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Abstract

The null result of the Michelson—Morley experiment and the constancy of the
one-way speed of light in the ‘rest system’ are used to formulate a simple
problem, to be solved by elementary geometry techniques using a pair of
compasses and non-graduated rulers. The solution consists of a drawing
allowing a direct visualization of all the fundamental effects of standard
relativistic kinematics, namely time dilation, length contraction and relativity of
simultaneity. Moreover, it also provides an immediate image of other important
and more subtle aspects, often passed by in relativity courses, such as the
conventionality of simultaneity thesis, possible non-invariance of the one-way
speed of light and compatibility between the Lorentz—Poincaré and Einstein—
Minkowski philosophies. The geometric scheme so constructed constitutes a
powerful tool to clearly illustrate both traditional and not-so-traditional aspects
of special relativity teaching.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few years, we revisited the foundations of special relativity [1-3], ultimately
suggesting a somewhat unconventional approach to the teaching of the theory [3]. In those
works, John Bell’s claim that special relativity should be taught using Lorentzian pedagogy
first [4] was openly advocated. It was argued that this can be easily and effectively achieved by
introducing the IST (inertial [5, 6]-synchronized [7]-Tangherlini [8]) transformation before
establishing the symmetric Lorentz transformation [3]. In addition, it was noted that the usual
presentation of special relativity relies on too strong a formulation of its postulates. In truth,
both postulates can be expressed in more general terms, while keeping them fully consistent
with experiment [3]. For this reason, and in order to widen the view of special relativity often
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presented in textbooks, it was proposed to give the introduction to the subject simply from the
definition of a ‘rest system’, a system in which the one-way speed of light in empty space is
c in all directions, independent of the speed of the source emitting the light. No assumptions
about the possible uniqueness or not of this frame are required to start studying relativity [2, 3].
The next step is to impose the constancy of the two-way speed of light on all inertial frames.
This can be motivated by the conceptualization of time [1] or by simply assuming a null result
for the Michelson—Morley experiment in vacuum. For more details on the Michelson—Morley
experiment, see, for instance, [9] and references therein, and note as well that a new variant
of this experiment was recently proposed in [10]. Finally, it was recommended to discuss the
principle of relativity only at a later stage, after all the standard relativistic effects have already
been analysed [3]. Additional insight was subsequently given by Iyer [11].

Herein, we propose a relatively simple geometric exercise providing to a large extent an
intuitive visual image of several relativistic effects and their interpretation. The only prior
requirements are the definition of the ‘rest system’ as enunciated above and the assumption
of a null result for the Michelson—Morley experiment in vacuum, which can be taken as an
experimental fact. The problem is precisely formulated in brief in section 2. Section 3 details
the construction of the solution. Finally, a window to less classic observations is opened, as
discussed in section 4.

2. Formulation of the problem

The question to be solved can be introduced early in the first or second lectures on special
relativity, which makes it relevant to undergraduates studying relativity for the first time.
For instance, a traditional presentation of the idea of the aether as a supporting medium for
propagation of electromagnetic waves, followed by a brief account of the quest for the aether
wind and the puzzling failure of its detection, would constitute a motivation enough to have a
close look at the suggested exercise.

The problem may then be put in words in the following way. Suppose the existence of a
‘rest system’ S, i.e. a frame in which the one-way speed of light in vacuum is ¢ in all directions,
independent of the speed of the source emitting the light. Furthermore, consider a moving
frame S$’ going with speed v in the x-direction.

In the Michelson—Morley experiment, light is emitted from the origin of the moving
frame in two perpendicular directions, say, in the direction of motion (x, x) and in the upright
direction (y’), being reflected by two mirrors placed at equal distances L’ (measured in S’)
from the origin of the moving frame. The outcome of the experiment when performed in
vacuum is that both light rays arrive at the origin of S’ at the same time.

From this so-called null result, find, in the rest system,

(i) the position of the front mirror when light hits it,
(i1) the position of the origin of the moving frame at the same instant.

Further assume that distances in the y-direction are not affected by motion.

3. Geometric solution

The beginning of the construction is quite well known. Let us identify the rest system S with
a sheet of paper (or with the blackboard in class). The origins of both frames coincide at
a certain initial instant. Note that it would make no difference if S’ had emitted light in all
directions (which would be seen as a spherical wave in S) instead of only two light rays in
perpendicular directions in S’.
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Figure 1. Light hits the top mirror.

A first instant of interest, denoted as instant 1, corresponds to the moment when light
would reach the top mirror if §' was not moving, making ticy. At a later instant 2, the light
ray sent in the y’-direction hits the top mirror, making tic;. In S this ray travels diagonally,
as shown in figure 1, because the moving frame has advanced along the x-axis. The distances
light travels up to instant 1 are depicted in the figure as well. Note that the distance between
the origin of S and point 2 is ¢ tic;, whereas the distance between the origins of S and S’ is
v tic;. The figures drawn correspond to v/c >~ 0.81.

