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supervised by Prof. Ana Teresa Freitas (INESC-ID/IST) as part of the projects MaGiC (IE02ID01004) 

from INESC-ID (A.T. Freitas, PI) and DynaMo (PTDC/EEA-ACR/69530/2006) from FCT (S. Vinga, PI). 

Apart from my supervisors, whom I would like to thank for their constant support and encouragement, I 

would also like to thank the DynaMo members Prof. Jonas Almeida, Dr. Andreas Bohn, Paula Gaspar, 

Prof. João Miranda Lemos, Dr. Ana Rute Neves, Rodrigo Piedade, Prof. Helena Santos, Marco Vilela 

and Prof. Eberhard Voit. 

 

The general research area I was involved in was the mathematical modeling of biochemical systems 

from time series data of metabolite concentrations. My task was to use the Matlab software 

environment to combine autosmooth [1], an algorithm that smoothes noisy time series and estimates 

their slopes, with alternating regression [2], which estimates the parameters of an S-system. I also 

evaluated the joint performance of the two algorithms. 

 

Abstract  
 

Accurate time course data of metabolite concentrations in living cells or whole organisms generated 

by methods of modern molecular biology allows new approaches to mathematically model the 

biochemical processes taking place. This kind of data contains a wealth of information about the 

structure and dynamics of the biochemical system which generates them. The bottleneck in the 

analysis of such data is the estimation of parameter values. Because of its non-linearity and high 

dimensionality this problem is challenging and computationally expensive and a lot of effort has 

already been put in improving the available methods. 

 

In this report two recently published methods – autosmooth [1] for smoothing and estimation of slopes 

and alternating regression [2] for the actual parameter estimation - are combined for the task of 

generating an S-system model from raw metabolic time courses. The results show that these methods 

indeed show some improvement over previous methods that directly estimate systems of nonlinear 

differential equations. While the combination of these methods may be helpful to a skilled modeler, the 

goal of generating a good model from time course data without human intervention is still rather far 

away. 
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Introduction  
 

Systems biology studies the interactions between the components of biological systems, and how 

these interactions give rise to the function and behavior of that system. An important part of systems 

biology is the modeling of metabolic networks, which consists of various different tasks. First of all, 

one needs data that is suitable for building a model upon it. Nowadays modern high-throughput 

techniques of molecular biology are able to generate data that contains a huge amount of information, 

but the extraction of this information is not a straightforward task. Especially useful for the generation 

of metabolic models are time series data of the concentrations of the metabolites involved in a certain 

pathway. In vivo nuclear magnetic resonance (NMR) measurements are able to produce exactly this 

kind of data, which contains information about both the material flow and the regulation within the 

network (see [3] for an example and [4-6] for applications). 

 

The modeler’s task is subsequently to identify the structure of the network and to estimate the model’s 

parameters. By using the S-systems modeling framework within Biochemical Systems Theory (BST) 

[7-9] the complex structure identification task can be reduced to a parameter estimation task, albeit the 

number of parameters and consequently the dimensionality of the parameter search space is 

increased significantly in that step. S-systems have been proven to be flexible enough to be able to 

handle the most dissimilar metabolic networks and have been discussed in the literature numerous 

times already [10-12]. Another advantage of using S-systems is that every single parameter can be 

directly interpreted in a biological sense, offering insight into the topological structure of the network 

and into the orders of the chemical reactions involved. 

 

S-system models are nonlinear, therefore the parameter estimation task corresponds essentially to the 

numerical solution of a system of nonlinear differential equations, which is both difficult and very time-

consuming. At the moment this parameter estimation step still poses a significant challenge and is the 

bottleneck in the whole modeling process. Various attempts to improve the currently available 

techniques have already been made [13-17] and while they were somewhat successful in simplifying 

this crucial step in the modeling process and improving the results, a method which delivers 

satisfactory results under a wide range of circumstances and which can be automatized has not been 

found yet. Presently parameter estimation of an S-system still requires the knowledge and experience 

of a specialist and even then success is not guaranteed. 

 

In this work two novel methods that aim to simplify the parameter estimation task for S-systems are 

combined. First, the raw time series data is smoothed using the autosmooth algorithm [1], which also 

generates derivatives of the time series. The smoothed time series as well as their derivatives are 

then used as input data for alternating regression [2], which estimates the corresponding S-system 

parameters. Various scenarios using synthetic data are analyzed in order to judge the quality of the 

results generated by the combination of autosmooth and alternating regression and in order to find out 

whether one can expect this combination of methods to be suited to handle real-life experimental data. 
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Systems and Methods 
 

The S-System modeling framework 
The S-system framework within BST is ideally suited for the modeling of biochemical pathways. BST 

is based on linearization of a Taylor series in a logarithmic coordinate system and leads to a non-

linear power-law approximation in Cartesian space [13]. The generic form of an S-system is the 

following: 
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where iX denotes the concentration of metabolite i. Its change over time iX�  is expressed as the 

difference between a production and a degradation term. These two terms are products of power-law 

functions and contain two different types of parameters: the non-negative rate constants α and β and 

the kinetic orders g and h, which can be directly interpreted as the kinetic orders of the corresponding 

chemical reactions. Therefore, the structure of the network can be inferred in a straightforward fashion 

if the parameter values of the S-system are known. The values of the kinetic orders typically lie 

between -3 and 3. The use of S-systems for biochemical modeling has been suggested many times 

before [7-12], so no detailed discussion of them is needed here. 

 

Decoupling 
For n metabolites the S-system formulation consists of n coupled differential equations, whose 

parameters we want to estimate. If we know the concentrations iX and the slopes of the 

concentrations iS for each metabolite i at N points in time tk, we can instead reformulate the problem 

as a set of n x N non-linear algebraic equations [13]: 
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Parameter estimation for the coupled differential equations involves the computationally expensive 

numerical integration, whereas this step is not necessary for the analysis of the algebraic equations. 

