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5 We suggest a simple approach to introducing thermodynamics, beginning with the concept of
6 internal energy of deformable bodies. From a series of thought experiments involving ideal gases,
7 we show that the internal energy depends on the volume and on a second parameter, leading to the
8 development of the concept of entropy. By introducing entropy before the notions of temperature
9 and heat, the proposed approach avoids some of the major conceptual difficulties with the

10 traditional presentation. The relationship between mechanics and thermodynamics naturally
11 emerges, mechanics corresponding to isentropic thermodynamics. The questions of evolution to
12 equilibrium and irreversibility are studied under the light of the action of the “dynamic force” and
13 its dissipative character, evincing the benefits of keeping in mind the microscopic picture. VC 2012

American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.3698160]

14 I. INTRODUCTION

15 Thermodynamics is one of the key disciplines of physics
16 and chemistry, yet in its traditional form it continues to elicit
17 intellectual resistance. Despite being well established for
18 many years and dealing with apparently simple and intuitive
19 concepts, thermodynamics remains quite difficult and subtle.
20 We believe the difficulties with thermodynamics arise essen-
21 tially from two main factors. The first one is the traditional de-
22 velopment using the variable temperature. As is well known,
23 the natural variables associated with the internal energy U are
24 the volume and the entropy. We can then Legendre-transform
25 U into the other thermodynamic potentials that flank it on the
26 “thermodynamic square,”1 and obtain temperature from these
27 potentials via Maxwell’s relations. A formulation of thermody-
28 namics that starts with U¼U(S, V) contributes to a neat mathe-
29 matical derivation and an easier understanding of the meaning
30 of the different symbols. An early introduction of the entropy
31 was also proposed by Callen.2

32 A second difficulty comes from the fact that thermody-
33 namic quantities such as temperature and pressure are
34 defined in equilibrium. The application of the formalism to
35 non-equilibrium processes makes several variables and
36 notions lose their intuitive physical meaning and the mere
37 use of the words denoting these variables may induce errors.
38 The difference between the static and dynamic pressures is
39 crucial and is thoroughly discussed in this paper.
40 Herein, we suggest a way to avoid most of the traps fre-
41 quently encountered in the presentation of thermodynamics.
42 To this purpose, we try to maintain a natural and strong con-
43 nection with mechanics and the microscopic view. We start
44 by making the link between mechanical energy and the inter-
45 nal energy of deformable bodies in Sec. II. In Sec. III, we use
46 a simple “base model” involving an ideal gas to show that the
47 internal energy cannot be a function only of the deformation
48 variable. However, unlike the conventional presentation of
49 thermodynamics in which the variable temperature is a cor-
50 nerstone, here it is entropy that is immediately introduced as
51 the additional required variable. The relationship with
52 mechanics is then direct: mechanics is isentropic thermody-
53 namics. The second law and the questions of evolution to
54 equilibrium and irreversibility are also addressed in Sec. III.
55 Heat and the first law of thermodynamics are introduced in

56Sec. IV, from generalizations to the base model. That section
57also discusses the adiabatic piston as an example to illustrate
58the advantages of the proposed approach and discusses some
59further extensions of the model. The main findings are
60reviewed and discussed in Sec. V.

61II. WORK AND ENERGY: MECHANICS AND
62THERMODYNAMICS

63The concepts of work and energy were developed empiri-
64cally, associated first with the notions of force, gravitational
65potential energy, and kinetic energy. The complexity of the
66action of muscles was replaced with a simplified description
67of a static force, which can be measured, for instance, by a
68dynamometer. This led to an understanding of weight as a
69force, and of the corresponding opposing force present in
70equilibrium. The concepts of work of the weight and work of
71the force opposing weight appear naturally from here. The
72idea of gravitational potential energy arises from the design
73and construction of weight-lifting machines.
74These intuitive concepts are a fundamental part of any in-
75troductory study of physics. Among many excellent text-
76books, we would like to recall the brilliant presentation by
77Feynman,3 who introduces mechanics following the route
78just described. Another hypothesis, which he immediately
79advances and was early noted by da Vinci,4 is that “there is
80no such thing as perpetual motion with weight lifting
81machines.” Feynman goes on to warn that “in fact, that there
82is no perpetual motion at all is a general statement of the law
83of conservation of energy.”
84Newton’s laws allow us to identify the increase in the ki-
85netic energy as the work done by the resultant or net force
86applied to a particle. Combining the concepts of gravitational
87potential energy and kinetic energy yields the principle of
88conservation of mechanical energy for a particle moving
89only under the effect of the gravitational force.
90The generalization of these ideas to extended deformable
91bodies is at the origin of the notion of internal energy. A
92very simple example is depicted in Fig. 1(a). A pair of forces
93of the same magnitude and opposite directions acts on a
94body, deforming it. Clearly, there is work done by the forces,
95but the translational kinetic energy and the gravitational
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96 potential energy of the body remain unchanged. This
97 straightforward example also illustrates the power of the mi-
98 croscopic view. The simplest microscopic picture is to imag-
99 ine the body as an ideal gas in a container with movable
100 walls, Fig. 1(b). In this case, the work done is converted into
101 kinetic energy of the constituents of the gas, which is the
102 same as its internal energy.
103 With further maturation, this extension of the concepts of
104 mechanics to deformable bodies is at the genesis of thermody-
105 namics. Historically, however, thermodynamics evolved in a
106 rather autonomous way. Its development was based on the
107 concepts of heat and temperature, with properties apparently
108 foreign to the phenomenology described by mechanics. These
109 two new concepts were not easily encompassed by the formal-
110 ism of mechanics, although there have always been “kinetic”
111 conceptualizations of the thermodynamic quantities.5

112 The application of Newtonian physics to engineering, mili-
113 tary engineering being of particular importance, forced mechan-
114 ics to face the question of friction, which is always present in
115 practice. Friction was—and still is—treated as a nonessential
116 part of mechanics. One recurrent statement revealing the
117 attempt to isolate mechanics from the phenomenology of fric-
118 tion is the claim that the equations of mechanics are reversible.
119 Friction brings to light that mechanics and thermodynam-
120 ics are one and the same subject. The works of Maxwell and
121 Boltzmann culminate an amazing effort of many authors to
122 reconcile mechanics with thermodynamics, addressing the
123 question of evolution to equilibrium. Boltzmann, in particu-
124 lar, proposing a microscopic interpretation of entropy,6,7

125 opens the door for a reevaluation of the meaning of several
126 concepts, still problematic in the basic formulation of ther-
127 modynamics today.8,9 Let us pass through the door and travel
128 this road in the remainder of this paper.

