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Abstract 

Biological sequence analysis is at the core of bioinformatics, bringing together several 
fields, from computer science to probability and statistics. Its purpose is to computationally 
process and decode the information stored in biological macromolecules involved in all cell 
mechanisms of living organisms – such as DNA, RNA and proteins – and provide 
prediction tools to reveal their structure, function and complex relationship networks. 
Within this context several methods have arisen that analyze sequences based on alignment 
algorithms, ubiquitously used in most bioinformatics applications. Alternatively, although 
less explored in the literature, the use of vector maps for the analysis of biological 
sequences, both DNA and proteins, represents a very elegant proposal to extract 
information from those types of sequences using an alignment-free approach. 
This work presents an overview of alignment-free methods used for sequence analysis and 
comparison and the new trends of these techniques, applied to DNA and proteins. The 
recent endeavors found in the literature along with new proposals and widening of 
applications fully justifies a revisit to these methodologies, partially reviewed before 
(Vinga and Almeida, 2003). 
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1 Introduction 
Bioinformatics is an emerging and relatively new scientific multidisciplinary field that has 
developed very fast in the past years due to the high increase of biological data generation, 
particularly of genetic datasets. 
Biological sequence analysis (Durbin et al., 1998) is at the core of bioinformatics, being its 
oldest sub-discipline. Most molecular processes involve macromolecules, e.g. DNA and 
proteins, which can be represented as sequences. Although some of the initial paradigms 
are changing and new integrative techniques are being developed, it is accepted to be true 
that sequence determines structure that in turn determines molecular function and the 
overall biological role of the cell’s molecules. The recent genome sequencing projects have 
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created an enormous quantity of data which gave rise to an urgent need of new techniques 
and algorithms for analyzing the massive amounts of information produced. Even with the 
recent explorations of higher-level integrative data, such as microarrays and genetic 
regulatory networks, sequence analysis and comparison is still a crucial area of research 
since almost all tasks depend on algorithms that process and investigate strings, from 
searching for similar sequences in databases to classification problems. Interestingly, this 
discipline is also posing new problems and challenges to statisticians and computer 
scientists, with the development of new algorithms and conjectures that are directly 
inspired by open problems in biology. 
Bioinformatics and biological sequence analysis have undergone a considerable 
development in the past years and are expected to have an extremely high impact in the 
future, namely in the medical sciences and in molecular biology, continuing to cross several 
other disciplines and expanding on other methodologies and fields (Kanehisa and Bork, 
2003). 
 
Alignment-based methodologies are probably the most widely used tools in sequence 
analysis problems. They consist on arranging two sequences one on top of the other as to 
highlight their common symbols and sub-strings. The fundamental idea inherent to this 
procedure is that sequences that share the same substrings might have the same function or 
be related by homology. Several algorithms solved the problem of optimally aligning two 
sequences, either globally, such as Needleman-Wunch (Needleman and Wunsch, 1970), or 
locally, such as Smith-Waterman (Smith and Waterman, 1981), as to obtain a maximum 
score under specific scoring schemes. Other programs have been developed so far and are 
now ubiquitously used. These include BLAST (Altschul et al., 1990; Altschul et al., 1997) 
and FASTA (Pearson and Lipman, 1988; Pearson, 1990), for calculating dissimilarities 
between sequences and searching databases, and CLUSTAL (Thompson et al., 1994), for 
multiple alignments, allowing the comparison of several sequences simultaneously. 
All these methods are computational heavy but enable the researcher to compare and to 
search for specific traits and substrings (Gusfield, 1997). One of the major goals of 
alignment is to identify shared similarities that might indicate a past common ancestry or 
homology relationships. In fact, by alignment, one can collect evidence of events that 
putatively took place during molecular evolution. Furthermore the efficient implementation 
of the dynamic programming associated with these algorithms has created an “alignment” 
paradigm, overthrowing in part other possibilities for comparing and analyzing sequences. 
With the explosive growth of data from new high-throughput techniques, the alignment 
paradigm should be reviewed. Not only it is computationally expensive but also presents 
several intrinsic problems. For example, it is very difficult to align complete genomes and it 
is a method that deals inadequately with reshuffling, to name some of the disadvantages. 
Other drawback is the input parameters and scoring schemes selection, which are somewhat 
arbitrary and not consensual between applications. 
On the other hand several alignment-free techniques have emerged, based on vector 
representation of the sequences, providing valuable tools for their analysis and comparison. 
In this context, vector maps are vector-valued functions which transform sequences onto n-
dimensional vectors, i.e., n  space. The analysis is subsequently taken on this image space, 
benefiting of all the results and methods at hand for these kind of sets, given by linear 
algebra and related fields.  
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It is noteworthy the improvement and growth of this methodologies in the past two decades 
and it is apparent a burst of alignment-free techniques in more recent years, outdating a 
three-year-old review by the author (Vinga and Almeida, 2003). In fact, several new 
methods have appeared since then, making this revisit timely. The previously referred 
review can be considered as a complement to this present chapter. 
 
The pioneer works on alignment-free techniques for sequence comparison date back to the 
60’s, when the first approaches to classify and analyze DNA sequences considered the base 
composition alone. The first attempts to classify proteins also started by analyzing their 
aminoacid composition. A lot has evolved from those first naïve approaches: several 
studies have consolidated alignment-free techniques for sequence analysis, departing from 
a mononucleotide composition approach to higher-order relations. This step unquestionably 
enriched all the comparisons since more information was extracted. Another significant 
progress was the introduction of normalization and/or transformation of the composition 
vectors in order to correct for biases, reduce the background frequencies, and implement 
more sophisticated models. Meanwhile, machine learning and bioinformatics had high 
impact on the type of analysis at hand of the research, greatly widening the scope of the 
available tools for sequence analysis. 
 
It is worth mentioning that neither methods nor models are ultimate and, from a scientific 
point of view, the perfect procedure would merge and integrate several techniques. Hence, 
this chapter does not intent to overestimate alignment-free algorithm results over 
alignment-based methodologies, but highlight some of its advantages and possible 
applications. In fact, very recently, these two paradigms were optimally integrated in a step-
wise algorithm: alignment-free, fast and efficient algorithms to pre-filter relevant 
relationships, followed by more time consuming techniques, but applied to a smaller subset. 
Presently, at least one paper that combines both approaches for multiple alignments was 
published (Edgar, 2004) which forestalls a burst on new hybrid techniques in the future. 
 
In this review the main focus will be the formal and mathematical representation of 
sequences and the corresponding description of the analysis and comparison 
methodologies. For more information about the problems molecular and cell biology poses 
and additional background, other resources are recommended, e.g. (Lodish et al., 2004). 
A warning note to the reader: the borders of alignment-free and vector maps techniques are 
not unambiguously defined – published articles associate and integrate distinct methods – 
which makes the organization of this chapter somehow arbitrary. Inevitably some reviewed 
papers will cross those classification borders, and the reader is invited to try and understand 
exactly were to fit a specific work. 
Another important aspect is related with nomenclature: each paper reviewed adopted a 
specific and sometimes contrasting terminology. In order to maintain the coherence of this 
chapter, we decided to alter and make uniform whenever possible all the definition and 
representations, although changing the original proposals. 
Although non complete, given the high number of published papers so far, reaching so 
many applications, this work is intended to show new trends in this exciting field. If this 
mission is accomplished, the author might be forgiven for the inevitable omissions a review 
work always entails. 
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2 Background 
This section introduces some background concepts and definitions related with the main 
functions available to transform sequences onto vectors. Once defined the sequence 
representation and its properties, the next issue is to find good measures of dissimilarity in 
the image space and subsequently analyze and classify the vectors thus obtained (Figure 1). 
Both problems, to some extend segregated, had had innumerous solutions in the past, for 
which the fields of linear algebra, information theory, complexity measures and stochastic 
processes have provided useful background and methodologies. 
The following sections intention is to present an overview of the several types of 
representation and the possible ways we can deal with the resulting information, i.e. how 
can we compare and analyze the n-dimension vectors F(X) obtained from sequences X. 
Some important notions will be recalled and the nomenclature used throughout the 
remaining sections will also be defined. 

2.1 Words in sequences 
A sequence X can be represented as a succession of N symbols from a given alphabet A, of 
length r, i.e., 1 2 i NX s s s s   , 1, ,i N=   and is Î A . For DNA the alphabet A is 

composed by the nucleotide symbols representing the 4 bases { }A,C,G,T=A  and for 

proteins each symbol of this alphabet represents one of the aminoacids. For natural 
language texts, such as English or Portuguese, A is simply the set of all possible characters 
in each idiom. 