We do need to estimate the slopes iS however, and as we will see, this step is a crucial one, 

especially when we are dealing with data that is not noise-free since the noise tends to be magnified in 

the estimation of the slopes.  

 

Smoothing 
Before starting with the actual task of parameter estimation, we have to pre-process the input data. 

The goal is to use a filter for the data that separates the noise from the signal, and that allows us to 

estimate the slopes iS with great precision. In [1] Vilela et al. are proposing a new smoothing 

algorithm that is based on Eilers’ extension [18] of the Whittaker filter [19]. This filter uses an 
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information-theoretic error function [20] and is able to deal with time-varying error structures by 

automatically splitting the input data into different domains or windows if this is deemed necessary.  

The Whittaker filter fits a smooth time series z to a given series y of noisy data points by minimizing 

the following function: 

∑ ∑
= =

Δ+−=
N

i

N

i
iii zzyQ

1 2

22 )()( λ  

The two additive components quantify the fidelity of the smoothed output to the original data )( ii zy −  

and the smoothness izΔ  of the output. The result is dependent on two parameters: the order of the 

filter, d, and the weighing of its residuals λ. The order d is an implicit parameter that determines the 

definition of izΔ  by defining the number of data points that are taken into account for the calculation of 

this measure of smoothness. 

Eilers [18] approach of using cross-validation to optimize the parameters λ and d is extended further 

by Vilela et al. [1] who are following an approach based on information theory. They optimize λ and d 

by minimizing Renyi’s second order entropy of the cross-validation error. Additionally, they do not 

assume that the noise structure of the signal is invariant, because this assumption often is not true for 

biological time series such as those of metabolic profiles. Therefore, the autosmooth algorithm 

includes a process for segmenting the time series into windows with the same noise behavior. They 

divide the signal into increasingly smaller windows, each with its own set of parameters λ and d, until 

the smaller windows result in no gain according to an information theoretic cost function anymore. The 

authors also give a closed form solution for the derivative of the smoothed signal. 

The whole autosmooth algorithm has been implemented in Matlab by Vilela et al. and is available for 

download at http://www.bioinformaticstation.org where a standalone of the same code can also be 

found. This package will be used for the smoothing of the input data as well as the estimation of the 

slopes in the remainder of this work. 

 

Alternating Regression 
The results of the pre-processing with the autosmooth filter will then be used as input data for 

alternating regression, which performs the actual parameter estimation. Alternating regression has 

been proposed by Chou et al. in [2] where a detailed description and evaluation of the algorithm can 

be found. Its name derives from the fact that the algorithm cycles between two phases of multiple 

linear regression, alternating between estimating the parameters of the production term and the 

degradation term of a single S-system equation at a time. The main advantage of using alternating 

regression is that it is many times faster than any algorithm that directly estimates systems of 

nonlinear differential equations simultaneously. 

 

The general procedure of performing alternating regression on the ith equation of an S-system is as 

follows:  

• The matrices Lp and Ld, containing the regressors of the production term and the degradation 

term of Xi, are created: 
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Only those Xj that are known to affect the production term (those with a non-zero kinetic 

order), are included in Lp. Ld is defined analogously, containing only those Xj that affect the 

degradation term. 

• The following two matrices are calculated: 
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• Select initial estimations for βi and hij, the parameters of the degradation term of the equation. 

• Start the iteration. 

• Compute the N-dimensional vector yd: 
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• Estimate the parameters of the production term by calculating vector bp: 
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• Perform the analogous regression for the degradation side using the parameter estimations 

determined in the previous step: 
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The components of bd will be used as estimations for the parameters of the degradation term 

in the next iteration.  

• Calculate the logarithm of the sum of squared errors:  
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• Continue the iteration until the termination criteria (ln(SSE) is less than a specified value or 

number of iterations is greater than a specified value) are satisfied. 

 

The result of alternating regression are the vectors bp and bd, which contain the estimated parameter 

values of the production term (αi and gij) and the degradation term (βi and hij) respectively. Taken 

together they contain a set of all parameters for one S-system equation. After performing alternating 
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regression for all equations of an S-system, one therefore has estimations for all the parameters of the 

S-system. 

 

Results  
 

In order to analyze the performance of the combination of autosmooth and alternating regression for 

the estimation of S-system parameters, synthetic time course data of a small system is being created. 

This time course data is then used as input data for autosmooth and alternating regression and their 

output, estimations for the parameters of the S-system, is compared to the true parameter values. In 

addition the system is simulated using the estimated parameters and the resulting time courses 

compared to the true ones. Several combinations of time course data with and without noise are 

tested and some attempts to adapt alternating regression in a way that improves the quality of the 

results are made. 

 
The example network 
An example network that is representative of a small biochemical network and that has already 

appeared in other publications [2, 13, 15], is used to generate the synthetic time series data. The 

example network consists of only four metabolites and as many differential equations, but it contains 

all the relevant features of a bigger network, so that it is suitable for testing the parameter estimation 

methods. The equations and initial conditions are: 
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   (Eq. 1) 

The branched pathway qualitatively representing these equations is shown in Figure 1. Material flow is 

displayed as straight arrows, regulative influences as curved arrows. The figure shows that X1 is a 

precursor of both X2 and X4, X2 is a precursor of X3, X4 activates the degradation of X3 and X3 inhibits 

the formation of X1. 

  

 

Figure 1 – Branched pathway with four variables and two regulatory signals 

 

Figure 2 shows the metabolite concentrations and their slopes over time. 
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Figure 2 – Time courses and slopes of the four variables of the system in Figure 1 

 
This time course data is obtained by simulating the network with the “Power Law Analysis and 

Simulation” (PLAS) software package [21] or with Matlab’s ode45 function that solves initial value 

problems for ordinary differential equations (ODEs). The metabolite concentrations are being 

generated for 51 time points, which are equally spaced over the interval [0;5]. 