Since in S the one-way speed of light is the same in all directions, the light ray sent in the
x-direction has covered exactly the same distance as the other ray. Thus, its position at instant
2 can be easily identified. It is also plotted in figure 1 and identified as label 2 on the x-axis.
Clearly, ticy occurs before tic;, which can be used to address time dilation, as emphasized
below. This concludes the analysis of figure 1.

Another notable instant corresponds to the moment when the two light rays recombine at
the origin of the moving frame and make tac, denoted by instant 4. The situation is completely
symmetric in what concerns the ray travelling along the y’-axis in the up and down trips. It is
then immediate to identify the position of S’ at this instant by drawing a circle with the centre
at the top mirror in instant 2. This position is represented in figure 2 by the vertical line with
two 4s. Note that, in order to keep the figures less cluttered, the auxiliary lines used to build
figure 1 were removed. The first point 4 along x identifies the origin of the moving frame;
point 4 along the y’-axis which corresponds to the position light would have reached if it had
not been reflected by the top mirror; the second point 4 along x then determines the position
of the horizontal light ray, if it had not been reflected by the front mirror.

At this point, one already has everything necessary to understand and introduce time
dilation. This is still classic and is brilliantly discussed by Feynman [12]. Readers unfamiliar
with the argument are advised to refer to section 15-4 from [12]. Nevertheless, it is worth
to note that complete tic-tacs can be seen as clock cycles, each of them defining a time unit
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Figure 2. The recombination of both rays.

[1, 12]. For instance, ticy followed by the corresponding tacy (the moment light would reach
the origin of S after reflection at instant 1) defines the time unit in the rest system and can
be associated with a stationary clock. Similarly, tici—tac corresponds to the time unit in S’
and can be associated with a moving clock. As put by Feynman [12], since ticy occurs before
ticy, ‘it takes a longer time for light to go from end to end in the moving clock than in the
stationary clock. Therefore, the apparent time between clicks is longer for the moving clock’,
which means that time passes slower in the moving frame. An animation showing a tic-tac in
S (light travelling along y, i.e. in the vertical) and a tic-tac in S’ (light travelling along y’, i.e.
in the diagonal) furnishes a direct and unforgettable visualization of the effect of time dilation
and the consequent slower aging of moving observers.

The dilation factor, y = 1/4/1 —v2/c?, is easily obtained from figure 2 [12]. One
direct way to obtain it is by noting that, on the one hand, ticc = L’/c; on the other
hand, using the Pythagorean theorem for the diagonal path of light, and the fact that
while light in the diagonal path travels a distance c tic; the moving frame covers a distance
v ticy, (c tic;)? = (v ticy)? + (L'). Hence, tic; = ticy//1 — v2/c? = y tico.

Now going back to the geometric problem, as the position where both light rays recombine
is already known, and since in S light travels with the same speed in all directions, light has to
hit the front mirror exactly at the midpoint of the two points of the x-axis identified as label 4,
making tic, and defining instant 3. This determines the position of the front mirror at instant 3,
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Figure 3. Light hits the front mirror.

as shown in figure 3, from which the auxiliary lines previously used were again deleted. Also
shown is the distance light would have travelled in the diagonal, if it had not been reflected by
the top mirror.

What is still missing is just to determine the position of S’ at instant 3. It is immediately
obtained by simply noting that the distance light travels in the diagonal between moments 2
and 3 after reflection is the same it would travel if it had not been reflected. A circle centred
at the top mirror at instant 2 does the trick, as shown in figure 4. As before, the auxiliary lines
from the previous constructions were removed. It is obvious that by marking a circle with the
centre at the first point 4 along x and radius up to the position of the front mirror at instant 3,
the solution can also be obtained.

The geometric construction is now finished and the problem is solved. Before moving on
to less customary issues, one should still call attention to the Lorentz—Fitzgerald contraction,
as shown in figure 4. Evidently, the length of the horizontal arm is the distance between the
position of the origin of the moving frame and the position of the front mirror. In S, this length
can be readily obtained from the last figure, using instant 3. It is marked in figure 4, where
it is denoted by L. However, in S’ both mirrors are placed at the same distance L’ from the
origin. This other length is also identified and marked in figure 4 (recall that distances along
the y-direction are not affected by motion). The figure demonstrates that there is a space
contraction along the direction of motion in the moving frame: the length corresponding to
the distance between the two points with label 3 in the xx’-axis in figure 4 is Lin Sand L’ > L
in §’, which can be interpreted by saying that ‘the moving metres have became shorter’. It is
even possible to use the figure to obtain quantitatively the contraction factor, 1/y. To do so,
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Figure 4. Light hits the front mirror and the Lorentz contraction.

start by drawing two circles of radii L’ and L centred at the origin of S, then project on y the
intersection of the former with the diagonal line and verify that the projection on the y-axis
exactly coincides with the circle of radius L. Note that the circle with radius L’ was already
drawn, defining instant 1 (figure 1), although it was not really required to find the solution to
the problem.