129 III. ENERGY AND ENTROPY: THE BASE MODEL

130 Thermodynamics has been established for a long time and
131 there is a relatively consensual view on the way to present it.
132 Most concepts, such as work, temperature, and heat, are
133 introduced from the very beginning and in a very intuitive
134 way. Nevertheless, various difficulties arise in the interpreta-
135 tion of fundamental quantities such as heat and work, even
136 in simple situations. The subtleness of these seemingly sim-
137 ple and unambiguous notions leads to a search for consis-
138 tency in the definitions of work and heat in the formulation
139 of the first and second laws of thermodynamics, still very
140 active today.10–20

141 We suggest an early introduction of the variable entropy,
142 postponing the appearance of the quantities temperature and

143heat. This approach allows a formulation of thermodynamics
144that uses from the beginning the natural variables associated
145with the internal energy, which are the volume and the en-
146tropy. Moreover, all remaining quantities are introduced in a
147general and clear way, which, we believe, helps to prevent
148the misunderstanding and errors that spread even in the sci-
149entific literature. Finally, this procedure immediately pro-
150vides an easily identifiable connection between mechanics
151and thermodynamics.

152A. The need for the variable entropy

153Thermodynamics can be introduced with generality from
154a clear, uncomplicated, “base model,” corresponding to one
155of the most typical systems in thermodynamics: a classical
156ideal gas in a container with a movable piston on top, under
157the action of gravity, as shown in Fig. 2. The system is sur-
158rounded by vacuum, so that there is no external atmospheric
159pressure on the piston. There is no friction between the pis-
160ton and the container walls. Furthermore, it is assumed that
161the piston and the container walls do not have any internal
162structure, so that all collisions between the gas particles and
163the piston or the containing walls are perfectly elastic. This
164system can be studied starting only with the notions of

Fig. 1. A body deforms under the action of two forces of equal magnitude: (a) macroscopic picture; (b) microscopic picture, the body being an ideal gas in a
container with movable walls.

Fig. 2. The base model: An ideal gas is contained in a cylinder with a fric-
tionless movable piston of massM on the top.
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165 weight, work done by the weight, gravitational potential
166 energy, and internal energy. Note that a similar system was
167 used by Kivelson and Oppenheim to discuss the concept of
168 work in irreversible processes.21

169 Let us assume that the gas initially occupies a volume V1
170 and exerts a pressure P1 on the container walls. The piston is
171 held fixed in its place. Its total mass, M, is such that the pres-
172 sure exerted by the piston as soon as it is released,

Pe ¼
Mg

A
(1)

173 is larger than P1, A denoting the area of the base of the
174 piston.
175 The final equilibrium position of the piston can be deter-
176 mined if we know the dependence of the gas pressure on the
177 gas internal energy. For a classical monoatomic ideal gas,
178 from the microscopic picture and the calculation of the aver-
179 age momentum transfer per unit time, it is easy to show that
180 this relation is

P ¼ 2

3

U

V
¼ a

U

V
; (2)

181 where the value a ¼ 2=3 is specific to a monatomic gas, but
182 other values of a can be used for diatomic and polyatomic
183 gases, and even a relativistic gas of photons (a ¼ 1=3). As a
184 matter of fact, for a container of dimensions L" L" L, a
185 particle of mass m and speed vx moving along the x direction
186 hits one of the walls vx=2L times per unit time, and in each
187 collision transfers a momentum 2mvx. Thus, the momentum
188 transfer per unit time to the wall is mv2x=L. If we have N par-
189 ticles moving along the x direction and with different speeds,
190 the average momentum transfer per unit time is
191 hDp=Dti ¼ Nmhv2xi=L, where hv2xi is the average value of v2x .
192 Further assuming that there is no privileged direction of
193 motion, hv2i ¼ hv2x þ v2y þ v2z i ¼ 3hv2xi. Finally, dividing by
194 the area L2 to obtain the pressure, we obtain

P ¼ 1

L2
Dp
Dt

! "
¼ 1

3

N

V
mhv2i; (3)

195 which is Eq. (2) identifying the internal energy with the ki-
196 netic energy of the gas. Note that the potential energy of the
197 gas particles is negligible compared to their kinetic energy.
198 Furthermore, all the main results derived below do not
199 depend on this approximation.
200 It is worth noting that, despite the absence of friction, the
201 piston does reach a final equilibrium position and does not
202 remain oscillating indefinitely. Or, more precisely, it will at
203 first oscillate while slowly evolving to its equilibrium posi-
204 tion and, once this position is reached, the piston stays jig-
205 gling around it. What happens is that the pressure exerted by
206 the gas on the piston is a “dynamic pressure.”17–20 For the
207 same volume, the dynamic pressure is higher in a compres-
208 sion and lower in an expansion.17–19 The piston moves under
209 the action of the weight and of the dynamic force. Because of
210 the imbalance between the two forces, the latter has a
211 “dissipative character,” leading the piston to the final equilib-
212 rium position.18 The situation is somewhat similar to the case
213 of a bullet entering at high speed in a region where there is a
214 gas at room temperature. Even if all collisions between the
215 gas particles and the bullet are perfectly elastic, the net effect
216 is one of slowing down the bullet, until it finally stops. We
217 will return to this point in Sec. V, where a one-dimensional

