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Abstract

This work addresses the problem of state and parameter estimation in metabolic network models, using nonlinear
Kalman filter formulations, namely the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). It
explores a recent work on structural analysis of metabolic networks, whose case study is Lactococcus lactis metabolism,
in particular the glycolysis pathway. The task of parameter estimation revealed to be a harder one, justified by
the fact that certain parameters are constants whose individual variations do not strongly condition the system
evolution. It is important to mentioned that certain parameters variation can be compensated by others maintaining
the systems dynamics, although with a different numerical set of parameters, thereby suggesting that this model has
an identifiability problem. Based on structural analysis, where the system sensitivity was studied in relation to each
parameter, one can have an idea about which parameters would be more difficult to estimate. The techniques used
revealed to be adequate to the problem in question and the results are promising to an investigation that goes in this
direction.

Keywords: Nonlinear state-space models, Extended Kalman filter, Unscented Kalman filter, parameter estimation, structural analysis,

metabolic networks.

1 INTRODUCTION

1.1 Motivation

Systems biology is an emerging area that intends to inte-
grate several different sciences in order to achieve a better
understanding of a biological system. Biological systems
are rich in diversity; their dynamics, regulations and adap-
tation are the result of biological reactions presented along
with genetic and metabolic pathways, besides others reg-
ulatory networks [1]. Metabolic control studies, specially
dynamic modelling of metabolic pathways, is one of the
main topics in Systems Biology. Both complementary ar-
eas of mathematical modelling and experimental biology
are continuously improving, leading to a point where it
becomes possible to explore biological pathways, not only
with the intention to understand their normal functioning
and importance, but specially with the goal of manipulat-
ing and optimizing the production.

1.2 The Problem

The biochemical system used as case-study was the gly-
colytic pathway in Lactococcus lactis. Glycolysis is a se-
quence of enzymatic reactions during which glucose is oxi-
dized to pyruvate [2]. It is the most primitive pathway and
exists in all actual living organisms, suggesting that it is a
vital process in cells [2]. Lactococcus lactis is a gram-(+)
bacterium, member of the lactic acid bacteria [3].

The glycolysis network can be reduced to a simple ver-
sion and graphically translated into a flux diagram, with-
out loss of crucial information, as in the Figure 1.

Vinga et al [5] proposed a new model, based on the work
developed by Voit et al [4], that intends to describe the

Figure 1: Metabolic pathway of glycolysis in L. lactis. Each vertix
represents a metabolite and each edge corresponds to either a flux of mass
or activation/inhibitory signals. In grey are activation and inhibitory
signals. In [4].

metabolic pathway of glycolysis in Lactococcus lactis. It
considers six equations characterized by a set of twenty-
seven parameters. This model, described in equation (1)
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below, is the starting point of the present work.
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Here, the metabolite concentrations are represented by a
state variable. Each fi (i = 1...7) functions corresponds
to the respective Ẋi; in other words, fi corresponds to the
time derivative (flux of mass) of the respective metabolite
concentration:

fi ≡ Ẋi (2)

The integrated model is represented on Figure 2.
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Figure 2: Graphical representation of the system after the integration
of the model (1).

The specimens included in the model and their respec-
tive state variable are summarized in Table 1.

Table 1: Correspondence between metabolites and state variables

Metabolite State variable

Glucose (GLU) X1

Glucose-6-Phosphate (G6P) X2

Fructose 1,6-Biphosphate (FBP) X3

3-Phosphoglycerate (PGA) X4

Phosphoenolpyruvate (PEP) X5

Pyruvate (PYR) X6

Lactate (LAC) X7

The other metabolites needed in the model, ATP ,
NAD+/NADH and Pi, are given as input signals from
experimental raw data. These metabolites participate in
many other reactions within the cells, which severely ham-
pers its mathematical modelling. Since they present some
irregularities and need to be extrapolated beyond the de-
fined interval, cubic splines and interpolation were used to
infer the parameters and correctly simulate the obtained
solution [5].

The model parameters obtained by Vinga et al [5] are
summarized in Table 2; these values are considered the
nominal values of parameters.

Table 2: Nominal values for the parameters. The experience behind is a
glucose pulse of 40mM under aerobic conditions. For further information
see [5].

Parameters

k 0.0530251 h2AT P 1.51599 h515 0.0382342

α 0.0419958 β3 0.338423 h51P i 0.211149

β 2.68092 h33 1.09298 β61 0.0324743

β1 7.20321 h3P i 0.258372 h616 0.675486

h11 0.997546 h3NAD -0.0966562 h613 1.03221

h12 -1.48643 β52 0.134164 h61NAD -0.0519436

h25 0.38576 h525 0.0940446 β62 1.74742

β2 0.345889 β51 0.862421 h626 1.40312

h22 1.54399 h513 0.7663 k45 2.04035

Not all states can be directly measured due to experi-
mental limitation, since concentrations go bellow detection
limits - in fact, only four of them (GLU,FBP,PEP/PGA
and LAC) can. Therefore the problem in hands is con-
cerned with simultaneous estimation of states and param-
eters.

