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Abstract. Monitoring the electrodermal activity is increasingly accom-
plished in agent-based experimental settings as the skin is believed to
be the only organ to react only to the sympathetic nervous system. This
physiological signal has the potential to reveal paths that lead to excite-
ment, attention, arousal and anxiety. However, electrodermal analysis
has been driven by simple feature-extraction, instead of using expressive
models that consider a more flexible behavior of the signal for improved
emotion recognition. This paper proposes a novel approach centered on
sequential patterns to classify the signal into a set of key emotional states.
The approach combines SAX for pre-processing the signal and hidden
Markov models. This approach was tested over a collected sample of sig-
nals using Affectiva-QSensor. An extensive human-to-human and human-
to-robot experimental setting is under development for further validation
and characterization of emotion-centered patterns.

1 Introduction

Wrist-worn biometric sensors can be used to track excitement, engagement and
stress by measuring emotional arousal via skin conductance (SC), a form of
electrodermal activity (EDA). Understanding EDA enables us to understand
the role of the sympathetic nervous system in human emotions and cognition.

Although of critical value to neuroscience and psychophysiology, the study of
EDA had been limited to the combined analysis of basic features: SC level, SC
response amplitude, rate, rising time and recovery time. This method has a clear
drawback – the discarding of flexible elicited behavior. For instance, a rising or
recovering behavior may be described by specific motifs sensitive to sub-peaks
or displaying a logarithmic decaying. This weak-differentiation among different
stimuli response have led to poor emotional mappings, with EDA being mainly
used just for the purpose of defining the intensity-axis of an emotional response.

This paper proposes a novel paradigm for the EDA analysis, the application
of a sequence classifier over a symbolic approximation of the signal. This has
the promise of disclosing emotions in real-time. In this way, scientific and clin-
ical researchers can make dynamic adjustments to their protocols. Therapists
can gauge the effectiveness of in-session treatments. Professors can adapt their
teaching strategies according to each students’ response. Marketers can closely
monitor focus-groups. Every person can use it to unfold unconscious behavior.
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This paper is structured as follows. Section 2 reviews the state-of-the-art
on EDA and emotions theory in the context of biometric sensors. Section 3
identifies the target problem. Section 4 describes the proposed approach. Section
5 proposes an experimental setting for the discovery of EDA emotion-driven
patterns. Section 6 identifies potential applications.

2 Related research

This section provides a synthesized overview of the key contributions related to
emotion recognition using physiological signals in general and EDA in particular.

2.1 Emotion recognition using physiological signals

Measuring physiological signals is increasingly necessary to derive accurate anal-
ysis from emotion-driven experiments. Physiological signals can surpass social
masking and high context-sensitivity of image and audio analysis, track emo-
tional changes that are less obvious to perceive, and provide complementary
paths for their recognition (both cognitive and sensitive). However, their subtle,
complex and subjective physical manifestation plus their idiosyncratic and vari-
able expression within and among individuals present relevant key challenges.

The common problem in this context is to define a statistical learning method
that can provide stable and successful emotional recognition performance. The
main implication is to gain access to someone’s feelings, which can provide im-
portant applications for human-computer interaction, conflict reduction, clinical
research, well-being (augmented communication, self-awareness, therapy, relax-
ation) and education. Table 1 introduces a framework of five key questions to
answer this problem. Good surveys with contributions gathered according to the
majority of these axes include [15][38].

2.2 Emotions and the electrodermal activity

Electrodermal activity (EDA) is an electrical change3 in the skin that varies
with the activation of the sympathetic nervous system4, which is responsible to
activate positive excitement and anticipation, and to mobilize the body’s fight-
or-flight response by mediating the neuronal and hormonal stress response [1].
Electrical changes in the skin are a result of an increased emotional arousal
or cognitive workload5 that leads to an intense physical exertion, where brain
stimulus may lead to sweating6. The skin is believed to be the only organ to react

3 the use of endosomatic methods is not target
4 part of the autonomic nervous system responsible for the regulation of homeostatic

mechanisms that require quick responses, complementary to ”rest-and-digest” mech-
anisms triggered by the parasympathetic division

5 involved neural pathways are numerous since excitatory and inhibitory influences on
the sympathetic nervous system are distributed in various parts of the brain

6 EDA has both a functioning role (maintain body warmth, and priming the body for
action) and evolutionary meaning (protection from grasping injury)
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Which physiological
signals to measure?