218version of our base model, interesting as a model of thought
219and adequate for numeric simulations, is also suggested.
220The final equilibrium position can be calculated from the
221principle of conservation of energy and the equality of the gas
222and piston pressures. The former implies that the decrease in
223the gravitational potential energy must correspond to an
224increase in the internal energy,

$Mg h2 $ h1ð Þ ¼ U2 $ U1; (4)

225where the indexes 1 and 2 refer to the initial and final states,
226respectively, and h is the height of the piston, h¼V/A; the
227latter is the statement

Mg

A
¼ a

U2

V2
; (5)

228where Eq. (2) was used. We have as well

U1 ¼
P1V1

a
; (6)

229so that

h2 ¼ h1
a

1þ a
1þ P1A

Mga

# $
: (7)

230If P1 < Pe, as we have assumed, then h2 < h1, as it should
231be. Nevertheless, Eq. (7) is valid for any relation between
232the initial gas pressures P1 and Pe.
233Let us now assume we remove a certain mass from the pis-
234ton (for instance, we can imagine that the piston has several
235weights on the top of it, and we can simply remove one of
236them). The new total mass of the piston is M0 < M and the
237piston will reach a new equilibrium position, which we iden-
238tify with the subscript 3. Let us look at the case where M0 is
239such that the new equilibrium position, h3, is the same as the
240initial position h1. The energy conservation between posi-
241tions 2 and 3 reads, similarly to Eq. (4),

$M0g h1 $ h2ð Þ ¼ U3 $ U2: (8)

242Therefore, combining this expression with Eq. (4), we arrive
243at the following very interesting result:

U3 $ U1 ¼ M $M0ð Þg h1 $ h2ð Þ > 0: (9)

244Thus, when the piston goes back to its initial position, the in-
245ternal energy of the gas is higher than it was initially. It is
246straightforward to show that this conclusion remains valid if
247initially we would have P1 > Pe and hence h2 > h1 and
248M0 > M.
249Equation (9) means that the internal energy cannot be
250solely a function of the volume, in contrast to the typical sit-
251uations of mechanics (where the potential energy is only a
252function of position). If we assume that one further variable
253suffices to completely determine the internal energy, then we
254can write

U ¼ UðV; SÞ; (10)

255where the new variable, S, is called entropy.

256B. Properties of entropy and the second law

257Suppose now that the piston has initially a mass M0 such
258that AP1=g ¼ M0, which means that if the piston is released
259it stays at its equilibrium position. We can now add to the
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260 piston a mass m ¼ ðM $M0Þ=2 and wait for the piston to
261 reach its new equilibrium position. Finally, we add yet
262 another mass m to the piston, so that its total mass is M, as in
263 the compression described in Sec. III A. Using the same rea-
264 soning as above, it is not difficult to show that the final equi-
265 librium position corresponds to a position h02 < h2. This,
266 again, shows that the internal energy cannot be uniquely a
267 function of the volume. Moreover, the lower height reached
268 by the piston reflects the smaller imbalance between the
269 dynamic force exerted by the gas and the weight, compared
270 to the previous case.
271 We can further imagine a process in which the mass of the
272 piston is increased in N equal steps from M0 to M, for
273 instance, by slowly adding sand grains, one by one, on the
274 top of the piston. At each step, the dynamic force exerted by
275 the gas is nearly the same as the weight. Therefore, the dissi-
276 pative character of the dynamic force almost does not mani-
277 fest itself. The piston reaches the lowest possible final
278 position corresponding to a total mass M. Figure 3 illustrates
279 this effect, by showing the final height of the piston as a
280 function of the number N of masses m ¼ ðM $M0Þ=N added
281 on the top of the piston. The calculations were carried out for
282 M0 ¼ 10 kg, M¼ 11 kg, and a ¼ 2=3. The final height is
283 plotted as a fraction of the initial height. The reader is invited
284 to verify that the final result is given by

h2
h1

¼
YN

k¼1

a
1þ a

þ 1

1þ a
M0 þ ðk $ 1Þm

M0 þ km

% &
; (11)

285 and that the limiting result is M0=Mð Þ1=ð1þaÞ. For the case

286 depicted in Fig. 3, we have ð10=11Þ3=5 ’ 0:944418.
287 Interestingly enough, if the sand grains are now slowly
288 removed, one by one, we have again a near equilibrium
289 between the dynamic force and the weight at all times.
290 Everything nearly returns to the initial configuration and the
291 gas will thus have very approximately the same internal
292 energy as in the beginning. Figure 4 shows the final height
293 h03 as a function of masses used both during the compression
294 and the expansion, normalised to the initial height h1.
295 Lastly, note that if we make the compression with a large
296 number of steps, but the expansion quickly in few steps, we
297 still find the need to add some additional mass to the piston
298 to bring it to height h1 and U3 > U1, as in Eq. (9). The same

299happens if we do the expansion slowly with a large number
300of steps, but the compression with few steps.
301Some properties of entropy can now be easily derived.
302Referring to this simple case treated with the base model, we
303have

UðV; S3Þ ' UðV; S1Þ: (12)

304If we arbitrarily postulate that S3 ' S1, then the entropy can
305only increase or remain constant. Moreover,

@U

@S

# $

V

> 0: (13)

306Clearly, the situation with no entropy change corresponds to
307a reversible transformation, i.e., to a transformation where
308the initial state of the system can be recovered. In this case,
309the internal energy can be calculated only from the volume,
310as in the typical examples of mechanics. Thus, mechanics
311corresponds to isentropic thermodynamics, that is, to a set of
312transformations where the entropy does not change.
313It is worth underlining two issues evidenced by the previ-
314ous discussion and Figs. 3 and 4. The first one is that for de-
315formable bodies (bodies with internal structure), the
316isentropic transformations can only be performed by always
317keeping the system nearly in equilibrium, when the dynamic
318force is always approximately balanced by the “static”
319weight force. Failing to do so, either in the compression or
320the expansion, or both, leads to an increase of the entropy
321and to the impossibility of recovering the initial state of the
322system. The latter statement exposes the second matter: it is
323not necessary to look at the complete sequence, compression
324plus expansion, to speak about a reversible transformation,
325as its reversible character, corresponding to constant entropy
326during the process, can be ascribed separately to the com-
327pression and to the expansion. In short, if a transformation
328leads from one state to a different one with the same entropy,
329then the transformation can be reversed, and vice-versa. The
330process just described of slowly adding or subtracting sand
331grains approaches the reversible ideal.
332We have thus obtained the second law of thermodynamics,
333while keeping its interpretation and understanding at a very
334fundamental level. Evidently, in many situations studied in

Fig. 3. Final equilibrium height of the piston after the compression, as a
function of the number N of masses used to increase the total mass from
M0 ¼ 10 kg toM¼ 11 kg (see text).