1.3 Models for Metabolic Networks

Information on biological processes is becoming available
in the form of metabolic and genetic time series, but to
quantitatively characterize these processes is still a chal-
lenge [3]. BST (Biochemical Systems Theory) concepts
provides a consistent mathematical framework for repre-
senting biological processes, giving the opportunity to sub-
sequent quantitative analysis [4]. According to this theory,
all process are represented as products of power-law func-
tions, what can be biologically motivated and mathemati-
cally derived from Taylor’s theorem of numerical analysis,
which is applied to variables in logarithmic space [4]. Each
flux of mass Vi involves n dependent (state) variables and
m independent variables (including control variables and
constant enzyme activities) and takes the format:

Vi = γi

n+m
∏

j=1

X
fij

j (3)

where γi is the rate constant that describes the turnover
rate of the process and the exponent fij is the kinetic order
that quantifies the direct effect of variable Xj on Vi [4].

The most useful alternative representations offered by
BST are the Generalized Mass Action (GMA) and the S-
Systems representations [4]. In the particular case of the
model (1) the formalism used was GMA. GMA models

focus on processes and therefore represent each reaction
by a product of power-law functions of the type above
that includes all variables that have a direct effect on this
process. The dynamics of each variable is given as a sum
of power-law terms describing all influxes and effluxes [4];
the generic GMA structure is

Ẋi =

Pi
∑

p=1

(±γip

n
∏

j=1

X
fipj

j ), i = 1, ..., n (4)

The advantages and disadvantages of these formalism
along with several examples of application are explored
elsewhere (see for instance [1]).
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1.4 Filtering and Nonlinear Estimation

Filtering can be defined as the problem of recursively es-
timating the states of a system from a set of observa-
tions available on-line [6]. Kalman Filter (KF) variants
[7] are the most widely used approximation techniques
for tracking and estimation due to its simplicity, optimal-
ity, tractability and robustness. KF algorithm is a very
general treatment from the “state” point of view to the
discrete-data linear filtering problem [7]. It attempts to
find an estimative for the state of a process by solving a
set of mathematical equations in a way that minimizes the
mean of the squared error [7]. Some fundamental assump-
tions are made in filter design:

1. the system should be linear or, at least, linearizable
in a neighbourhood of the nominal operation point;

2. the noisy present in the system, and the one associ-
ated with the measures, have to be white, Gaussian,
with zero-mean and constant standard deviation; and

3. the system’s noise and the measurement’s noise are
not correlated.

The KF addresses the general problem of trying to es-
timate the state x ∈ ℜn of a discrete-time controlled sys-
tem described by a linear stochastic difference equation
[8]. The broad application of KF is mainly due to the fact
that it only uses the first two moments of the state, mean
and covariance.

The task of parameter estimation is crucial for mod-
elling and basically corresponds to find the set of parame-
ters able to minimize the predefined cost function [9]. The
KF may be used to estimate the parameters treating them
as a stationary process with identity state transition ma-
trix. When at least some states are unobserved, coupling
both state and parameter estimation is required. An hy-
pothesis to do it is to concatenate into a single joint state
vector the states (x) and the parameters (θ) [9]:

X =

[

x
θ

]

(5)

In this case, the process model reads as

Xk = F (Xk−1) =

[

f(xk−1, θk−1)
θk−1

]

(6)

For this approach, known as Joint Kalman Filter, the
state-space equations are written for the joint state and
the estimation is done in the joint state-space, what gives
simultaneous estimates for the states x and parameters θ
[9].

1.5 Original Contributions

This work explores the case study presented on [5], us-
ing KF based approaches (EKF and UKF) in a context
different from the one they are commonly used for. Struc-
tural stability, in terms of sensitivities of the states in

function of their characteristic parameters, and finite-time
escape analysis are also included along the paper. The
study shows that the use of filter techniques is adequate
to metabolic networks modelling studies.

1.6 Paper Structure

The structure of the present paper is as follows. After Sec-
tion 1, that motivates the problem to be solved and sum-
marizes the overall contributions, Section 2 reviews the
relationship between KF and EKF for nonlinear systems.
Section 3 presents the limitations of EKF and motivates
the UKF. Section 4 is concerned with structural analy-
sis, from sensitivity studies to finite-time escape analy-
sis. Results (state and parameter estimation with spline-
reconstructed data and experimental data) are compiled
on Section 5. Global discussion about the work and sum-
mary of principal results are in Section 6, as well as future
work proposals.

