Consistent Parameter Estimation in Metabolic Networks:
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Valid mathematical models for metabolic networks can avoid time consuming and expensive ex-
periments when testing and acquiring data from these networks. The process of formulating these
models and estimating its parameters is complex and there is no defined and straightforward frame-
work to obtain valid solutions. This paper presents a procedure to estimate parameters using data
sets from different experiments, ensuring the consistency of the estimates. The procedure is illus-
trated by a case study on the effect of Nisin on Mannitol production in Lactococcus lactis.

INTRODUCTION

Genetic engineering of certain organisms has proven useful to maximize product yield [3] or even to produce
something that would not be normally present in wild-type strains. Such an example is provided in [2], where a
genetically modified strain of L. lactis was able to produce Mannitol. Fine tunning of the experiment parameters to
maximize the product yield is complex, since it, not only involves simple parameters, like the pH or temperature, but
also complex variables such as the use of inductors where the time of induction and quantity drastically change the
final yield. In [6] Nisin was used as an inductor in different time points that resulted in different Mannitol yields.
This paper presents two simple models for the production of Mannitol in two genetically manipulated strains. The
L. lactis FI10089 [2] and the strain L. lactis FI10089Pase+ [6] with a Nisin inducible gene. It also describes a
consistent parameter identification process using two different sets of data simultaneously. Having a valid model for
the Mannitol production in the presence of Nisin, the maximization of the Mannitol yield becomes a control problem,
where the control variable can be one of the possible manipulated parameters, such as time of induction, quantity of
Nisin or pH.

State of the art

The use of Nisin as an inductor to control a certain product yield has been tested several times. In [4] an optimization
strategy, relying on practical experiments, is formulated to maximize yield controlling variables such as the pH, type
of neutralizing agent, fermentation temperature, point of induction, among others.

Paper contributions and organization

The contribution of this paper consists on a procedure to estimate parameters using data sets from different
experiments, while ensuring the consistency of the estimates. This is illustrated by a case study on parameter
estimation in metabolic networks using data taken in different conditions. An initial model for Mannitol production
is suggested and a sub-model is later added to account for the Nisin induction. Although the initial model does not
predict Nisin induction, the data taken using induction is also used to identify the model’s parameters. The resulting
model can later be used to optimize the product yield without the need of complex and expensive experiences.

The paper is organized as follows: after the Introduction, Section I, in which the problem is introduced and motivated
and the state of the art revised, the problem is formulated in Section II, where the two models are presented and
the parameter estimation problem is described. In Section III the estimation methods are described in detail and in
Section IV the results are presented. Finally, conclusions are drawn in Section V.



PROBLEM FORMULATION

Mannitol model

The complete metabolic pathway of Lactococcus lactis that leads to the production of Mannitol is yet to be fully
understood. Recent studies [2] suggest that the Mannitol production is highly dependent on the available substrate
and total amount of biomass. A simple model with these three variables, Mannitol, biomass and substrate, was
formulated ans is going to be referred as model A through the rest o this paper. The model uses the S-System
formalism [1, 9, 10] and is described by the following set of ordinary differential equations:
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Here x; represents the amount o available Glucose, x5 the amount of Mannitol and z3 the biomass, measured in
terms of its dry weight. The formation of biomass depends on the amount of available Glucose and on the amount
of the biomass itself. The production of Mannitol depends on the amount of biomass and on the available Glucose.
The set of parameters that are part of the S-System is going to be referred as ¢ on the rest of this paper.

d = {a, a3, 921, 923, 931, 933, B1, B2, B3, hi1, hi2, his, haa, has}

Mannitol model with Nisin induction

In order to incorporate the induction using Nisin, model A was modified. The time profile of the Nisin concentration
is unknown, but it is assumed that the maximum concentration in the solution is reached shortly after the addition.
It is also assumed that this concentration remains constant throughout the experience. Given these assumptions,
a Hill-type Function was used to approximate the Nisin concentration. A Hill function has the form (2), where n
controls the steepness of the curve and 6 is the point where f(t) = %

t'rl
ENT

f@®) (2)