Fig. 4. Final equilibrium height of the piston after compression and expan-
sion, as a function of the number N of masses used both to increase the total
mass from M0 ¼ 10 kg to M¼ 11 kg and then to decrease it back to M0

(see text).
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335 mechanics, a variation of entropy does take place, although
336 usually it is not taken into account. An example would be the
337 treatment of the compression depicted in Fig. 1(a), consider-
338 ing the energy only as a function of the deformation. A simi-
339 lar case is the deformation of a spring and the application of
340 Hooke’s law. We will further discuss this point in Sec. V.

341 C. Introduction of the formalism

342 As shown in Secs. III A and III B, the internal energy
343 depends (at least) on two variables, volume and entropy, as
344 given by Eq. (10). Therefore, we can write

dU ¼ @U

@V

# $

S

dV þ @U

@S

# $

V

dS: (14)

345 The idea of the increase in entropy as a result of the lack of
346 balance between the dynamic and the static forces, advanced
347 and discussed in Secs. III A and III B, can be confirmed as fol-
348 lows. The work of the resultant of the forces on the piston is
349 equal to the variation of its kinetic energy. In differential
350 form,

dEkin ¼ $Mg

A
dV þ ~PdV; (15)

351 where ~P is the dynamic pressure exerted by the gas on the
352 piston and dEkin is the variation of the kinetic energy of the
353 piston. On the other hand, the variation of the potential
354 energy of the piston is

dEpot ¼
Mg

A
dV: (16)

355 Consequently,

dEkin þ dEpot ¼ ~PdV: (17)

356 In addition, by conservation of energy,

dEkin þ dEpot þ dU ¼ 0: (18)

357 As a result,

dU ¼ $ ~PdV; (19)

358 so that the variation of the internal energy of the gas is equal
359 to the work done by the dynamic pressure.18–20

360 Among the conclusions from Sec. III B, we have seen that
361 a reversible transformation corresponds to a constant value
362 of the entropy, so that dS¼ 0. What is more, the dynamic
363 pressure is the same as the static pressure in this case. Hence,
364 as dU ¼ $PedV and P ¼ Pe, with Pe given by Eq. (1), from
365 Eq. (14) we have

dU ¼ $PedV ¼ $PdV ¼ @U

@V

# $

S

dV: (20)

366 Thus, the quantity P can be defined from

P ¼ $ @U

@V

# $

S

; (21)

367 which corresponds to the gas pressure for an equilibrium
368 point.

369Similarly, we can define the quantity T from

T ¼ @U

@S

# $

V

> 0; (22)

370where the inequality is simply Eq. (13). It is not difficult to
371later identify T with the ideal gas temperature. This determi-
372nation has been made by other authors.2,22 Notice, however,
373that, for an irreversible transformation, P and T are defined
374by Eqs. (21) and (22), respectively. In a dynamic situation,
375when the gas has a certain volume and a certain internal
376energy, P and T are the pressure and temperature it would
377have if it were in equilibrium, with the same volume and in-
378ternal energy. This is the general meaning of P and T, and
379no other. Furthermore, in a dynamic situation P is not the
380pressure exerted by the gas. Naming P and T “pressure” and
381“temperature” and thinking in physical terms in these quanti-
382ties, with these designations, as defined in equilibrium, is a
383common source of mistakes and misunderstandings.
384Finally, we can write

dU ¼ $ ~PdV ¼ $PdV þ TdS (23)

385and

$ ð ~P$ PÞdV ¼ TdS: (24)

386This last equation establishes that the variation of entropy is
387a consequence of the difference between the dynamic and
388the static pressures. This difference results in the “dissipative
389character” of the force, even if there is no friction, as pointed
390out and discussed in Sec. III A. This expression allows an
391additional verification that S always increases. As a matter of
392fact, if dV > 0 it must be true that ~P < P, so that dS > 0.
393The same conclusion is obtained if dV < 0, as then ~P > P.
394To finish this section, let us go back to Eq. (19), to note
395that

DU ¼ $
ð
~PdV; (25)

396which, denoting by W the work done by the dynamic force,

W ¼ $
ð
~PdV; (26)

397takes the expected form

DU ¼ W: (27)

398Moreover, it is immediate to verify that between two points
399where the piston is at rest the work done by the dynamic force
400W is equal to the work of the weight. Indeed, substituting
401Eq. (16) into Eq. (18), integrating and noting that in this case
402DEkin ¼ 0,

DU¼$
ð
Mg

A
dV¼$

ð
PedV

¼$Mg

A
DV¼$DEpot¼W: (28)

403This consistency check does not constitute a surprise, as all
404our analysis of the base model started precisely from this
405condition. The interesting fact is that, despite Pe 6¼ ~P along
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406 the transformation, between two points where the piston is at
407 rest we nevertheless have

ð
PedV ¼

ð
~PdV: (29)

408 If the transformation is reversible, dS¼ 0 along the trans-
409 formation and, if the gas returns to the initial volume, using
410 Eq. (23),

DU ¼ $
þ
~PdV ¼ $

þ
PdV ¼ 0: (30)

411 In general, for an irreversible transformation returning to the
412 same volume,

DU ¼ $
þ
~PdV > 0: (31)

413 Thus, the work of the dynamic force is transformed into in-
414 ternal energy, making the internal energy increase if the sys-
415 tem returns to the initial volume, in accordance with the
416 conclusions presented in Sec. III A.
417 In a generalization of the concept of heat,5 we can say that
418 the work has been transformed into heat. Heat, however, is a
419 subtle concept, still often misinterpreted (cf. Sec. IV C) and
420 it would be better to rather say that “work has been used to
421 heat the gas,” i.e., to increase its internal energy. Nonethe-
422 less, with the intuition acquired on the notion of variation of
423 entropy associated with the base model, linking Newton’s
424 second law with the second law of thermodynamics,18 we
425 are now ready to infer the properties of more complex
426 systems.