2 EXTENDED KALMAN FILTER

The KF assumes systems linearity but its major applica-
tion is on nonlinear systems analysis [10], where the EKF
is the most common application. The EKF linearizes the
nonlinear transformations about the current mean and co-
variance by a Taylor series approximation using the partial
derivatives of the process and measurement functions to
compute estimates [8].

In the EKF, the state distribution is approximated by
a Gaussian random variable which is then propagated an-
alytically through the first-order linearization of the non-
linear system. Linearization assumes that all second and
higher order terms in the Taylor series expansion are negli-
gible [9]. These approximations can introduce large errors
in the true posterior mean and covariance of the trans-
formed (Gaussian) random variable, which may lead to
sub-optimal performance and sometimes divergence of the
filter [11].

3 UNSCENTED KALMAN FILTER

Although the EKF keeps the elegant and computationally
efficient recursive update form of the KF, there are three
major drawbacks that limit its use [11]:

1. linearized transformations are only reliable if the er-
ror propagation can be well approximated by a lin-
ear function. If this condition does not hold, the lin-
earized approximation can be extremely poor, what,
at best, undermines the performance of the filter;

2. linearization can be applied only if the Jacobian ma-
trix is well conditioned; and

3. to compute the Jacobian matrices can be a very diffi-
cult and error-prone process because their derivation
are non trivial in most applications, such as the one
considered in this work, leading to significant imple-
mentation difficulties.
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There is a strong need for a method more accurate than
linearization but which does not incur the implementa-
tion nor computational cost of other higher order filtering
schemes.

One of the most fundamental tasks in filtering and esti-
mation is to calculate the statistics of a random variable
which has undergone a transformation [12]. The UKF is a
filter founded on the intuition that it is easier to approxi-
mate a probability distribution than it is to approximate
an arbitrary nonlinear function or transformation [11].

The problem of predicting the evolution of states and
observations can be simply put in the following terms.
Suppose that x is a random variable with mean x̄ and co-
variance Pxx. Suppose that y is a random variable related
to x through the nonlinear function

y = g(x) (7)

The objective is to calculate the mean (ȳ) and covari-
ance (Pyy) of y. The statistics of y are calculated by de-
termining the density function of the transformed distri-
bution and evaluating the statistics from that distribution
[11]. Exact, closed form solutions with an acceptable com-
putational load and limited memory do not exist in gen-
eral, what implies the use of approximate methods. The
method chosen should yield consistent statistics, which
should be efficient and unbiased [11].

The Unscented Transform (UT) is a method for calcu-
lating the statistics of a random variable which undergoes
a nonlinear transformation [10]. A set of points - sigma
points - are chosen so that their sample mean and sample
covariance are x̄ and Pxx, respectively [9]. The nonlinear
function is applied to each point in turn to yield a cloud of
transformed points and ȳ and Pyy are the statistics of the
transformed points. The samples are not drawn at random
but rather according to a specific, deterministic algorithm,
what is an extremely important and fundamental differ-
ence to Monte Carlo - type methods [10].

4 STRUCTURAL ANALYSIS

When a model is developed, not all the variables involved
are equally relevant in system dynamics description. The
understanding of which variables are more important to
explain the system behaviour is addressed in this chapter,
along with a complementary stability study.

4.1 Sensitivity Studies

Before any parameter estimation procedure is crucial to
have an idea about which variables are more influent in
the system, because the difficult of this task may be di-
rectly related with this aspect. If a parameter is important
in the system, any variation of its value will be reflected
in the whole system’s dynamics. In fact, the assumption
above is not so simple (as it seems to be) because when
one is dealing with a large set of parameters they can mask
theirs influences behind others parameters, partially due
to the existence of correlation between them. Even so, a
parameter that by itself has not a strong influence in the

system will be much more difficult to estimate (with the
methods considered) than one for which small perturba-
tions in its numerical value are reflected in large output
changes.

Starting from the nominal values presented in Table 2
(on page ii), defined in this section as the true parameters
values, the true simulation of the system was performed.
After the true simulation, the system was simulated again,
changing one parameter each turn, by a factor of ±10%,
±20% and ±30% in relation to its nominal value, keeping
all the others with their respective nominal value.

4.1.1 Qualitative Analysis

The results were carefully studied in a qualitatively way.
When parameters are changed +10% in relation to their
nominal values the state that is more influenced is X45 and
the least influenced is X1. This is expected because X1

depends on only three parameters (that are no longer used
along the other states description) and itself; X1 does not
suffer influence from other parameters even if they change
the remaining states. X45 is one of the states described
by a higher number of parameters, so it is normal that its
behavoir is easier affected by small changes.