A segment of L symbols, with L N, is designated an L-tuple (in some references is also 
defined as L-word, L-plet, or L-mer). The set WL consists of all possible L-tuples that can 
be obtained from the alphabet A (with r symbols), and has K elements (Eq.1). 

 ,1 ,2 ,, , ,L L L L K

L

w w w

K r





W
        (1) 

 

The identification of L-tuples in the sequence X can then be object of counting occurrences 
with overlapping (Eq.2). Computationally, the counting is usually performed by taking an 
L-wide sliding window that is run through the sequence, from position 1 to n–L+1, the 
maximum total number of counts one can obtain. 

 X
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L

X
L ccc ,1, ,,          (2) 

 

Similarly, the word frequencies X
Lf  estimate the probabilities  X
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Sometimes, for convenience, the frequency vector f is indexed by the L-tuple it represents 
instead of its relative order i, i.e., 

1L i iL
w s sf f   represents the frequency of the L-tuple 

1 LL i iw s s  . The difference between the two nomenclatures should be evident from the 

context where they appear. 

For example, for DNA sequences, A={A, T, C, G}, r=4, a three letter word, L=3, could be 
w3=GTC. For the sequence X=GTGTGA, where n=6, the vector Xp3  is estimated by the 

relative frequencies of all trinucleotides. The frequencies, determined by sliding a 3 letter 
window n–L+1=4 times, would be:  

 
 
 

3

3

, , , , ,

2,1,1,0,0,

0.5,0.25,0.25,0,0,

L

X

X

W GTG TGT TGA AAA AAC

c

f











  

The vectors Xc3  and Xf3  have length K=43=64, the zero coordinates corresponding to 

missing words in X, in this case absent trinucleotides. Under the alternative representation 
one might write 0.5X

GTGf  . 

 

2.2 Vector valued functions 
A vector map or mapping is a vector-valued function, i.e., a function that assumes values 
on the space n . Given a sequence 1 2 NX s s s  , 1, ,i N=   from an alphabet A, it is 

possible to define a vector map : nF S  , which transforms X (taken from the space of 
all possible sequences S) onto an n-dimensional vector ( )1 2, , , nx x x x= : 

  nF X           (4) 

 
The following Figure 1 depicts the transformation steps, from sequences to n-dimensional 
spaces and the subsequently pos-processing methods reviewed in this chapter. 

Fig.1 

Figure 1: Vector maps of biological sequences. This figure represents the transformation of a biological 

sequence X onto an n-dimensional vector. This might be represented as : S nF   . This chapter will 
review several methodologies that study and analyze sequences in this image space. 

 
It is possible to individualize several mappings from sequences to vectors. The following 
sections will describe the maps based on L-tuple composition and those based on iterated 
function systems, namely Chaos Game Representation (CGR). Other representations based 
on Markov chain models, time series, information theory and complexity will also be 
indicated. 
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2.2.1 L-tuple composition 
One of the simplest tasks, initiated in the beginning of bioinformatics endeavors, was to 
assess the composition of the sequences in terms of their nucleotide or aminoacid content, 
for DNA and proteins respectively, which corresponds to extract their 1-tuple frequencies. 
This evaluation was subsequently refined, by considering high order tuples. 
Some authors consider these approaches as linguistic methods, because of the obvious 
analogies with the study of natural languages texts in which symbols and words are defined 
and compared. 
As mentioned above, this type of mapping is simply given by the frequencies of each 
L-tuple, over an alphabet with r symbols: 

   ,1 ,

:

, ,

n

S
L L L n

F

F X f f f



 

S 


, with Ln r K       (5) 

The vectors obtained can subsequently be object of normalization and filtering procedures, 
in order to extract relevant information and correct for several biases. 
 

2.2.2 Chaos Game Representation (CGR) and iterated function 
systems 

Chaos game representation (CGR) was first presented in 1990 (Jeffrey, 1990) as a method 
for mapping DNA sequences onto vector spaces. It is derived from iterated function 
systems and is related with fractal geometry and chaos theory (Edgar, 1990). There are 
several applications of this method in bioinformatics, such as the investigation of patterns 
in DNA, the extraction of Markov models transition tables (Almeida et al., 2001) and the 
calculation of entropies (Vinga and Almeida, 2004; Vinga, 2005). The algorithm itself is 
closely linked to binary representations of sequences, conceiving a useful property shown 
below. The CGR generalization for higher-order alphabets, named Universal sequence 
maps (USM), was presented in another paper (Almeida and Vinga, 2002). 
 
The CGR iterative algorithm maps each symbol onto a 2-dimensional vector, following an 
iterative procedure where each point is calculated using the previous one. The CGR 
mapping 2

ix Î  of an N-length DNA sequence 1 2 NX s s s  , 1, ,i N=  , 

{ }is A,C,G,TÎ =A is given by the following equation 6: 

( )

( )

( )
( )
( )
( )

2

0

1 1

0,0 ' '
~ 0,1 0,1 ' '

1 1,0 ' ', 1,...,
2

1,1 ' '

i

i

i

ii i i i

i

if s A
x Unif if s C

where y
if s Gx x y x i N

if s T
- -

ì =ïïïìï ïï =ïï ïï =í íï ï == + - =ï ïï ïïî ïï =ïî

  (6) 

 
In the original proposal of CGR (Jeffrey, 1990), the starting point was taken as (0.5,0.5), 
although none of the properties are altered by choosing a random initial position x0. The 
algorithm assigns each of the DNA bases to a vertex in the square [0,1]2 and, in each step, 
goes half the distance towards the corner representing the following symbol in the original 
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sequence. The plot of all the points xi originates a fractal-like pattern, as exemplified in Fig. 
2a. 
One of the most interesting properties of CGR is its ability to group points that represent 
the same suffix in the original sequence. In fact, the same suffix of any length will be 
mapped in the same sub-square, even if the original symbols are far apart in the sequence, 
as exemplified in Fig.2b. 
 

Fig.2a) Fig.2b) 

Figure 2: CGR example and suffix property. On the left an example of CGR algorithm is shown, with 
the image obtained for the human beta globin region on chromosome 11 (HUMHBB), constituted by 
73308 bases. In the right panel the suffix property is exemplified: sequences sharing the same suffix are 
on the sub-square labeled with that substring. 

CGR can also be interpreted as a binary representation of the sequence. For example, from 
the coordinates of one symbol in base 2 it is possible to extract all the previous symbols in 
the sequence that originated that mapping. As an example, a point in base 10 with 
coordinates xi = (0.65625, 0.21875)10 = (0.10101, 0.00111)2 corresponds to the succession 
of symbols (1,0)(0,0)(1,1)(0,1)(1,1), i.e. the suffix GATC. (For more properties of 
CGR/USM see (Vinga, 2005).) 
In this case we have a collection Fi of vector maps, one per symbol in a given context 

1, ,i N  , which can be rationalized as: 

   1 2

:

,

n
i

i i i

F S

F S x x






, with 2n          (7) 

 
The literature in CGR has grown significantly in the past decade, as described on the 
following sections, which anticipates its importance in the future as a general model for 
sequence analysis. 
 

2.2.3 Markov chain models 
Markov chains are probabilistic models that have extensively been applied in biological 
sequence analysis, constituting a rich and fruitful approach to study DNA and proteins 
(Durbin et al., 1998; Robin et al., 2005). 
Markov chains are special cases of stochastic processes (Kulkarni, 1995), where the 
probability of a sequence  1 2 i NX s s s s    is defined conditionally to the last L symbols. 

This constitutes a “memoriless” property: given the present (the last symbols or suffix in 
the sequence), the probability of the following symbol is independent form the past. 
Formally, the probability of observing a given sequence 1 2 i Ns s s s   with is  A  can be 

expressed with conditional probabilities as: 
 
         

2 2 1 1

1 2 1 2 1 1 1 2 2 2 1 1

, , , , ,N N i i

i N N N N N

p X s X s X s X s

p s s s s p s s s s p s s s s p s s p s  

    

     

 

    
 

 
The Markov property allows the simplification of the last expression. For an L-order 
Markov chain, the current L-tuple is sufficient to calculate the probability of the next 
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symbols, i.e., the probabilities are independent from the symbols occurring before the 
position i–L+1: 

   1 1 1 1i i i i L ip s s s p s s s      

 
Under a zero-order Markov chain model the probabilities are simply 

   1 1 1i i ip s s s p s  , i.e., the probabilities of each symbol do not depend on the current 

state. 
When studying L-tuple frequencies, the sequence is usually modelled as a (L-2)-order 
Markov chain, named the maximal order model. Under this assumption, the probability of 

an L-tuple is simplified, since    1 2 1 2 1L L L Lp s s s s p s s s   , giving the following 

probability: 

     
   
   

 

1 2 1 1 2 1 1 2 1

2 1 1 2 1

1 2 1 2 1

2 1

L L L L L

L L L

L L L

L

p s s s s p s s s s p s s s

p s s s p s s s

p s s s p s s s

p s s

  

 

 



 

 




  

 

 


     (8) 

 
This model will appear in some applications described in the following sections. 
The estimation of probabilities defined above allows us to calculate the expected number of 
occurrences of a specific word or L-tuple and also its statistical significance. In fact, these 
models can recognize under and over-represented motifs, which might indicate that the 
regions they represent are important from a biological point of view. There is already a 
large study of words in sequences and their statistical properties, which are out of the scope 
of this chapter. For a comprehensive introductions see (Reinert et al., 2000; Robin et al., 
2005) and references therein. 
 