Although EDA is the signal under analysis, its use can be complemented
with other signals as, for instance, respiratory volume and rate if the goal
is to recognize negative-valenced emotions, or heat contractile activity to
distinguish among positve-valenced emotions [39]. Depending on the target
emotions to assess, a combination of different modalities is desirable [15].
The key challenge is that modalities of emotion expression are broad (includ-
ing electroencephalography; cardiovascular activity through electrocardiog-
raphy, heart rate variability, cardiac output or blood pressure; respiratory
activity; and muscular activity using electromyography), some yet being in-
accessible or less studied (as blood chemistry, neurotransmitters and brain
activity) and many others being too non-differentiated [29];

Which approach to
follow?

User dependency, stimuli subjectivity and analysis time are the key axes
[35][37]. In user-dependent approaches labeled EDA signals are vastly col-
lected per user and the classification task for a target user is based on his his-
toric pairs. User-independent approaches collect and use the pairs from a di-
versity of individuals to recognize emotions. Contrasting to ”high-agreement”
studies, in subjective experiments, the user is requested to self-report and/or
to produce via mental imagery his response to a stimuli. Finally, the min-
ing of a signal can be done statically or dynamically. This work targets the
user-independent, non-subjective and dynamic evaluation quadrant;

Which models of
emotions select?

The most applied models are the discrete model [13] centered on five-to-eight
categories of emotions (there is considerable agreement in using happiness,
sadness, surprise, anger, disgust, fear [15]) and the dimensional valence-
arousal model [18] where emotions are described according to a pleasant-
ness and intensity matrix. Other less commonly adopted models include the
Ellsworth’s dimensions and agency [27], Weiner’s attributions and recent
work (at MIT) focused on recognizing states that are a complex mix of emo-
tions (”the state of finding annoying usability problems”) [29];

Which experimental
conditions to adopt?

The selected stimulus should evoke similar emotional reactions across indi-
viduals, be non-prone to contextual variations (time to neutralize the emo-
tional state and to remove the stress associated with the experimental ex-
pectations), capture states of high and low arousal and valence to normalize
the features, avoid multiple exposures (to not desensitize the subject), and
provide reliable and reproducible methods according to existing guidelines
[6][28]. The undertaken experiment is defined in section 5;

Which data process-
ing and mining tech-
niques to adopt?

Four steps are commonly adopted [15][6].
First, raw signals are pre-processes to remove contaminations (noise, exter-
nal interferences and artefacts). Methodologies include segmentation; discard
of initial and end signal bands; smoothing filters; low-pass filters such as
Adaptive, Elliptic or Butterworth; baseline subtraction (to consider relative
behavior); normalization; and discretization techniques [28][31][16][10].
Second, features are extracted. These features are statistical (mean, stan-
dard deviation), temporal (rise and recovery time), frequency-related and
temporal-frequent (geometric analysis, multiscale sample entropy, sub-band
spectra) [14]. The number may vary between a dozen to hundreds of features
depending on the number and type of the adopted signals [15]. Methodos in-
clude rectangular tonic-phasic windows; moving and sliding features (as mov-
ing and sliding mean and median); transformations (Fourier, wavelet, empir-
ical, Hilbert, singular-spectrum); principal, independent and linear compo-
nent analysis; projection pursuit; nonlinear auto-associative networks; mul-
tidimensional scaling; and self-organizing maps [14][19][15].
Third, features that might not have significant correlation with the emotion
under assessment are removed. This increases the classifiers’ performance by
reducing noise, enabling better space separation, and improving time and
memory efficiency. Methods include: sequential forward/backward selection,
sequential floating search, ”plus t-take-away r” selection, branch-and-bound
search, best individual features, principal component analysis, Fisher pro-
jection, classifiers (as decision tress, random forests, bayesian networks),
Davies-Bouldin index, and analysis of variance methods [15][6].
Finally, a classifier is learned using the previously selected features. Meth-
ods include a wide-variety of deterministic and probabilistic classifiers, with
the most common including: k-nearest neighbours, regression trees, random
forests, Bayesian networks, support vector machines, canonical correlation
analysis, neural networks, linear discriminant analysis, and Marquardt-back
propagation [24][15][25].