Model A, described in (1), was adapted to the induction using Nisin by multiplying each metabolite with a scaled
Hill Function. Thus, model B becomes:
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and is schematically represented in Fig. 1. The set of parameters of the Hill-type Function and scaling are going to
be referred as o through the rest of the paper.

o = {aln; Q2n, O3n, hln; h2n7 h3na 03 TL}

It is important to point that (3) does not obey to the S-System formalism. Fig. 1 schematically represents model B
which includes Nisin induction. The initial model A, without Nisin induction, is similar but without the positive and
negative feedback from Nisin.
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FIG. 1: Mannitol Model - Model B adds Nisin induction to model A.

Data sets

Three data sets were used on the parameter estimations. The first data set, from [2], describes the Glucose and
Mannitol concentrations and Biomass dry weight, in a 26 hours period, in a non-Nisin inducible strain of L. lactis.
The remaining two data sets [6], describe the Glucose and Mannitol concentrations and Biomass in a Nisin inducible
strain with Nisin added in two distinct time points.

Parameters estimation

The suggested Mannitol model A, has 14 parameters (§) to be estimated, the second model, B, including the Nisin
induction, adds 8 more parameters (o).

The estimation problem consists, on a first stage, estimating the common parameters of model A and model B, (),
using only the data acquired without the addition of Nisin.

On a second stage, the parameters () are estimated using both the data acquired with and without Nisin.

Finally, the parameters of the Nisin part of mode B, (o), are estimated and fine tunned using only the data acquired
with Nisin added.

PARAMETER ESTIMATION METHODS

The estimations of the parameters of both models were made using Matlab. On a first approach the estimations
were made using the freely available toolbox SBTOOLBOX and SBPD [5], on a second stage using scripts written for
the effect. The parameters estimation is resumed as follows:

e Initial parameters and constraints are defined. The initial parameters were set to 1 most of the times, the
constraints of the S-System parameters were set to -4 on the lower bound and 4 on the higher bound.

e An optimizing function is called. Three functions were tested, FMINUNC, FMINCON and simannealingSB. The
first two function belong to Matlab’s optimization toolbox, and do unconstrained and constrained optimizations
respectively. The last function belongs to the SBTOOLBOX and performs minimization by simulated annealing.

1. Inside the optimization function the set of differential equations of the model is integrated, using the initial
set of parameters.

2. After the integration a cost function calculates the cost, normally using the minimum sum of squares.

3. If the obtained cost obeys the stop condition of the optimization function, the optimization is stopped.

Otherwise, a new set of parameters is tested.

The estimations were made on a laptop with 4GB of RAM and a dual processor. Estimation times varied between
less than a minute and several minutes.



Estimation using one data set

The first estimation uses the data set obtained without the addition of Nisin and model A. A first and rough
estimation used SBTOOLBOX, with the initial parameters set to 1. After this estimation a script written for the
effect was used. The cost function was defined as:
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Where i = 1, 2, 3 refers to the three metabolites, Glucose, Mannitol and Biomass, y;;(9) refers to sample j of metabolite
i of the model data, integrated with the set of parameters ¢ and 7;; refers to experimental data, sample j of metabolite
1. The weighting factor w; allows to give more or less weight to each metabolite during the estimation process. This
estimation identifies the 14 parameters, J, belonging to the S-System.

Estimation using multiple data sets

On the second estimation both models A and B are used, as well as the three data sets, the ones with and without
the addition of Nisin. It is important to note that the data sets obtained with Nisin will not fit model A (1) with
the parameters d obtained in the previous section, but since model B (3) is an extension of model A (1) the common
parameters § have to be equal. The § parameter set is forced to be common by doing its estimation using both models
simultaneously. The cost function becomes:

J=J1+J> (4)
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and o is the set of parameters of the Hill Function and scaling. Thus, the parameters of the S-System, d, are estimated
and the ones from the Hill-type function and scaling, o, are left free. Since two Nisin data sets are used, two distinct
o are estimated. Thus, the estimation algorithm identifies § + 20 = 30 parameters.