 

Adding noise and filtering 
To the noise-free time series data generated in the previous step, varying amounts of randomly 

distributed Gaussian noise are added using Matlab’s normrnd function. Then these noisy time series 

are filtered using the autosmooth package [1] by Vilela et al. Both a stand-alone version of the 

algorithm as well as a set of Matlab functions are available. They can be downloaded from 

http://www.bioinformaticstation.org/. 

 

Performing alternating regression 
The smoothed data that includes estimated slopes is then used as input data for alternating 

regression. Alternating regression is performed within Matlab, the functions that are used can be found 

in the Appendix and at http://kdbio.inesc-id.pt/~svinga/dynamo/beyer/ . These functions are not 

optimized for speed in any way, so it should be possible to accelerate the calculations substantially. It 

is assumed that the network topology is already known, which is the same as knowing which 

parameters in the S-system equations are zero. As a consequence the number of regressors can be 

reduced by using only those parameters that are known to be non-zero. 

 

Alternating regression generally performs the parameter estimation for the equations of the S-system 

independently of each other and one equation at a time. This means that mass conservation 

considerations, which cause dependency between parameters of different equations of the S-system, 

are not taken into account. As a consequence the parameter values returned by alternating regression 

may violate the laws of mass conservation. The implementation of alternating regression used for the 

results in this report does not change this behavior, but it performs the regression of all equations 

simultaneously, so that the error function can sum the error over all equations and that the parameters 
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of all equations are estimated using the same number of iterations. The termination condition used is 

two-fold: alternating regression is aborted if the logarithm of the sum of squared errors is less than -15 

or after 100000 iterations. 

 

The output of the alternating regression algorithm is a set of values for the parameters of the S-

system. These values are then on the one hand compared to the known true values and on the other 

hand used to simulate the network and the resulting time series compared to the true time series. 

 

The performance 
Case 1: no noise, true derivatives 

As a first test, alternating regression is being performed on time series data without noise. Moreover, 

the true slopes are calculated algebraically according to Eq. 1, so the autosmooth algorithm is not 

needed in this case at all. The results obtained converge to the theoretical values and alternating 

regression performs fine in this case. 

 

Case 2: noisy time series, true derivatives 

In the second case Gaussian noise is added to the time series data. σ(X1)=0.04, σ(X2)=0.2, σ(X3)=0.22 

and σ(X4)=0.015, which corresponds to a σ of about 10% of the steady state concentration of the 

respective metabolite. Again the derivatives are calculated according to Eq. 1. The input data is 

visualized in Figure 3. 

 
Figure 3 – Case 2 input data: Noisy time course data and slopes calculated from the true S-system 

equations 

 

There is still no smoothing being performed and again alternating regression is able to calculate the 

true parameter values. 

 

Case 3: no noise, slopes via autosmooth 

In the inverse case to case 2 there is no noise being added to the time series, but the slopes are not 

anymore calculated according to Eq. 1. This time the autosmooth algorithm is being used to estimate 

the slopes. In Figure 4 we can see that the difference between the true slopes and the slopes 

estimated with autosmooth is minimal. 
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Figure 4 – Comparison of the true slopes with the slopes calculated by autosmooth (no noise) 

 

But even after these minimal changes in the input, the results of alternating regression are already 

different and look like this:  
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Even though the numerical parameter values are different, simulating the system with these values 

results in time courses that are almost indistinguishable from the true time courses (Figure 5). 

 
Figure 5 - Comparison of the calculated time courses of case 3 with the true time courses 
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This phenomenon is typical for S-systems and a result of the fact that there are more parameters than 

variables (17 versus 4 in our network), so that more than one combination of parameters can explain 

the same kind of behavior. 

 

Case 4: noisy function values, slopes via autosmooth 

In this case, Gaussian noise that corresponds to 5-10% of the steady state value of the respective 

variable (σ(X1)=0.04, σ(X2)=0.1, σ(X3)=0.11 and σ(X4)=0.015), is added to the time series. The 

autosmooth algorithm is used only for the estimation of the slopes which are used as input data for 

alternating regression together with the unfiltered raw data for X1 to X4. Figure 6 shows both input data 

and true data. 

 
Figure 6 - Case 4 input data: Noisy time course data and slopes calculated with autosmooth 

 

The parameter estimations calculated by alternating regression now consist of complex values. 
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In some cases where we get complex results it is possible to get rid of them by running alternating 

regression with different starting estimations for the parameters in the first iteration. In this case 

though, starting estimations resulting in real results were not found. Surprisingly, simulating the 

network which includes complex parameters results in time series, where the imaginary component is 

very small and which are not very different from the true time courses (Figure 7) if the imaginary part is 

disregarded. 
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Figure 7 – Comparison of the calculated time courses of case 4 with the true time courses 

 

Case 5: noisy data, function values and derivatives via autosmooth 

In this case, instead of passing the raw noisy function values to the alternating regression algorithm, 

autosmooth is being used for both smoothing the raw data and estimating the slopes. The input data 

for the autosmooth algorithm is presented in Figure 8. 

 
Figure 8 - Case 5 input data: Noisy and autosmoothed time course data and slopes calculated with 

autosmooth 

 

Again we get complex results that look very similar to those of case 4, but this time the overall mean 

square error is a little bit smaller.  
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Figure 9 compares the simulated time courses with the true time courses. 



  17 

 
Figure 9 - Comparison of the calculated time courses of case 5 with the true time courses 

 

Discussion 
 
After analyzing how autosmooth and alternating regression perform in each scenario, a comparison of 

all cases was made. Table 1 summarizes the results obtained in each case: 

 

Data Points Slopes 
Alternating Regression Results 

Parameter Values Curve Fit 

Exact Exact Converge to true values Perfect 

Noisy Exact Converge to true values (as long as σ is small enough) Perfect 

Exact Autosmooth Converge to different values Perfect 

Noisy Autosmooth Converge to complex values Reasonable 

Autosmooth Autosmooth Converge to complex values Reasonable 

 

The results show that S-system parameter estimation with alternating regression is sensitive to noisy 

data. The noise in the time courses themselves does not play as big a part as the noise in the 

estimated slopes. For those, accurate estimations are essential. The quality of the results of 

alternating regression is directly correlated to the quality of the estimations of the slopes. 