Markov chain models are closely connected with vector maps, since the estimation of the 
transition probabilities typically involves the calculation of the L-tuple frequencies. In fact, 
as mentioned above, it is usually taken  

11ˆ
L

X X
L s sp s s f  . Since CGR maps generalize 

L-tuple frequencies, it is straightforward to extend Markov models to these iterative 
function systems. For example, the maximum likelihood estimation of the transition 
probability of having an “A” given that the current symbol is a “G”, p(A|G), i.e., a first 
order Markov chain, involves the calculation of 2-tuples counts or frequencies 

 ˆ | GA GA

G GA GC GT GG

c f
p A G

c f f f f

 
  

. This estimation can be calculated directly from the 

CGR, due to the suffix property exemplified in Fig. 2b. The 2-tuples involved in the last 
expression are in specific regions of the map. It is then natural that CGR is shown to be 
generalization of any-order Markov models (Almeida et al., 2001). In a recent exploit, 
several methods were tested to build finite memory predictive models (Tino and Dorffner, 
2001) and those based on CGR were among the best, by partitioning the CGR map in 
arbitrary regions. In fact, high accuracy is attained if the geometry of the prediction is 
allowed to vary, without the constrain of choosing specific squares of size 2-L. 
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2.2.4 Time series, complexity and entropy 
Time series constitute another possible type of sequence representation. The proposal for 
these methodologies is central in the biophysicists’ literature, allowing to study, among 
other questions, the long and short-range correlations present in DNA. Briefly, this type of 
approach considers a sequence as a time series and uses models currently available in the 
field of stochastic processes and dynamical systems to unravel the correlation structure of 
DNA. In several applications the type of algorithms is similar to other approaches, namely 
by considering some Markov dependencies up to a certain level. Information theory also 
plays a role, with entropy measures and periodicity evaluation of the series obtained. 
Although slightly out of the scope of this survey, it is important to mention important 
references in this field. A valuable repository of bibliography related with correlations in 
DNA and related themes is available in the extremely well curated website 
http://www.nslij-genetics.org/dnacorr, with some methods reviewed in (Li, 1997) and 
references therein. Departing from a simple random walk model for DNA other articles 
created more complex interactions. In a recent report, Dehnert and colleagues have 
proposed a model based on a discrete autoregressive process of order p, DAR(p), showing 
that it is possible to create a dissimilarity measure from the vectors of the DAR parameters 
(Dehnert et al., 2005). Using this technique, phylogenetic trees can be reconstructed 
allowing inter and intra-species discrimination. 
The notion of complexity and entropy is also extensively presented elsewhere (Cover and 
Thomas, 1991; Li and Vitanyi, 1997) and only briefly exemplified in the reviewed 
applications. 
It is noteworthy the relation between the methods in this category, with overlapping areas 
and techniques. For example, several recent studies highlight the correspondence between 
time series, random walks and CGR (Wu, 2004; García and José, 2005). Other work used 
multifractal analysis of specific number representations of sequences, also related to CGR, 
distinguishing between coding and non-coding regions in whole genomes (Zhou et al., 
2005). 

2.3 Comparing vectors: metrics and dissimilarities 
In the last section several methods to represent sequences as n-dimensional vectors were 
described, through the definition of specific vector-valued functions. This section 
overviews the procedures used to compare the vectors obtained by assessing their 
dissimilarity or distance, thus estimating the similarity of the original sequences they 
represent. This is accomplished by defining appropriate metrics and dissimilarities in the 
image space n , a problem that can be segregated from the sequence representation itself. 
Formally, a metric space (S, d) is a set S together with a non-negative function 

0:d  S S   satisfying, for all , ,X Y Z S , the properties of positivity, symmetry and 

triangle inequality: 

 
   
     

, 0

, ,

, , ,

d X Y X Y

d X Y d Y X

d X Y d X Z d Z Y

  



 

       (9) 
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Such a function d is called a metric and measures the distance between pairs of points X 
and Y in S. In the present context, the set S represents the collection of all possible 
sequences and d(X,Y) is therefore a measure of their distance. 
There are also functions d(X,Y) that do not obey to all three properties described in Eq.9 
(for example, in some of them the triangle inequality is not verified) but have nonetheless 
high importance in several applications. The function d(X,Y) in these generalizations will be 
referred to as dissimilarity between two sequences. 
When analyzing the vectors obtained from the maps, this context provides tools to assess 
and compare the sequences. As mentioned in the introduction, this chapter follows a 
previous review of alignment-free methods (Vinga and Almeida, 2003), where several 
dissimilarly measures and metrics were described in detail. For sake of clarity, the most 
widespread used distances therein described are briefly recalled in Table 1; the reader is 
advised to search for the full references in the original review (Vinga and Almeida, 2003). 
 

Table 1 Definition of dissimilarity measures between sequences X and Y, d(X,Y). See also (Vinga and 
Almeida, 2003) for a complete description and full references. The measures are based on the 
comparison of the vectors of counts, frequencies, or methods where the resolution L of the tuple is not 
required. 
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2.4 Sequence analysis and classification 
One of the main objectives of mapping the sequences onto vector maps, using the 
methodologies described above, is to obtain a representation more amenable to extract 
information, either to analyze one particular sequence or to compare and classify a set of 
several sequences. The goal of all these methods is to infer key features of the sequences as 
to extract relevant biological information, using solely the vectors. 
The definition of metrics and dissimilarities in this space allows precisely the subsequent 
classification of the sequences. In fact, several authors use those functions to create 
dendrograms or trees, using specific clustering algorithms. Theses techniques are nowadays 
so numerous that it would impractical to review them in detail. Consequently, 
classification, clustering analysis and grouping algorithms are not described in this chapter: 
for a comprehensive introduction (Everitt et al., 2001) and (Gordon, 1999) are 
recommended. Most of the methods use as input a dissimilarity matrix with all pairwise 
comparisons between the sequences, which is then object of agglomeration, for which exist 
widely available implementation in standard statistical packages. More specific clustering 
methodologies applied in the phylogenetic and evolutionary framework are also reviewed 
elsewhere (Snel et al., 2005). 
The following sections contain examples of how the above mentioned methodologies can 
provide tools to efficiently group and analyze both DNA and proteins. 
 

3 Alignment-free methodologies 
The previous sections briefly described the formalism of vector-maps based analysis of 
sequences. This section presents some new applications of those methods, concentrating on 
the new developments of this area in recent years. In particular, a brief overview of the 
progresses will be carried out. All the algorithms can be classified as alignment-free 
methods because they are not based on alignment to compare and analyze sequences. The 
recent interest in this area is demonstrated by the wealth of articles and reviews published 
(Bolshoy, 2003; Vinga and Almeida, 2003), some of them revisited in the next sections. 

3.1 Transforming L-tuple frequencies: variations of a theme 
Departing from the simple frequency idea, several methods have been envisaged to deal 
with more complex problems and data. One of the most straightforward approaches is to 
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pre- or pos-process the original composition vectors to extract meaningful and discriminant 
information. This is accomplished by specific normalization steps, filtration procedures 
and/or feature selection, using algebraic and statistical tools and properties. 
 
As referred to in the previous review, Blaisdell’s paper introduced the notion of sequence 
similarity measure without pre-alignment using Markov models and all L-tuple counts 
(Blaisdell, 1986), associated with Euclidean distances  ,E

Ld X Y  on this space. This metric 

was further extended by weighting the vectors, and named d2-distance in a subsequent 
paper (Torney et al., 1990). Their distributional statistical study was accomplished later 
(Lippert et al., 2002). This last step would provide the tools to estimate the statistical 
significance of the comparisons, deducing the asymptotical distributions of d2 for random 
sequences. For example, depending on the word type and the sequence length, the 
asymptotical distribution is shown to be Poisson, Normal or Gumbel. With this extension, 
the transformation by weighting of the original L-tuple frequency vectors introduced 
greatly improved the results that could be obtained. 
 