427 IV. HEAT: GENERALIZATIONS OF THE BASE
428 MODEL

429 The natural generalization to a more elaborate configura-
430 tion is a system comprised of two subsystems with a com-
431 mon boundary, through which they can exchange energy.
432 We will consider various configurations. The first one con-
433 sists of one subsystem of fixed volume and a second subsys-
434 tem with a movable piston on top, leading to the formulation
435 of the first law and the study of the heat reservoir. The sec-
436 ond arrangement is the case of two subsystems side by side
437 coupled by a moving piston, which allows the analysis of the
438 celebrated “adiabatic piston” problem.3,19,20,23–25 A third ge-
439 ometry is the same as the previous one, but with the two
440 subsystems arranged vertically. Finally, the last setup
441 involves two subsystems side by side and a piston on the top
442 of each of them, in order to study the constant pressure
443 calorimeter.12,13

444 A. Heat and the first law

445 The first geometry we want to investigate includes a sub-
446 system A similar to the base model, namely, a classical ideal
447 gas in a container with a moving piston. However, subsystem
448 A is in now contact with another subsystem B, of fixed vol-
449 ume, as shown in Fig. 5. The complete system (formed by
450 gases A and B and the piston) is isolated, but subsystems A
451 and B can exchange energy with the piston and therefore the
452 system (AþB) is not isolated. Furthermore, subsystems A
453 and B can also change energy through the common border.

454The conclusions from our base model apply to the new sys-
455tem (AþB).
456As the complete system is surrounded by vacuum, we
457have

U ¼ UA þ UB; (32)

458where U is the total internal energy, and UA and UB are the
459internal energies of subsystems A and B, respectively.
460We can now write [cf. Eqs. (25) and (26)]

W ¼ $
ð
~PdV ¼ DU ¼ DUA þ DUB: (33)

461As before, between two points where the piston is at rest the
462work of the dynamic force is equal to the work of the weight.
463Rearranging this equation gives

DUA ¼ W $ DUB; (34)

464which we can put into a more familiar form by defining

Q ¼ $DUB; (35)

465to obtain

DUA ¼ W þ Q: (36)

Fig. 5. Two subsystems, A and B, which can exchange energy through a
common border. A frictionless piston of mass M can move and modify the
volume of subsystem A.
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466 This is the usual formulation of the first law of thermody-
467 namics. (The symbol W is often defined with opposite sign,
468 i.e., as the work done by the system, so that DUA ¼ Q$W.)
469 The quantity Q is called heat or heat exchanged with subsys-
470 tem B. Its negative, –Q, is the change in the internal energy
471 of subsystem B, or the energy transferred from A to B. The
472 first law is thus a particular form of writing the principle of
473 conservation of energy.
474 The introduction of heat in this simple but clear way gives
475 a valuable contribution to help avoiding some of the most
476 common traps related to this concept, as further discussed in
477 Sec. IV C.

478 B. Temperature and the heat reservoir

479 One interesting result that can be easily obtained is the
480 equality of temperatures of subsystems A and B described in
481 Sec. IV A along reversible transformations. First note that,
482 from Eq. (32),

dU ¼ dUA þ dUB: (37)

483 Because U is a function of S and V, while dS¼ 0, we also
484 have

dU ¼ @U

@S

# $

V

dS$ PdV ¼ $PAdVA: (38)

485 On the other hand,

dUA ¼ TAdSA $ PAdVA; (39)

486 and

dUB ¼ TBdSB; (40)

487 where TA and TB are defined by Eq. (22). Combining these
488 expressions, we obtain

TAdSA þ TBdSB ¼ 0: (41)

489 Finally, assuming the entropy to be an extensive quantity (an
490 assumption that can be motivated and discussed) and since
491 the transformation is reversible,

dS ¼ dSA þ dSB ¼ 0; (42)

492 and hence, using Eq. (41),

TA ¼ TB: (43)

493 This shows that temperature characterizes the state of equi-
494 librium of the two subsystems.
495 An important limiting case is where subsystem B is infi-
496 nite, so that it constitutes a heat reservoir. Energy exchange
497 with the smaller subsystem then does not change the temper-
498 ature of reservoir B. This intuitive notion can be verified as
499 follows. If the energy density is uniform, in each unit volume
500 i of the heat reservoir we have the same volume Vi and the
501 same internal energy Ui. Hence, since Ui is a function of Si
502 and Vi, all unit volumes have the same Si. As the system is
503 infinite, any finite transfer of energy will not change its
504 energy per unit volume. Therefore, Vi;Ui, and Si are not
505 modified by a finite energy transfer to or from the heat reser-
506 voir. All quantities being the same, the derivatives (22) are

507also the same and the temperature of the heat reservoir
508always remains unchanged. Equation (43) tells us that in this
509case a reversible transformation is an isothermal transforma-
510tion at T ¼ TB. Moreover, since dSA ¼ $dSB, using Eqs.
511(40) and (35),

dSA ¼ dQ

T
: (44)