Table 1: The five decision-axes for recognizing emotions over physiological signals
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only to the sympathetic part of the nervous system, allowing its measurements
to get a more accurate reading [8].

By monitoring EDA is possible to detect periods of excitement, stress, in-
terest and attention. However, heightened skin conductance is also related with
engagement, hurting, intrigue, distress and anticipation (”the unknown behind
the wall”) [1]. In fact, EDA is influenced primarily by the activation of an inhi-
bition function that is involved in responding to punishment, passive avoidance
or frustrative non-reward, which are different forms of anxiety [8]. These re-
cent clarifications on the role of EDA responses, require careful experimental
conditions and, as target by this paper, more robust methods for their mining.

On one hand, measuring EDA has clear advantages: sympathetic-centered
response, neuro-anatomical simplicity, trial-by-trial visibility, utility as a general
arousal and attention indicator, significance of individual differences (reliably
associated with psychopathological states), and its simple discrimination after
a single presentation of a stimulus. On the other hand, EDA has a relatively
slow-moving response (latency of the elicited response and tonic shifts between
1 and 3s and varying among individuals [8]), requires lengthy warm-up periods,
and has multiple influences that may be either related with the subject attention
and personal significance, stimuli activation, and affective intensity.

The variety of electrodermal phenomena can be understood by mining changes
in tonic SC level (SCL) and phasic SC response (SCR), related to tonic or pha-
sic sympathetic activation. Researchers have found that tonic EDA is useful to
investigate general states of arousal and alertness, while phasic EDA is useful
to study multifaceted attentional processes (related to novelty, intensity, and
significance), as well as individual differences in both the normal and abnormal
spectrum [8]. Although these are important achievements, there is still the need
to verify if, under controlled experimental conditions, the inclusion of advanced
signal behavior can increase or not the accuracy of a target classifier.

Experimental evidence. Historical EDA studies had been focused on learn-
ing efficiency, response speed and, as target by this paper, emotional appraisal.
Three distinct types of experiments have been done.

First : experiments using discrete stimuli. Experiments with brief and iso-
lated stimuli, include the study of: innocence using the guilty knowledge test
[22]; familiarity by distinguishing between meaningful and unfamiliar stimuli
[1]; relevance through non-balanced occurrence of a stimuli category or through
elicitation of priorities [2]; affective valence (although not good in discriminating
along the positive-negative axis, EDA was, for instance, found to be higher for
erotic pictures or striking snakes than for beautiful flowers or tombstones [17]);
and planning and decision-making processes via the ”somatic marker” hypoth-
esis [34]. Backward masking is often used to prevent awareness of conditioning
stimulus by preventing its conscious recognition [8]. The great challenge when
recognizing emotion is that the elicit response are considered to be part of the
orienting response to novel stimuli, which influence should be removed.

Second : experiments using continuous stimuli. When studying effects of long-
lasting stimuli, SCL and frequency of spontaneous SCRs (NS-SCRs) are key
measures. Experiments include the study of: strong emotions reproducing, for
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instance, genuine states of fear (highest SCLs) and anger (greatest NS-SCRs)
[1]; reappraisal through authentic, forbidden and awarded emotional display;
physical and mental performance; attention (affecting rising and recovery time
in vigilance tasks); and different forms of social interaction involving, for in-
stance, judgment (NS-SCRs rate inversely related to the judged permissiveness
of a questioner), distress invocation through the study of relationships, or the
contagious effect by relating, for instance, heightened autonomic arousal with
living with over-involved individuals [8][7]. Energy mobilization seems to be the
driver for tasks that either require an effortful allocation of attentional resources
or, but not necessarily exclusive, invoke the concepts of stress and affect.

