
Computação Quântica: arquitecturas e simulação de
operação de dispositivos

Geração automática de Layout QCA para circuitos combinatórios

Tiago Teresa Teodósio

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Júri
Presidente: Doutor José António Beltran Gerald
Orientador: Doutor Leonel Augusto Pires Seabra de Sousa
Vogais: Doutor Paulo Ferreira Godinho Flores

Setembro de 2007

Acknowledgments

Thanks to Carla Duarte for her support. Thanks to Prof. Paulo Flores for some discussions

about data structures and logic synthesis algorithms. Thanks to Prof. Susana Freitas and Prof.

Paulo Freitas for some enlightenments about the feasibility and fabrication of nano-magnets, to-

wards Magnetic QCA. Thanks to Pedro Tomás for the thesis template. Thanks to Ricardo Chaves

for english corrections. Thanks to Prof. Leonel Sousa for his guidance and help.

Abstract

The presented thesis is about a new technology, QCA (Quantum-dot Cellular Automata), a

promising successor for CMOS transistor technology. As this technology allows the implemen-

tation of logic circuits using quantum devices (quantum dots or single domain nano magnets)

instead of the traditional devices (eg. transistors, diodes and resistors), a new set of tools must

be developed to assist the design process. That is the case of the QCADesigner for handmade

layout and physical simulation. There are also tools for Majority Logic optimization, which is the

logic unit adequate to design QCA logic circuits. However, no tool for QCA layout generation was

still available. This thesis proposes and develops the QCA-LG software tool to generate QCA

circuit layouts. With this work, the QCA technology design flow can be completely performed in

an automatic way, so that the transformation of a high level hardware description into layout is

possible, although under some restrictions. The main purpose of the presented QCA-LG tool is

to produce basic QCA layout suitable for optimization by hand, although in the future optimized

layout can be automatically generated. At the moment, the produced layout can be a starting point

for proceeding with the optimization of the circuit’s layout. Some layouts automatically generated

by QCA-LG are presented in this thesis and compared with optimized handmade equivalent cir-

cuits. The main causes of inefficiency of the QCA-LG tool are identified, namely in what concerns

circuit area. Some conclusions reached in this work suggest the possibility of QCA-LG being a

serious candidate to the automatic generation of QCA circuits.

Keywords

QCA, Quantum Cellular Automata, Automatic Layout Generation, Place and Route.

iiiiiiiii

Resumo

Esta tese tem como objecto de estudo uma tecnologia nova, o QCA (Autómato Celular Quân-

tico), uma forte candidata a suceder à tecnologia CMOS. Dado que esta tecnologia permite

a implementação de circuitos lógicos com dispositivos quânticos (quantum dots ou elementos

magnéticos com comportamento de mono domı́nio) em vez de dispositivos tradicionais (transis-

tores, diodos ou resistências), é necessário criar um novo conjunto de ferramentas para auxiliar o

projecto de sistemas completos. Existem algumas ferramentas já disponı́veis, nomeadamente o

QCADesigner para desenho manual de circuitos e para a sua simulação fı́sica. Existem também

ferramentas para a sı́ntese de Lógica Maioritária. Não existem, no entanto, ferramentas para

a geração de layout de circuitos QCA. Nesta tese é proposta e apresentada uma ferramenta

para geração automática de layout QCA, designada QCA-LG, que se insere no fluxo de projecto

de circuitos lógicos QCA. No presente, os layouts gerados pelo QCA-LG não são optimizados,

no entanto, espera-se, no futuro, poder realizar a geração automática de layouts optimizados.

Actualmente, os layouts gerados pelo QCA-LG podem servir de ponto de partida para serem op-

timizados manualmente com o QCADesigner. Alguns resultados obtidos no desenrolar desta

tese são apresentados e comparados com circuitos equivalentes desenhados e optimizados

manualmente. Os principais problemas de eficiência da ferramenta QCA-LG foram identifica-

dos, nomeadamente o desperdı́cio de área de circuito. Algumas das conclusões deste estudo

indicam que o QCA-LG é um sério canditado para a geração automática de circuitos QCA.

Palavras Chave

QCA, Autómato Celular Quântico, Geração Automática de Layout, Colocação e interligação.

vvv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 QCADesigner . 3

1.3 Objectives . 4

1.4 Main contributions . 5

1.5 Dissertation outline . 6

2 State of the art 7

2.1 Physical structures . 11

2.2 Basic logic elements . 16

2.2.1 Quantum dot implementation . 16

2.2.2 Magnetic implementation . 19

2.2.3 Molecular implementation . 20

2.3 Logic gates . 23

2.4 Synchronization . 25

2.5 Memory . 27

2.6 Signal routing . 27

2.7 Majority logic synthesis . 28

2.8 QCADesigner . 30

3 QCA-LG: a tool for automatic generation of QCA layouts 35

3.1 Read Input Logic Circuit . 37

3.2 Circuit Expansion . 37

3.3 Gate Placement . 38

3.4 Gate Shaping . 39

3.4.1 Integrated routing . 41

3.4.2 Circuit synchronization . 41

3.5 Input Signals Distribution . 42

3.5.1 Delay equalization . 43

3.6 Output Layout . 43

viiviivii

4 Implementation and Experimental Results 45

4.1 Implementation . 46

4.1.1 Building the graph . 46

4.1.2 Graph transversing . 46

4.1.3 Input and Output . 46

4.2 How to use the tool . 47

4.2.1 Getting a netlist . 47

4.2.2 Execute the QCA-LG tool . 47

4.2.3 View and simulate the layout . 47

4.3 Manually elaborated and automatically generated layouts 48

4.4 Simulation results . 53

5 Conclusions 55

5.1 The developed QCA-LG software tool . 56

5.2 Future work . 57

A Appendix A 63

A.1 Layout images . 64

B Appendix B 69

B.1 VHDL description . 70

B.2 LSI netlist . 71

B.3 Synopsys library . 72

B.4 BLIF description . 77

B.5 Gate netlist . 77

B.6 MVSIS script . 78

B.7 MVSIS library . 78

B.8 Custom super gate library . 78

viiiviiiviii

List of Figures

1.1 CMOS vs QCA design flow . 4

2.1 Bistable cell. 8

2.2 Energy states . 9

2.3 Energy states . 10

2.4 QCA logic values . 11

2.5 Wave functions . 12

2.6 Polarization “kink” soliton . 14

2.7 Magnetic properties . 16

2.8 QCA cell symbol . 16

2.9 QCA half cell schematic. 17

2.10 QCA six dot cell symbol. 18

2.11 QCA cell and half cell. 18

2.12 QCA magnetic majority gate. 20

2.13 QCA cell molecule . 20

2.14 QCA cell molecule polarizations . 21

2.15 QCA inter-cell molecule coupling . 22

2.16 QCA majority gate. 23

2.17 In wire inverter . 24

2.18 Inverter simulation . 25

2.19 Clock zones . 26

2.20 Clock signals . 26

2.21 QCA memory loop . 27

2.22 QCA memory cell . 28

2.23 In plane crossover . 29

2.24 Multi layer crossover . 29

2.25 QCADesigner layout editor . 30

2.26 QCADesigner cell style . 31

2.27 QCADesigner signal buses . 32

ixixix

2.28 QCADesigner simulation inputs . 32

2.29 QCADesigner simulation results . 33

3.1 Block diagram . 36

3.2 The place QCA-LG in the design flow . 36

3.3 Read Input . 37

3.4 Expansion . 38

3.5 Placement . 40

3.6 Shaping . 40

3.7 Input Distribution . 42

4.1 Layout example. 48

4.2 Layout simple2. 48

4.3 Handmade layout. 49

4.4 Generated layout. 50

4.5 1 bit full-adder. 51

4.6 Layout simple4. 52

4.7 Simulation results for handmade mux. 53

4.8 Simulation results for automatically generated mux. 54

4.9 Simulation results for automatically generated full-adder. 54

A.1 Layout maj2. 64

A.2 1 bit, 2 to 1 mux. 65

A.3 Layout simple32. 66

A.4 Layout simple-lsi. 66

A.5 Layout simple. 67

B.1 Schematic of LSI example. 77

xxx

List of Tables

1.1 Operation speed limits . 3

2.1 Kink energies . 15

2.2 Majority truth table . 24

xixixi

xiixiixii

Acronym table

Acronym Meaning

AIG And Inverter Graph
BFS Breadth First Search
BLIF Berkley Logic Interchange Format
DFS Depth First Search

CMOS Complementary Metal Oxide Semiconductor
FIFO First In First Out
FILO First In Last Out
FPGA Field Programmable Gate Array
HDL Hardware Description Language

MQCA Magnetic Quantum Cellular Automata
MRAM Magnetic RAM

PLA Programmable Logic Array
QCA-LG QCA Layout Generator

QCA Quantum Cellular Automata or Quantum-dot Cellular Automata
RAM Random Access Memory
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

xiiixiiixiii

xivxivxiv

1
Introduction

Contents
1.1 Motivation . 2
1.2 QCADesigner . 3
1.3 Objectives . 4
1.4 Main contributions . 5
1.5 Dissertation outline . 6

111

The subject of study in this thesis is a new and promising technology, the Quantum-dot Cellular

Automata. Although Cellular Automata structures have been simulated using computer software

programs for a long time, the proposal of a physical realization [1] only came in 1993 from Craig

S. Lent, P. Douglas Tougaw, Wolfgang Porod and Gary H. Bernstein at the University of Notre

Dame [2].

The implementation of this technology may be supported in different physical devices. The

basic logic gates are the majority vote, where the output takes the value of the majority of the

three inputs, and the logic inversion. The basic building block in this technology is the QCA cell,

that is used to obtain not only logic gates but also interconnection wires.

Given the “state of the art” of QCA technology, an automatic layout generation tool, named

QCA-LG, was implemented, and is presented as the main contribution of this thesis. In the pre-

sented thesis several possible implementations of QCA systems are discussed, to proof the appli-

cability of the concepts, and also to show the relevance of this work. Other studies in QCA related

fields, such as majority logic synthesis and quantum systems simulation, are also referred in this

thesis to identify the place of QCA-LG tool in the design flow of QCA systems.

1.1 Motivation

In a mean term scenario, the present CMOS technology will fail to support the growth rates

needed by the semiconductor industry Therefore alternative technologies are under development.

One of the main problems in CMOS is quantum tunneling through insulators, causing leakage

currents that increase power consumption. Some new technologies arising, such as QCA and

Single Electron Transistor (SET), have their working principles based on quantum effects, so

these are no longer a problem, but a required feature instead.

QCA is a computation paradigm that can be implemented by several quantum physical sys-

tems, and at least the following have been proposed:

• metal-island quantum-dots and tunneling effect junctions [3];

• semiconductor quantum-dots and tunneling effect junctions [4];

• nano magnetic particles with single magnetic moment domain behaviour [5];

• molecular quantum-dots [6].

