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A recent paper by Gislason treats the adiabatic piston, a system of two ideal gases in a horizontal
cylinder and separated by an insulating piston that moves without friction. The analysis in this paper
is comprehensive and useful as a teaching tool, but is somewhat misleading if not understood in the
appropriate context. The evolution to equilibrium involves two mechanisms, a faster one leading to
the equalization of pressures, and a slower one bringing the system to identical temperatures.
Gislason addressed only the first mechanism. We note that the eventual final state is described by
thermodynamics. Therefore, a discussion of the adiabatic piston can be enriched to promote a proper
and general view of thermodynamics. © 2011 American Association of Physics Teachers.
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I. INTRODUCTION

In a recent paper, Gislason analyzed the motion of the
“adiabatic piston,” which consists of two subsystems of the
same ideal gas contained in a horizontal cylinder with insu-
lating walls.1 Gislason made several important points and
elaborates on the first mechanism that brings the piston to
rest when the pressures of the two gases become equal. Sig-
nificant insight given by Gislason concerns the damping of
the piston motion as a result of the dynamic pressure on the
piston “because the pressure is greater when the piston is
moving toward the gas than when the piston is moving away
from the gas.”1 Gislason cites several papers that point out
that “temperature and pressure fluctuations in the two gases
will slowly act to bring the two temperatures to equality.”1

He correctly states that the “time scale for this slow mecha-
nism is much longer than the time scale for the piston to
come to rest,”1 and cautions that this slower mechanism is
not discussed in the paper. Gislason asserts that “thermody-
namics cannot predict what the final temperatures will be,”1

which is correct only in the context of the analysis of the first
mechanism. He adds that “to achieve complete equilibrium
the piston must be able to conduct energy, which cannot
occur for an adiabatic piston.”1 As we will discus, this state-
ment is not valid if we keep in mind the second mechanism
as well. It is interesting to analyze the first process as done in
Ref. 1, but readers should be aware of the approximations
involved and the conceptual problems it hides. The purpose
of this comment is to clarify this issue by using the formal-
ism of thermodynamics to extend the investigation to the
second mechanism.

An intuitive and beautiful discussion of the second mecha-
nism was made by Feynman,2 and a quantitative molecular
dynamics simulation, establishing beyond doubt the state of
equal pressures and temperatures as the final equilibrium
state, was published by Kestemont and co-workers.3 A care-
ful use of thermodynamics must give the same final results
as molecular dynamics, because the latter is a microscopic
interpretation of the former.

The remainder of this comment is structured as follows.
The way in which thermodynamics may handle the “adia-
batic piston” problem is shown in Sec. II. A short discussion

and an identification of the origin of some common misun-
derstandings are given in Sec. III. Finally, Sec. IV summa-
rizes our main conclusions.

II. THERMODYNAMIC APPROACH

The equality of pressures is a necessary condition for me-
chanical equilibrium, corresponding to the first mechanism.
It is not sufficient for thermodynamic equilibrium, which
also requires the second, slower process and the establish-
ment of thermal equilibrium.

The two subsystems together must satisfy the conditions
of constant total volume and total energy. The collisions be-
tween the gas particles and the piston make the position of
the piston fluctuate, allowing an exchange of energy between
both gases. This energy exchange will take place even if the
piston is not a thermal conductor, because they are a result of
the momentum transfer in the collisions.2 As a consequence,
the system will pass through the different available configu-
rations toward greater entropy. Therefore, we cannot impose
the condition dS=0 once the pressures are equal,4 although
this constraint is sometimes confused with the “adiabatic”
condition !see Sec. III". Moreover, the assertion that “to
achieve complete equilibrium, the piston must be able to
conduct energy, which cannot occur for an adiabatic piston”1

does not hold.
If we take into account these considerations, the system is

described by the set of equations,4

dU1 = − P1dV1 + T1dS1, !1"

dU2 = − P2dV2 + T2dS2. !2"

We have the condition

dS = dS1 + dS2 ! 0. !3"

Equations !1" and !2" can be written in the form

dS1 =
dU1

T1
+

P1

T1
dV1, !4"

dS2 =
dU2

T2
+

P2

T2
dV2. !5"
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As long as the system reaches mechanical equilibrium, we
have

dEk = − dU1 − dU2 = 0, !6"

where Ek is the kinetic energy of the piston. Furthermore,

dV = dV1 + dV2 = 0. !7"

Hence, dU2=−dU1 and dV2=−dV1. If we substitute Eqs. !4"
and !5" into the equilibrium condition dS=0, we obtain

dS = % 1
T1

−
1
T2
&dU1 + %P1

T1
−

P2

T2
&dV1 = 0. !8"

Therefore, the solution is P1= P2 and T1=T2, and both me-
chanical and thermodynamical equilibria are obtained. Ther-
modynamics can predict that the final variables are equal.