Third : potential long-term experiments targeting personal traits. High NS-
SCRs rate and slow SCR habituation are used to define a trait called lability with
specific psychophysiological variables [11]. Traits have been defined according
to: information processing [32], operational performance, brain-side activation
through studies with epileptic individuals or recurring to electrical stimulation
(right-side of limbic structures stimulation increases more SCR than the left) [1],
sleeping patterns [21], age [8], psychopathology (mainly diagnosable schizophre-
nia and subjects with tendency to emotional withdrawal and conceptual disor-
ganization, with different traits regarding to the SCR conditioning (revealing
paths to emotional detachment as absence of remorse and antisocial behavior
as pathological lying and substance abuse), tonic arousal, and response to mild
innocuous tones [23]. These results suggest that hypo- or hyper-reactivity to the
environment may interfere with fragile cognitive processing in ways that under-
line vulnerabilities in the areas of social competence and coping.

Approaches to analyze EDA. Current approaches are focused on features’
extraction from the signal, neglecting its motifs. When measuring EDA from
discrete stimuli, the key adopted feature is the SCR amplitude. The response
latency, rise time and half recovery time are sporadically adopted, although their
relation to psychophysiological processes remain yet unclear.

When studying prolonged stimulation, both specific and spontaneous re-
sponses are considered. NS-SCRs frequency is the feature of interest, which can
be easily computed using a minimum amplitude as threshold. An alternative is to
compute the SCL, which can either include or exclude the specific responses pe-
riods depending on the experimental conditions (continuous or sporadic stimuli
presentation). For the latter case, a latency window criterion is required.

Finally, the analysis of traits also recurs to NS-SCRs rate, SCL, response
amplitude and habituation. The challenge is on whether to use or not a range
correction, by capturing the maximum and minimum EDA values during a ses-
sion. Both relative and absolute approaches can be found in the literature, with
pros-and-cons [8] and alternatives [3]. Test-retest reliability, psychometric prin-
ciples and questionnaires are crucial to view EDA response as a trait [8].

3 The Problem

The target problem of this work is to generalize the EDA sequential behavior for
different emotions and to assess their effect in emotion classification accuracy. In
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particular, for emotions elicited in human-robot vs. human-human interaction.
Emotion-driven EDA behavior can be learned by statistical models to dynam-
ically classify emotions. The contribution of this work is on proposing a novel
approach for this problem centered on an expressive pre-processing step followed
by the direct application of a sequence classifier, instead of performing traditional
methods of feature-driven analysis. Initial evidence for the good performance of
this approach over a preliminary collection is presented.

4 The Proposed Approach

This section proposes a new paradigm for emotion-recognition from EDA, col-
lapsing the traditional four-step process into a simpler and more flexible two-
stage process. There are two core strategies: to rely upon a good representation of
the signal, and to mine sequential patterns instead of retrieving domain features.

4.1 Experimental conditions and data properties

The collected EDA signals were obtained using wrist-worn Affectiva-QSensors7

and closely-controlled experimental procedures8. The wireless connectivity of the
adopted sensors enables the real-time classification of emotional states.

Additionally, the following signals were collected using Affectiva technology:
facial expression series, skin temperature and three-directional motion. Although
this paper is centered on the analysis of EDA, the joint analysis of the adopted
signals (multivariate time series mining) is of additional interest and can be done
by extending the dynamic Bayesian networks. Currently, the last two signals are
being currently used to affect the EDA signal: skin temperature to weight SCL
by correcting the individual reaction to room temperature, and body intense
movements to smooth correlated EDA variations. Facial recognition is adopted
just for post-experimental validation and interpretation.

4.2 Processing the signal using SAX

Since our goal is sequential data classification, we are interested in one approach
that simultaneous supports: i) reduced dimensionality and numerosity, and ii)
lower-bounding by transforming real-valued EDA into a symbolic representation.
First, reducing the high dimensionality and numerosity of signals is critical be-
cause all non-trivial data mining and indexing algorithms degrade exponentially
with dimensionality. Second, symbolic representations allow for the application
of more expressive techniques like hidden Markov models and suffix trees.