 

Dealing with complex parameter values 
Since complex rate constants and kinetic orders make no sense from a biochemical point of view, it 

would be desirable to get rid of them and have only real results. Different strategies can be employed 

in order to reach this goal. 

 

In the first iteration of the alternating regression algorithm one has to start with initial guesses for the 

parameters of either the production or the degradation term of the equation. The influence of these 
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starting values on the result should not be disregarded easily. Chou et al. already noted in [2] that the 

convergence of the algorithm depends on the starting values. Because alternating regression is fast, it 

is possible to try different initial guesses until one of them results in non-complex parameter values. 

While this strategy is successful in some cases, in the more complicated ones no starting values that 

resulted in real results were found.  

 

Another option is to disregard any imaginary component of a parameter estimation in the alternating 

regression algorithm as soon as it appears and to continue the calculation only with the real 

component of that parameter. The problem is that by ignoring the imaginary part, the algorithm does 

not converge anymore and no useful results are obtained. 

 

A third possible way to deal with the problem of complex results is to watch the alternating regression 

algorithm more closely. The origin of the complex results is a step where the logarithm of a 

sum/difference is taken. This is done for every observation of Xi separately and the results are 

arranged in a column vector. Now it is possible to check in every iteration of the algorithm whether this 

vector contains only real numbers and if this is not the case one can simply remove (for this single 

iteration only) those observations that cause complexity and continue the calculations for this iteration 

as if we only had those observations that cause no complex results. Unfortunately again, this 

adaptation of the algorithm causes the loss of convergence to specific values and no results are 

obtained. 

 

Therefore the problem of complex results remains. If varying the starting parameter estimations does 

not lead to real results, getting non-complex results is not possible at all with the methods described 

above. And since complex parameter values make no sense biochemically, a way to find real 

parameter values is highly desirable. 

 

Using the parameter estimates for predictions 
Obviously, if alternating regression returns the true parameter values as results, simulating the 

resulting system under different starting conditions will show the behavior of the true system under 

these conditions perfectly. But what happens in those cases where alternating regression calculates 

parameter values that are not exactly true? Are these systems still able to predict the behavior under 

different conditions? Figure 10 compares the time courses obtained when simulating the true system 

with those obtained from simulating the equations using the solution of case 5 under different initial 

conditions: 
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Figure 10 – Comparison of the calculated time courses with the true time courses when choosing different 

initial conditions 

 

As can easily be seen, the predictive power of the parameter set returned by alternating regression is 

severely limited. Maybe it can be used to make some qualitative statements about the behavior of the 

system, but it is far too inaccurate for any quantitative statements. This fact confirms that more 

accurate (and non-complex) parameter estimations are needed to obtain a valid model, which fulfills 

its purpose of being able to predict the behavior of the system under conditions that have not been 

tested yet. 

 

Mass conservation and other restrictions 
Because alternating regression estimates the parameters of each equation of the S-system 

separately, it does not take the law of mass conservation into account. As opposed to the physical 

reality, in alternating regression there are no restrictions for the parameters of metabolites which are 

part of a precursor-product relationship. In our example network (Figure 1) X2 and X3 form such a 

relationship. Consequently the degradation term of X2 is exactly the same as the production term of 

X3. But because alternating regression performs the calculations for each equation separately, there is 

no straightforward way to implement these kinds of restrictions that concern more than one equation 

of the S-system into the algorithm. It is possible though, to run exactly one iteration for all equations of 

the S-system before starting the next iteration. In between the individual iterations one can compare 

the values of those parameters that should have equal values and adjust them. What has been done 

in this work is the following: if the parameter p1 should be equal to parameter p2 according to the 

(known) network structure, p1 and p2 were both set to the average of p1 and p2 after each iteration of 

alternating regression. 
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Another kind of restriction that is easier to implement, is setting minimum and maximum parameter 

values. Any kinetic orders typically lie between -1 and 2, so one can set these values as borders for 

the parameters. If at any time during the alternating regression a kinetic order is smaller than -1 

(greater than 2), it is set to -1 (2). 

 

Experimenting with different combinations of restrictions within the alternating regression algorithm 

yields unexpected results. Some combinations improve the convergence of the algorithm, so that it 

takes less iterations to reach a stable solution, while others impair the convergence. Adding a single 

additional restriction may have positive or negative effects on the convergence of the algorithm and 

one cannot tell beforehand what will happen, so that trial and error is the only strategy to explore the 

use of restrictions. Additionally, in those cases where restrictions were added successfully, only the 

speed of convergence improved and not the quality of the results. Because there are a lot of different 

combination of restrictions that can be employed and because there are different ways to implement 

them, no final judgment on the usefulness of restrictions can be given here. The feeling that adding 

some kind of restrictions can significantly improve the results remains, but unfortunately such a 

combination was not found. 

 

Alternative approaches for parameter estimation 
Of course there exist other ways to estimate S-system parameters. Due to the high number of 

parameters any S-system has, the main strategy has been the use of massive computer power. In [14] 

a cluster of 1040 Pentium III 933MHz processors was used to estimate the parameters of a differential 

equation model with five variables. The data was noise-free data and a genetic algorithm was applied 

to solve the equations. Even though the time required for one algorithmic loop was about 10 hours, 

this meant an improvement in optimization speed and convergence rate and also increased the 

number of predictable parameters. 

 

In [13] Voit and Almeida have proposed the decoupling of the system of differential equations of an S-

system into decoupled algebraic equations. They estimated the slopes by using a universal function of 

time, in their case produced by artificial neural networks. The first derivative of these universal 

functions can be determined symbolically, but they also produce artifacts in higher order derivatives, 

which led the researchers to pursue other methods for data smoothing and estimation of slopes. The 

resulting methods are the ones analyzed in this report. 