In Table 1.1 shows the theoretical performance limits for the referred possible implementations.

The semiconductor quantum-dot implementation is the most promising in a near future, both

in terms of operation speed and high density integration. While molecular implementations would

have much better performance, they do not seem easily feasible. On the other hand, magnetic

QCA circuits have been fabricated and their correct behaviour was experimentally observed, but

the performance bounds are much lower than for the other possible implementations.

222

Table 1.1: The theoretical operation speed limits for some QCA implementations.

Implementation Operation frequencies

Molecular THz
Semiconductor THz
Metal island GHz
Magnetic MHz

Given the very high frequencies expected for molecular and semiconductor implementations,

the resulting QCA systems may present much higher throughput than the current CMOS digital

processors. Nevertheless, regarding latency, as ti will be seen later, QCA systems may present

some drawbacks, given the extremely pipelined architectures of QCA systems.

As QCA seems very promising, the need to enhance the design flow for this technology is

drawing attention. Every detail must be covered to allow a smooth transition from CMOS to QCA,

and to ensure the compatibility between them. Based on the proposed QCA design flow and the

already existing tools, it was identified the need for an automatic layout generation tool for QCA. It

should be remembered that this problem has already been solved for digital CMOS circuits, given

the efficient Place and Route commercially available tools. In this thesis a simplistic version of an

automatic layout generation tool for QCA was proposed and developed.

1.2 QCADesigner

QCADesigner [7] is a layout editor and simulation tool for QCA technology developed at the

University of Calgary, by ATIPS Laboratory, and at the University of British Columbia, by Mi-

crosystems and Nanotechnology Group. With this software tool, layout can be drawn manually

and physical simulation can be performed. Moreover the layouts can be stored in and imported in

a specific file format.

This tool was extensively used during the elaboration of this thesis, firstly to validate the ele-

mental blocks of the structures generated by the QCA-LG, and through the rest of the work, to

visualize and simulate the automatically generated circuits produced by the QCA-LG.

333

1.3 Objectives

The main goal of this thesis is to (roughly) complete the design flow of QCA systems. The

design flows of CMOS and QCA technology are presented side by side in Figure 1.1, were the

common and different parts can be observed. By considering the design flow for QCA technology,

as proposed by Steven C. Henderson, Eric W. Johnson, Jason R. Janulis and P. Douglas Tougaw

in [8], only the last three phases of this flow (logic mapping, technology mapping and technology

simulation) are different from the design flow of the current CMOS technology. Therefore, new

software tools to assist these new steps are under development, being QCA-LG one of them.

(a) CMOS design flow. (b) QCA design flow.

Figure 1.1: Design flow of CMOS and QCA technologies, side by side.

444

Also referring to the work of Steven C. Henderson et al. [8], Very High Speed Integrated

Circuit Hardware Description Language (VHDL) libraries have been described to model inherent

features and basic logic blocks of QCA, such as majority gates, “in wire” memory and coplanar

crossover. The representation on Hardware Description Language (HDL) enables an hierarchical

organization of the circuit, as well as its logical and timing simulation.

Already existing tools can be used to synthesize logic circuits from HDL descriptions, by giving

priority to optimal majority gate use in QCA. Different methods have been proposed to auto-

matically map logic systems in QCA circuits, optimized for the preferable use of majority func-

tion, [9, 10]. The mapping can also be done with some general synthesis tools available (eg.

Synopsys[11] or MVSIS[12]), but the results are not optimal, as these tools are oriented to current

CMOS technology mainly supported on NAND gates.

Although SPICE models of electron tunnel junctions [13] and entire QCA [14] cells exist, they

only allow to account for interactions between adjacent neighbour cells, and the current SPICE

simulators can’t handle the models of QCA cells efficiently. Thus the QCADesigner simulation en-

gines were preferred, once they perform the calculations based on the electrical field in each cell

within a given (parameterizable) radius effect, in other words, these simulation engines perform a

quantum physical simulation.

The objective of this thesis is to fill the gap between the logic synthesis and the physical

simulation of the circuit layout, by providing an automatic layout generation tool for QCA circuits.

1.4 Main contributions

During the initial analysing of the state of the art in QCA, the need for automatic layout gen-

eration tools was perceived, and as a consequence, the main goal of this project become into

providing a software tool to generate a QCA layout of a given logic circuit.

The development of such a tool was considered and carried out, and the resulting tool is

named QCA-LG, were LG stands for Layout Generator. An article, T. Teodósio, L. Sousa, “QCA-

LG: A tool for the automatic layout generation of QCA combinational circuits”, IEEE Norchip 2007,

Denmark, was submitted and accepted for publication, [15, 16]. A website was created to present

this software to the public, and it is currently available at http://web.ist.utl.pt/ttt/qca-lg/, where a

little tutorial with some running examples can be found.

555

1.5 Dissertation outline

The relevant QCA background for this research is presented as the state of the art in Chapter 2,

where the theoretical basis of Quantum Cellular Automata and its possible implementation are

discussed.

A detailed presentation of the software tool QCA-LG is presented in Chapter 3, featuring the

conceptual basis in which the tool is grounded. Furthermore, implementation details and utiliza-

tion examples are given in Chapter 4. Some layouts produced with the QCA-LG are presented in

Chapter 4.3, and these results are compared with equivalent handmade optimized layouts.

To conclude, in Chapter 5, future directions are pointed to improve the QCA-LG software tool,

starting from the inefficiencies of the QCA-LG in its actual stage of development.

666

2
State of the art

Contents
2.1 Physical structures . 11
2.2 Basic logic elements . 16
2.3 Logic gates . 23
2.4 Synchronization . 25
2.5 Memory . 27
2.6 Signal routing . 27
2.7 Majority logic synthesis . 28
2.8 QCADesigner . 30

777

Quantum-dot Cellular Automata is a technology featuring computer operations at high speed

and low power consumption. It was first proposed in 1993 by Craig S. Lent, P. Douglas Tougaw,

Wolfgang Porod and Gary H. Bernsteain [1], at the University of Notre Dame [2]. A comprehensive

overview about this subject can be found in [17].

A more abstract concept than Quantum-dot Cellular Automata, is Quantum Cellular Automata,

a computational paradigm independent of the physical implementation. This is the theory for

supporting computation with quantum devices. Quantum-dot Cellular Automata, and Magnetic

Quantum Cellular Automata, are two possible implementations of the Quantum Cellular Automata

general concept.

Quantum-dots may be supported in many different technologies, such as metal islands, semi-

conductor physical dots, semiconductor electrically confined dots or even redox centers in molecules.

However, regardless of the implementation, there are two simplistic requirements a system must

meet in order to support QCA computation: the implementation of a QCA cell must be possible

and its single behaviour must be the expected, and the cells have to be arranged in such a way

that interactions between them allow to perform useful logic operations.

A single cell is expected to present a bistable behaviour, and also third a NULL state. Addition-

ally, a given cell must be able to interact with its neighbour cells in such a way that it can influence

their state, or get influenced by their state. This bistable behaviour and cell to cell coupling are

illustrated in Figure 2.1.

Figure 2.1: The bistable nature of a QCA cell is denoted by the abrupt polarization shift, when the
cell is subjected to a smooth external influence coming from another QCA cell.

Regarding a single cell, in both cases, there are two different states, corresponding to the low

energy states, and a third state with much higher energy. All other states are incorrect and lead

to errors in computation, so it must be ensured they do not occur by imposing limits to the feature

size and operation temperature.

888

The logic values ’1’ and ’0’ are encoded in the two lower energy states, ground states: by con-

vention, the logic value ’0’ corresponds to the polarization value -1, and the logic ’1’ corresponds

to the polarization value +1. The third energy state is used to control the switching between the

other states, it is called the NULL state and corresponds to polarization = 0, and can only be

maintained with the external influence of a “clock” signal. When the NULL state is forced by the

clock, the cell accumulates energy, and when the cell is allowed to return to its ground state (’0’

or ’1’ according to its neighbours), it releases the energy accumulated. The power needed to

perform the polarization changes in cells (that support logic operations) is supplied by the clock

signal any time it forces the cell to the NULL state.

A simple illustration of the energy states is shown in Figure 2.2. Please note that this plot is

not accurate, the only purpose is to illustrate the concept. Note also that valid polarization values

range only from -1 to +1, although the plot range is a little wider.

Figure 2.2: Energy states configuration of a QCA cell alone, without the influence of the clock
signal (green line without markers), and with that influence (red line with markers).

In the presence of other polarized cells in the neighbourhood, the energy states shown in Fig-

ure 2.2 suffer changes and become unbalanced, as presented in Figure 2.3. There is a key issue

here: if all the cell were submitted to the same clock, every clock cycle all the cells in the circuit

would become in the NULL state, and thus, no useful operation could performed. The solution to

this problem is to have a four clock system, were each clock signal has a different phase, being

separated by a quarter period delay. This issue is explained in more detail in Section 2.4.

999

(a) The neighbour cell has polarization = -1 (logic ’0’)

(b) The neighbour cell has polarization = +1 (logic ’1’)

Figure 2.3: Energy states configuration of a QCA cell in the presence of other polarized cell,
without the influence of the clock signal (green line without markers), and with that influence (red
line with markers).

101010

2.1 Physical structures

The physical structures designed to have the described properties are shortly introduced here.

One of the proposed implementations of the Quantum Cellular Automata is the Quantum-dot Cel-

lular Automata. Quantum-dot Cellular Automata isn’t a physical implementation yet, it is rather a

lower level abstraction, since there are several ways to build the quantum-dots and connect them.

In this case the cells are made of four quantum-dots placed in the corners of a square, popu-

lated with only two electrically identical charges. Given the electrostatic interactions (repulsion)

between the charges, these will tend to occupy diagonally opposed quantum-dots. There are only

two stable configurations, as there are only two diagonals in a square, and these two stable con-

figurations are the two lower energy states referred above: they encode the binary values ’0’ and

’1’ (see Figure 2.4). The NULL state configuration depends on the physical implementation; for

example in some cases two extra quantum-dots are placed in the center of the cell to be occupied

during this state.

(a) ’0’ (b) ’1’

Figure 2.4: Representation of the two logic values of a QCA cell with four quantum-dots. Black
filled circles represent occupied quantum-dots while white filled circles represent unoccupied
quantum-dots. a) Logic value ’0’, b) Logic value ’1’.

Quantum-dots can be any charge containers, with discrete electrical energy states (there

may be more than two states, but only two are used), sometimes called artificial atoms. Some

molecules have well defined energy states, and therefore, are suitable for supporting the opera-

tion of QCA systems. Small metal pieces can also behave as quantum-dots, if the energy states

an electron can occupy are distinguishable, instead of the usual energy band. This means that the

difference between two consecutive energy states must be well above the thermal noise energy

(kbT , being kb the Boltzmann constant and T the absolute temperature).