Finally, since in practice the auxiliary lines can be made thin but cannot be deleted neither
on a blackboard nor on a pencil and paper drawing, for completeness figure 5 shows the
resulting image with all the construction lines included.

4. Further discussion

This section suggests some additional insight that can be provided and motivated with the
problem that has just been solved, which can be used as a conducting line helping to address
other aspects of special relativity. It can be decided to skip the subsequent remarks in an
introductory relativity course; nevertheless, we find it worth pointing them out and opening
new possible approaches for teachers.

Following the proposals from [1-3], we consider that it would now be interesting to briefly
address the possible constancy of the one-way speed of light. This is done without any further
assumption at first, in a relatively unorthodox way.

The argument is as follows. From figure 5, the light ray travelling along y’ clearly
divides the time unit into two equal time intervals, O—tic; and tic;—tac. In contrast, for the
ray going along (x, x’), At; = O-tic, is much longer than Af, =tic,—tac. The corresponding
time intervals in S” are simply related to A#; and At, by the time dilation factor y, so that
At > At}. Since, in §', the distances covered in the two time intervals are the same (L’),
then, in §’, light goes slower in the forward direction, ¢}, than in the backward one, c¢; .
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Figure 5. The complete geometric construction.

It is beyond doubt that this fact can be shocking for students with a relatively poor grasp of
special relativity, as they simply learn that ‘the speed of light is the same in all inertial frames’
and, accordingly, one has to have At{ = At} (we will sort out this apparent contradiction
below). However, it is quite natural for students being just introduced to the subject. Indeed,
from classical mechanics they would expect to find ¢ = (¢ Fv). Furthermore, by taking
into account the corrections in lengths and in rhythms (obtained through this example or
otherwise), the expression has to be rectified to

cE=yicFv), (1)

with y = 1/4/1 — v%/c2. One factor y accounts for time dilation; the second one holds for
space contraction. Note that many students actually believe that the two y factors cancel each
other out, which would justify the constant value of the one-way speed of light they use in
relativity. This is not the case.

Expression (1), obtained here from quite simple and intuitive arguments, can also be
derived directly from the IST transformation as shown in our previous works [2, 3]. This being
S0, it is possible to work it the other way round, and obtain directly the IST transformation
from time dilation and length contraction first and then verify that it is consistent with
equation (1). Note that ¢, goes to infinity when v approaches c¢. This is also evident
from figure 5, as the time interval tico—tac tends to zero, whereas in S’ the distance to be
covered is always L’. Moreover, it is not difficult to verify that the two-way speed of light in
S’ is ¢, as it should be.

For the situation is presented here, there is no reciprocity between frames, and Lorentzian
philosophy [4] is being used. How to proceed from the IST transformation to the Lorentz
transformation, to the principle of relativity and to Einsteinian philosophy is explained in detail
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in [2, 3]. Let us simply note that we can decide that we want to work in S’ as if the one-way
speed of light were ¢, although we do not know if this is so. The reasons to operationally
proceed in this way can be more or less justified and elucidated, or this decision can simply
be taken as a new definition of a particular notion of ‘speed’ [2, 3].

In any case, if we decide that we want to work with At; = At as read by clocks in S’ or,
equivalently, if we want the time readings of two moving clocks co-punctual with both mirrors
to be the same at tic; and tic,, the only option is to delay the clock from S’ co-punctual with
the front mirror, so that when light hits it (instant 3) it reads the same number (time coordinate)
which the clock co-punctual with the top mirror has marked at instant 2. Though no alteration
in the rhythm of the clocks is made, only their initial setting is changed. Note that physics can
even be studied using two sets of clocks at the same time, one delayed and the other not, since
physics and its laws are not changed by the way we decide to set our clocks. It is precisely
the same physics describing the same reality, in spite of the fact that from the readings of one
set of clocks the one-way speed of light in the moving frame is given by (1) and from the
readings of the other one it is c. There is no contradiction in these assertions, as the definition
of ‘speed’ and the time coordinates used are different in each of them [2, 3].

Evidently, at this point everything is already set to address the conventionality of
simultaneity thesis [3, 13, 14], independence of physics from coordinates [3, 15-17]
and compatibility between the Lorentz—Poincaré and the Einstein—Minkowski philosophies
[2, 3, 4, 18], if the teacher wants to do so. A more conservative approach would consist in
merely introducing relativity of simultaneity with the remark that in § instants 2 and 3 are
distinct, whereas, under the assumption of invariant one-way speed of light, they are the same
in §'.

Finally, let us conclude with the observation that the geometric construction presented in
this work is a particular case of a more general problem, namely to know where and when
does light emitted at a certain point hits a moving object. This is the key point of the question
of aberration of light, which will be treated in a similar way elsewhere.
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