In another pioneer work dating back to 1990 (Pietrokovski et al., 1990), the raw L-tuple 
DNA frequencies are normalized by their expected values. Accordingly, an alignment-free 
measure of dissimilarity between two sequences based on contrast values is proposed, 
based on the difference between observed and expected frequencies of L-tuples. These 
expected frequencies are calculated under a maximal order Markov model, using the 
information of the (L-1) and (L-2)-tuple counts (Eq.8). For example, to calculate the 
expected frequency of a given 4-tuple 1 2 3 4S s s s s  under the maximal Markov model of 

order 2, X
SE f   , the observed frequency 

1 2 3

X
s s sf , 

2 3 4

X
s s sf , 

2 3

X
s sf  are used such that: 

1 2 3 2 3 4

1 2 3 4

2 3

X X
s s s s s sX

s s s s X
s s

f f
E f

f


            (10) 

 

The corresponding contrast values  ,1 , ,, , , ,X X X X
L L L i L Kq q q q   , 1, , 4Li K  , are the 

deviations of the expected ,
X

L iE f    vs. the observed ,
X

L if  frequencies and define the contrast 

L-vocabulary (CV): 

, , ,
X X X
L i L i L iq f E f              (11) 

High qL values correspond to over-represented L-tuples and low qL to under-represented 
ones, under the specified Markov model. 
When comparing two different sequences X and Y, the measure of dissimilarity is defined, 
for a given resolution L, as the correlation coefficient  ,CV

Ld X Y  between the two contrast 

L-vocabularies: 

 
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2 2
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L i L iCV i
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L i L ii i
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      (12) 
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The value  ,CV

Ld X Y  can be interpreted as the cosine of the angle between the contrast 

vectors q(X) and q(Y) – thus measuring a type of correlation between the vectors – where 
each coordinate or dimension corresponds to one oligomer. Values close to 1 indicate 
similar sequence attributes, values around 0 signify that no relation is present and values 
near -1 mean that the same words or L-tuples are over and under-represented in the 
opposite pattern in both sequences. The authors further extend this measure averaging 

 ,CV
Ld X Y  for several L-tuples (from di- to pentanucleotides), creating a combined version 

of the previous one, shown to be more informative: 

 
5

*

2

1
,

4
CV CV

L
L

d d X Y


   

 
In this work (Pietrokovski et al., 1990) the basic idea of a dissimilarity measure not 
requiring alignment was presented and the major advantages of this approach were 
described. One property there highlighted was the computational convenience 
(computationally inexpensive) when confronting with alignment-based methods. In 
addition, the comparison of short sequences of contrasting lengths is made possible with 
this approach (as with all angle-based metrics), since the measure implemented is 
unaffected by the overall counting, apart from sampling biases. At this point it should be 
apparent the relation between this measure and those presented in Table 1, namely 

 ,COS
Ld X Y  and  ,LCC

Ld X Y , applied in subsequent studies. The results confirmed the 

possibility of application of these methodologies for the quick screening of databases and 
the taxonomic classification of sequences. 
In this work some of the problems of alignment-based methods were also remarked, they 
are best applicable when the sequences are similar, since detection of distance relatedness 
poses both computational and conceptual problems. The linguistic interpretation given to 
this approach is related with the natural languages equivalent, where each idiom can be 
characterized by a vocabulary (words) and we can distinguish texts (or sequences) in terms 
of their origin and further characterize them through their resemblance solely based on the 
different frequencies of the corresponding substrings. 
 
Following this report, the same author comprehensively reviewed linguistic methods for 
sequence comparison, defined as those in which the basis for sequences analysis is their 
oligomer composition (Pietrokovski, 1994). It should be noted that there are other possible 
ways of calculating the deviations, namely by considering other types of Markov models, 
hence originating different expected values of the frequency vectors. In addition, other 
types of distances are also available. For example, if the mean values of qj are subtracted 
the Pearson’s correlation coefficient  ,LCC

Ld X Y  is obtained. In this review, several 

applications are presented which show the potential of the measure, ranging from 
identifying similar (homologous) and dissimilarity (taxonomically and functionally) 
sequences, locating eukaryotic promoters and identifying imported sequences in the 
mitochondrial yeast genome. 
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These notions of linguistic properties and contrast vocabularies of genomes were the 
rationale for studying in depth the oligonucleotide bias in Bacillus subtilis (Rocha et al., 
1998). In this work is stated that over- and under represented words or L-tuples in a 
genomic datasets, defined by their contrast values, might indicate phenomena of 
positive/negative selection. The authors studied 1 to 8-tuple frequency vectors, normalized 
by their expected values, finding biases indicating that over-represented L-tuples play an 
important role as biological signals. The analysis was further extended to other organisms 
and Kendall- association measures between the corresponding vocabularies were 
compared. Interestingly, the analysis of over and under-representation of short 
oligonucleotides in DNA sequences had been carried out before (Burge et al., 1992), 
leading afterwards to the genomic signature concept described in the following section. The 
analysis of the relation between nucleotide biases in virus and their phylogeny had also 
been explored in a previous report (Bronson and Anderson, 1994). 
 
All these works show that processing the frequency vectors is a good solution for analyzing 
data and correcting for a wide sort of biases, present in the original mapping. 
 
Another alternative concerning the transformation would be to select relevant information 
from specific L-tuples, thus filtering superfluous information. Instead of using the complete 
fL vector, a reduced version can also be employed to characterize the sequences. The idea 
was pursued in some recent works. 
The definition of compositional spectrum of one sequence X relative to a set W (Kirzhner et 
al., 2002) is related with the this idea of processing the L-tuple frequencies. The method is 
based on randomly selecting n different L-tuples, which constitute the set W, and finding all 
occurrences of those L-tuples in the sequence X, but allowing for errors. This means that 
imperfect matching is permitted in the frequency vector, considering the Hamming 
distance, and that only a fraction of all possible L-tuples is taken into account. The 
compositional spectrum is simply the histogram of these imperfect or fuzzy word 
occurrences. It is possible to define a dissimilarity measure between compositional spectra, 
the CS-distance, by the Spearman’s rank correlation coefficient, which allows the large-
scale comparison and clustering of genomic sequences (Kirzhner et al., 2003; Kirzhner et 
al., 2005). All the results show robustness and reproducibility across several simulations 
(given the random choice of the set W) and the classifications are consistent with other 
reports. Furthermore, these CS-distances are larger for inter-species comparisons than for 
intra-species, which corroborates a signature concept described in the following section. 
 
Other possible extension that takes into account the variability and imperfect consensus of 
sequences was proposed by Torres and colleagues (Torres and Nieto, 2003), where a 12-
dimensional space is used to represent a codon. More specifically, each of the 3 group of 4 
coordinates, represents a base (U=(1,0,0,0), C=(0,1,0,0); A=(0,0,1,0); G=(0,0,0,1). If 
insufficient knowledge of the chemical structure is available, the binary vectors will 
represent a fuzzy set, with values between 0 and 1. For example p=(0.3 , 0.4 , 0.1 , 0.2 , 0 , 
1 , 0 , 0 , 0 , 0 , 1) will represent (C,A,U), where the first codon position can have a 
probabilistic interpretation as: “C to the extent 0.40, U to the extent 0.30, A to the extent 
0.10 and G to the extent 0.20”. A metric on this space is further proposed, i.e., defining a 
distance between sequences X and Y, based in the differences between the vectors pX and 
pY, similar to the Manhattan or city-block distance: 
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       (13) 

 
This is proven in fact to be a distance (Nieto et al., 2003), thus defining a metric space in 

12 , and is explored to measure the differences between genomes Mycobacterium 
tuberculosis and Escherichia coli. All the codons are then mapped into a fuzzy set of 
frequencies of the genome. 
Interestingly, this might be interpreted as Position-Specific Scoring Matrices (PSSM) for 
that particular region: in fact, by assuming that each entry is a matrix mij with dimension 
4x3, these measure the probability of occurrence of each symbol si in each codon position j. 
This result could be further applied to compare PSSM extracted from different groups, 
creating a quantitative dissimilarity measure in this fuzzy set. 
 