By considering the “particle in a box” approach, the maximum dimensions of a quantum-dot

can be estimated as follows. The possible values for the wavelengths of a particle, λ, in a container

with size L are shown in Figure 2.5. Equation 2.1 reflects the fact that, half integer number of the

wavelength of the particle must fit into the length of the quantum-dot (L).

n
λ

2
= L, (2.1)

The first “de Broglie” relation, shown in Equation 2.2, allows the calculation L, of the quantum-

dot corresponding to a given linear momentum (p), of the particle inside (n, is the number of nodes

111111

Figure 2.5: Possible wave functions for a “particle in a box” of size L; n is the number of nodes of
the wave function.

of the wave function, and h is the Plank’s constant).

p =
h

λ
, (2.2)

Substituting λ calculated from Equation 2.1 in Equation 2.2, Equation 2.3 is obtained.

p =
hn

2L
, (2.3)

Given the classical formula relating energy to momentum (Equation 2.4), the energy gap between

particles associated with the two larger possible wavelengths can be found as stated in Equa-

tion 2.5, where the mass of an electron is considered by making m = me.

E =
p2

2m
=

h2n2

8meL2
, (2.4)

En=2 − En=1 =
4h2

8meL2
− h2

8meL2
=

3
8

h2

meL2
, (2.5)

There is in Equation 2.6 the necessary condition for the correct behaviour of a single quantum-

dot, in energy terms.

En=2 − En=1 � kbT, (2.6)

121212

Finally, Equation 2.7 leads to an estimate value for the limit size of a quantum-dot at room

operation (T = 300 K).

kbT � 3
8

h2

meL2
⇒ L �

√
3
8

h2

mekbT
= 6.6 nm, (2.7)

To achieve correct room temperature operation of QCA individual cells, not only the gap be-

tween energy levels in a single quantum-dot must be greater than the thermal noise, but also the

difference between the two lower energy states and the third higher energy state in a QCA cell

must be clearly greater than the thermal noise.

The conditions imposed before for the energy are necessary but not sufficient to ensure QCA

systems proper function, as until now the requirements are only focused the correct behaviour

of quantum-dots and single QCA cells. The conditions for the correct interaction between cells

must also be ensured. If we consider, for instance, a cell wire composed by a finite number of

cells, all lined up forming a linear array. Moreover in the initial condition, all the cells have the

same polarization, so the system is in ground state. Suppose then the cell in one extremity of the

wire is externally forced to change its polarization, and suddenly a “kink” in polarizations appear

between the first and the second cell of the array. This “kink” must then propagate through the

array until it reaches the other extremity. Then the array would have returned to its ground state,

having all cells the same polarization as in the beginning. The propagation of the “kink” is similar

to a soliton, according to P. Douglas Tougaw and Craig S. Lent in [18].

In Figure 2.6 a sequence of states is presented, to illustrate the propagation of a “kink” in

the cell polarization of a in QCA cell array. The electrostatic energy of a system composed by

two cells (cell a and cell b, with respective polarizations pa and pb), side by side, is given by the

Equation 2.8. The total energy of the two cells is calculated by the sum of the electrostatic energy

between each of the four quantum-dots of cell a, (with charge qa
i and location ra

i) and each of the

four quantum-dots of cell b, (with charge qb
j and location rb

i); both i and j range from 1 to 4, as

there are 4 quantum-dots in each cell.

Ea,b =
1

4πε

4∑
i=1

4∑
j=1

qa
i qb

j

|ra
i − rb

j |
, (2.8)

Ekink = Ea,b
pa 6=pb

− Ea,b
pa=pb

, (2.9)

This energy has a minimum value when the two cell have the same polarization, and has the

maximum value when they have opposite polarizations. The difference between these maximum

and minimum values is called the “kink” energy, and it is represented in Equation 2.9.

Please note, once the “kink” energy is defined as a difference between energies, the calcula-

tions of these energies may neglect some common contributions. As these calculations are done

presuming each cell is always at its ground state, which means it exhibits a bistable behaviour,

131313

Polarization “kink” propagation

Tim
e

Figure 2.6: Propagation of a polarization “kink” along an array of QCA cells. The several snap-
shots of the array cells’ state show how the polarization of the cells evolves in time.

141414

there is no need to account for the interactions between the quantum-dots inside a single cell,

because this has the same value for each cell either there is a “kink” or not.

The values of the “kink” energy estimated by Konrad Walus and Graham A. Julien in [17], for

a different kinds of QCA systems, are presented in Table 2.1.

Table 2.1: The estimated values for the “kink” energy between two adjacent cells and the conse-
quent limit for clock zone length obtained from Equation 2.10.

Cell Type Cell Size Kink Energy Max. cells per clock zone

Molecular QCA (εR=1) < 2 nm > 0.3 eV 1.0959 * 105

Self-Assembled 5 nm 9.13 meV 1.4236
Lithographically Defined 10 nm 4.56 meV 1.1929
Lithographically Defined 20 nm 2.28 meV 1.0922

The relation between the “kink” energy and the maximum length (N QCA cells) of a wire

within a clock zone, to ensure a “kink” free operation, was presented by Vankamamidi, Ottavi and

Lombardi in [19], and is shown in Equation 2.10.

N ≤ e
Ekink

kbT . (2.10)

Given the fabrication feature size needed to ensure a correct room temperature operation of

quantum-dot base devices, assuming that Moore’s law will remain valid in the near future, and

considering that in the present days 45 nanometers feature size is a reality, approximately in 6

years the feature size will be around 3 nanometers, and then QCA may compete to be commercial

viable.

Besides to the proper operation of quantum-dots, the “kink” energy must be high enough to

allow the coherent operation of large or medium sized arrays of QCA cells under the same clock.

The lower boundary for the size of clock regions is three cells in height and width, because this is

the area needed to fit a majority gate (as will be shown in Section 2.3), which must be in a clock

zone of their own.

The operating temperature does also limit the size of the magnetic QCA elements, but in a

different way. The main limitations regarding the behaviour of nanomagnets, as suitable elements

for QCA operation, are the boundaries for the single domain properties, which are the thermal

noise energy and the size beyond which multiple magnetic domais form to minimize the system’s

energy. In Figure 2.7 it is presented the typical plot of the coersive intrinsic magnetic field for

a magnetic element (eg. permalloy) of sizes near the 100 nm. On the left side of the graphic,

the particle loses all coercivity when the thermal noise energy is enough to make the magnetic

moment of the particle change randomly, exhibiting a super-paramegnetic behaviour. On the other

151515

Figure 2.7: The coercive intrinsic magnetic field of a particle in function of its diameter.

hand, on right side the particle’s magnetization breaks into multiple magnetic domains to minimize

the magnetic energy.

2.2 Basic logic elements

The logic elements, the QCA cells, have common properties despite the implementation cho-

sen, while the physical active elements in QCA technology can be quantum dots, tunnel junctions,

nano magnets or molecules. Figure 2.8 shows the symbol representation of a QCA cell.

Figure 2.8: Symbolic representation of a QCA cell.

In the absence of any external influence there are two stable energy states, and these two

states can be used to encode binary values “0” and “1”. When an external influence (electri-

cal field or magnetic field) is present, the lowest energy configuration may change, and the cell

can be forced into a new neutral state, which means the cell activity can be controlled. Some

implementation proposals will now be detailed.

2.2.1 Quantum dot implementation

The configuration of charges in quantum dots represent logic values as explained in Sec-

tion 2.1, and although there are several possible quantum-dot implementations, as described

161616

before, the functional principles are common.

Figure 2.9: a) Schematic of a QCA half cell, b) Description of the polarization states.

The electrical schematic of a half cell with three quantum dots (Vi1, Vi2 and Vi3) and two

tunneling junctions (Junction1 and Junction2) is presented in Figure 2.9; the complete QCA cell

constituted by two half cell side by side. The three quantum-dot system is populated by only one

free charge (electron), which can move only through the tunnel effect junctions. The input signal

is the voltage V , which is applied as +V and −V to the left plate of capacitors C2. The electrical

charge on nodes Vi1 or Vi3 will be attracted to (or depleted from) the right C2 capacitors plate

according to voltage V . The middle node Vi2 allows to control the operation of the half cell through

Vc, as it is possible to attract the charge from the other quantum-dots to the middle one (setting

the NULL state), and also to repel the charge previously attracted to either one of the other two

quantum-dots, Vi1 or Vi3, setting a well defined state, P = +1 or P = −1, respectively. The whole

half cell is settled at a given electrical potential U above the substrate, and the tunneling junction

Junction3 is used to retrieve a unique free charge from the substrate as U is set accordingly. In

general terms, the operation of such a half cell consists of the following steps:

• Set U to initialize the system, pulling a single free charge from the substrate into the central

quantum-dot.

• Apply a clock signal to Vc in order to make the system synchronous, with defined periods of

NULL state polarization alternating with well defined polarization state (P = +1 or P = −1)

• For the input half cells - set the input voltage V to define the polarization state in the next

period of time.

171717

• For the other half cells not externally available - the electrical field from the charges in the

neighbouring half cells will be the input instead of voltage V .

In Figure 2.10 are the possible charge configurations and the respective polarization of QCA cell.

In this case the full QCA cell is constituted of six quantum-dot, being the two middle ones used to

Figure 2.10: The three possible charge configurations in a six dot QCA cell and the respective
polarization (below).

force the third (higher energy) state, used to drive the cell to a NULL state. Other constructions

were proposed, such as the one presented in Figure 2.11.

Figure 2.11: QCA cell (on the left), and the respective hafl cell (on the right).

In the six quantum-dot per cell implementation the basic principles remain, but the operation

slightly changes. The two dots in the middle are forced to receive the two charges while the cell

remains in the NULL state, being this the third state, the one with higher energy. Assuming the

charges are electrons, then a positive electrical potential imposed to the middle dots would attract

the negatively charged particles. On the other hand, a negative potential would repel the electrons

to the top or bottom dots, forcing the cell to define its polarization. Thus the clock signal can be

capacitively coupled to the middle dots, in order to impose the desired potential and make the

cell pulse. The cells affected by this clock signal will be in the NULL state whenever it is “high”,

and will have a well defined polarization (’0’ or ’1’) whenever the clock is “low”. During the raising

transition of the clock signal, the cells loose their polarization progressively, and during the falling

transition, the cells are compelled to reach a defined polarization. The clock must have raising

and falling times large enough to permit the charges to settle in the lowest energy configuration,

181818

the ground state.

Consider the following scenario, due to some undesired influence, the polarization of a cell in

NULL state isn’t exactly zero, as if the cell’s polarization was slightly biased. Then when the clock

starts to fall, taking the cell from NULL state to a well defined ’0’ or ’1’ state, the charges may

have not enough time to reach the lowest energy dot, and could stay trapped in some kind of local

energy minimum. This would lead to incorrect cell behaviour, so the dynamics of the cell have to

be taken into account to avoid this kind of problems.