 

Tucker and Moulton are following a deterministic approach to parameter estimation based on interval 

analysis in [15]. They test their method on the same S-systems used in [13] and [14]. Their algorithm 

has a run time of several hours for a system of 4 or 5 equations and gives accurate parameter 

estimations, but is not yet able to handle noisy time series data. Their improved algorithm presented in 

[16] does not have this limitation. It uses Newton-flow analysis to identify a one-dimensional attractor 

containing the true parameter values for a wide range of examples, therefore reducing the parameter 

search space and allowing parameter estimation for noisy data. 
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In [17] Gennemark and Wedeling proposed algorithms for both structure identification and parameter 

estimation. The model structure is built incrementally with a heuristic search algorithm and the 

parameters are estimated one equation at a time. They show that they can get meaningful results 

using only small amounts of time course data and without using supercomputers. 

 

Conclusion  
 

The inverse problem of modeling a biochemical system from metabolic time course data is challenging 

and computationally expensive. After the experimental data is obtained, the two main steps for 

creating a suitable S-system model are smoothing of the data (including estimation of the slopes) and 

parameter estimation. These two steps constitute the bottleneck in metabolic modeling nowadays and 

a lot of effort is put into automation of this work. There is still no “recipe” for modeling and most 

successful models were created with a lot of manual intervention and trial and error. Nevertheless 

progress towards automation is made. 

 

Reviewing autosmooth and alternating regression, two recently published methods for data filtering 

and parameter estimation and combining them for the task of creating a model, shows both the power 

and the limitation of these methods. They perform very well in a noise-free environment and show 

their potential. But when tested in a more realistic case that includes noise (but which is still simple 

compared to real problems), they already exhibit some difficulties. They are fast compared to other 

methods which directly estimate systems of differential equations and also deliver results that allow 

one to reconstruct the behavior of the biochemical system, but when trying to predict the system’s 

behavior under untested conditions, the quality of these predictions is limited. 

 

Combining autosmooth and alternating regression is a good way to estimate the parameters of an S-

system, but is still far from being a perfect solution. There still has to be made a lot of progress until 

the goal of automating model building from metabolic data is reached. 
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Appendix 
 

These are the Matlab functions and scripts that I have written during the work on this report. You are 

free to use and modify these functions in any way you like. 

 

ToyNetwork.m 
Contains the differential equations of the network and is only called by other functions. 
% Describes a simple set of S-System equations 
% 
% Input: 
%   t:      time 
%   x:      initial values of X1, X2, X3 and X4 
%   param:  vector of the parameter values (1 to 8 for production, 9-17 for 
%           degradation) 
% 
% Wolfgang Beyer, 2007 
 
function dx = ToyNetwork3(t,x,param) 
dx = zeros(4,1);     
 
p=param(1:8); 
d=param(9:17); 
 
dx(1) = p(1)*x(3)^p(2) - d(1)*x(1)^d(2); 
dx(2) = p(3)*x(1)^p(4) - d(3)*x(2)^d(4); 
dx(3) = p(5)*x(2)^p(6) - d(5)*x(3)^d(6)*x(4)^d(7); 
dx(4) = p(7)*x(1)^p(8) - d(8)*x(4)^d(9); 
 

Generate_TS.m 
Generates time series data of the toy network and adds Gaussian noise. 
% Generates time series data for the S-system described in ToyNetwork.m 
% 
% Output: 
% TS:     time series data (columns: t, X1, X2, X3, X4) 
% 
% Wolfgang Beyer, 2007 
 
% Simulate the differential equations 
% [0 5]         time interval 
% [1.4 ... 0.4] initial values for X1, X2, X3, X4 
% [12 ... .8]   parameter values of the S-System 
testSoln=ode45(@ToyNetwork,[0 5],[1.4; 2.7; 1.2; 0.4],[],[12 -.8 8 .5 3 .75 2 .5 10 
.5 3 .75 5 .5 .2 6 .8]); 
new_t=linspace(0,5,51); 
new_x=deval(testSoln,new_t); 
TS=[new_t' new_x']; 
 
% delete unused variables 
clear new_t; 
clear new_x; 
clear testSoln; 
 
% add Gaussian noise 
TS(:,2)=TS(:,2)+normrnd(0,.04,51,1); 
TS(:,3)=TS(:,3)+normrnd(0,.1,51,1); 
TS(:,4)=TS(:,4)+normrnd(0,.11,51,1); 
TS(:,5)=TS(:,5)+normrnd(0,.015,51,1); 
 
% plot the generated data 
plot(TS(:,1),[TS(:,2) TS(:,3) TS(:,4) TS(:,5)]) 
legend('X1','X2','X3','X4'); 
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AR_X1.m 
Performs alternating regression on equation 1 of the network. 
% Performs alernating regression on equation 1 of the S-System defined in 
ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Input: 
%   X1:         time course data of X1 
%   X3:         time course data of X3 
%   Si:         (estimated) slope of X1 
%   bd:         initial estimations for the parameters of the degradation term 
% Output: 
%   Production:     estimations for the parameters of the production term 
%   Degradation:    estimations for the parameters of the degradation term 
%   SSE:            sum of squared errors 
%   Iterations:     number of iterations run 
% 
% Wolfgang Beyer, 2007 
 
function [Production, Degradation, SSE, Iterations] = X1C(X1, X3, Si, bd) 
 
%Generate matrix of logarithms of regressors 
TSLength=length(X1); 
Lp=[ones(TSLength,1) log(X3)]; 
Ld=[ones(TSLength,1) log(X1)]; 
 
%Compute matrices Cp and Cd 
Cp=inv(Lp'*Lp)*Lp'; 
Cd=inv(Ld'*Ld)*Ld'; 
 
%Output of initial estimates for the parameters of the degradation term 
Degradation_Estimates=bd' 
 