Another result where the vectors are pre-processed is given by the filtering of relevant 
substrings, ignoring the major non-characteristic data that might be considered background 
noise. In particular, some of the sub-strings might represent relevant features, so it would 
make sense to ignore part of information available (the complete frequency vector) and 
look for specific subsets, as mentioned above. 
For example, alignment-free analysis can be achieved by extracting, from a sequence set, 
the shortest unique substrings (Haubold et al., 2005), which are strings that occur only once 
and which cannot be further reduced in length without losing the property of uniqueness. 
For their detection, generalized suffix trees can be used, which makes for an efficient 
algorithm with running times that are linear in the combined lengths of the input sequences. 
In this work the authors analytically deduce the probability distribution of the occurrence of 
these strings in random models in order to measure their statistical significance and 
expected values in real sequences. The methodology is further applied to the 
Caenorhabditis elegans, human and mouse genomes (with approximate sizes 100Mbp, 
2.8Gbp, 2.49Gbp) and the shortest unique substrings were found out to be respectively, 10, 
11 and 11. This result cannot be expected since the human genome is 28 times larger that 
that of C. elegans and there is a small probability of observing these shortest unique strings. 
Furthermore they were shown to occur clustered close to genes, more that what would be 
expected just by chance. This method is proposed as a starting point for developing 
signature oligos and also for comparative genomics and taxonomy studies. 
The notion of unique L-tuple was also explored in other two different contexts. In (Chen et 
al., 2002) the idea of identifying unique segments of the human genome was efficiently 
applied to single nucleotide polymorphism (SNP’s) mapping. Due to the high increase of 
databases, alignment-based algorithms are unpractical and very time-consuming to perform 
this task. Instead of aligning whole genomes, fixed-length unique sequence markers, or 
UniMarkers (UM), might be used to assign the genomic positions of SNP sites. UM’s 
appear only once in the genome thus allowing to locate SNP’s much faster that alignment-
based methods. The authors find an optimum length of 15-tuple UM’s to position the 
SNP’s sequences. Interestingly, the UM’s search was performed using a method that could 
be implemented with CGR maps, by searching unique sub-strings through bit wise 
operations and binary trees. This method can be easily generalized to Expressed Sequence 
Tags (EST) mapping. UM’s generally represent a set of genome-wide, high resolution 
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genetic markers. The authors also highlight the potential use of this technique as a filter and 
anchor to improve the efficiency of alignment-based algorithms. 
The use of UniMarkers was later explored in comparative genomics applications, more 
specifically to create synteny maps (Liao et al., 2004), i.e., detect regions that are 
orthologous between two genomes. This fast alignment-free method was applied for 
mapping evolutionary conserved segments between two large genomes and further 
confronted with NCBI (National Center for Biotechnology Information) assignments, 
achieving high accuracy. Instead of performing a whole-genome alignment, with all the 
problems this procedure implies, the UM method overcomes some of those previous 
drawbacks, showing robustness to segment shuffling (without the need of having contiguity 
between orthologous). For example, the identification of common ancestry is performed by 
counting the relative numbers of their shared UM’s, not by analyzing their order. 
Furthermore by considering large regions of the genome, the innumerous local similarities 
present are avoided; the computational and memory load is low, which renders feasible 
whole comparisons on a personal computer. 
As seen, subsets of the L-tuple frequencies can be efficient descriptors of the original 
sequences, since they automatically filter noise and extract discriminant features. 
 
Another recent article (Chen et al., 2005) studied the distribution of the 6-tuple frequencies 
and analyzed the histograms obtained for several organisms. They obtained uni- and 
bimodal distributions and proposed models for the processes that might give rise to that 
behavior. The distribution of repeated and rare L-tuples was investigated in (Fofanov et al., 
2004), calculating the percentages of “used” oligonucleotides and providing analytical 
deduction of the probabilities of finding specific repetitions. Rare L-tuples can also be 
combined to distinguish individual gene sequences, and could be used as target for DNA 
probes (Gibbs et al., 2005). All these results illustrate the vast number of applications 
obtained from transformed L-tuple vectors. 

3.2 Entropy and complexity 
Information theory has provided useful background and tools for sequence analysis, such as 
the definition of the Kullback-Leibler discrepancy between probability vectors. This 
definition was shown to be pertinent in several articles, highlighted in this section. The 
entropy concept is usually related with complexity theory and algorithms for compressing 
strings. The unpredictability of sequences might be measured with these methods, which 
have also shown to be useful for sequence comparison and classification. 
 
In a recent paper a probabilistic measure for alignment-free comparison was proposed 
(Pham and Zuegg, 2004). In this work, the authors extended the Kullback-Leibler 
discrepancy or relative entropy between distributions (Table 1) to first order Markov-chains 
parameters. Considering a first-order Markov Model (MM) with parameters 1 and 2 
estimated from two sequences X1 and X2, with lengths N1 and N2 respectively, we can 

define the dissimilarity dMM(X1, X2) from the comparison of the log-likelihoods  P i jX  , 

, 1,2i j  : 
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By combining the two formulations, they classified six DNA sequences, taken from the 
threonine operons of Escherichia coli and Shigella flexneri, and also applied the 
dissimilarity measure to the search of a database, attaining good levels of sensitivity and 
selectivity. 
The Kullback-Leibler discrepancy was also recently explored in another article (Wu et al., 
2005), under a more general formulation of dissimilarities, the Cressie-Read family of 
discrepancies of parameter . Following previous work (Wu et al., 2001), the authors 
directly applied a symmetric version of this measure for =0, which corresponds exactly to 
the symetrized version of the Kullback-Leibler discrepancy, or SK-LD, and study its 
dependence from mutational rates, window sizes and word lengths of sequences under 
study. This objective was fulfilled by performing simulations of DNA sequences with 
distinct known mutation percentages from an original set and by studying the dissimilarities 
obtained when several window lengths and L-tuple resolutions are considered. The SK-LD 
is defined as a minimum of the dissimilarities taken for all the W length windows: 
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where the pseudo-counts 0.5 4 L
L

   avoid the possibility of having infinity values. 

The results are also compared with alignment algorithms, represented by BLAST, and other 
metrics, quantitatively assessing their relative accuracy. The SK-LD method is further 
applied to four different experiments. The first comprises the classification of six threonine 
operons, showing good agreement with previous methods. The second case consisted on 
searching databases with a query sequence, thus assessing the better sensitivity and 
selectivity of SK-LD. The third experiment is the classification of shuffled ORF (open 
reading frames) sequences, demonstrating that this measure is much better that BLAST in 
presence of genome rearrangements. Finally, using the results obtained in the last 
experiment, they further suggest the use of this dissimilarity for selecting oligo probes for 
use in gene expression microarray design. 
 
Very recently, a different approach to sequence classification was proposed, based on word 
ranks (Goldberger and Peng, 2005). The key idea was to sort the abundance of all the L-
tuples present in two different sequences X and Y, i.e. the vectors X

Lf  and Y
Lf , and compare 

the order or rank  iR w  of each word wi in those sorted vectors. For two similar texts the 
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plot of the ranks     ,X i Y iR w R w  would be a straight diagonal line: each word occupying 

the same relative position, i.e., the same abundance order, in the two sequences. By 
analyzing the dispersion of the points from the diagonal the authors define a measure of 
dissimilarity between the sequences or an information based similarity index: 

         
    1

1

1
,

1

K
rank X i Y i
L X i Y i K

i X i Y ii

H w H w
d X Y R w R w

K H w H w



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 



   (16) 

 

The absolute difference of ranks    X i Y iR w R w  is proportional to the Euclidean 

distance from a given point to the diagonal line. This term is then weighted by the Shannon 
entropy   ln

i ii w wH w p p   that measures the relative abundance of the word wi: the more 

frequent tuples will have a higher contribution for the overall dissimilarity between X and 
Y. This measure can be interpreted as a weighted city-block dissimilarity on the rank order. 
In a way, it filters the repetitions because its main contribution is from the overall ranking 
or order of one particular word or tuple, ignoring the high discrepant values of their 
absolute frequencies. 
The authors have applied this dissimilarity to several types of texts from different 
alphabets: in particular, they have used the results to classify the authorship of English (e.g. 
Shakespeare plays) and Chinese literature (Yang et al., 2003b), the type of cardiac 
pathology derived from interbeat interval time series (Yang et al., 2003a) and the genomic 
classification of the SARS Coronavirus (Goldberger and Peng, 2005). 
The results are very promising, showing that the combination of information-theory and 
rank-order statistics might have a wide range of applications in the future for large-scale 
analysis of genomic databases. 
 
Several methods cut across different sections described above. For example, in a recent 
paper (Gangal and Sharma, 2005) the classification of sequences was performed by using 
CGR, along with non-linear time series descriptions based on the Lyaponov exponent and 
on the Tsallis entropy. The information was used to train an SVM model and correctly 
discriminate between promoter and non-promoter regions. 
 