While many symbolic representations of time series exist, they suffer from
two critical flaws: i) mining algorithms scale poorly as the dimensionality of

7 data captured is considered as reliable as the tethered system developed by BIOPAC,
often used in physiological research, and is currently being adopted over a hundred
universities, which enable a standardized way of comparing experiments.

8 includes measuring of very high and low states of EDA, conservative signal stabi-
lization criteria, standardized stimuli presentation and context reproducibility
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Fig. 1: Commonly adopted representations vs. SAX [20]

the symbolic representation is not changed, and ii) most of these approaches
require one to have access to all the data, before creating the symbolic repre-
sentation. This last feature explicitly thwarts efforts to use the representations
with streaming methods, required for a dynamic emotion recognition from EDA.
To the best of our knowledge only Symbolic ApproXimation (SAX) provides a
method for performing operations in the symbolic space while providing the
lower bounding guarantee [20][33]. SAX is demonstrated to be as competitive or
superior as alternative representations for time series classification. SAX allows
a time series of arbitrary length n to be reduced to a string of w-length (w<n,
typically w�n) with dimension or alphabet size d>2 ∈ N. To mine signals in
main memory for real-time classification purpose, w and d parameters have to
be carefully chosen. Fig.1 compares SAX with the four most common adopted
alternatives [12]. A raw time series of length 128 is transformed into the word
ffffffeeeddcbaabceedcbaaaaacddee.

This work implemented SAX in two steps. Firstly, the signal is transformed
into a Piecewise Aggregate Approximated (PAA) representation, which provide
a well-documented method to reduce dimensionality. Secondly, the PAA signal
is symbolized into a discrete string allowing lower bounding, which can be useful
to perform distance metrics for recognizing emotion-centered patterns needed
for the classification task. Here, an important technique with visible impact in
accuracy, is the use of a Gaussian distribution over the normalized signals to
produce symbols with equiprobability recurring to statistical breakpoints [20].
In Fig.1, breakpoints define the boundary criteria across symbols.

Different criteria may be adopted to fix the signal dimensionality and nu-
merosity values. The normalization step can be done with respect to all stimu-
lus, to a target stimuli, to all subjects and to the available responses of a target
subject. Additionally, two mutually-exclusive strategies can be defined to deal
with variable signal numerosity. First, a ratio to reduce numerosity can be uni-
formly applied across the collected signals. Second, piecewise aggregation can be
adopted to balance the signals numerosity with respect to a particular emotion
label. Note that since the temporal axis is no longer absolute, relevant informa-
tion is lost and, therefore, this second strategy should only be adopted when
complemented by the first.

4.3 Mining the signal using hidden Markov models

After a pre-processing step using SAX and simple artefact-removal techniques,
there is the need to apply a mining method over sequential data to categorize
the behavior presented for different emotional states. This has the promise of
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increasing the accuracy as a probabilistic sequence generation can be learned
from the raw processed signal for each emotion-class, instead of loosing key
behavioral data through the computation of a simple set of metrics. Some of
the most popular techniques include recurrent neural networks, dynamic Bayes
networks and adapted prototype-extraction [5][26].

This paper proposes the use of hidden Markov models (HMM), a specific type
of a dynamic Bayes network, due to their stability, documented performance in
healthcare domains, simplicity and flexible parameter-control [30]. In particular,
[4] proposes that, at least within the paradigm offered by statistical pattern
classification, there is no general theoretical limit to HMMs performance given
enough hidden states, rich enough observation distributions, sufficient training
data, adequate computation, and appropriate training methods.

Markov models simplicity derives from the assumption that future predic-
tions are independent of all but the most recent observations. In a HMM, an
underlying and hidden automaton of discrete states follows a Markov constraint
and the probability distribution of the observed signal state at any time is deter-
mined only by the current hidden state. Given a set of training signals labeled
with a specific emotion, the core task is to learn the transition and generation
probabilities of the hidden automaton per emotion. This is done in practice by
maximizing the likelihood function iterations of an efficient forward-backward
algorithm until the transition and generation probabilities converge [30][5]. Fi-
nally, given a non-labeled signal, the selection of the emotion can be naively
classified by evaluating the generation probability of the exponential paths gen-
erated from each learned automaton lattices, and by selecting the path having
the highest probability. For this purpose, the Viterbi algorithm was selected [36].