Regarding the energy dissipation during transitions, the smoother the transition, the more

efficient the operation is. The adiabatic operation of a cell is possible, and it leads to minimal

power dissipation. This concept is also referred to as reversible computation.

2.2.2 Magnetic implementation

In the magnetic implementation, elements are shaped in such a way that two lower magnetic

energy states are created. These energy states correspond to having the magnetization aligned

with the preferential axis, called the “easy axis”.

The logic values ’0’ and ’1’ are encoded in the direction of the magnetization, being the pos-

sible directions anti parallel they are clearly distinguishable. The third energy state, with higher

magnetic energy, occurs when the magnetization is perpendicular to the “easy axis”, and thus,

being aligned with the called “hard axis”.

To have the magnetization aligned with the “hard axis” is only possible by applying an external

magnetic field strong enough to overcome the anisotropy energy term. The binary behaviour of

nano magnetic elements is used, for example, in Magnetic RAM (MRAM) devices.

The clock of a Magnetic Quantum Cellular Automata (MQCA) cell is applied as the amplitude

of the magnetic field along the “hard axis”, which drives the cell into the NULL polarization state

and back into a well defined state, periodically. When the clock signal has value zero, the cell

exhibits its bistable behaviour and is suitable to hold a binary value.

In Figure 2.12, a majority gate made of elongated nano magnets is shown. The inputs are

applied from the top, bottom and left side nano magnetic elements, and the output will be retrieved

from the right most nano magnetic element. The magnetic poles are shown as bright and dark

regions on top of the element shapes delimited by the black borders, on the two right most images,

The poles are in the extremities of the nano magnets, thus the magnetization must be along the

nano magnets from one pole to the other. The two magnetization configurations presented are

completely opposite, as all magnetizations switch their orientation but not their direction; both

evidence the expected behaviour of the nano magnets forming the QCA majority gate.

191919

Figure 2.12: QCA magnetic majority gate image on the left, and magnetic polarization images on
the center and right show the correct behaviour of the nano magnets.

2.2.3 Molecular implementation

The molecular implementation is perhaps the most complex, and involves chemistry knowl-

edge beyond the scope of this project, yet a brief discussion is here presented. The main motiva-

tions for the development of molecular QCA are the high density of devices and the operation at

room temperature, which both depend on the size of the quantum-dot and QCA cells. Even if the

molecules could be synthesized and placed according to the desired patterns, there would still be

the challenge of interconnecting them with the conventional electronics for read/write operations.

Figure 2.13: A possible QCA cell molecule.

A molecule proposed by Fehlner et al as a possible QCA cell is presented in Figure 2.13 In

this case the key strategy is to use non-bounding orbitals (π or d) at the redox centers to act as

quantum-dots, as these orbital can have fluctuations on the number of occupant electrons.

202020

Figure 2.14: The two possible QCA cell molecule polarizations and the respective logic values.

The two possible polarizations of this molecule are shown in Figure 2.14, and the cell to cell

coupling is depicted in Figure 2.15, to evidence that the interactions between these molecules

make them suitable for QCA. The extra charges in the molecule can be defined by reduction or

oxidation of the functional groups.

212121

Figure 2.15: The Coulomb coupling interactions between two QCA cell molecules.

222222

2.3 Logic gates

Logic operations are performed by means of the interactions between adjacent cells. The basic

logic operation is the majority vote of three inputs and the majority gate shown in Figure 2.16. Let

us consider the five central cells in Figure 2.16, assuming that the inputs are imposed by cells A,

B and C. Given the Coulomb interactions explained in Section 2.1, and linear superposition of the

electrical field, the central cell will sense the field imposed by the top, left and bottom neighbour

cells by assuming a polarization equal to the polarization of the majority of these three inputs.

Although there may be a “kink” between one of the inputs and the central cell, that configuration

is still in the ground state, given that the central cell will always switch as needed to achieve the

lowest energy state of the local system. Therefore there can never be two or three “kinks” in this

system, and if in some transitory moment it happens, the central cell will switch its polarization to

become coherent with the majority (two or three) of the neighbours. After the central cell switches

to make the system reach the ground state, the cells on the right side will also switch accordingly

to avoid “kinks”, thus ensuring the ground state is preserved.

Figure 2.16: QCA layout of a majority gate.

The majority logic function performed is M(a, b, c) = a.b+ b.c+a.c. Therefore the logic product

can be performed as M(a, b,′ 0′) and the logic sum as M(a, b,′ 1′). The possibility of having a

selectable AND/OR gate may be an advantage for implementing dynamically programmable logic

circuits, which may be another way to take advantage of QCA technology.

A new approach is taken in this thesis to implement signal inversion, which is simpler than

the most common ones. As the most basic element in QCA is half cell [20], every wire can be

seen as a set of linearly disposed QCA cells or the corresponding half cells. It is also known that

a wire of half cells works as an inverter chain [21]. Therefore the inversion of a signal can be

attained only by adding or removing a half cell to a given wire. In the present case, it was chosen

to remove a half cell and to distribute the spare space along the inter cell spacing in a wire, so the

232323

Table 2.2: The logic truth table for the three input majority function.

A B C MAJ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 2.17: Comparison between the traditional and the proposed structure for signal inversion.
The input cell is labeled as A, the usual inverter’s output is labeled as Y and the output of the in
wire inverter is X.

242424

inverter wire stays exactly with the same start and end points it would have if made of complete

cells. In order to safely remove a half cell from a given wire, it has to have a minimum number of

cells that constitute the wire. Otherwise, when distributing the half cell distance among the inter

cell spacing along the wire, cells may not interact properly given the increased distance between

them.

Figure 2.18: The presented simulation results show the functional equivalence between the two
structures show in Figure 2.17. Signal A is the input and signals X and Y are the outputs.

Some inverting wires that adopt the proposed scheme were simulated using QCADesigner, to

evaluate its proper response. One of the layouts used in the tests is presented in Figure 2.17, and

its simulation results are shown in Figure 2.18. The results for the proposed inverting structure

depicted in Figure 2.18 are equivalent to the ones obtained for the commonly used structure.

2.4 Synchronization

QCA has a clocking mechanism that consists on four clock signals with equal frequencies.

One of the clock signals can be considered the reference (phase = 0) and the others are delayed

one (phase = π/2), two (phase = π) and three (phase = 3π/2) quarters of a period (see Fig-

ure 2.20). Each clock signal imposes its pace to a given set of layout regions, as explained before

in Subsection 2.2.1. Signals are pushed from one clock region to another as the phase of the

252525

Figure 2.19: The signals are pushed through the clock zones as if the wire was a D latch chain.

clock of these regions increases, as depicted in Figure 2.19. A given clock zone receives the sig-

nal from adjacent clock zones, which have a clock in advance by one quarter period. Regarding

the QCA wire represented in Figure 2.19, which corresponds to the moment marked with a thick

vertical red line in Figure 2.20, the following considerations can be made about the represented

moment in time:

• cells in clock zone C0 are in the NULL state;

• cells in clock zone C1 are relaxing from a well defined state to the NULL state, thus loosing

their polarization;

• cells in clock zone C2 are in a well defined state;

• cells in clock zone C3 are being forced into a well defined state, and their polarization will

be set accordingly to their neighbours polarization.

Figure 2.20: The four clock signal needed to control QCA circuits.

After a quarter period, in the moment of time marked with a thick vertical blue dotted line in

Figure 2.20, the states will be the following:

262626

• cells in clock zone C0 are being forced into a well defined state, and their polarization will

be set accordingly to their neighbours polarization.

• cells in clock zone C1 are in the NULL state;

• cells in clock zone C2 are relaxing from a well defined state to the NULL state, thus loosing

their polarization;

• cells in clock zone C3 are in a well defined state;

Therefore, the logic value encoded in the state of cells in clock zone C2 is pushed forward into the

cells in clock zone C3. Detailed information on this issue can be found in [22].

2.5 Memory

The clocking mechanism of QCA systems allows each clock zone to act as a memory cell,

for one quarter clock period, so connecting four subsequent clock zones will produce a memory

effect during one clock period. Thus, as shown in Figure 2.21, applying feedback to such a wire,

allow us to obtain a memory.

Figure 2.21: A basic memory loop of QCA cells.

Given the basic memory cell construct, a value has to be inserted into the loop and read from

it, in order to make it useful. Some additional logic has to be added around and also within the

memory loop [17], as presented in Figure 2.22. This memory cell topology shows two Majority

gates acting as AND and OR gates incorporated in the memory loop which are used to set value

stored to ’0’ or ’1’, respectively.

2.6 Signal routing

In QCA technology, connection wires are made of QCA cells (like the logic gates).

272727

Figure 2.22: A 1 bit memory cell with data input, control signals and data output.

Two ways have been proposed to solve wire crossing conflicts: in plane crossing, shown in

Figure 2.23, and multi layer crossing, shown in Figure 2.24. By observing the in plane crossing,

in Figure 2.23, it should be noticed that the vertical wire has all the cells rotated by 45 degrees,

relative to the cells in the horizontal wire. With such organization there is no interference, as two

cells with a 45 degree rotation relative to each other have no “kink” energy associated to their

polarizations. But a problem may arise from the increase in distance between the cells of the

horizontal wire, right in the crossing point, since the “kink” energy is lower than with the normal

spacing, and transmission error may occur.

In this thesis multi layer crossover was considered, but with small changes in plane crossover

could also be accommodated. Although multi layer crossover gives better simulation results

(seems safer), it may not be as easily fabricated as in plane crossovers, thus a compromise be-

tween the best (in theory) and the possible must be assumed. And regarding multi layer crossover,

it should be noticed that for an even number of separation layers the via connection will act as an

inverter.

2.7 Majority logic synthesis

Given the particular characteristics of QCA, such as the single cell based layout, or majority

logic benefits, it becomes necessary to have a special care regarding logic synthesis. For exam-

ple, some usual optimizations applied for CMOS based logic, such as the extensive use of NAND

gates, must be avoided. Therefore, some mapping techniques and logic representations often

282828

Figure 2.23: In plane crossing of two independent QCA wires.

Figure 2.24: Multi layer crossing of two independent QCA wires.

292929

used are not suitable for majority logic optimization. For instance, the And Inverter Graph (AIG) is

a very good representation to produce logic circuits using only NAND gates and Inverters, but it

is not suitable for producing logic circuits optimized for majority logic gates.

To deal with majority logic synthesis problem new approaches may have to be taken. New

synthesis tool can be engineered from scratch, with new supporting data structures and new

decomposing/manipulating primitives, where majority function is a basic logic gate and logic func-

tions can be decomposed into it. Some work on this logic has been done, as it is the case of [9]

and [10], but much more work is expected since this is a key issue to the success of QCA.