%Iterate the actual regression 
SSE=1; 
Iterations=0; 
while (SSE>-15) && (Iterations<100000) 
 
    %Degradation side 
    %do regression 
    yd=[log(Si+bd(1,1)*X1.^bd(2,1))]; 
    bp=Cp*yd; 
    %calculate error 
    SSE=sum((yd-Lp*bp).^2); 
    %transform parameter from logarithmic space in to linear space 
    bp(1,1)=exp(bp(1,1)); 
 
    %Production side 
    %do regression 
    yp=[log(bp(1,1)*X3.^bp(2,1)-Si)]; 
    bd=Cd*yp; 
    %calculate error 
    SSE=log(SSE+sum((yp-Ld*bd).^2)); 
    %transform parameter from logarithmic space in to linear space 
    bd(1,1)=exp(bd(1,1)); 
     
    Iterations=Iterations+1; 
end 
 
%show theoretical values together with the calculated ones 
Production=[[12; -.8] bp]; 
Degradation=[[10; .5] bd]; 
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AR_X2.m 
Performs alternating regression on equation 2 of the network. 
% Performs alernating regression on equation 2 of the S-System defined in 
ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Input: 
%   X1:         time course data of X1 
%   X2:         time course data of X2 
%   Si:         (estimated) slope of X2 
%   bd:         initial estimations for the parameters of the degradation term 
% Output: 
%   Production:     estimations for the parameters of the production term 
%   Degradation:    estimations for the parameters of the degradation term 
%   SSE:            sum of squared errors 
%   Iterations:     number of iterations run 
% 
% Wolfgang Beyer, 2007 
 
function [Production, Degradation, SSE, Iterations] = X2C(X1, X2, Si, bd) 
 
%Generate matrix of logarithms of regressors 
TSLength=length(X2); 
Lp=[ones(TSLength,1) log(X1)]; 
Ld=[ones(TSLength,1) log(X2)]; 
 
%Compute matrices Cp and Cd 
Cp=inv(Lp'*Lp)*Lp'; 
Cd=inv(Ld'*Ld)*Ld'; 
 
%Output of initial estimates for the parameters of the degradation term 
Degradation_Estimates=bd' 
 
%Iterate the actual regression 
SSE=1; 
Iterations=0; 
while (SSE>-15) && (Iterations<100000) 
 
    %Degradation side 
    %do regression 
    yd=[log(Si+bd(1,1)*X2.^bd(2,1))]; 
    bp=Cp*yd; 
    %calculate error 
    SSE=sum((yd-Lp*bp).^2); 
    %transform parameter from logarithmic space in to linear space 
    bp(1,1)=exp(bp(1,1)); 
 
    %Production side 
    %do regression 
    yp=[log(bp(1,1)*X1.^bp(2,1)-Si)]; 
    bd=Cd*yp; 
    %calculate error 
    SSE=log(SSE+sum((yp-Ld*bd).^2)); 
    %transform parameter from logarithmic space in to linear space 
    bd(1,1)=exp(bd(1,1)); 
     
    Iterations=Iterations+1; 
end 
 
%show theoretical values together with the calculated ones 
Production=[[8;.5] bp]; 
Degradation=[[3; .75] bd]; 
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AR_X3.m 
Performs alternating regression on equation 3 of the network. 
% Performs alernating regression on equation 3 of the S-System defined in 
ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Input: 
%   X2:         time course data of X2 
%   X3:         time course data of X3 
%   X4:         time course data of X4 
%   Si:         (estimated) slope of X3 
%   bd:         initial estimations for the parameters of the degradation term 
% Output: 
%   Production:     estimations for the parameters of the production term 
%   Degradation:    estimations for the parameters of the degradation term 
%   SSE:            sum of squared errors 
%   Iterations:     number of iterations run 
% 
% Wolfgang Beyer, 2007 
 
function [Production, Degradation, SSE, Iterations] = X3C(X2, X3, X4, Si, bd) 
 
%Generate matrix of logarithms of regressors 
TSLength=length(X3); 
Lp=[ones(TSLength,1) log(X2)]; 
Ld=[ones(TSLength,1) log(X3) log(X4)]; 
 
%Compute matrices Cp and Cd 
Cp=inv(Lp'*Lp)*Lp'; 
Cd=inv(Ld'*Ld)*Ld'; 
 
%Output of initial estimates for the parameters of the degradation term 
Degradation_Estimates=bd' 
 
%Iterate the actual regression 
SSE=1; 
Iterations=0; 
while (SSE>-15) && (Iterations<100000) 
 
    %Degradation side 
    %do regression 
    yd=[log(Si+bd(1,1)*X3.^bd(2,1).*X4.^bd(3,1))]; 
    bp=Cp*yd; 
    %calculate error 
    SSE=sum((yd-Lp*bp).^2); 
    %transform parameter from logarithmic space in to linear space 
    bp(1,1)=exp(bp(1,1)); 
 
    %Production side 
    %do regression 
    yp=[log(bp(1,1)*X2.^bp(2,1)-Si)]; 
    bd=Cd*yp; 
    %calculate error 
    SSE=log(SSE+sum((yp-Ld*bd).^2)); 
    %transform parameter from logarithmic space in to linear space 
    bd(1,1)=exp(bd(1,1)); 
 
    Iterations=Iterations+1; 
end 
 
%show theoretical values together with the calculated ones 
Production=[[3;.75] bp]; 
Degradation=[[5; .5; .2] bd]; 
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AR_X4.m 
Performs alternating regression on equation 4 of the network. 
% Performs alernating regression on equation 4 of the S-System defined in 
ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Input: 
%   X1:         time course data of X1 
%   X3:         time course data of X4 
%   Si:         (estimated) slope of X4 
%   bd:         initial estimations for the parameters of the degradation term 
% Output: 
%   Production:     estimations for the parameters of the production term 
%   Degradation:    estimations for the parameters of the degradation term 
%   SSE:            sum of squared errors 
%   Iterations:     number of iterations run 
% 
% Wolfgang Beyer, 2007 
 
function [Production, Degradation, SSE, Iterations] = X2C(X1, X4, Si, bd) 
 