In order to define the input parameters for the HMMs two strategies may be
consider. First, a sensitivity-analysis over the training instances per emotion to
maximize accuracy. Second, parameter-definition based on the signal properties
(e.g. high numerosity leads to an increased number of hidden states). Addition-
ally, an extension to traditional HMMs can be made to deal with multiple EDA
signals with varying dimensionality (smoothed and pronounced EDA). This aims
to increase the accuracy of the target approach by providing multiple paths to
select the label, since one path may not be the best for two different emotions.
Currently, this is done by computing the joint probability of the different paths.

5 Validation of our approach

The proposed EDA mining approach were applied over a small set of subjects
with preliminary but interesting conclusions. This section reviews them and
characterizes the experimental setting to be adopted for further validation and
emotion-driven EDA characterization.

5.1 Preliminary results

Preliminary evidence of the utility is described in Table 2. Due to the small sized
of the collected sample of stimuli-response EDA, no quantitative analysis on the
accuracy, specificity and sensitivity classification metrics is provided.
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Challenge Observations

Expressive behavior

An intricate observation was the sensitivity of the learned HMMs to ex-
pressive behavior as peak-sustaining values (e.g. as a response to warm
hugs) and fluctuations (e.g. for elicited anger). Such behavior is hardly
measured by feature-extraction methods since they loose substantial
amounts of potential relevant information during the computation process
and are strongly dependent on directive thresholds (e.g. peak amplitude
to compute frequency measures). We expect that, with the increase of
available signals, HMMs are able to learn internal transitions that capture
smoothed shapes per emotion, which enable the discrimination of differ-
ent types of rising and recovering responses following sequential patterns
with flexible displays (e.g. exponential, ”stairs”-appearance). The number
of discrete hidden values is an important variable for this expressivity.
In our current implementation, a sensitivity-analysis over the training in-
stances is performed per emotion until maximum accuracy is achieved;

Numerosity differences

Two strategies were adopted to overcome this challenge. First, signals
as-is (with their different numerosity) were given as input to HMMs as
dynamic Bayesian networks are able deal with this aspect (note, for in-
stance, the robustness of HMM on detecting hand-writing text with differ-
ent sizes in [5]). Second, the use of piecewise aggregation analysis by SAX
can be used to normalize different signals with respect to their numeros-
ity. However, since a good piece of temporal information is lost (as la-
tency, rising and recovery time), this temporal normalization is performed
per stimuli with respect to the average length of responses. This second
strategy increases significantly the performance of HMMs if the following
algorithmic-adaptation is performed: the input signal is mapped into the
standard-numerosity of each emotion in order to assess the probability of
being generated by each emotion-centered Markov model;

SCL differences

One of the key challenges is to deal with individual differences in terms
of SCL and SCRs amplitude under the same emotion. The normalization
step in traditional approaches fails to answer this challenge as SCL and
response amplitude are not significantly correlated (e.g. high SCL does
not mean heightened SC responses). The Gaussian distribution for dimen-
sionality control used by SAX provide a simple method to smooth this
problem. Additionally, our implementation supports both absolute and
relative criteria to mine EDA signals, with the scaling strategy being done
with respect to all stimulus, to the target stimuli, to all subjects or to
subject-specific responses;

Lengthy responses

Rising and habituation time provide a poor framework to study lengthy
responses as, for instance, response to astounding stimulus (where spon-
taneous amplitude-varying relapses are present). This expressive behavior
can still be considered in lengthy series by increasing the number of hid-
den states of the target HMM. Our implementation enables a dynamic
adaptation of HMM parameters based on the average length of response
to each stimuli;