The parameters that have the smallest influences are
β52, h525, h515, β61, h616, h61NAD and k45. On the other
side, β is the parameter that conditions all states dynam-
ics, so it is expected that its estimation will not be hard.
h11, h22, h2ATP , β3, h33, β51, h513 and h51Pi are also very
relevant, influencing all states but X1, so their estimation
is also expected to be easy.

According with what was expected, the system output
has large changes when the higher variation on parameters
are performed. The parameters considered least relevant
when a deviation of +20% is performed are the same as
indicated above for a +10% deviation. The parameter
h3Pi assumes now a relevant role on system dynamics,
comparable to the more influent parameters refered for
the +10% change. When a change of +30% is performed
only three parameters does not really affect the system
behaviour: β52, h525 and h61NAD. All the other influence
more than one state. The state more influenced is X6,
which is justified by the same reason presented above for
X45.

It is curious to see that when parameters change +10%
or -10% the results are not the same what indicates that
system is nonsymmetric. The state more influenced when
the deviation in parameters is -10% is again X45. The pa-
rameters that have small influences are the same that were
indicated for when a +10% change is performed, plus h613,
that in this case only influence X7. β, h12, h2ATP , β3,
h33, β51 and h513 are the parameters that lead to higher
changes in states dynamics for this variation of parame-
ters.

When a change of -20% is performed the parameters
with small contributions to system output variations are
the same indicated for a deviation of -10%. A higher num-
ber of parameters is responsible for large output changes,
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what is in accordance with the discussion above. X45 is the
state more altered, being affected by twenty of the twenty-
seven parameters. When a deviation of -30% of parameter
values in relation to their nominal values is performed only
three parameters do not have large influences in system
dynamics, β52, h525 and h61NAD. These three parameters
are not expected to be able to estimate because they do
not influence the system for any variation. A -30% change
is more influent on system output than a +30% change:
fifhteen parameters influence at least five of the the six
states. The parameters that are in X1 definition (k, α
and β) influence the six states.

4.1.2 Quantitative Analysis

In quantitative terms, a Sensitivity Matrix was computed
for each % of variation of parameters, according to (8),
where N is the number of time instants considered.

S(parameter,state) =

√

√

√

√1/N

N
∑

i=1

(xnv
i − xdp

i )2 (8)

Here, nv and dp stand for nominal value and different
parameter, respectively.

Based on these matrices it is possible to find which pa-
rameter is more influent on each state, looking for the max-
imum of each row. The maximal difference occurs for state
X45, what implies that the composed variable PEP+PGA
is the one more sensible to small perturbations in param-
eters. One can think that it could be directly related with
the elevated number of parameters used to describe X45;
however, X6 needs also a comparable number of parame-
ters and does not show comparable variations.

The quantitative and qualitative analysis show that the
parameters that have more influence in X45 are associated
with large variations at qualitative level in all the states
but X1. In relation to X6, it seems that a perturbation in
one parameter is supported by the others, even when the
parameter in question is one with influence in the whole
system, suggesting that the mask effect, previously de-
scribed, is really doing is role, what directly implies large
difficulties to estimate the parameters only associated to
X6. The task of estimate these parameters is still hard if
one remembers that X6 is not directly measurable and the
only way to correct its value is by correcting X7, because
f7 depends on X6 but if X6 does not change, f7 also does
not have large changes and it is quite impossible to esti-
mate the parameters. h11 is the parameter in relation to
which more system output changes occur; this parameter
should be easy to estimate, if this study holds.

4.2 Stability and Finite-Time Escape

When one is working with differential equations a very
important issue is concerned with their stability. In some
equations a phenomena known as Finite-Time Escape can
occur. It means that the solution can go to infinity in
finite time and the system diverges. If it happens during a
estimation procedure with KF based approaches, the filter

will also diverge. With the aim of limit parameter value
regions, to overcome these aspect, a qualitative study was
performed. It is known that if the derivative does not grow
faster than a linear function, then the solution does not
go to infinity in finite time.

The system under study is in the form

ẋ = f(x, θ) (9)

Explicitly, x represent the states and θ is the array of
parameters. Having a biological support, one knows that
rate constants (αi and βj parameters) are limited to the
range [0,10] and the exponents(hmn) are in the range [-
4,4]. k45 is a ratio in the range of [1,3]. The simulations
performed are presented in the following figures. The time
instant considered to make the study was t = 10min. De-
spite some scale problems, that can arise for example when
state X2 approaches zero (because parameter h12 has neg-
ative nominal value), the observed behaviour for the sys-
tem indicates that the system is well-behave if parameters
were kept in their biological range, that is the range of
interest for this work.