Another type of analysis related with entropy and complexity concepts was developed 
recently. In these studies, the characterization of the linguistic complexity of genomes is 
related with the notion of self repetitiveness. This quantity is calculated by using a sliding 
window and assessing the ratio of the number of all present L-tuples over the total number 
of possible combinations, given by 4L. This means that in highly repetitive regions, this 
fraction will be low: only a small percentage of all possible substrings are used. In contrast, 
the windows with more distinct L-tuples will have a higher ratio, corresponding to higher 
variability. This approach was used in several studies, e.g. (Crochemore and Verin, 1999; 
Troyanskaya et al., 2002). The notion here defined is closely connected with the entropy 
definition. In fact, high complexity zones correspond to high topological entropy and low 
complexity zones, as measured by the relative variability of sub-strings, are related with 
lower entropy or high level of repetitiveness. This alignment-free methodology was shown 
to be useful to determine new biological features in S. cerevisiae yeast chromosomes, 
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filtering regular regions (Crochemore and Verin, 1999). The authors also propose a 
measure of dissimilarity between windows using the Jaccard index, i.e., the ratio between 
the common factors and the total number present in both sequences. In (Troyanskaya et al., 
2002) the calculation of the linguistic complexity is efficiently computed in linear time 
using suffix trees and the algorithms were applied to the complete genome of Haemophilus 
influenzae. 
These methods are clearly related with complexity and entropy as referred to before when 
calculating the Kolmogorov complexity of mitochondrial DNA (Li et al., 2001) and the 
complexity based on compression methods, with programs such as GenCompress (Chen et 
al., 1999) and, more recently, other measures of dissimilarity based on the Burrows-
Wheeler transform (Mantaci et al., 2005). 
 
These results illustrate the relation between entropy and complexity concepts, but are still 
dependent on the resolution of the tuples considered. In the works reviewed a specific value 
for L is implicit and required in all the analysis. Other “resolution-free” approaches were 
also pursued. The CGR/USM maps might be classified in this category and can be 
associated with the genomic signature concept described below. Other type or resolution-
free methodologies is based on the complexity of strings and their compressibility. 
 
Following the work of Li and colleagues (Li et al., 2001) that introduced a dissimilarity 
measure based on the Kolmogorov complexity  ,KCd X Y  to compare whole mitochondrial 

unaligned genomes, another metric was proposed for phylogenetic tree construction (Otu 
and Sayood, 2003). In this work a distance between sequences  ,LZd X Y  is defined, based 

on the Lempel-Ziv (LZ) complexity of X, c(X), which is related to the number of steps 
required by a process that builds the sequence X. The distance between two sequences X 
and Y is obtained by comparing the LZ complexity of X (and Y) with their concatenation XY 
(or YX): 

          , max ,LZd X Y c XY c X c YX c Y        (17) 

 
The key idea is that two similar sequences will have common regularities, thus leading to 
one partly “explaining” the other in terms of processing steps. Among the results presented 
in this work are the proofs of the distance properties of  ,LZd X Y  (Eq.9) and the tests on 

simulated sequences, showing the better performance of this metric when compared with 
maximum likelihood and parsimony methods. They further apply the new method to real 
mitochondrial genome data, achieving phylogenetic trees in agreement with several other 
studies. One important aspect of this methodology is that the whole genome is used, instead 
of partial data. Furthermore, it is an alignment-free, automatic algorithm, thus avoiding 
several problems encountered when performing multiple alignments, such as the presence 
of gene rearrangements, inversions, transpositions and translocations and unequal length of 
the sequences. 
The above defined relative complexity measure (RCM) was subsequently applied to 
construct phylogenetic trees for fungi from the mitochondrial cytochrome b gene, the 18S 
rDNA gene and the ITS-1 (internal transcribed spacer) and ITS-2 regions of the rDNA gene 
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complex (Bastola et al., 2004). This study showed the potential of this approach as a 
reliable and robust method to infer phylogenetic relationships. 
 

3.3 Genomic signatures: from L-tuple composition to CGR 
maps 

The previous sections overviewed some alignment-free methodologies based on vector 
maps and several dissimilarities in the image space. This section also describes articles 
using the same type of algorithms but where the notion of genomic signature was applied to 
some extend. 
The introduction of the term genomic signature dates back to the mid 90’s (Karlin and 
Burge, 1995) following a previous work on oligonucleotide over and under-representation 
(Burge et al., 1992). The initial results showed that the set of dinucleotide (or 2-tuples) 
normalized frequency vectors constituted a signature of one organism. This means that 
there are significant differences between intra and inter-species, as assigned by the odds 
ratio between 2-tuple frequencies normalized by expected values. The odds ratio 

i js s  

represents the dinucleotide bias of the 2-tuple sisj, and is expressed as a function of its 
frequency 

i js sf and the value expected under a zero order Markov model, 
i js sf f , which is 

simply the product of the frequency of symbols  , , , ,i js s A T C G A : 
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s s

f

f f
 


          (18) 

 
This formula is modified to accommodate double-stranded DNA, leading to a symetrized 
version, computed from the frequencies of the sequence concatenated with its inverted 
complementary version. This new version is denoted * and is obtained by using the 
frequencies f*[A] = f*[T] = ( f[A] + f[T] ) / 2 and f*[C] = f*[G] = ( f[C] + f[G] ) / 2. A wide 
collection of results is presented, showing that these odds ratios can be effectively applied 
to discriminate between sequences from different organisms, defining species-specific 
properties of DNA mechanisms. 
The authors subsequently defined a dissimilarity based on *: the dinucleotide relative 
abundance distance or -distance between two sequences X and Y (Karlin and Ladunga, 
1994). 
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d X Y  


         (19) 

where the sum extends over all possible 42 dinucleotides. 
The relative abundance distance measure is extensively applied to large DNA sets, 
demonstrating that the -distance always differ more for genomic interspecific sequence 
comparisons than for genomic intraspecific sequence comparisons, indicating congruence 
over different genome sequence samples. 
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The impact of these results is reflected by several articles comparing the effective goodness 
of classification by using this 16-vector set. In fact, when comparing * for different 
organisms this 16-dimensional vector is found to exhibit a remarkable stability within the 
same genome and can distinguish between sequences from different organism, justifying 
the introduction of a “signature” concept (Campbell et al., 1999; Karlin, 2001) 
 
Other studies dealing with the genomic signature concept have further been developed, e.g., 
the study of how pervasive are genomic signatures for the same species (Jernigan and 
Baran, 2002). The overall vales * (taken for the whole sequence) have been compared 
with those obtained for small windows, using the -distance above defined (Eq.19). The 
results show that signatures are preserved intra-species even for short window lengths sizes. 
Additionally, the convergence properties of this measure were quantitatively defined and 
the stability of genomic signature in windows ranging in size n from 50kb down to 125 
bases was assessed, showing that the global signature is locally persistent in all the scales 
scanned. In addition, it is shown that the intra-genomic -distance is approximately log-
normally distributed, i.e., obeys a log-linear model of the form *log log n    . This 
fact amply corroborates the genomic signature concept previously introduced. 
 
Departing from the original proposal, Hooper and Berg introduced a variation of the 
original genomic signature concept (Hooper and Berg, 2002), by using only the 
dinucleotides frequencies in genes. The genomic 3:1 signature therein defined is computed 
by taking the frequencies of the 2-tuples composed by the 3rd codon position and the 1st of 
the succeeding codon in the sequence. This frequency is the least restricted by aminoacid 
preference and codon usage, therefore being the most flexible and coding-independent 
dinucleotide bias on the gene level. Several microbial genomes were compared, including 
E. coli and B. subtilis, and genes with significant deviations from their genomic signatures 
were found, which might indicate horizontal transfer between the two genomes. The 
differences between inter and intra-species comparisons were statistical significant, 
strengthening the conclusions of previous studies. 
These results show the importance of 2-tuple normalized frequencies as DNA sequence 
descriptors. A natural development of these results was the extension of the procedure to 
higher-order tuples, gaining more discriminatory precision. 
 
It is noteworthy that Deschavanne and colleagues (Deschavanne et al., 1999) have 
implemented the genomic signature concept using CGR maps. In fact, as previously 
referred to, the chaos game representation allows the depiction of all L-tuples in the same 
image, thus making possible the generalization of the signature concept to higher order 
oligonucleotides, with important phylogenetic implications (Hill and Singh, 1997). In 
particular, an 8-tuple resolution was applied to scan several organisms, representing 
Eukaryote, Eubacteria and Archaebacteria. Principal component analyses (PCA) of the 
vectors thus obtained correctly discriminate between domains of life. In fact, by observing 
the CGR images one can immediately recognize patterns and characteristic features, in a 
very appealing and straightforward format. Euclidean distances between those image 
matrices were further used to create a dissimilarity measure between genomes and classify 
the sequences. One interesting result observed in this pioneer work was that short 
sequences images are somewhat the blurred versions of the complete genome data. This 
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shows that different parts of the genome follow the patters of the whole sequence, i.e. 
exhibits intra-species stability, which amply corroborates the genomic signature concept. 
This important generalization was explored in other works, showing the interconnection 
between L-tuple counts and chaos games. 
 