512C. The adiabatic piston

513The so-called “adiabatic piston” problem concerns two ideal
514gases contained in a horizontal cylinder and separated by an
515insulating piston thatmoves without friction, as shown in Fig. 6.
516This system is more complex than the previous ones and has
517been treated by many authors.3,19,20,23–27 Worth noting are the
518qualitative kinetic description by Feynman,3 the molecular dy-
519namics calculations by Mansour and co-workers,23,25 and the
520classical thermodynamics analysis by Gislason.19

521Classical thermodynamics analyses are of major interest
522here. As pointed out in our previous work,20 a careful use of
523thermodynamics must give the same final result as molecular
524dynamics, because the latter is a microscopic interpretation
525of the former. However, too commonly this is not the case, a
526fact that strikingly exemplifies the difficulties associated
527with the formalism of thermodynamics. Gislason gives a
528very interesting and enlightening discussion of the prob-
529lem,19 focusing on the shorter time scale, when the two gases
530evolve to a situation of equal pressures. However, he does
531not address the second phase, when the gases evolve to a sit-
532uation of equal temperatures, discussed qualitatively by
533Feynman3 and formally derived in our previous work.20 On
534the other hand, Anacleto and Anacleto,26 just to give one
535example, make a faulty investigation of the problem, claim-
536ing that the piston does not reach a final state of equilibrium,
537instead keeping oscillating indefinitely. Furthermore, they
538allege that entropy remains constant, due to the absence of
539friction, which is not the case.
540The main difficulty with this problem arises from a negli-
541gent use of language. As a matter of fact, the word “adiabatic”
542is too swiftly associated with “no heat exchange” and is itself
543problematic. Moreover, “heat exchange” is rarely defined
544with generality, but we immediately are led to impose the
545mathematical condition dQ¼ 0 in the calculations.
546The correct solution within the framework of thermody-
547namics was presented previously,20,24 and the reader should
548refer to those papers for the details on the formal use of the
549thermodynamic laws. Quoting from our former work,20 by
550an “adiabatic piston” it is meant a piston with zero heat con-
551ductivity. If the piston is held in place (for instance, if it is

Fig. 6. Two subsystems, A and B, which can exchange energy through a
moving “adiabatic” and frictionless piston.
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552 fixed to the box by screws), then there is no “heat transfer”
553 from one subsystem to the other. Even though, if the piston
554 is released, both systems exchange energy via collisions with
555 the piston, as they are coupled through the conditions of con-
556 stant total volume and total energy, where the kinetic energy
557 of the piston has to be taken into account. The evolution to a
558 stage of mechanical equilibrium of equal pressures has noth-
559 ing to do with friction: it is simply a result of the dissipative
560 character of the dynamic pressure, discussed in our base
561 model. There is indeed an entropy increase, as also acknowl-
562 edged by Gislason in his analysis of the first phase of the
563 problem.19 Gislason in fact provides significant physical
564 insight by identifying the damping of the piston motion as a
565 result of the dynamic pressure on it, “because the pressure is
566 greater when the piston is moving towards the gas than when
567 the piston is moving away from the gas.”19

568 After the equalization of pressures, the coupling between
569 the two subsystems remains; only the kinetic energy of the
570 piston becomes negligible. Still, the collisions between the
571 gas particles and the piston will make the piston jiggle,
572 allowing an exchange of energy between the two gases.3,20

573 These energy exchanges will always take place, despite the
574 piston being a thermal nonconductor and the absence fric-
575 tion, as they are simply a result of the momentum transfer in
576 the collisions (cf. the discussion by Feynman3). And, as
577 pointed out in Sec. IV A, these energy exchanges can be for-
578 mally treated as heat exchanges. Therefore, in this second
579 phase, the system evolves to a situation of equal tempera-
580 tures, with DUA þ DUB ¼ 0. In this case, if we write the first
581 law for gas A we have Q ¼ $DUB 6¼ 0 [Eq. (40)], and the
582 condition dQ¼ 0 cannot be imposed.20 In fact, we have
583 instead dQA ¼ $dQB [Eq. (16) in Ref. 20]. Notice that the
584 different quantities somewhat lose their intuitive interpreta-
585 tion, merely being a result of the mathematical formalism.
586 Another way of looking to the problem is to note that after
587 the equalization of pressures, there are configurations in the
588 vicinity of this mechanical equilibrium with greater global
589 entropy, and the system will move towards these configura-
590 tions. As a consequence, the system will indeed access the
591 different available microscopic configurations and move as a
592 result of a blind entropic process, in accordance with Boltz-
593 mann’s basic ideas and his microscopic interpretation of en-
594 tropy. The latter also furnishes an explanation on the
595 additive property of entropy.
596 From the discussion above, it is clear that during both
597 phases of evolution there has to be a “heat exchange,”
598 according to the formalism of thermodynamics, no matter
599 whether the piston was defined as “adiabatic,” which might
600 seem a bit shocking at first. The problematic use of language
601 is easily avoided if we leave behind a formulation of the first
602 law which to some extent still dates from the time of caloric,
603 and instead keep in mind its introduction as suggested in
604 Sec. IV A and from Eq. (35). Then, there is no doubt that the
605 “adiabatic piston” system allows the energy exchange
606 between both subsystems. And it is by no means shocking to
607 assert that the internal energy of each subsystem changes
608 due to the collisions, even for a piston with zero heat conduc-
609 tivity and moving without friction.

610 D. Further generalizations

611 From a general introduction of the first and second laws
612 of thermodynamics and an early alert on the dangers of
613 a blind use of the mathematical formalism, as outlined in

614Secs. III–IVC, it is possible to proceed to more complicated
615and richer systems. This paper would become too lengthy if
616we would discuss them in detail here. Nevertheless, we will
617mention a few of them briefly.