5 RESULTS

5.1 Model Integration

The system is presented as a set of ODE’s in the form

ẋ = f(x) (10)

Since no explicit analytical solution exists, some numeri-
cal integration method should be used. The Kalman-based
filters need to know the model of the system with a high
level of accuracy and for this reason the system was inte-
grated using the Euler method. This method is explicit,
which is a fundamental advantage in the posterior connec-
tion with the Kalman-based filters. In this particular case,
the integration of the augmented state is done by

Xk+1 =

[

xk+1

θk+1

]

=

[

xk + ∆f(xk, θ) + wk−1

θk

]

(11)

Here, f represents the model in (1) and w the noise present
along the process.

The Euler method is the most basic method for numer-
ical integration and some inconsistencies may occur along
the calculations. As one is dealing with power-laws with
fractional exponents, it should be kept in mind that math-
ematically it is possible to obtain complex solutions.

5.2 Construction of Splines

The intention of this work is to estimate the experimental
NMR data available and not to estimate the synthetic data
that comes from the model (1) integration. The time series
available have been acquired with a 2.2 minutes time-step
between each measure and because of this reason there
is no information between each measurement. In order
to infer some information during each gap one can use
splines, a very-well known method that interpolates a set
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of points with a 3rd order precision. The construction of
splines might be very useful in the correction (or measure-
ment update) block of the Kalman filter; if one does not
use it, corrections could only be made each time a measure
is available.

The splines were constructed along all the time inter-
val considered for the directly measurable variables, GLU,
FBP, PEP/PGA and LAC. The obtained functions are
presented in Figure 3; they are overlapped with experi-
mental data and model equations integrated.
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Figure 3: Representation of splines (broken lines), model equations
integrated (full line) and experimental data points. Splines follow all
data points. Model equations are closer to GLU and FBP data points.
LAC is overestimated by the model, as well as PEP and PGA sum.

5.2.1 Estimation of spline data with EKF

To proceed to the estimation of the spline data the first
step is to obtain the system to estimate. State X1 is ob-
tained evaluating GLU spline in each time step; the same
is done for X3, X45 and X7, by evaluation of the respective
spline. X2 and X6 correspond to non directly measurable
states so their time evolution is not needed to the filter,
but just to have an idea how the system should look like
(for comparison purposes), f2 and f6 were integrated by
(11). In relation to the filter, the initial conditions were
x̂0 = [50, 0.3, 0.85, 30, 0.01, 0.03] and p̂0 = 1.1pnv. Fol-
lowing EKF procedures, W , H, V and A matrices were
computed as well as the a priori state x̂−

k and covariance
P−

k estimative. After a measurement zk, the estimative
are updated, what the gives the a posteriori estimative
for state x̂k and covariance error Pk. Before the filter goes
to the next time step, the estimated system is checked with
to intuit to find any negative state; if it happens, then all
the augmented state is retained, that is, the current es-
timative x̂k is replaced by the previous x̂k = x̂k−1, as it
was described on the previous section. The simulated and
estimated systems are presented on Figures 4(a) and 4(b),
respectively.

As can be seen both systems look very similar, what
is confirmed in the Figure 5(a), where each reconstructed
state is directly compared with its estimative.

States X2 and X6 are hidden states - the blue line in
Figure 5 is purely indicative and is obtained integrating
the respective state equation of the model (1) (on page ii),
the filter does not know these data. State estimation are
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Figure 4: Simulated system with spline data (on the left) and the re-
spective estimated system with EKF (on the right). The points on the
left plot correspond to the experimental data points and the lines are the
spline functions. While the interpolated system has only four variables
(corresponding to the observable states), the estimated system has six
variables because all the model is estimated.

0 50
0

10

20

30

40

50

Time [min]

C
on

ce
nt

ra
tio

n 
[m

M
]

 

 
X1

X̂1

0 50
0

5

10

15

20

25

Time [min]

C
on

ce
nt

ra
tio

n 
[m

M
]

 

 
X2

X̂2

0 50
0

10

20

30

40

50

Time [min]

C
on

ce
nt

ra
tio

n 
[m

M
]

 

 
X3

X̂3

0 50
0

20

40

60

Time [min]

C
on

ce
nt

ra
tio

n 
[m

M
]

 

 
X45

X̂45

0 50
0

5

10

15

20

25

Time [min]

C
on

ce
nt

ra
tio

n 
[m

M
]

 

 
X6

X̂6

0 50
0

20

40

60

80

Time [min]

C
on

ce
nt

ra
tio

n 
[m

M
]

 

 
X7

X̂7

(a) States estimates.
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(b) Parameters k, α, β, β1, h11,
h12, h25, β2 and h22 esti-
mates.
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(c) Parameters h2AT P , β3, h33,
h3P i, h3NAD , β52, h525, β51

and h513 estimates.
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(d) Parameters h515, h51P i, β61,
h616, h613, h61NAD , β62,
h626 and k45 estimates.