In another work the genomic signature concept was implicitly used for the classification of 
short-sequences (Sandberg et al., 2001). This work starts by defining frequencies profiles 
for the genomes by calculating their L-tuple frequencies fL. These profiles represent a 
feature of one particular sequence and use the results previously obtained that inter-species 
differences are larger than intra-species comparisons. It is then possible to classify a new 
sequence with a naïve Bayesian classifier to assign sequences to classes, using maximum a 
posteriori estimates. This is equivalent to the classification of a new sequence in the class 
defined by the “closest” oligonucleotide frequency profile. Another important achievement 
of this work was the quantitative analysis of the classification accuracy for different 
resolutions (L) and for distinct percentage deletions of the training set (the original 
sequences from which the profiles are calculated). For example, bacterial sequences with 
only 400 nucleotides can be classified with accuracies above 85%, for optimal 8 and 9-
tuple frequencies. Moreover, it was confirmed that inter-genomic differences are greater 
that the intra-genomic values. This property has motivated the use of these tools to infer 
horizontal transfer (HT) between bacterial genomes, by considering sliding windows of 
fixed length and calculating their profiles separately, searching for heterogeneities. 
In another study from the same authors the dependence and relationship between the 
genomic signature and several bias factors was further examined (Sandberg et al., 2003). In 
particular, the correlation between the L-tuple frequencies and the G+C content, 
synonymous codon choice and aminoacid usage was investigated. By using a non-
normalized version of the 3, 6 and 9-tuple frequencies along with Euclidean distances 
between those vectors for 57 organisms, the correlation between those factors was 
quantified. 
Following these results, the genomic signature concept has recently been explored to detect 
and characterize horizontal transfers in prokaryotes (Dufraigne et al., 2005). Interestingly, 
CGR maps were again used as generalization of L-tuple frequencies, in one key application 
of iterated function systems to genome analysis. The notion of local signature is defined in 
this work by using the 4-tuple normalized frequencies through specific sliding windows. In 
this way it is possible to create a “profile”, where atypical windows and/or positions with 
distinct compositions will be detected, i.e., the most heterogeneous ones. These atypical 
local signatures may point out DNA transfers and, in addition, might provide clues about 
their possible origin. The extensive study of 22 genomes, including E. coli, B. subtilis and 
H. influenza, and the comparison with other results further corroborate this statement. 
 
The previous concepts lead to a central paper where the spectrum of genomic signatures 
was defined (Wang et al., 2005). The authors consider Karlin’s definition as a particular 
case obtained for 2-tuples, named dinucleotide relative abundance profiles (DARP), and 
extend it to higher order nucleotides using CGR. In other words, the genomic signature 
concept defined before, based on 2-tuples, is interpreted as a particular case of a broader 
collection or spectrum of signatures. The CGR, given its flexibility and convenience, is 
used as a description of the spectra. They also explore several types of dissimilarity 
measures between CGR images and compare the results with phylogeny studies. The 
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-distance defined above (Eq.19) is shown to be a special case of the Hamming distance 
between CGR maps. The image distance was also introduced, a new dissimilarity measure 
between CGR maps that expands the Hamming definition. The key idea is to average 
neighborhoods of intervals (representing L-tuples) and to consider the differences in those 
masked values. Another important result, obtained by simulation, was that 3-order Markov 
chains cannot explain the images obtained for real organisms, contradicting the results of 
(Goldman, 1993). They defend that the DNA structure is too refined to be captured only by 
a low-order model, with few parameters. The method is applied to the classification of 26 
mitochondrial DNA, showing a good agreement with former phylogenetic studies. 
 
It is important, at this point, to stress the relationship between L-tuples and chaos game 
representation, described in the background section: in fact, CGR is a generalization of 
L-tuples frequencies and Markov chains and can be effectively used as a good 
representation for machine learning algorithms. Furthermore, it is not necessary to define 
the resolution a priori, a main advantage of CGR maps, which might be included in the 
optimization procedure that will investigate and automatically chose the best combination 
of L-tuples for specific discriminatory analysis. 
 
In a recent article, the genomic signature concept along with CGR maps was used to 
distinguish between Eukaryotic coding and non-coding sequences (Nikolaou and 
Almirantis, 2005). The authors propose a measure S(L) which is the sum of all the L-tuple 
frequencies, filtering the background mononucleotide composition: 
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In particular, 5-tuples are chosen as an optimum value to discriminate between introns and 
coding sequences (CDS) and a surrogate sequence collection obtained by shuffling. An 
evolutionary model is also formulated, which was able do recreate the statistical properties 
of the sequences considered. 
 
The prolific genomic signature concept was further explored to higher-order tuples using 
machine learning techniques. In particular, the species-specificity was assessed through the 
use of self-organizing maps (SOM’s) applied to di-, tri- and tetranucleotide frequencies 
(Abe et al., 2003). A SOM is an unsupervised neural network algorithm which converts 
complex nonlinear relations among high-dimensional data in simple geometric relations. In 
practice, SOM’s implement nonlinear projections from the multidimensional space of input 
data onto a two-dimensional array, utilizing complex key combination of oligonucleotide 
frequencies for the sequence separations. The resulting SOM’s revealed clear 
separation/discrimination between species, easily verified with this technique. 
 
The genomic signature concept has also motivated several software programs that 
efficiently analyze oligonucleotide frequencies, such as TETRA (Teeling et al., 2004), a 
tool that might be used as a fingerprint technique for genomic fragment correlation. The 
algorithm normalizes tetranucleotide frequencies by their expected values under a maximal-
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order Markov model, which is calculated from 2 and 3-tuple composition (Eq.8). The 
obtained z-scores are subsequently used to calculate Pearson correlation coefficients and 
ultimately classify the fragments. Other works have also explored the tetranucleotide 
frequency to classify genomes (Yap et al., 2003). 
 
Another implementation of alignment-free sequence analysis based on the genomic 
signature paradigm was developed very recently (Fertil et al., 2005). GENSTYLE is a 
workspace with several toolboxes that allows the characterization and classification of 
nucleotide sequences (available online at http://genstyle.imed.jussieu.fr/). It depicts CGR 
images and fully describes their statistical properties and profiles, allowing the detection of 
atypical areas in the genome. There is also a genomic signature database with information 
on different species, which enhances the scope and power of the analysis in comparative 
genomics. These methodologies were already explored for the detection of horizontal 
transfer in bacteria in a recent paper (Regeard et al., 2005). 
 
As seen it this section, a wealth of theoretical and experimental work has been performed 
underlying the genomic signatures concept, from 2-tuple composition to more sophisticated 
methodologies, combining several other data mining techniques, to achieve a wide scope of 
applications. One conclusion to retain is the constancy of some frequency-based descriptors 
among the same species, even taken for relatively short sequences, and the evident 
differences seen for different organisms, which undoubtedly substantiate the genomic 
signature spectrum concept. 

3.4 Proteins 
The previous sections have focused on the application of vector maps to DNA sequences, 
overlooking the wealth of algorithms currently in use for protein analysis and comparison. 
Although the basic ideas and dissimilarity measures are the same as the ones described in 
the previous sections, some of the specificity of the protein datasets, namely its alphabet 
higher dimensionality, justifies the separate analysis of the comparison methodologies. 
 
A recent study proposed the use of weighted aminoacid composition to classify proteins 
(Vinga et al., 2004). The basic idea was to combine L-tuple composition (in this case, 1-
tuple, omitted in the equation) with evolutionary information through a quadratic form: 
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The weight matrices W in equation 21 can be rationalized as being scoring or aminoacid 
substitution matrices, instead of covariance-based weights as in other distances such as 
standard Euclidean  ,SE

Ld X Y  and Mahalanobis  ,M
Ld X Y . These matrices, such as PAM 

– Point Accepted Mutation (Dayhoff et al., 1978) and BLOSUM – BLOcks SUbstitution 
Matrices (Henikoff and Henikoff, 1992), are used in alignment-based methods and estimate 
the log-likelihood ratios between probabilities of symbols that best describe mutation rates 
in known homologous proteins. 
The results were applied to the SCOP database and correctly classify family and 
superfamily levels. In this paper the quantitative assessment of those accuracies is 
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compared across protein hierarchical levels (family, superfamily, fold and class) and 
different metrics, using Receiver Operating Characteristic (ROC) curves. 
 
Aminoacid composition was also recently used to discriminate between several protein 
categories, in particular the beta-barrel transmembrane (bbtm) proteins from other types 
(Garrow et al., 2005). The authors showed that the combination of aminoacid composition 
with evolutionary information leads to a better accuracy. (See (Garrow et al., 2005) and 
references therein for other aminoacid base classification methods for distinct protein 
categories.). Squared Euclidean distances between the aminoacid frequency vectors and the 
k-nearest neighbor algorithms were used to classify the proteins in classes. A weighted 
Euclidean distance (similar to the d2 metric described above) was also tested, where the 
weights are optimized using a genetic algorithm. Another weighting procedure is done with 
the frequency vectors themselves, averaging for several homologous proteins. The overall 
accuracies are high, when compared with other methods. 
 