III. DISCUSSION

We have shown that thermodynamics correctly predicts
that the system will evolve to a final state of equal pressures
and equal temperatures. The reason a different and inaccurate
statement is repeated by many authors is related to a problem
of language and misconceived notions associated with the
meaning of adiabatic. If the piston is adiabatic, an additional
condition is often imposed, based on faulty physical intu-
ition, specifically,

dUi = − PidVi !i = 1,2" . !9"

The argument is that, because the piston is adiabatic, dQ
=0. If this were the case, we would have, substituting Eq. !9"
into Eq. !8",

dS = − % 1
T1

−
1
T2
&P1dV1 + %P1

T1
−

P2

T2
&dV1 = 0. !10"

Equation !10" would be valid if mechanical equilibrium P1
= P2 holds, without the need for the equality of the tempera-
tures. If we let P2= P1 in Eq. !10",

dS = − % 1
T1

−
1
T2
&P1dV1 + % 1

T1
−

1
T2
&P1dV1, !11"

we find dS=0, regardless of the values of T1 and T2.
The term adiabatic piston means a piston with zero heat

conductivity. If the piston is held in place, there is no energy
transfer from one subsystem to another. However, if the pis-
ton is released, both systems are coupled, and can interact
and exchange energy. We can say that a piston, which is
adiabatic when it is fixed, is not adiabatic when it can move
freely. The condition dQ=0 cannot be imposed.

It is not difficult to show that Eq. !9" does not hold in
general and cannot be demonstrated.4 Conservation of en-
ergy is expressed by the first part of Eq. !6", dEk+dU1
+dU2=0. In contrast, the work done on the piston is

dW = dEk = !P̃1 − P̃2"dV1, !12"

where P̃1 and P̃2 are dynamic pressures !they are denoted by
P1 and P2 in Ref. 1", that is, the pressures the gases exert on
the moving piston. Therefore,

dU1 + dU2 = − !P̃1 − P̃2"dV1. !13"

Equation !13" does not imply that Eq. !9" is generally valid,
although it can be a good approximation during the fast pro-
cess. Hence, even after the first process, when the pressures
are equal but the temperatures are still different, we have

dUi = − PidVi + TidSi " − PidVi, !14"

and Eq. !9" is incorrect.
After the attainment of mechanical equilibrium, the piston

has no kinetic energy and the evolution to the final equilib-
rium continues with dU1=−dU2, or

− P1dV1 + T1dS1 = + P2dV2 − T2dS2. !15"

Because P1= P2 and dV1=−dV2, we have

T1dS1 = − T2dS2. !16"

If T1"T2 initially, and we take into account Eq. !3", dS2
"0 and dS1#0, and the global change of entropy is
positive.4 Accordingly, the temperature T2 will slowly in-
crease and T1 will decrease until both temperatures become
equal and thermodynamic equilibrium is achieved.

IV. CONCLUSION

A recent paper raises several interesting points on thermo-
dynamics using the example of the adiabatic piston.1 As as-
serted in Ref. 1, its results must be used only to describe the
first process leading to mechanical equilibrium. We have
shown that the slow evolution to thermodynamic equilibrium
is well described within classical thermodynamics and com-
plete thermodynamic equilibrium is achieved, even if the pis-
ton is not a thermal conductor. Our discussion can help to
promote a general and proper view of thermodynamics. In
addition, it may provide a link to the microscopic interpreta-
tion of entropy. Additional insight of the problem, including
the analysis of the first process and the damped oscillations
of the piston, can be found in Refs. 5–7.
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AUTHOR QUERIES — 021103AJP

#1 Au: Please update Ref. 4 if possible.
#2 Au: Please update Ref. 7 if possible.
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