2.8 QCADesigner

Figure 2.25: QCADesigner layout editor window.

QCADesigner is the “state of the art” QCA layout editor and simulator. The main layout design

window of QCADesigner is presented in Figure 2.25. The physical layout editing facilities include:

• Drawing QCA cells individually or in arrays, optionally aligned to a grid with a default spacing

(20 nm) equal to the default cell size (18 nm) plus the default inter cell spacing (2 nm).

303030

• Setting clock signal for each QCA cell, which is required to have synchronous circuits work-

ing properly.

• Multi-layer QCA layout design, which is required to have multi layer signal crossing.

• Drawing QCA cells with 90 degrees rotation, which is required to have in plane signal cross-

ing.

• Graphical marking of special cells (on via and crossover layers), according to the convention

presented in Figure 2.26. Although cell in via and crossover structures may look different in

the layout, they are regular QCA cells and no distinction is made during simulation. Cells

acting as vertical via interconnections between layers are represented by a square with a cir-

cle inside, and cells in crossover layers are represented by a square with a cross inside, the

normal cells are represented as a square with four little circles inside and the arrangement

of those circles depend on the rotation of the cell.

Figure 2.26: QCA cell style convention used to visually distinguish the cells on the Main Cell Layer
from the cell used in via and crossover connections.

• Grouping the input/output signals in buses, to simplify signal name handling, simulation input

vectors definition, and simulation results inspection (see Figure 2.27).

• Importing and exporting layout blocks to files, which allow, for example, to easily import QCA

layout blocks produced by the developed QCA-LG tool.

The simulation can be performed with an exhaustive set of input vectors, or alternatively with

a user-defined set of input vectors (see Figure 2.28). There are two integrated simulation en-

gines available with QCADesigner: the Coherence Vector Simulation Engine, which is slower,

but provides more accurate results, than the Bistable Simulation Engine. Simulation results are

presented as waveforms, optionally grouped in buses (see Figure 2.29)

313131

Figure 2.27: Grouping the QCA layout signals using buses in QCADesigner.

Figure 2.28: QCADesigner simulation inputs windows, with the option to specify a set of user-
defined input vectors, or alternatively choose an exhaustive simulation.

323232

Figure 2.29: QCADesigner simulation results window.

333333

343434

3
QCA-LG: a tool for automatic

generation of QCA layouts

Contents
3.1 Read Input Logic Circuit . 37
3.2 Circuit Expansion . 37
3.3 Gate Placement . 38
3.4 Gate Shaping . 39
3.5 Input Signals Distribution . 42
3.6 Output Layout . 43

353535

The main goal of the work produced in this thesis is to automatically generate a quantum dot

layout for a given combinational circuit, in a format compatible with the QCADesigner tool, and

not to develop a professional “Place and Route” tool. The flow of the program actions is shown in

Figure 3.1.

QCA-LG

Read Input
Logic Circuit

Circuit
Expansion

Gate
Placement

Input Signals
Distribution

Output
Layout

Gate
Shaping

QCADesignerLogic Synthesis Tool

Figure 3.1: Block diagram of the operations carried out by the QCA-LG tool.

The QCA-LG tool aims to be integrated in the QCA design flow as the bridge from the logic

description of a circuit to the its physical layout. The place of QCA-LG in the design flow of QCA

technology is presented in Figure 3.2. The tool QCADesigner has the functionalities of a QCA

Conceptual Design

Create and Verify Behavioural Model
(High level simulation tools)

Create and Verify Structural Logic Model
(Logic synthesis and simulation tools)

Individual QCA Cell Layout
(Layout generation tools:
QCA-LG, QCADesigner)

Quantum Mechanical Simulation of Layout
(Physycal level simulation tools:

QCADesigner)

Create and Verify Structural QCA Model
(QCA Logic mapping and simulation tools)

Figure 3.2: The place of QCA-LG tool within the QCA technology design flow.

layout editor and a QCA layout simulator, but the layout must be all drawn by hand. Therefore,

363636

there was the need for an automatic layout generation tool for QCA circuits.

3.1 Read Input Logic Circuit

Read Input Logic Circuit

Logic Netlist

g6

g4 g5

g3g2g1

D E FBA C

Figure 3.3: Representation of the Input Reading operation.

Importing the combinational circuit is the first stage of the procedure. Two formats are actually

supported by the tool:

• LSI (Synopys tools can write in this format.)

• Gate (This is the logic netlist format used by MVSIS, SIS[23] successor)

A Lex&Yacc parser was specified for each of the two formats. The use of Lex&Yacc makes

easier to support new input file formats. To make possible the compilation of a given design to

a logic netlist formed only by the supported gates, technology libraries were specified containing

only Majority, AND, OR, NAND, NOR and Inverter gates. Libraries with only the six supported

components were specified, both for the Synopsys and MVSIS tools, in order to generate netlists

based only on those components: majority gates, NOT gates, and 2-inputs AND, OR, NAND and

NOR gates.

The circuits are internally represented by the tool as directed graphs and stored in a hash

table, where each object represents a gate of the circuit or a primary input.

3.2 Circuit Expansion

The first operation over the circuit is its expansion, where any shared node is duplicated. At

the end of this step the fanout of every gate is only one. This operation makes the place and route

373737

Figure 3.4: Representation of the Circuit Expansion operation (the grey nodes, gates, are copies).

task easier, avoiding wire crossing at the expense of an increase in the circuit area.

The logic replication is not supposed to increase the circuit delay, but it can happen because

the extra area implies extra length in some wires, and even sometimes this forces wires to be split

up on some more clock zones. The method applied for replication consists on performing breadth-

first exploration of the circuit, starting from each primary output towards the inputs, marking every

node as visited if it was not visited yet. Every time a node is revisited it is duplicated, as well as

all the nodes included in the sub tree rooted at it. The duplication is a recursive process that may

“explode” if there are loops in the circuit, however since there are no loops in combinational logic

circuits this should not be an issue.

After this operation the circuit is composed by independent sub circuits. Each one of these

sub circuits is rooted at a primary output of the circuit and will be treated separately in the Gate

Placement step.

3.3 Gate Placement

For mapping the circuit from a gate level to physical level, three different referentials are con-

sidered:

• gate level coordinates - used to define relative positions of the gates; each unit in the vertical

direction represents one gate level (vertical distance between the inputs and the output); in

the horizontal direction the unit represents the minimum width of one wire (three cells, so

that two adjacent wires have a two cell separation);

• cell level coordinates - in this referential the unit represents one cell dimension in both di-

rections;

383838

• physical coordinates - correspond to the mapping of the cell coordinates to the system of

coordinates used in the QCADesigner. In this case the unit is nanometer, and each cell has

18.0 units of width and length; the considered spacing between each cell is 2.0 units in both

directions.

The determination of the coordinates where each gate (of the present sub circuit) will be

placed is done in three phases, and may be adjusted after; the coordinates resulting from this

operation are in the gate level referential. In the first phase, the level in the graph is determined

for each gate, by using the breadth-first approach, by starting from each primary output, defining

zero as the root’s level and proceeding towards the inputs. When visiting each gate, is assigned

to its inputs the present gate’s level plus one. The graph level is the y coordinate in gate level

coordinates, and the maximum level found indicates the maximum y coordinate, called ymax. The

value of ymax allows to give a rough estimate of the circuit’s dimensions, and once the graph is

a subset of a complete ternary tree, it also indicates that the maximum number of nodes in any

given level is 3ymax . The second phase is to assign different numbers to the gates within each

level. This is done again with breadth-first exploration, and the numbers range from 0 to 3ymax −1.

When visiting a given gate its inputs receive a number determined as follows:

• Left input n = 3 ∗ ngate

• Central input n = 3 ∗ ngate + 1

• Right input n = 3 ∗ ngate + 2

Note that only for Majority Gates there is a Central input, otherwise, for two-input gates only the left

and right inputs are considered. In the third phase, the x coordinate of the gate level coordinates

is calculated according to the expression:

x = (1 + 2n)
(3ymax−y + 1)

2
− n, (3.1)

Equation 3.1 was obtained by the visual inspection of the coordinates of the nodes of a complete

ternary tree.

After these three steps the gates in the present sub circuit are arranged as an incomplete

ternary tree, in which some nodes may lack the middle child. This is the case of all non Majority

gates, and it leads to an undesired waste of area.

It is important to notice that all Inverter gates are ignored in the this step, because they are

processed in a separate and additional phase.

3.4 Gate Shaping

Right after the place is defined in the gate level coordinates, the gate’s dimensions are calcu-

lated.

393939

Gate Placement

g6

g4 g5

g3g2g1

D

g2

FBA C C EDC

g6

g4 g5

g3g2g1

D

g2

FBA C C EDC

Figure 3.5: Representation of the Gate Placement operation. Black spots show wasted area.

Gate Shaping

g1

BA

Figure 3.6: Representation of the Gate Shaping operation.

404040

At this point it also takes place the mapping from the gate level referential to the cell level

referential. In a general way this is ruled by the expressions:

xcell = (xgate + xgateoffset)xfactor, (3.2)

ycell = (ygate)yfactor + ycelloffset, (3.3)

where xgateoffset is used to separate the various sub circuits along the layout, and ycelloffset

is used to adjust the gate position when needed, as the input wire may have to be split into more

than one clock zone, as it will be explained later.

Inverter gates will be place in wires. NAND and NOR gates will be treated as AND and OR

gates, respectively, where an additional Inverter gate is considered at the gate’s output.

3.4.1 Integrated routing

The input wires of each gate connect directly to the output cells of the gates at its inputs.

This way the routing is done implicitly and as a part of gate representation. Input wire length is

calculated from both the coordinates of each gate and the coordinates of its inputs. If the wire

length exceeds the maximum clock zone length [24], it will be split into more than one clock zone.

For a two or three input gate, if the longest wire has to be split into more than one clock

zone then the shortest wire has also to be split into the same number of clock zones to maintain

the input arrival timing; this usually means the shortest wire has to become longer to respect

the minimum clock zone length. Once the horizontal alignment of the first cell of all input wires

must be ensured, when one wire gets longer then the others must also get longer in the vertical

direction. When the increase in wire length occurs, it is necessary to reassure that the number of

cells per clock zone does no exceed the maximum clock zone length, iteratively repeating the last

steps if needed.

A half QCA cell replaces a full QCA cell when a given input wire is connected to an inverting

gate, which means an Inverter, NAND or NOR gate; and this replacement implies some extra

space between cells to keep the original wire length. Signal inversion can be done this way

because the half cell is itself an Inverter (see Figure 2.17). This feature can not be easily achieved

when drawing the layout by hand using QCADesigner, once “snap to grid” option has to be turned

off, and the half QCA cell isn’t available as a design object.

In fact, any rectangular shaped object with an arbitrary number of quantum dots can be cor-

rectly imported and simulated in QCADesigner, if specified in a text file according to the supported

(XML-like) format.