Figure 5: Comparison between the nominal values (in blue) and the
respective estimated values (in green) with EKF for spline-based recon-
structed data.

very good, specially all directly measurable states whose
estimative is very accurately. For hidden states, state dy-
namics is accompanied, but there are large errors. X2

estimation presents a the more or less constant offset after
the state achieve steady-state dynamics, as can be seen on
Figure 5(a).

Parameter estimation is not as accurate as state esti-
mation, but an interesting observation is that parameters
quickly converge to constant values that, for the majority
of parameters, are different from nominal values. The best
estimative are for parameters h25, β2, β3, h3Pi and β52.
It is important to mentioned that an identifiability prob-
lem could be the cause of this result, because the set of
parameters with nominal values and the estimated set of
parameters are both able to reproduce the system dynam-
ics. Connecting this result with the structural analysis,
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β3 and h3Pi are two parameters that by itself have a large
influence in the system, so a result like the one observed
is expected. β52 is one example of a parameter that by
itself have a small influence in the system behaviour but
its estimation is well performed by EKF, indicating that
the system behaviour is a result of synergy, where each
part cannot be study in separated from the others.

5.2.2 Estimation of spline data with UKF

For UKF, the spline-based reconstructed system was done
in the same way that for EKF. In relation to the filter,
the initial conditions were the same as used for EKF es-
timation. The spline-based reconstructed system and the
UKF estimated system are presented on Figures 6(a) and
6(b).
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spective estimated system with UKF (on the right). The points on the
left plot correspond to the experimental data points and the lines are the
spline functions. While the interpolated system has only four variables
(corresponding to the observable states), the estimated system has six
variables because all the model is estimated.
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(a) States estimates.
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(b) Parameters k, α, β, β1, h11,
h12, h25, β2 and h22 esti-
mates.
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(c) Parameters h2AT P , β3, h33,
h3P i, h3NAD , β52, h525, β51

and h513 estimates.
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(d) Parameters h515, h51P i, β61,
h616, h613, h61NAD , β62,
h626 and k45 estimates.

Figure 7: Comparison between the nominal value (in blue) and the
respective estimated values (in green) with UKF for spline-based recon-
structed data.

A more detailed comparison about state estimation is
presented on Figure 7(a), where it is possible to see that
non directly measurable states estimates are worst than
those obtained with EKF. Once again, UKF does not use
the blue line data represented along with X2 and X6 esti-
mates for measurement corrections purposes. In relation
to measurable states, they are accurately estimated.

About parameters, whose estimates are represented on
Figures 7(b) to 7(d), most of them only converge to a
constant value after the system has achieved steady-state.
Parameters k, h11, h25, h22, h3Pi, h51Pi and β62 converge
to their nominal value; h11, h3Pi and h51Pi are among
the parameters that should be easy to estimate, based on
structural analysis. A curious observation is that param-
eters α and β seem not to converge to constant values
during simulation time.

5.2.3 Comparison between EKF and UKF in the

estimation of spline data

To have a quantitative criteria to compare EKF and UKF
estimatives, the respective quadratic-square errors were
computed according to (12)

εsyntheticdata
EKF =

√

∑

(X − X̂)2
∑

X
(12)

where X are the expected values for the augmented state
and X̂ the respective estimates. The results are compiled
in Table 3.

The observable states are better estimated with UKF.
The maximum error for X1 is less than 6%, about five
times smaller than the one obtained with EKF. In rela-
tion to hidden states, X2 is estimated with more or less
the same accuracy with both methods (the error is about
64% with EKF and 58% with UKF). X6 is better esti-
mated with EKF. In relation to parameters, all of them are
better estimated with EKF. The large deviations obtained
with UKF are due to difficulties of parameter estimation
convergence, what presents large oscillations during the
first minutes of simulation.

5.3 Experimental Data Measurements

One can even go in a harder task - what happens if no
spline data is used to measurement update in filters, but
only the data points from experimental time series? Using
data spline to correct predictions is not the ideal solution
because one cannot be sure that extrapolation is being
done in the right conditions. A more realistic approach
is to separate prediction and measurement update cycles
inside the filter. Doing so, one can compute KF only with
the prediction step and just when a measure is available
introduce the measurement correction. This leads to an-
other problem that is the fact that observation matrix H
cannot be constant. H has to be dynamically generated,
that is, as not all metabolites have coincident time series,
in some instants one can have measures of four metabo-
lites, three metabolites or only two metabolites. Because
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Table 3: MSE (%) for estimation of spline data.