In another study (Qi et al., 2004), the authors propose the same approach of contrast 
vocabularies seen above for DNA sequences (Pietrokovski, 1994). Proteins are mapped 
onto their 6-tuple composition, i.e., considering the frequency of all the oligopeptides 
constituted by 6 aminoacids. The expected probability of each L-tuple 1 2 L   , assuming 

a maximal order Markov model, is estimated from the observed (L-2) and (L-1)-tuples 
frequencies: 
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The observed frequencies f are then subject to a normalization step: 
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This expression is similar to Eq.11 but divides the deviations between f and p0 by their 
estimated expected values. Following this normalization, the dissimilarity is obtained by 
considering, as above, the cosine of the angle between two vectors Xa  and Ya  obtained 
from sequence X and Y, subsequently normalized to the range between 0 and 1 (instead of -
1,1). 
This alignment-free measure is proposed as an evolutionary distance between species and 
phylogenetic trees are constructed from whole proteome prokaryote data. The statistical 
significance of the trees was also taken into account in this study and was assessed by 
bootstrap and jackknife methods. The phylogenetic trees thus obtained show excellent 
agreement with other evolutionary studies. In fact, the authors suggest a “K-string picture 
of evolution”, where a small fraction of primordial polypeptides (e.g. from the possible 
206=64,000,000, considering K=6) evolved in this K-tuple space by growth, fusion and 
mutation. 
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Following directly this work, other recent article explored whole genome analysis for 
evolutionary studies using frequency estimates (Yu et al., 2005). The background 
frequencies from shorter L-tuples can be filtered using the equation 23: 
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The application of angle metrics to the vectors 

1 2 kiX X    , as previously described, 

allows the classification of all protein sequences and the inference of phylogenetic trees 
that are in agreement with evolutionary information. Once more, the analysis of the 
compositional statistics of proteins from complete genomes is proven to be a fast and 
efficient method for phylogenetic reconstruction. This alignment-free approach avoids the 
problems inherent to alignment-based algorithms when gene rearrangements are present. 
 
Other type of filtering based on SVD (single value decomposition) was recently applied to 
classify proteins (Stuart and Berry, 2004). This technique had previously been employed in 
mitochondrial DNA classification, conjugated with the angle metric referred to above 
(Stuart et al., 2002a; Stuart et al., 2002b). In this new work the 4-tuple composition, i.e. the 
tetrapeptides frequencies, are decomposed by the SVD algorithm in families that are 
characterized by linear combinations of the original peptides. These transformed vectors 
provide motif models and can be useful in the annotation of unknown proteins and/or their 
accurate clustering, as demonstrated for nine whole eukaryotic genomes. 
 
A robust method for protein alignment-free classification was recently proposed (Sperisen 
and Pagni, 2005), named JACOP (Just Another Classification Of Proteins). The protocol 
consists on randomly selecting 50-length probes from the target protein sequences, which 
are subsequently filtered, pruning high similarity pairs as to obtain a subset of distinct 
representative probes. Then the original proteins are compared by alignment with all the 
probes selected, keeping track, for each protein, of the probes with score higher than a 
specific threshold, transformed in a binary matrix with ones (above) and zeros (below). The 
proteins are then compared using the Jaccard distance which accounts for the differences, 
normalized by the total number of comparisons but excluding the common zeros. This 
matrix is then used to identify independent groups, to partition the proteins within each 
group and finally to cluster the complete set. The Jaccard distance guarantees that proteins 
with no similarity other than noise will not be grouped together. The method performance 
is tested in two cases. The first one includes prokaryotic lyases, which can be studied using 
multiple sequence alignment. The second dataset contains all proteins from Swiss-Prot with 
at least one Src homology domain, a challenging case where it is not possible to arrange 
them in a meaningful sequence alignment, given the putative reshuffling events. Both cases 
demonstrate the potential use of this methodology. In fact, the random probes used as an 
intermediate step allow the uncoupling of the domain architecture, since contiguity – one of 
the problems with alignment methods – is not required to any further extent. This work, as 
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the one referred to before (Edgar, 2004), highlights the usefulness in combining alignment-
based and alignment-free methods for sequence comparison. 
 
The notion of genomic signature described above for DNA (Karlin and Burge, 1995) is 
shown to have a protein counterpart. In a recent study, an extensive and comprehensive 
analysis of all the proteome of several species of distinct kingdoms (Eukaryotes, Eubacteria 
and Archaea) was performed (Pe'er et al., 2004). The analysis was based on the extraction 
of the aminoacid, di- and tri-peptide composition, i.e. the 1 to 3-tuple frequencies 
respectively. These vectors were subsequently projected in a two dimensional (2D) space 
by Principal Component Analysis (PCA), as to extract the main features of each species 
and the obtained lower dimensional vectors were compared. As noted by other articles (see 
(Pe'er et al., 2004) and references therein), the species can be differentiated by the L-tuple 
composition of their proteomes, which suggests the use of species-specific compositions as 
proteomic signatures, analogous to the genomic signatures introduced before for DNA 
sequences. Hierarchical clustering was further applied to the proteins using pairwise 
standard Euclidean distances between the amino acid frequency vectors, thus creating 
dendrograms in agreement with phylogenetic relationships. This suggests that closely 
related proteomes display similar compositions. Furthermore, via whole proteome analysis 
it is possible to avoid several problems encountered when using single gene methods, such 
as the “unrecognized horizontal gene transfer, unrecognized paralogy, highly variable rates 
of gene evolution, or misalignment”. 
Other recent endeavor that explicitly uses alignment-free methods was the analysis of 
correlation between protein aminoacid composition and its corresponding gene expression 
level ((Raghava and Han, 2005) and references therein for other types of correlation 
analysis). The analysis of 3468 genes of Saccharomyces cerevisiae shows that there are 
important correlations between the expression of a gene and the 1-tuple composition of its 
protein, extracted from its primary structure. This promising result might allow the 
prediction of expression levels from the protein sequences, from microarray data in a given 
condition. The algorithms, available online, are also based on Support Vector Machines 
(SVM).  
 
This section presented some applications of vector maps in proteomics, highlighting some 
of the problems and specificities of this type of data. Several studies dealt with the 
characteristic of proteins from a composition point of view, leading to fast algorithms to 
analyze and classify aminoacid sequences. 
 

4 Conclusion 
Biological sequence analysis is still a key step in most bioinformatics applications, in tasks 
that range from searching databases to the inference of regulatory networks and integrative 
systems biology. 
This chapter briefly overviewed the fundamental theoretical basis and the new trends on 
alignment-free methodologies for sequence comparison. These techniques contrast with 
alignment-based methods, the dominant paradigm in the field, ubiquitously used in the 
majority of the bioinformatics applications. 
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Vector maps represent a vast category for representing biological sequences, providing 
efficient and elegant algorithms for their study. They are based on representing sequences 
as n-dimensional vectors, exploiting useful linear algebra results and information theory 
approaches to this image space. In fact, as amply demonstrated in this chapter, alignment-
free techniques can deal with several problems that arise in alignment-based algorithms, 
such as genome recombination and shuffling, thus providing useful alternatives when the 
later fail. 
This chapter was intended to outline some recent literature on this issue, revisiting previous 
surveys and thus providing a wider view of this subject, which is expected to have high 
impact in the future with the continuous explosive growth of biological data. This work 
provides a starting point to explore further alignment-free techniques for sequence analysis 
and comparison, systematizing the nomenclature and describing possible future 
applications. 
This rich field, proven to be highly productive in the past years, has been the source of a 
recent wave of new papers and techniques, widening their application to a total novel set of 
problems, as this chapter briefly illustrated. In fact, the wealth of new methods makes it 
difficult to perform an exhaustive analysis and to explore all possible applications. The 
extensions in same cases are straightforward, and it is envisaged that full automated 
methods to analyze the results would be also studied in the future. 
As referred to and highlighted in the literature, alignment-free methods have several 
advantages over other methods, from their computational efficiency to the possibility of 
using whole genome and whole proteome for the analysis, thus really using all the 
information available nowadays. In phylogenetic studies, although not incorporating 
molecular evolution methodology, they nonetheless perform extremely well, suggesting an 
underlying important feature about evolutive processes, that somehow maintain sequence 
signature and features, which should be further investigated. 
All these results suggest that vector maps and alignment-free techniques can provide new 
tools to classify, analyze and integrate biological sequence data. 
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Figure 2a 
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Figure 2b 
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