6181. The adiabatic piston in a gravitational field

619A natural generalization is to consider the adiabatic piston
620from Sec. IVC, but now in a vertical configuration and under
621the effect of gravity. In this case, the work done by the
622dynamic force has two terms, one for the each gas. This case
623follows very closely the adiabatic piston discussed in our
624previous work.20

625The conservation of energy reads

dUA þ dUB þ dEpot þ dEkin ¼ 0; (45)

626where dUA and dUB are the internal energies of subsystems
627A (bottom) and B (top), respectively, whereas dEpot and
628dEkin are the piston gravitational potential energy and its ki-
629netic energy, respectively. If the piston has mass M and area
630A, and noting that dEpot ¼ ðMg=AÞdVA, the reader is invited
631to adapt our former calculations20 and verify that the equilib-
632rium condition corresponds to equality of forces on the pis-
633ton and equality of temperatures: PA ¼ PB þMg=A and
634TA ¼ TB.
635Furthermore, since dVA þ dVB ¼ 0, the work of the result-
636ant of the forces on the piston is [cf. Eq. (15)]

ð ~PA $ ~PBÞdVA $
Mg

A
dVA ¼ dEkin: (46)

637Therefore, from Eqs. (45) and (46), we have

ð ~PA $ ~PBÞdVA ¼ dEkin þ dEpot ¼ $dUA $ dUB: (47)

638Finally,

X

i

dUi¼
X

i

$ ~PidVi

) *

¼
X

i

$PidViþTidSið Þ 6¼
X

i

$PidVið Þ (48)

639with i¼fA, Bg, and
X

i

TidSi ¼ $
X

i

ð ~Pi $ PiÞdVi: (49)

640Exactly like the case of the adiabatic piston, the direct use of
641the first law for one of the gases and the assignment of physi-
642cal meaning to the quantity Q are not straightforward, as nei-
643ther the conditions dQ¼ 0 and dUi ¼ $PidVi nor even
644dUi ¼ $ ~PidVi can be imposed.20,28

6452. The constant pressure calorimeter

646One important configuration in practical applications is
647the constant pressure calorimeter.12,13 The system can be
648idealized by adding a piston to subsystem B from Fig. 5 to
649keep it at constant pressure. The new configuration is
650depicted in Fig. 7.
651Let us denote the pressure exerted by the piston on subsys-
652tem B by P0. In other words, P0 ¼ MBg=AB, where MB is the
653mass of the piston on subsystem B and AB its area. Likewise,
654let us define Pe ¼ MAg=AA.
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655 Consider first a reversible transformation. In this case, the
656 pressure PB is always equilibrated at P0 and there is no dif-
657 ference between PB and ~PB. Therefore, defining the enthalpy
658 H as

H ¼ U þ PV (50)

659 and the specific heat at constant pressure CP from

ðdHÞP ¼ CPdT; (51)

660 we have

dHB ¼ dðUB þ PBVBÞ ¼ dUB þ PBdVB ¼ TBdSB

( CP;BdTB: (52)

661 To address the general case of an irreversible transforma-
662 tion (for instance, if we would initially have Pe > PA), we
663 note that the conservation of energy reads

dUA þ dUB þ dEpot;A þ dEkin;A þ dEpot;B þ dEkin;B ¼ 0;

(53)

664 where dEpot;A and dEkin;A are the potential and kinetic ener-
665 gies of piston A, given by Eqs. (15) and (16), respectively,
666 and the same for piston B. Hence, we still have

dUA þ dUB ¼ $ ~PAdVA $ ~PBdVB: (54)

667 Between two points where both pistons are at rest
668 (DEkin;A ¼ DEkin;B ¼ 0) we have, successively,

DUA þ DUB ¼ $PeDVA $ P0DVB; (55)

DUA ¼ $PeDVA $ ðP0DVB þ DUBÞ
¼ $PeDVA $ DHB; (56)

669where DHB ¼
Ð
CP;BdT. If the specific heat at constant pres-

670sure CP;B is constant, we can finally write

DUA ¼ $PeDVA $ CP;BDTB: (57)

671Thus, if we want to apply the first law of thermodynamics
672(36) to gas A, the second term on the r.h.s. corresponds to an
673energy exchange with subsystem B that we can identify with
674the heat exchanged with subsystem B between two points of
675equilibrium.

676V. DISCUSSION

677We have presented a simple and clear model for introduc-
678ing thermodynamics, which reveals and naturally solves
679some of the difficulties underlying the concepts of work and
680heat in the formulation of the laws of thermodynamics.
681The first step is the extension of the notions of kinetic and
682potential gravitational energies to the one of internal energy,
683inferred in Sec. II from the analysis of extended deformable
684bodies. Subsequently, from the base model presented in
685Sec. III it is shown that the internal energy depends on the
686position and entropy, U¼U(S, V).
687It is pointed out that the dynamic force on the piston has a
688dissipative character, even if we have only conservative
689forces and there is no friction. The second law of thermody-
690namics is then readily obtained (Secs. III A and III B). An
691interesting idealized situation of our base model corresponds
692to a very simple one-dimensional picture, namely, a gas
693formed of N point particles of mass m moving only on the
694vertical direction under the action of gravity, and colliding
695elastically with the piston of mass M. There is no friction
696and the particles do not interact directly with each other.
697Even this straightforward model is enough to understand the
698dissipative character of the dynamic force, the approach to
699equilibrium, and, thus, irreversibility. In the case where all
700particles are initially exactly at the same height and have
701exactly the same velocity, the situation is the same as with a
702one-dimensional elastic collision between two point masses
703(one of mass Nm and the other of mass M). Therefore, the
704piston remains oscillating indefinitely. The dissipative char-
705acter of the dynamic force does not appear and the entropy
706remains constant. The system “has no imagination,” the ac-
707cessible volume in phase-space remaining very limited.
708However, if the masses m are not exactly “in phase,” if there
709is a small difference in their positions or speeds, the dissipa-
710tive character emerges and there is an entropy increase (It
711can be noted that the notion of “exactly the same height and
712exactly the same velocity” does not make sense in quantum
713mechanics. However, it is not necessary to invoke quantum
714mechanics for the point we are making here). The accessible
715volume in phase-space has now increased. The key factor
716leading the evolution to equilibrium is the interaction
717between the different particles, even if it is kept to a mini-
718mum and only takes place indirectly through the collisions
719they experience with the piston. These ideas are in line with
720the pioneering works by Ludwig Boltzmann. A somewhat
721poetic statement expressing this main result would be
722“thermodynamics is mechanics with imagination.” A very
723interesting simulation of a rather similar system is available
724online from the NetLogo Models Library.29,30