(a) Estimation with EKF.

State ε
splinedata

EKF

X1 30.00

X2 64.01

X3 6.18

X45 1.81

X6 65.27

X7 0.18

k 58.57

α 76.53

β 8.67

β1 9.51

h11 6.46

h12 12.41

h25 1.85

β2 1.91

h22 7.70

h2ATP 7.66

β3 2.00

h33 6.76

h3Pi 4.57

h3NAD 47.38

β52 17.28

h525 28.78

β51 5.91

h513 5.41

h515 85.02

h51Pi 7.55

β61 101.83

h616 4.82

h613 6.58

h61NAD 79.66

β62 7.97

h626 7.47

k45 8.26

(b) Estimation with UKF.

State ε
splinedata

UKF

X1 5.47

X2 58.12

X3 0.50

X45 0.71

X6 116.96

X7 0.024

k 59.27

α 5583.19

β 50.64

β1 18.88

h11 20.04

h12 116.46

h25 103.23

β2 527.02

h22 11.85

h2ATP 20.27

β3 64.83

h33 58.28

h3Pi 215.37

h3NAD 2435.43

β52 99.16

h525 3502.72

β51 194.94

h513 87.00

h515 1234.41

h51Pi 107.04

β61 2017.88

h616 309.23

h613 31.91

h61NAD 642.20

β62 29.68

h626 167.34

k45 39.28

of it, matrix H needs to be computed at each time instant.
But this is only one of the problems. In a system in ℜ33,
having only two states with measurements could not be
enough to assure the EKF convergence - the filter has to be
adapted again! The divergence problem occurs associated
with bad conditions of covariance matrix. To overcome
these aspect one has to use the structure try...catch, avail-
able in MatLabr. Imagining that one has a measurement,
if it makes the filter diverges, what one does is to ignore
the measure, and assumes that the updated estimate is
the predicted one.

5.3.1 Estimation of experimental data with EKF

To proceed to the estimation with EKF the initial con-
ditions were the same as for spline data estimation. The
major difference here is on measurement update. As one is
only using experimental data points, without splines inter-
polation or another method to reconstruct the whole time
series for each metabolite, matrix H cannot be a constant
because the time series have different lengths. Because
of this, H has to be dynamically generated at each time
step. Another important point is that prediction and mea-
surement have to be made independently, because in each
time step of the filter cycle one has a prediction, but only

when there is an experimental measurement at the same
time instant the correction of the prediction is done. In a
total of 62701 predictions for each metabolite, only 7 are
corrected for GLU, 29 for LAC, 26 for PEP+PGA and 8
for FBP - a total of 70 corrections out of 62701×6 predic-
tions. Since X1 is very well described, the experimental
data is accompanied by the estimated system in a very
smooth way. X3 is also very well estimated, despite some
oscillations on the initial phase. X45 is one of the most in-
teresting variable, the first observation occurs only about
10 minutes of simulation, so until there system is evolving
freely; when a measurement correction is done, and after
the third observation, the estimated system converges for
the experimental data points and keeps that trend until
the end. X7 presents large oscillations during the first
minutes, but more or less after 10 minutes experimental
data are very well covered by the model.

The estimative of parameters are also very close to nom-
inal values, specially for k, α, h3NAD, β52, h525, h515, β61

and h61NAD. Making a parallelism between these results
and results of structural analysis, it seems strange that
β52, h525, h515, β61 and h61NAD are very well estimated
by EKF, because they do not have a strong influence by
itself in system dynamics; h525 is the parameter that dur-
ing structural analysis shown the smallest influence to sys-
tem dynamics, any state is changed when this parameter
changes but in this situation EKF is able to estimate it,
what once again reinforces the idea that only when all
the parts are taken in to account together, the study is
completely valid.
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Figure 8: Experimental data points (on the left) and EKF estimated
system (on the right). The points on the left plot correspond to the
experimental data points. While the experimental system has only four
variables (corresponding to the observable states), the estimated system
has six variables because all the model is estimated.

In order to have a quantitative criteria to compare EKF
estimates when only the experimental points are available
for the filter corrects the predicted state and covariance,
the respective MSE was computed by (12) and the results
compiled on Table 4.

The MSE for both states and parameters estimates are
comprised between 7% and 54%, except for X6 estimate,
to which the MSE is about 318%. For t higher than
20min, X6 is approximately 0mM and the estimate, that
is also near from 0mM, presents an offset to which is
atributed higher importance because the expected value is
very small. The MSE for X1 and X2 estimates are compa-
rable, what means that EKF has a very good performance
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(a) States estimates.
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(b) Parameters k, α, β, β1, h11,
h12, h25, β2 and h22 esti-
mates.
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(c) Estimative of parameters
h2AT P , β3, h33, h3P i,
h3NAD , β52, h525, β51 and
h513 estimates.