%Generate matrix of logarithms of regressors 
TSLength=length(X4); 
Lp=[ones(TSLength,1) log(X1)]; 
Ld=[ones(TSLength,1) log(X4)]; 
 
%Compute matrices Cp and Cd 
Cp=inv(Lp'*Lp)*Lp'; 
Cd=inv(Ld'*Ld)*Ld'; 
 
%Output of initial estimates for the parameters of the degradation term 
Degradation_Estimates=bd' 
 
%Iterate the actual regression 
SSE=1; 
Iterations=0; 
while (SSE>-15) && (Iterations<100000) 
 
    %Degradation side 
    %do regression 
    yd=[log(Si+bd(1,1)*X4.^bd(2,1))]; 
    bp=Cp*yd; 
    %calculate error 
    SSE=sum((yd-Lp*bp).^2); 
    %transform parameter from logarithmic space in to linear space 
    bp(1,1)=exp(bp(1,1)); 
 
    %Production side 
    %do regression 
    yp=[log(bp(1,1)*X1.^bp(2,1)-Si)]; 
    bd=Cd*yp; 
    %calculate error 
    SSE=log(SSE+sum((yp-Ld*bd).^2)); 
    %transform parameter from logarithmic space in to linear space 
    bd(1,1)=exp(bd(1,1)); 
  
    Iterations=Iterations+1; 
end 
 
%show theoretical values together with the calculated ones 
Production=[[2;.5] bp]; 
Degradation=[[6; .8] bd]; 
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Call_AR_X1toX4.m 
Loads time courses and then calls AR_X1, AR_X2, AR_X3 and AR_X4 one after each other to 

estimate the parameters of the S-System. 
% Calls the functions that perform alernating regression on the S-System defined in 
ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Wolfgang Beyer, 2007 
 
tic 
 
% loads the time series data 
load TS_clean.mat 
% loads the results of performing autosmooth on the time series data 
load TS_clean_AS.mat 
 
%estimated slopes are the ones taken from autosmooth 
Si1=result(:,6); 
Si2=result(:,7); 
Si3=result(:,8); 
Si4=result(:,9); 
 
%alternatively one could calculate the true slopes and use them 
%uncomment the following lines if you want to use the true slopes 
 
%Si1=[12*TS(:,4).^-.8 - 10*TS(:,2).^.5]; 
%Si2=[8*TS(:,2).^.5 - 3*TS(:,3).^.75]; 
%Si3=[3*TS(:,3).^.75 - 5*TS(:,4).^.5.*TS(:,5).^.2]; 
%Si4=[2*TS(:,2).^.5 - 6*TS(:,5).^.8]; 
 
%Set first estimation of degradation term and run alternating regression for X1 
bd=[15; 1]; 
[Prod, Deg, Error, It] = AR_X1(TS(:,2), TS(:,4), Si1, bd) 
 
%Set first estimation of degradation term and run alternating regression for X2 
bd=[15; 1]; 
[Prod, Deg, Error, It] = AR_X2(TS(:,2), TS(:,3), Si2, bd) 
 
%Set first estimation of degradation term and run alternating regression for X3 
bd=[15; 1; 1]; 
[Prod, Deg, Error, It] = AR_X3(TS(:,3), TS(:,4), TS(:,5), Si3, bd) 
 
%Set first estimation of degradation term and run alternating regression for X4 
bd=[15; 1]; 
[Prod, Deg, Error, It] = AR_X4(TS(:,2), TS(:,5), Si4, bd) 
 
%clear unused variables 
clear Si1; 
clear Si2; 
clear Si3; 
clear Si4; 
clear bd; 
 
toc 
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AR_allX.m 
Performs alternating regression on all 4 equations simultaneously. 
% Performs alernating regression on the whole S-System defined in ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Input: 
%   X1:         time course data of X1 
%   X2:         time course data of X2 
%   X3:         time course data of X3 
%   X4:         time course data of X4 
%   Si1:        (estimated) slope of X1 
%   Si2:        (estimated) slope of X2 
%   Si3:        (estimated) slope of X3 
%   Si4:        (estimated) slope of X4 
%   bd1:        initial estimations for the parameters of the degradation term of 
X1 
%   bd2:        initial estimations for the parameters of the degradation term of 
X2 
%   bd3:        initial estimations for the parameters of the degradation term of 
X3 
%   bd4:        initial estimations for the parameters of the degradation term of 
X4 
% 
% Output: 
%   Production:     estimations for the parameters of the production term 
%   Degradation:    estimations for the parameters of the degradation term 
%   SSE:            sum of squared errors 
%   Iterations:     number of iterations run 
% 
% Wolfgang Beyer, 2007 
 
function [Production, Degradation, SSE, Iterations] = X1to4C(X1, X2, X3, X4, Si1, 
Si2, Si3, Si4, bd1, bd2, bd3, bd4) 
 
%Generate matrices of logarithms of regressors 
TSLength=length(X1); 
Lp1=[ones(TSLength,1) log(X3)]; 
Ld1=[ones(TSLength,1) log(X1)]; 
Lp2=[ones(TSLength,1) log(X1)]; 
Ld2=[ones(TSLength,1) log(X2)]; 
Lp3=[ones(TSLength,1) log(X2)]; 
Ld3=[ones(TSLength,1) log(X3) log(X4)]; 
Lp4=[ones(TSLength,1) log(X1)]; 
Ld4=[ones(TSLength,1) log(X4)]; 
 