Estimation using Nisin data sets

Having estimated the set of parameters of the S-System, 9, the Hill Function and the respective scaling parameters,
o can be fine tunned. This estimation process only uses model B.

Even though the two set of parameters o obtained on the previous section are able to fit the experimental
data, from a control point of view it is useful to reduce the control variables. Thus, o is divided, and the set
{@1n, Qan, @3, Rin, hon, han } is forced to be common to the two Nisin data sets. The only variables/parameters left
free are {0,n}.

This decision is based in the fact that {#,n} directly manipulate the shape and position of the Hill-type function, as
seen in (2), more specifically, varying 6 changes the position of the function in the time axis, creating a time control
variable. This time control variable subsequently model the time of addition of the Nisin.

The estimation algorithm estimates {1, Q2n, @30, Rin, han, han} + {0,n} * 2 = 10 parameters.



RESULTS

On the first estimation, parameters § were estimated using the no Nisin data set. Model A was then integrated
using the obtained § set and both modeled and experimental data were plotted, Fig. 2. The estimated parameters
allow the model to fit the experimental data. Without Nisin added the Mannitol production is residual and almost
all energy goes to the formation of biomass.
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FIG. 2: Mannitol Model A - The integration results were similar using the two different § sets

On the second estimation, using the three data sets and both models A and B, the initial § parameters were set
to the previously obtained values and o1 g = 1. Model A (1) was then integrated with the new ¢ and the obtained
results were similar to Fig. 2.

While the two ¢ sets (first and second estimation) seem to fit real data, the second set (second estimation) is more
consistent and more likely to be valid on future data sets. Not only because it was obtained using more data sets but
also because the used data was relative to different experimental conditions.

On the third estimation only model B and the Nisin data sets were used. The § set obtained on the previous
estimation was used and the set o was fine tuned by forcing the parameters {a1n,aan, @3n, R1n, hon, hsn} to be
common to both data sets and estimating the pair {#,n} for each data set. Fig. 3 shows the obtained results for Nisin
induced at ODggp = 0.1 and Nisin induced at ODgog = 0.3. The modeled data fits the real data in both cases.
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FIG. 3: Nisin added at ODgoo = 0.1 (left) and ODgoo = 0.3 (right)



As in the first estimation, by forcing a sub-set of ¢ to be common to both data sets we provide consistency to the
estimation process.

The described estimation sequence succeeded in finding a set § common to the Nisin induced and non-Nisin induced
data sets. It was also successful in expressing Nisin induction time as a function of a fixed sub-set of ¢ and a varying
{0,n} pair. This fact suggests that a control strategy could be proposed to maximize the production of Mannitol.

Further work proved that the relation between {6,n} and the time of induction was not as straightforward as
expected and the plot of 2 with the obtained {6, n} was approximately a straight line, suggesting that a simple scalar
could be used to model the addition of Nisin. Future work, using more data sets, with different induction times, will
be done in order to clarify this issue.

CONCLUSION

The work presented in this paper shows that parameter estimation, using data sets from different experiments, can
provide consistency to the identification process. The ability to find parameter sets, common to different experiments
and even different models is seen as a step toward the formulation of predictive models instead of descriptive models.

The use of custom cost functions provides an extra degree of freedom on the estimation process. Different weights
can be easily given to different parameters/data sets/time points and strategies as the one described, where data sets
from different models are used, are easily implemented.

The described work is still a work in progress, with several items needing further work. The suggested models, while
able to fit the experimental data, should be simplified in order to reduce the number of parameters. The used data
sets suffer of lack of time resolution, specially in the last hours of experiment. The reduced number of experiments is
also a bottleneck on the definition of a control strategy. Finally, the data obtained without the addition of Nisin was
obtained using a slightly different strain of L. lactis than the rest of the data sets.
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