Peak sensitivity

Our approach has the promise of overcoming the limitations of feature-
based methods when dealing with fluctuations of varying amplitude and
temporal distance (for instance, non-periodic relapses). This is done by
controlling dimensionality using SAX. A range of values for dimensional-
ity can be adapted, with two main criteria being adopted to increase the
accuracy of our classifiers: mapping the raw signals into low-dimensional
signals to capture smoothed behavior (e.g. alphabet size less than 8) and
into high-dimensional signals to capture more delineated behavior (e.g. al-
phabet size above 10). Currently, two HMM are being generated for each
of the strategy, with the joint classification probability being computed
to label a response. However, in future work, it is expected an adapta-
tion of the adopted HMMs to deal with multiplicity of signals, each one
embedding different dimensional criteria;

Table 2: Initial observations of the target approach over EDA samples
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5.2 Next steps

To gain further insight of the EDA response pattern to specific emotion-oriented
stimuli, we are undertaking a tightly-controlled lab-experiment. We expect to
have around fifty subjects and, at least, forty skin-conductive subjects with valid
collections. Since eight different stimuli (five emotion-centered and two others)
will be used per subject, our final dataset will have above three hundred collected
signals, with each stimuli having above thirty instantiations, which satisfies the
statistical requirements of hidden Markov models.

Additionally, facial recognition, skin temperature, body 3-dimensional mo-
tion and video-audio recording will be captured. A survey will be used to cate-
gorize individuals according to the Myers-Briggs type indicator and for a com-
plementary context-dependent analysis of the results. The target emotions are
empathy, expectation, positive-surprise (unexpected attribution of a significant
incremental reward), stress (impossible riddle to solve in a short time to main-
tain the incremental reward) and frustration (self-responsible loss of the initial
and incremental rewards dictated by the agent). The adopted reward for all
subjects is one cinema-session ticket-offer. The stimulus will be presented in the
same order in every experience and significant time will be provided between
two stimulus to minimize influence, although noise propagation across stimuli
is a necessary condition in multiple-stimulus experiment. Equivalent scenarios
will be used for human-human and human-robot interaction, with subjects being
randomly selected to attend one scenario. The robots used for this experience
will be EMYS and NAO9.

6 Applications

The main implication of the potential gains in accuracy for recognizing emotions
is an improved access to someone’s feelings. One key area covered by the recent
efforts to integrate data mining and agent interaction [9]. In the target experi-
ment, this has direct application in human-robot interaction. Additional appli-
cations include: clinical research (emotion-centered understanding of addiction,
affect dysregulation, alcoholism, anxiety, autism, attention deficit hyper- and hy-
poactivity, depression, drug reaction, epilepsy, menopause, locked-in syndrome,
pain management, phobias and desensitization therapy, psychiatric counseling,
schizophrenia, sleep disorders, and sociopathy); well being as the study of the
effect of relaxation techniques like breathing and meditation; marketing to un-
derstand the emotions evoked by a message; conflict reduction in schools and
prisons by early detection of hampering behavior (particularly important with
autistics who have particular trouble understanding theirs and others feelings);
education through the use of real-time emotion-centered feedback from students
to escalate behavior and increase motivation; and many others as biofeedback,
EDA-responsive games and self-awareness enhancement.

9 http://emys.lirec.ict.pwr.wroc.pl and http://www.aldebaran-robotics.com
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7 Conclusion

This work introduces a novel paradigm to analyze electrodermal activity in
emotion-centered experiments. For this purpose, it proposes an approach cen-
tered on an expressive pre-processing step using SAX followed by the application
of hidden Markov models over the processed sequential data. This has the benefit
of overcoming the limitations of traditional methods based on feature extraction,
namely limitations to deal with expressive behavior (flexible relation of both
temporal and amplitude axis through patterns) and with individual response
differences related to signal dimensionality and numerosity. Multiple criteria for
modeling the signal and for defining the classifier parameters are proposed, with
the labeling step relying on the calculus of joint probabilities.

These results were supported by initial observations from a collected sample
of signals. An extended experimental study is being undertaken for further vali-
dation and to characterize the differences among emotion-driven EDA patterns.

Acknowledgment: this work is partially supported by Fundação para a Ciência e
Tecnologia under the PhD grant SFRH/BD/75924/2011 and the research project D2PM
(PTDC/EIA-EIA/110074/2009).
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