0 50
0

0.1

0.2

Time [min]

h
5
1
5

0 50
0.2

0.3

0.4

Time [min]

h
5
1
P

i

0 50
0

0.1

0.2

Time [min]

β
6
1

0 50

0.7

0.8

0.9

1

Time [min]

h
6
1
6

0 50
1

1.2

1.4

Time [min]

h
6
1
3

0 50
−0.1

0

0.1

Time [min]

h
6
1
N

A
D

0 50
1.7

1.8

1.9

2

Time [min]

β
6
2

0 50
1.4

1.6

1.8

Time [min]

h
6
2
6

0 50
2

2.2

2.4

Time [min]

k
4
5

(d) Estimative of parameters
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estimates.

Figure 9: Comparison between the nominal value (in blue) and the
respective estimated values (in green) with EKF for experimental data.

Table 4: MSE (%) for estimation of experimental data with EKF

State ε
experimentaldata

EKF
Parameter ε

experimentaldata

EKF

X1 49.02 k 35.79

X2 46.27 α 43.45

X3 24.09 β 10.29

X45 6.73 β1 10.11

X6 318.86 h11 10.85

X7 3.62 h12 9.54

h25 12.49

β2 12.83

h22 10.53

h2ATP 10.54

β3 12.91

h33 10.77

h3Pi 14.01

h3NAD 14.61

β52 18.78

h525 23.35

β51 11.00

h513 11.14

h515 47.10

h51Pi 15.10

β61 54.35

h616 11.31

h613 10.82

h61NAD 27.26

β62 10.46

h626 10.58

k45 10.39

along with the estimation. X45 and X7 are accurately es-
timated, with MSE around 7% and 4% respectively. Rel-
atively to parameters, MSE are comparable with the ones
obtained with the spline data estimation (Table 3(a)). It

is important to reinforce the identifiability problem, be-
cause, once again, despite the final numerical value, all
parameters quickly converge to a constant value that is
kept in the majority of time simulation.

6 CONCLUSIONS AND FUTURE WORK

This work was developed on the interface between bio-
chemistry and control theory. Kalman-based filtering
techniques proved to be adequate methods to estimate
states and parameters in these type of systems.

The EKF has shown a good performance during esti-
mation, for states and parameters. Even the non directly
measured states were estimated accurately. The principal
limitation of the EKF (linearization of nonlinear systems
at the first step of the filter) seems not to compromise the
results for this system. EKF is very stable and able to
keep the system in its natural range only with few mea-
surement corrections.

UKF implementation was a harder task, not because of
the filter itself, which is easier than EKF (UKF implemen-
tation does not need to compute the Jacobian matrices),
but because of the system that is far from trivial. The
fact that the system has to be positive had numerous im-
plications on UKF algorithm. Also, there is no intensive
discussion on literature about the parameters of the UKF
(α, β and κ) and it was verified that these parameters are
determinant on filter performance. Their adjustment was
done based on try-error attempts and the values chosen
were the ones tested that best fits the model in study.

As future work proposals there is one task for bio-
chemistries that is to have a higher number of measure-
ments in the same experimental conditions, maybe alter-
nating the experience times. It means, the data with one
is working starts at t = 1.1min and after goes on with a
step of 2.2min; if another experience, with the same start
conditions, begins at t = 2min, for example, and goes
on with the same time step, these two experimental data
could be compiled and used to have a more realistic idea
of the system. With this approach one would have more
real data points in the gaps that one has now and these
results would be crucial along filtering procedures. An-
other important point would be to limit concentrations of
metabolites, even those that are non directly measurable.
To know what is the minimal concentration that is able to
be detected by NMR experiments for each metabolite is an
extremely valuable information that can be incorporated
to guide the estimation.

From the modelling point of view, the results with EKF
and UKF were promising so the natural next step is to try
other filters, like particle filters (for example Unscented
Particle Filter). To test the implemented filters in others
biochemical systems is also a future work proposal. How-
ever, the study of the system with EKF and UKF is not a
closed chapter. One task that should also be done is to de-
termine the convergence regions for the filters, that is, how
far can one starts from real system values and guarantee
filter convergence.
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This study showed that the interaction between different
disciplines is a fundamental point to science development.
The main goals of this work were achieved and a lot of new
knowledge was acquired. This paper is a contribution to
Systems Biology field, establishing a connection between
traditional control techniques, from electronic engineer-
ing, and biology. These techniques proved to be versatile
and showed that they might be applied to a panoply of
biochemical systems.
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