3.4.2 Circuit synchronization

In order to ensure the proper operation of the circuit it is necessary to set the clock zone of

each gate’s output cell as the preceding clock zone of the input cell of the next gate towards the

414141

primary outputs. To achieve this, the clock zone of the Majority Gate is set arbitrarily and then the

clock zones of the input wires are set accordingly, so the signals may flow from the inputs (earliest

clock zone), along the input wire (ascending clock zones), to the output (latest clock zone). The

clock zone in which the input wires start is then saved in the gate’s record for future use.

As the circuit is drawn from the outputs towards the inputs, except for the primary outputs,

every gate is drawn after the gate they feed. So the clock zone of the output cell of each gate is

known as soon as its direct dependant gate is drawn. A given gate is considered to be dependant

of other if it uses the output of this other as an input.

3.5 Input Signals Distribution

As one given primary input signal can be used as input for more than one logic gate, that signal

must be distributed from one unique source to all the places where it is needed. The expansion

of the circuit generates copies of some logic gates, which means some input signals must be

delivered to some extra points.

Input Distribution

g6

g4 g5

g3g2g1

D

g2

FBA C C EDC

A

B

C

F

E

D

Figure 3.7: Representation of the Input Signals Distribution operation.

An input signal also must arrive at its destination(s) synchronized with other signals. Therefore

it is necessary to take care of this problem. The signal’s destinations are sorted by (descending)

priority, considering that the primary input of the circuit will be place above the leftmost destination

and as low as possible. A main distribution horizontal wire will be rooted at the primary input, and

follows to the right. All the distribution wires are placed in a different layer than the logic gates.

Note that in this case we are dealing with cell level coordinates. The expression used to

evaluate the “urgency” to arrive at a given destination(x,y) at a given moment (clk) is:

pri(x, y, clk) = (x− xmin) + (y − ymax)− (clk − clkmin) ∗ Zone, (3.4)

424242

where xmin is the minimum horizontal coordinate value found among all destinations of the signal

(left most), ymax is the maximum vertical coordinate (lower, as y values grow downwards) and

clkmin is the minimum earliest zone; Zone is the maximum length allowed for a clock zone. The

destination is considered to have higher priority as the distance to the primary input grows and

the number of clock zones to transverse diminishes.

Starting by the most restrictive, an iterative method is used to determine where the main

distribution wire will be placed, and where the signal will derive to secondary distribution wires

(leading to the logic gate where it is needed). On each iteration, the borders of the clock zones

in the main distribution wire are updated according to the most restrictive destination. And then

the sorted set of destinations is scanned and, given the present position of the main distribution

wire, it is checked if it is possible to respect the maximum and minimum length allowed for a clock

zone. If the signal can travel correctly to every destination, the main distribution wire is at its

final position. Otherwise, the main distribution wire is pushed up (this is done with care to avoid

collisions with other primary inputs’ main distribution wires) and a new iteration takes place.

The initial conditions are critical to ensure this iterative method stops and they depend heavily

on the most restrictive destination. So the sorting is a fundamental step.

3.5.1 Delay equalization

In order to ensure the correct timing of all input signals, some may have to be intentionally

delayed to arrive at the logic gates at the same time that most delayed signals do, and thus

the outputs will all be generated at the same exact time. To accomplish this objective, after the

distribution wires are put in place some extra clock zones may have to added to the beginning of

a wire, just before the signal is received from the primary input.

Additionally, to facilitate the interpretation of the simulation results, the clock zone of all the

inputs and the outputs is the same. This way, the input-output delay of the circuit is always known

and is an integer number of clock periods.

3.6 Output Layout

The output format aims to be compatible with QCADesigner (version 2.0.3) [7]. The produced

layout is stored as a QCA layout block, and can be imported into any QCADesigner layout. The

tags of the nodes in the original netlist appear as labels of the output cell of the corresponding

logic gates and inputs, so that manual editing is possible.

434343

444444

4
Implementation and Experimental

Results

Contents
4.1 Implementation . 46
4.2 How to use the tool . 47
4.3 Manually elaborated and automatically generated layouts 48
4.4 Simulation results . 53

454545

4.1 Implementation

The implementation of the QCA-LG software tool was performed in a UNIX-like environment

(Linux) using standard open-source tools. The programming language chosen was C, and Lex &

Yacc were used to specify the parsers for the supported netlist formats. The debug was carried

out using GDB, and Valgrind was used to validate memory usage.

4.1.1 Building the graph

The circuit is imported through the appropriate parser and stored, gate by gate, in an identifier

table implemented as a hash table. Simultaneously, the graph is built by connecting the records in

data structures, which represent logic gates, with pointers from a given gate to its inputs. There-

fore, it is possible to reference a logic gate by its name, or through a dependency tree. Every

primary output has its own dependency tree, which may have shared subtree with other output’s

dependency tree, when it was built, but no longer after the Circuit Expansion operation.

4.1.2 Graph transversing

The graph search methods approach followed to transverse the circuit’s graph representation

were Depth First Search (DFS) and Breadth First Search (BFS). The DFS is used in two situations;

first, in the Circuit Expansion (see in Section 3.2), when DFS is used in conjunction with BFS, and

second to determine the level of every node in the graph, that is the distance between a given

node and the output it is “appended” to.

In the Circuit Expansion operation the graph is transversed in BFS and every time a node

is revisited the subtree rooted at that given node is duplicated with a recursive approach that

implements DFS. For identifying the level, the transversing of the graph is implemented also with

a recursive procedure. In both these cases, the First In Last Out (FILO) queue implicitly used was

the function call stack during the recursive function calls.

On the other hand, BFS is extensively applied throughout the program flow to transverse the

graph. The floor-planing of the circuit’s graph is a good example of a BFS usage. BFS was

implemented with the help of a First In First Out (FIFO) queue to store the exploring border. This

method was preferred over the DFS, when this choice was possible, but in some cases the DFS

has to be used to ensure the proper result of the performed operations.

4.1.3 Input and Output

The input and output operations, for reading the input netlist file and writing the output layout

description file, respectively, are implemented through the standard input and standard output file

descriptors for simplicity Therefore, the input and output must be “piped” in and out on the com-

mand line when the program is called to be executed. Some debug code, that can be optionally

464646

activated at compile time, writes to standard error file descriptor, so there is no mixing between

the program output and the possible error/debug messages.

4.2 How to use the tool

Although the tool’s internal operation has been discussed in Chapter 3, here the focus is mainly

in utilization and applicability. The relevant files mentioned here are included in Appendix B to

improve the readability.

4.2.1 Getting a netlist

First, a netlist for the circuit must be built, either in Gate or LSI format. Considering the example

of a VHDL file in Appendix B.1, as a starting point, the LSI netlist can be obtained with Synopsys

tools (see Appendix B.2). The VHDL file must be compiled using a custom logic library (see

Appendix B.3). After the design is compiled, a schematic view can be observed, as in Figure B.1.

An alternative to a VHDL/Verilog description is the usage of a Berkley Logic Interchange For-

mat (BLIF) file, such as the one included in Appendix B.4. A simple script (see Appendix B.6) can

be used to obtain the corresponding logic netlist (see Appendix B.5) in the Gate format, through

MVSIS. Additionally, the library files in Appendix B.7 and Appendix B.8 must be supplied in order

to build a compliant netlist.

4.2.2 Execute the QCA-LG tool

Once the netlist is ready, the QCA-LG tool can be used in command line, feeding the input file

as stdin. The output layout will be dumped to stdout, and must be redirected to a file.

The QCA-LG tool takes, as an optional parameter, the format of the input netlist: i) if the

format is LSI, no parameter has to be given (default format); ii) otherwise, the “gate” option must

be passed to indicate that the netlist is in the MVSIS Gate format. Examples of command lines

are:

• ./qca-lg < example.lsi > example.qca

• ./qca-lg gate < simple2.gate > simple2.qca

4.2.3 View and simulate the layout

The produced QCA files are composed by layout blocks, and can be directly imported by the

QCADesigner (menu Tools -> Import Block. . .). For the LSI format input netlist the “example.qca”,

presented in Figure 4.1, is obtained. For the Gate format input netlist, “simple2.qca” was gener-

ated, and it is presented in Figure 4.2. These input netlist can be found in Appendix B.

474747

Figure 4.1: The layout representation of an example. (File: example)

Figure 4.2: The layout representation of an example. (File: simple2)

In conclusion, this QCA-LG tool can be used in the design flow of QCA systems after the logic

synthesis, and prior to physical simulation. It takes as input the logic circuit resulting from the

former and produces the layout to be given as input to the latter.

4.3 Manually elaborated and automatically generated layouts

In this section, obtained layouts with the QCA-LG tool are presented. The first example is a

multiplexer, and a handmade version of the same circuit is also presented for comparison pur-

poses. A few more automatically generated layouts are discussed here. However, since the other

examples lead to the same conclusions, the figures with the layouts are not presented here but in

Appendix A.

The manually designed version of the multiplexer circuit is presented in Figure 4.3. The re-

spective simulation results are shown in Figure 4.7, where one clock period delay exists between

484848

the inputs and the corresponding output.

Figure 4.3: Layout of a 2 to 1 multiplexer designed manually.

The layouts generated by the QCA-LG tool don’t have special styles for vias and crossovers

cells, however these kind of cells are present. The top horizontal wires, from which the input

signals are distributed, are in the crossover layer, and the points of vertical contact between the

Main Cell Layer layer and the crossover layer have via cells in an intermediate layer specially used

to make vertical connections.

The automatically generated layout for the 2 to 1 multiplexer is presented in Figure 4.4, and the

wave forms resulting from the simulation can be observed in Figure 4.8. This layout introduces a

delay of two full clock periods.

In Figure 4.5, a 1 bit full-adder automatically generated layout can be observed. The total delay

from the inputs to the output of the circuit is four full clock cycles. It can be observed large clock

zones in the branches where the signal flows faster (right most vertical wires), traveling through

more (10 at most) cells per clock cycle, and small clock zones where the signal flows slower (left

most vertical wires), traveling through less (3 at least) clock zones per clock cycle. Therefore,

although the number of clock zones transversed is the same, the physical distance traveled by the

signal is different.

The layout generated for the simple4 benchmark circuit is presented in Figure 4.6. This is an

example of a medium sized circuit that clearly shows the cost of synchronisation, in terms of area

494949

Figure 4.4: Layout of a 2 to 1 multiplexer generated by the tool.

505050

needed, to make the same signal arrive at the right place in the right time.

Figure 4.5: The layout representation of a 1 bit full-adder. (File: adder4)

515151

Figure 4.6: The layout representation of an example. (File: simple4)

525252

4.4 Simulation results

Here the exhaustive simulation results obtained with QCADesigner are presented for both the

handmade and automatically generated multiplexer layouts presented in Section 4.3 and Sec-

tion 4.3.