Fig. 7. The constant pressure calorimeter can be schematically represented
by two subsystems, A (gas) and B (calorimeter), which can exchange energy
through a common border. A frictionless piston of massMB keeps subsystem
B at constant external pressure (instead of constant volume, as in Fig. 5).
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725 The approach to equilibrium raises the question of irrever-
726 sibility. The example of compression/expansion with sand
727 grains illustrates that the higher the imbalance between the
728 dynamic and static pressures, the higher the increase in en-
729 tropy, as also shown by Gislason.19 The importance of the
730 so-called “quasi-static” formulations is then easily under-
731 stood. It is the work of the dynamic force that is equal to the
732 variation of the internal energy of the gas [Eq. (19)]. In a
733 quasi-static process, the work of the dynamic force is a good
734 approximation for the work of the static force during part of
735 the trajectory of the piston, the variation of entropy being
736 nearly zero [Eq. (24)]. For any real process, it is not possible
737 to actually return to the initial conditions. Thus, it is neces-
738 sary to generalize the idea of mechanical potential energy to
739 the idea of gas internal energy. Whereas mechanical poten-
740 tial energy is a function of only the configuration (or defor-
741 mation), here denoted V, the gas internal energy depends on
742 one additional variable, S. Mechanics corresponds to isen-
743 tropic thermodynamics, i.e., to situations where the internal
744 energy is a potential energy, U¼U(V), either by the nature
745 of the problem or as an approximation.
746 The traditional development of thermodynamics defines
747 the internal energy first as a function of V and T. Noting
748 that @U=@Tð ÞV ¼ CV > 0, we could then be led to think
749 that mechanics corresponds to isothermal thermodynamics.
750 However, this is not the case. During the sand-grain trans-
751 formation of the base model, where P ’ ~P, we have
752 dT 6¼ 0. In particular, during the compression and the
753 expansion we have, respectively, dT > 0 and dT < 0. The
754 transformation is thus characterized by dS¼ 0 and not by
755 dT¼ 0. That being so, mechanics indeed corresponds to
756 isentropic thermodynamics and not to isothermal thermody-
757 namics, reinforcing the importance of considering S the
758 conjugate variable for V.
759 The idea that when a system returns to the initial position,
760 such as after the compression–expansion from our base
761 model, it has a higher internal energy than at the beginning
762 [Eq. (9)], is fairly counterintuitive. This comes from the fact
763 that physical systems are often surrounded by a thermostat,
764 which prevents the manifestation of the thermodynamic phe-
765 nomenon. A good example is the deformation of an elastic
766 material, such as a spring hanging vertically, holding a cer-
767 tain mass. The situation is very much like our base model
768 and an analysis similar to that in Sec. III A can be made. By
769 way of illustration, a new mass can be added to the spring,
770 which oscillates until a new equilibrium position is found.
771 The additional mass can then be removed to the side and the
772 spring again oscillates until it reaches its original equilib-
773 rium position, i.e., it recovers its initial deformation amount.
774 We are led to think that everything happens as if the dynamic
775 force could be approximated by the static force and internal
776 dissipation would not exist, as apparently we return to the
777 initial state. However, the excess internal energy and the en-
778 tropy variation of the spring are transferred to the surround-
779 ing environment. The energy increase of the environment is
780 equal to the work of the dynamic force and is equal to the
781 changes of gravitational potential energy of the masses
782 which are now at a lower level. Exactly the same would hap-
783 pen in the case of our base model in contact with a heat res-
784 ervoir. This example strengthens the idea of using entropy as
785 the additional variable, as an analysis based on the volume
786 and temperature would hide the problem and we would be
787 tempted to say that both the spring and the environment had
788 recovered the initial state.

789The heat reservoir was analyzed in Sec. IV B, as a limit of
790the case of energy exchanges between two subsystems,
791which can be described as heat exchanges. The first law,
792which should not be misinterpreted as a formal generaliza-
793tion of the principle of conservation of energy, is also
794derived in this context (Sec. IV A). Furthermore, the notion
795that “there is no such thing as perpetual motion with weight
796lifting machines”3,4 (Sec. II) can now be easily extended to
797account for the second law. In fact, this statement reflects the
798conservation of energy when entropy is not involved, so that
799U¼U(V). In this case, W ¼ DU and, when the system
800returns to its initial position, DU ¼ 0 and hence W¼ 0. In
801the general case, with friction or even simply the reorganiza-
802tion of the internal energy as a result of the action of the
803dynamic force, U¼U(S, V), with DS > 0. When the system
804returns to its initial position we have DU > 0, so that W > 0,
805leading to the conclusion that “there is no perpetual motion
806at all.”3 This inference is valid both when subsystem B is fi-
807nite (cf. Fig. 5) and in the limiting case of a heat reservoir, in
808what may be seen as a generalization of the Kelvin-Plank
809formulation of the second law.
810The analysis of the adiabatic piston problem (Sec. IV C)
811has to be done with care. It is no longer possible to separate
812the energy-momentum exchanges of the particles from the
813two subsystems with the piston into quantities “work” and
814“heat” with clear energetic meaning. The correct and com-
815plete solution of this problem may contribute to illustrate the
816difficulty in assigning a physical meaning to these two quan-
817tities, as they appear in the laws of thermodynamics.20,24 The
818“jiggling piston” further provides a perfect bridge between
819thermodynamics and the microscopic structure of matter—
820Feynman’s atomic hypothesis, as he said to his students in
821the very first chapter of his Lectures on Physics.3 Although
822the final result of equal pressures and temperatures can be
823obtained without referring to heat and thermodynamics,3 the
824complete analysis allows a further exploration of the micro-
825scopic interpretation of entropy.31
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