the figure with open circles are the numeric
solutions of the system of eqs. (2.7) and (2.8), confirming
the validity of the present analytic solutions.

Figure 2 shows again nitrogen recombination on silica,
according to ref. 4. The only difference to the previous case
is that now Er ¼ 20 kJ/mol. The theoretical results from
ref. 4 are also shown, represented by the ‘‘�’’ symbols. The
behavior of � in this case is very similar to the one from the
previous figure, the only difference relating to its magnitude.

Figure 3 illustrates a completely different case, corre-
sponding to oxygen recombination on silica according to

ref. 4. In this case, Ed ¼ 33:3 kJ/mol, ED ¼ 0:5Ed, Er ¼
25:5 kJ/mol, and �D ¼ �d ¼ 1015 s�1. With these parameters
diffusion is very efficient, so that L–H recombination is
dominant for a wide range of Tw. Furthermore, since Ed �
ED � Er < 0, �L{H always decreases with ðTwÞ�1.

Finally, Fig. 4 shows an academic case with all pa-
rameters as in Fig. 1, with the exception of ’ ¼ ½S�=
ð½S� þ ½F�Þ, which is assumed to be 2� 10�1 instead of
2� 10�3. The density of chemisorption sites is much bigger
than previously, resulting a higher recombination probabil-
ity. However, the main interest of this case is the striking
extended ‘‘intermediate zone’’, corresponding to a well
defined region in which eq. (3.6) holds, �L{H having the
same exponential dependence as �E{R.

These figures demonstrate that even a relatively simple
system for heterogeneous recombination, such as the one
considered here and described by reactions (2.1)–(2.6), can
exhibit very different behaviors. The advantage of the
present treatment is to provide a direct and simple
explanation for such richness, and to provide ready-to-use
expressions allowing an immediate calculation of the
recombination probability.
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Fig. 1. Nitrogen recombination on silica according to ref. 3. (- - -) �E{R;

(– –) �L{H; (—) �E{R þ �L{H; � numeric solution.
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Fig. 2. Nitrogen recombination on silica according to ref. 3. (- - -) �E{R;
(– –) �L{H; (—) �E{R þ �L{H; � theoretical results from ref. 4; � numeric

solution.
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Fig. 3. Oxygen recombination on silica according to ref. 3. (- - -) �E{R;

(– –) �L{H; (—) �E{R þ �L{H; � theoretical results from ref. 4.
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4. Conclusions

In this work, asymptotic analytic solutions for the value of
the recombination probability, �, have been obtained in

terms of the different surface parameters, such as activation
energies and densities of adsorption sites. We have shown
that � can have very different dependencies with the wall
temperature, Tw, which result from the competition between
the Eley–Rideal (E–R) and Langmuir–Hinshelwood (L–H)
mechanisms of recombination. In the model assumed
here, E–R recombination dominates both at ‘‘very low’’
and ‘‘high’’ values of Tw, where � essentially follows an
exponential with Tw (notice that the what is meant by a
‘‘low’’ temperature, for instance, is related to condition (3.7)
and, in absolute numbers, can vary from case to case).
However, at ‘‘intermediate’’ temperatures the influence of L–
H recombination may originate strong deviations from this
exponential behavior. The validity of the asymptotic analytic
solutions has been confirmed from their comparison with the
numeric solution to the system of equations.
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Fig. 4. The same as in Fig. 1, but with ’ ¼ ½S�=ð½S� þ ½F�Þ ¼ 2� 10�1.

(- - -) �E{R; (– –) �L{H; (—) �E{R þ �L{H.
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