The results are equivalent, but the handmade multiplexer has better performance than the

automatically generated multiplexer. The input-output delay of the handmade circuit is only one

clock period, and for the automatically generated version is two clock periods.

The simulation results for the 1 bit full-adder layout generated by the tool, presented in Fig-

ure 4.5, are shown in Figure 4.9. The input signal are the two operands A and B, and the carry

in, CI; the outputs are the sum bit, S, and the carry out, CO. The truth table of the full adder is

surrounded by a dashed line, thus it can be clearly seen the correct behaviour of the circuit, and

also that the input-output delay introduced is three clock periods.

Figure 4.7: Simulation results of the handmade 2 to 1 multiplexer layout.

535353

Figure 4.8: Simulation results of the 2 to 1 multiplexer layout generated by the tool.

Figure 4.9: Simulation results of the 1 bit full-adder layout generated by the tool. The resulting
waveforms for S and CO bit enclosed by a dashed line correspond to the full-adder function for
the input waveforms A, B and CI marked by a dotted line.

545454

5
Conclusions

Contents
5.1 The developed QCA-LG software tool . 56
5.2 Future work . 57

555555

The technology studied in this project, QCA, reveals to be a strong competitor, along with

SET, to in a near future, complement CMOS technology in digital integrated circuits. It must be

remembered that analog CMOS technology will be needed, at least, to bound the real analog

world to QCA quantum-dots.

This QCA technology seams particularly suitable for high throughput and deeply pipelined

architectures, given the inherent pipelined operation of a single QCA wire, acting as a chain of

latches. Applications such as audio and video stream processing might benefit much with QCA

architectures. On the other hand, heavily conditional processing would be penalized, given the

high cost of a stall in an extremely deep pipeline.

Regarding the design flow of QCA circuits, from system specifications to physical fabrication,

many points have to be tuned to reach a viable alternative for CMOS in the digital domain. Logic

synthesis is a key operation that may drastically reduce the area and delay of the circuits. Once

the professional tools currently available are deeply oriented to the most basic logic gates feasible

in CMOS (usually NAND gates), this will be an area of great interest. The greatest challenge is,

perhaps, to adapt current tools and design flows from current CMOS processes in order to ac-

commodate the special features of QCA, such as gate level synchronization and in wire memory.

There may be need to adapt many existing CMOS circuits to QCA, and this may result in the

exclusive use of And, Or and Inverter gates in QCA circuits. Although this may be the solution for

small sized circuits, it can become very ineffective for larger ones.

5.1 The developed QCA-LG software tool

The QCA-LG tool proposed and developed in the scope of this thesis can be used to produce

suitable QCA layouts for combinational circuits. The QCA-LG accepts standard netlist formats,

such as LSI and Gate, and generates QCA layouts that can be physically simulated by the well

known QCADesigner tool.

The presented results show that the developed QCA-LG tool is able to automatically generate

layouts for small sized circuits. However, for medium and large sized circuits the wasted area can

be significant, namely for circuits not exclusively composed by majority gates.

More research has to be performed in order to optimize the gates placement, which is stat-

ically performed and can be one of the main sources of inefficiency. With QCA-LG the design

flow for QCA technology is now almost complete. Combinational VHLD/Verilog circuits can be

mapped into logic netlists with existing synthesis tools. These netlists can be transformed into

QCADesigner compatible layout using QCA-LG, and validated by physical simulation.

An evaluation version of the QCA-LG tool is available for download at http://web.ist.utl.pt/ttt/qca-

lg/.

565656

5.2 Future work

As it was observed on the results provided in section 4.3, while for small sized circuits the

resulting layout obtained with the QCA-LG is acceptable, for medium or large sized circuits the

wasted area is significant. The optimization effort should be focused on the gate’s placement; as

this operation is performed in a static way, it can be very inefficient.

Additionally here is a list of the current identified problems or missing features in the developed

QCA-LG software tool:

• Inverting gates are turned into non-inverting when they produce primary outputs, as the

signal are not inverted when they don’t feed any other logic gate.

• The via cells are not placed yet, so they have to be added manually to get the correct

simulation results in QCADesigner.

• When a primary input is needed only in one place, some wire length can be saved. This

kind of waste can be seen in “simple2.qca” example.

These issues and the need for optimized layouts leave room for further development of the

QCA-LG tool developed in this thesis.

575757

585858

Bibliography

[1] C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein. Quantum cellular automata.

Nanotechnology, 4:49–57, 1993.

[2] University of Notre Dame. Department of electrical engineering. web: http://www.nd.edu/ qc-

ahome/.

[3] Alexei O. Orlov, Islamshah Amlani, Ravi K. Kummamuru, Rajagopal Ramasubramaniam,

Geza Toth, Craig S. Lent, Gary H. Bernstein, Gregory L. Snider, Wolfgang Porod, and

James L. Merz. Quantum-dot cellular automata: Introduction and experimental overview.

IEEE NANO, pages 465–470, October 2001.

[4] G. Bazan, A. O. Orlov, G. L. Snider, and G. H. Bernstein. Charge detector realization for

AlGaAs/GaAs quantum-dot cellular automata. Vacuum Science Technology B, 14(6):4046–

4050, Nov./Dec. 1996.

[5] Alexandra Imre, Lili Ji, Gyorgy Csaba, Alexei Orlov, Gary H. Bernstein, and Wolfgang Porod.

Magnetic logic devices based on field-coupled nanomagnets. IEEE Semiconductor Device

Research Symposium, pages 25–25, December 2005.

[6] Yuhui Lu, Mo Liu, and Craig Lent. Molecular electronicsfrom structure to circuit dynamics.

IEEE NANO, 1:62–65, June 2006.

[7] K. Walus, V. Dimitrov, G.A. Jullien, and W.C. Miller. QCADesigner: A CAD tool for an emerg-

ing nano-technology. Micronet Annual Workshop, 2003. web: http://www.qcadesigner.ca.

[8] Steven C. Henderson, Eric W. Johnson, Jason R. Janulis, and P. Douglas Tougaw. Incor-

porating standard CMOS design process methodologies into the QCA logic design process.

IEEE Transactions on nanotechnology, 3(1):2–9, March 2004.

[9] Rui Zhang, Pallav Gupta, and Niraj K. Jha. Synthesis of majority and minority networks

and its applications to QCA, TPL and SET based nanotechnologies. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pages 229–234, 2005.

[10] Zhi Huo, Qishan Zhang, Sansiri Haruehanroengra, and Wei Wang. Logic optimization for

majority gate-based nanoelectronic circuits. Circuits and Systems, page 4 pp., May 2006.

595959

[11] Synopsys Inc. Synopsys tools, May 2003. Version 2003.06 for linux.

[12] Donald Chai, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Alan Mishchenko, and Robert Bray-

ton. MVSIS 2.0 Users Manual. Department of Electrical Engineering and Computer Sci-

ences.

[13] R. van de Haar, R.H. Klunder, and J. Hoekstra. SPICE model for the single electron tunnel

junction. Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International

Conference on, 3:1445–1448, 2001.

[14] Rui Tang, Fengming Zhang, and Yong-Bin Kim. Quantum-dot cellular automata spice macro

model. In GLSVSLI ’05: Proceedings of the 15th ACM Great Lakes symposium on VLSI,

pages 108–111, New York, NY, USA, 2005. ACM Press.

[15] Norchip, November 2007 Aalborg, Denmark. web: http://www.norchip.org/.

[16] T. Teodósio and L. Sousa. QCA-LG: A tool for the automatic layout generation of qca combi-

national circuits. In Norchip, 2007.

[17] Konrad Walus and Graham A. Julien. Design tools for an emerging SoC technology:

Quantum-dot cellular automata. In Proceedings of the IEEE, volume 96, pages 1225–1244,

June 2006.

[18] C.S. Lent and P.D. Tougaw. Dynamic behavior of quantum cellular automata. J. Appl. Phys.,

80(8):4722–4736, October 1996.

[19] V. Vankamamidi, Marco Ottavi, and Fabrizio Lombardi. Clocking and cell placement for qca.

IEEE-NANO, 1(17-20):343–346, June 2006.

[20] Alexei O. Orlov, Islamshah Amlani, Ravi K. Kummamuru, Rajagopal Ramasubramaniam,

Geza Toth, Craig S. Lent, Gary H. Bernstein, and Gregory L. Snider. Experimental demon-

stration of clocked single-electron switching in quantum-dot cellular automata. Applied

Physics Letters, 77(2):295–297, July 2000.

[21] Alexei O. Orlov, Islamshah Amlani, Geza Toth, Craig S. Lent, Gary H. Bernstein, and Gre-

gory L. Snider. Experimental demonstration of a binary wire for quantum-dot cellular au-

tomata. Applied Physics Letters, 74(19):2875–2877, May 1999.

[22] Geza Toth and Craig S. Lent. Quasiadiabatic switching for metal-island quantum-dot cellular

automata. Applied Physics Letters, 85(5):2977–2984, March 1999.

[23] Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Rajeev Murgai, Alexan-

der Saldanha, Hamid Savoj, Paul R. Stephan, Robert K. Brayton, and Alberto Sangiovanni-

Vincentelli. SIS: A System for Sequential Circuit Synthesis. Department of Electrical Engi-

neering and Computer Sciences, Memorandum No. UCB/ERL M92/41 edition, May 1992.

606060

[24] Kyosun Kim, Kaijie Wu, and Ramesh Karri. Towards designing robust qca architectures in

the presence of sneak noise paths. In Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, volume 2, pages 1214–1219. IEEE Computer Society,

2005.

616161

626262

A
Appendix A

Contents
A.1 Layout images . 64

636363

A.1 Layout images

In this appendix, several layout images are presented. The images correspond to layout visu-

alization in QCADesigner.

For each figure there is the indication of the name of the associated circuit file. These circuit

files are available at the project website.