%Compute matrices Cp and Cd 
Cp1=inv(Lp1'*Lp1)*Lp1'; 
Cp2=inv(Lp2'*Lp2)*Lp2'; 
Cp3=inv(Lp3'*Lp3)*Lp3'; 
Cp4=inv(Lp4'*Lp4)*Lp4'; 
Cd1=inv(Ld1'*Ld1)*Ld1'; 
Cd2=inv(Ld2'*Ld2)*Ld2'; 
Cd3=inv(Ld3'*Ld3)*Ld3'; 
Cd4=inv(Ld4'*Ld4)*Ld4'; 
 
%Iterate the actual regression 
SSE=1; 
Iterations=0; 
while (SSE>-15) && (Iterations<100000) 
 
    %Degradation side 
    %do regression 
    yd1=[log(Si1+bd1(1,1)*X1.^bd1(2,1))]; 
    yd2=[log(Si2+bd2(1,1)*X2.^bd2(2,1))]; 
    yd3=[log(Si3+bd3(1,1)*X3.^bd3(2,1).*X4.^bd3(3,1))]; 
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    yd4=[log(Si4+bd4(1,1)*X4.^bd4(2,1))]; 
     
    bp1=Cp1*yd1; 
    bp2=Cp2*yd2; 
    bp3=Cp3*yd3; 
    bp4=Cp4*yd4; 
 
    %calculate error 
    SSE=sum((yd1-Lp1*bp1).^2+(yd2-Lp2*bp2).^2+(yd3-Lp3*bp3).^2+(yd4-Lp4*bp4).^2); 
     
    %transform parameters from logarithmic space in to linear space 
    bp1(1,1)=exp(bp1(1,1)); 
    bp2(1,1)=exp(bp2(1,1)); 
    bp3(1,1)=exp(bp3(1,1)); 
    bp4(1,1)=exp(bp4(1,1)); 
 
    %Production side 
    %do regression 
    yp1=[log(bp1(1,1)*X3.^bp1(2,1)-Si1)]; 
    yp2=[log(bp2(1,1)*X1.^bp2(2,1)-Si2)]; 
    yp3=[log(bp3(1,1)*X2.^bp3(2,1)-Si3)]; 
    yp4=[log(bp4(1,1)*X1.^bp4(2,1)-Si4)]; 
     
    bd1=Cd1*yp1; 
    bd2=Cd2*yp2; 
    bd3=Cd3*yp3; 
    bd4=Cd4*yp4; 
     
    %calculate error 
    SSE=log(SSE+sum((yp1-Ld1*bd1).^2+(yp2-Ld2*bd2).^2+(yp3-Ld3*bd3).^2+(yp4-
Ld4*bd4).^2)); 
     
    %transform parameters from logarithmic space in to linear space 
    bd1(1,1)=exp(bd1(1,1)); 
    bd2(1,1)=exp(bd2(1,1)); 
    bd3(1,1)=exp(bd3(1,1)); 
    bd4(1,1)=exp(bd4(1,1)); 
 
    Iterations=Iterations+1; 
end 
 
%show theoretical values together with the calculated ones 
Production=[[12; -.8; 8; .5; 3; .75; 2; .5] [bp1; bp2; bp3; bp4]]; 
Degradation=[[10; .5; 3; .75; 5; .5; .2; 6; .8] [bd1; bd2; bd3; bd4]]; 
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Call_AR_allX.m:  
Loads time course data and then calls AR_allX to estimate the parameters of the S-system. 
 
% Calls the function that performs alernating regression on the whole S-System 
defined in ToyNetwork.m 
% 
% alternating regression is performed as published in 
% Chou I, Martens H, Voit EO: Parameter estimation in biochemical systems models 
with alternating regression. Theor Biol Med Model 2006, 3:25. 
% 
% Wolfgang Beyer, 2007 
 
tic 
 
%load the time series data 
load TS_noisy.mat 
 
%load the results of performing autosmooth on the time series data 
load TS_noisy_AS.mat 
 
%estimated slopes are the ones taken from autosmooth 
Si1=result(:,6); 
Si2=result(:,7); 
Si3=result(:,8); 
Si4=result(:,9); 
 
%alternatively one could calculate the true slopes and use them 
%uncomment the following lines if you want to use the true slopes 
 
%Si1=[12*TS(:,4).^-.8 - 10*TS(:,2).^.5]; 
%Si2=[8*TS(:,2).^.5 - 3*TS(:,3).^.75]; 
%Si3=[3*TS(:,3).^.75 - 5*TS(:,4).^.5.*TS(:,5).^.2]; 
%Si4=[2*TS(:,2).^.5 - 6*TS(:,5).^.8]; 
 
%Set first estimation of degradation term for each equation 
bd1=[15; 1]; 
bd2=[15; 1]; 
bd3=[15; 1; 1]; 
bd4=[15; 1]; 
 
%Run alternating regression 
[Prod, Deg, Error, It] = AR_allX(TS(:,2), TS(:,3), TS(:,4), TS(:,5), Si1, Si2, Si3, 
Si4, bd1, bd2, bd3, bd4) 
 
%simulate the system with the calculated solution 
testSoln=ode45(@ToyNetwork,[0 5],[1.4; 2.7; 1.2; 0.4],[],[Prod(:,2); Deg(:,2)]); 
new_t=linspace(0,5,51); 
new_x=deval(testSoln,new_t); 
calc_t=new_t'; 
calc_x=new_x'; 
 
%simulate the true system 
testSoln=ode45(@ToyNetwork,[0 5],[1.4; 2.7; 1.2; 0.4],[],[12 -.8 8 .5 3 .75 2 .5 10 
.5 3 .75 5 .5 .2 6 .8]); 
new_x=deval(testSoln,new_t); 
 
%plot time courses 
plot(calc_t, [calc_x new_x']); 
legend('X1','X2','X3','X4','X1true','X2true','X3true','X4true'); 
 
%clear unused variables 
clear Si1; 
clear Si2; 
clear Si3; 
clear Si4; 
clear bd1; 
clear bd2; 
clear bd3; 
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clear bd4; 
clear calc_x; 
clear new_x; 
clear testSoln 
clear calc_t; 
clear new_t; 
 
toc 