Figure A.1: The layout representation of an example. (File: maj2)

646464

Figure A.2: The layout representation of a 1 bit, 2 to 1 multiplexer. (File: mux2)

656565

Figure A.3: The layout representation of an example. (File: simple32)

Figure A.4: The layout representation of an example. (File: simple-lsi)

666666

Figure A.5: The layout representation of an example. (File: simple)

676767

686868

B
Appendix B

Contents
B.1 VHDL description . 70
B.2 LSI netlist . 71
B.3 Synopsys library . 72
B.4 BLIF description . 77
B.5 Gate netlist . 77
B.6 MVSIS script . 78
B.7 MVSIS library . 78
B.8 Custom super gate library . 78

696969

B.1 VHDL description

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

--

entity EXAMPLE is port (

A: in STD_LOGIC;

B: in STD_LOGIC;

C: in STD_LOGIC;

D: in STD_LOGIC;

E: in STD_LOGIC;

F: in STD_LOGIC;

SAIDA : out STD_LOGIC);

end EXAMPLE;

--

architecture Behavioral of EXAMPLE is

component maj3 is port (

A: in STD_LOGIC;

B: in STD_LOGIC;

C: in STD_LOGIC;

Z: out STD_LOGIC);

end component;

component and2 is port (

A: in STD_LOGIC;

B: in STD_LOGIC;

Z: out STD_LOGIC);

end component;

signal node1, node2 : STD_LOGIC;

--

begin

MAJ_1 : maj3 port map(A, B, C, node1);

MAJ_4 : and2 port map(E, F, node2);

707070

process (D) begin

if(D = ’1’) then

SAIDA <= node1;

else

SAIDA <= node2;

end if;

end process;

end Behavioral;

--

B.2 LSI netlist

COMPILE;

DIRECTORY MASTER;

/****** Technology used: qca4 ******/

MODULE EXAMPLE;

INPUTS A,B,C,D,E,F;

OUTPUTS SAIDA;

LEVEL FUNCTION;

DEFINE

A = (A);

B = (B);

C = (C);

D = (D);

E = (E);

F = (F);

SAIDA = (SAIDA);

U10(N5=Z) = NAND2(E=A,F=B);

U11(SAIDA=Z) = NAND2(N6=A,N7=B);

U12(N8=Z) = MAJ3(A=A,B=B,C=C);

U13(N7=Z) = NAND2(D=A,N8=B);

U14(N6=Z) = OR2(N5=A,D=B);

END MODULE;

END COMPILE;

END;

717171

B.3 Synopsys library

library (qca4) {

date : "June 19, 2007";

revision : 0.2;

default_inout_pin_cap : 1.0;

default_inout_pin_fall_res : 0.0;

default_inout_pin_rise_res : 0.0;

default_input_pin_cap : 1.0;

default_intrinsic_fall : 1.0;

default_intrinsic_rise : 1.0;

default_output_pin_cap : 0.0;

default_output_pin_fall_res : 0.0;

default_output_pin_rise_res : 0.0;

default_slope_fall : 0.0;

default_slope_rise : 0.0;

time_unit : "1ns";

voltage_unit : "1V";

current_unit : "1uA";

pulling_resistance_unit : "1kohm";

capacitive_load_unit (0.1,ff);

cell (MAJ3) {

area : 25

pin(A) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(B) {

direction : input

capacitance : 1

fanout_load : 1.0

727272

}

pin(C) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(Z) {

direction : output

function : "(A B)+(B C)+(A C)"

max_fanout : 10

timing() {

intrinsic_rise : 0.490000

intrinsic_fall : 0.800000

rise_resistance : 0.185000

fall_resistance : 0.059000

related_pin : "A B C"

}

}

}

cell (OR2) {

area : 4500

pin(A) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(B) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(Z) {

direction : output

function : "(A+B)"

max_fanout : 10

timing() {

737373

intrinsic_rise : 10.490000

intrinsic_fall : 10.800000

rise_resistance : 10.185000

fall_resistance : 10.059000

related_pin : "A B"

}

}

}

cell (NOR2) {

area : 4500

pin(A) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(B) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(Z) {

direction : output

function : "(A+B)’"

max_fanout : 10

timing() {

intrinsic_rise : 10.490000

intrinsic_fall : 10.800000

rise_resistance : 10.185000

fall_resistance : 10.059000

related_pin : "A B"

}

}

}

cell (AND2) {

area : 4500

747474

pin(A) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(B) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(Z) {

direction : output

function : "(A B)"

max_fanout : 10

timing() {

intrinsic_rise : 10.490000

intrinsic_fall : 10.800000

rise_resistance : 10.185000

fall_resistance : 10.059000

related_pin : "A B"

}

}

}

cell (NAND2) {

area : 4500

pin(A) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(B) {

direction : input

capacitance : 1

fanout_load : 1.0

}

pin(Z) {

757575

direction : output

function : "(A B)’"

max_fanout : 10

timing() {

intrinsic_rise : 10.490000

intrinsic_fall : 10.800000

rise_resistance : 10.185000

fall_resistance : 10.059000

related_pin : "A B"

}

}

}

cell(INV) {

area : 9

pin(A) {

direction : input

capacitance : 1.0

fanout_load : 1.0

}

pin(Z1) {

direction : output

max_transition : 3.0

function : "A’"

timing() {

intrinsic_rise : 0.780000

intrinsic_fall : 0.370000

rise_resistance : 0.180000

fall_resistance : 0.053000

related_pin : "A"

}

}

}

}

767676

Figure B.1: The schematic representation of an example. (File: example)

B.4 BLIF description

.model blif_de_teste

.inputs a b c

.outputs out

.default_input_arrival 0 0

.names b c and_bc

11 1

.names b c or_bc

1- 1

-1 1

.names a or_bc and_or_a_bc

11 1

.names and_or_a_bc and_bc out

1- 1

-1 1

.end

B.5 Gate netlist

.model blif_de_teste

.inputs a b c

777777

.outputs out

.default_input_arrival 0 0

.gate MAJ3 a=c b=b c=a Z1=out

.end

B.6 MVSIS script

read_library ./qca.genlib

read_super ./qca.super

read_blif ./simple2.blif

map

write_gate ./simple2.gate

B.7 MVSIS library

GATE INV 1 Z1=!a; PIN * UNKNOWN 1 3 1 1 1 1

GATE AND2 1 Z1=a*b; PIN * UNKNOWN 1 3 1 1 1 1

GATE NAND2 1 Z1=!(a*b); PIN * UNKNOWN 1 3 1 1 1 1

GATE OR2 1 Z1=a+b; PIN * UNKNOWN 1 3 1 1 1 1

GATE MAJ3 1 Z1=(a*b)+(b*c)+(a*c); PIN * UNKNOWN 1 3 1 1 1 1

GATE zero 0 O=CONST0;

GATE one 0 O=CONST1;

B.8 Custom super gate library

#

Supergate library derived for "qca.genlib" on Wed May 16 18:46:05 2007.

#

Command line: "super -i 3 -l 2 -d 1000.00 -a 1000.00 -t 60 qca.genlib".

#

The number of inputs = 3.

The number of levels = 2.

The maximum delay = 1000.00.

The maximum area = 1000.00.

The maximum runtime (sec) = 60.

#

The number of attempts = 1755.

The number of supergates = 96.

787878

The number of functions = 0.

The total functions = 256 (2^8).

#

Generation time (sec) = 0.01.

#

qca.genlib

3

96

105

* AND2 1 0

NAND2 2 1

* AND2 3 4

* NAND2 1 0

AND2 2 0

* AND2 6 7

* AND2 0 6

* AND2 0 4

* OR2 1 0

* AND2 11 4

OR2 2 0

* AND2 4 13

AND2 2 1

* AND2 6 15

* AND2 1 6

NAND2 2 0

* AND2 1 18

* AND2 11 18

OR2 2 1

* AND2 18 21

* AND2 6 11

* AND2 2 6

* AND2 6 13

* AND2 6 21

* AND2 0 15

* AND2 1 7

* AND2 2 3

* MAJ3 0 3 18

797979

* MAJ3 1 3 4

* MAJ3 0 6 7

* AND2 0 21

* MAJ3 1 0 7

* MAJ3 2 0 3

* AND2 0 11

* MAJ3 0 4 15

* MAJ3 1 4 7

* MAJ3 1 0 4

* MAJ3 2 4 7

* MAJ3 2 3 4

* MAJ3 2 0 4

* MAJ3 3 4 21

* MAJ3 0 4 21

* MAJ3 1 6 15

* AND2 1 13

* MAJ3 1 0 15

* MAJ3 2 1 3

* MAJ3 0 15 18

* AND2 1 11

* MAJ3 1 18 7

* MAJ3 1 0 18

* MAJ3 2 15 18

* MAJ3 2 3 18

* MAJ3 3 13 18

* MAJ3 2 1 18

* MAJ3 1 13 18

* AND2 2 11

* MAJ3 2 1 7

* MAJ3 2 0 15

* MAJ3 0 6 15

* MAJ3 1 6 7

* MAJ3 6 11 15

* MAJ3 2 1 0

* OR2 0 15

* MAJ3 2 0 11

* MAJ3 1 0 13

808080

* OR2 1 7

* MAJ3 2 1 11

* MAJ3 1 0 21

* MAJ3 2 6 3

* MAJ3 2 0 6

* MAJ3 2 1 6

* MAJ3 2 6 11

* MAJ3 2 1 13

* OR2 2 3

* MAJ3 2 0 21

* OR2 0 21

* OR2 1 13

* OR2 2 11

* INV 11

* NAND2 2 11

* NAND2 1 11

* NAND2 1 13

* NAND2 0 11

* NAND2 0 21

* NAND2 1 7

* NAND2 0 15

* NAND2 2 3

* NAND2 6 21

* NAND2 6 13

* NAND2 2 6

* NAND2 6 11

* NAND2 18 21

* NAND2 11 18

* NAND2 1 18

* NAND2 1 6

* OR2 0 4

* NAND2 4 13

* NAND2 11 4

* NAND2 0 4

* NAND2 0 6

* OR2 1 18

* OR2 2 6

818181

828282

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Index
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 QCADesigner
	1.3 Objectives
	1.4 Main contributions
	1.5 Dissertation outline

	2 State of the art
	2.1 Physical structures
	2.2 Basic logic elements
	2.2.1 Quantum dot implementation
	2.2.2 Magnetic implementation
	2.2.3 Molecular implementation

	2.3 Logic gates
	2.4 Synchronization
	2.5 Memory
	2.6 Signal routing
	2.7 Majority logic synthesis
	2.8 QCADesigner

	3 QCA-LG: a tool for automatic generation of QCA layouts
	3.1 Read Input Logic Circuit
	3.2 Circuit Expansion
	3.3 Gate Placement
	3.4 Gate Shaping
	3.4.1 Integrated routing
	3.4.2 Circuit synchronization

	3.5 Input Signals Distribution
	3.5.1 Delay equalization

	3.6 Output Layout

	4 Implementation and Experimental Results
	4.1 Implementation
	4.1.1 Building the graph
	4.1.2 Graph transversing
	4.1.3 Input and Output

	4.2 How to use the tool
	4.2.1 Getting a netlist
	4.2.2 Execute the QCA-LG tool
	4.2.3 View and simulate the layout

	4.3 Manually elaborated and automatically generated layouts
	4.4 Simulation results

	5 Conclusions
	5.1 The developed QCA-LG software tool
	5.2 Future work

	A Appendix A
	A.1 Layout images

	B Appendix B
	B.1 VHDL description
	B.2 LSI netlist
	B.3 Synopsys library
	B.4 BLIF description
	B.5 Gate netlist
	B.6 MVSIS script
	B.7 MVSIS library
	B.8 Custom super gate library

