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Abstract Mining evolving behavior over multi-dimensional structures is increas-
ingly critical for planning tasks. On one hand, well-studied techniques to mine tem-
poral structures are hardly applicable to multi-dimensional data. This is a result
of the arbitrary-high temporal sparsity of these structures and of their attribute-
multiplicity. On the other hand, multi-label classification over denormalized data
do not consider temporal dependencies among attributes.
This work reviews the problem of long-term classification over multi-dimensional
structures to solve planning tasks. For this purpose, firstly, it presents an essential
formalization and evaluation method for this novel problem. Finally, it extensively
overviews potential relevant contributions from different research streams.

1 Introduction

New planning opportunities are increasingly triggered by the growing amount,
completeness and precision of temporal data. The integration of data in multi-
dimensional structures have been enabled through the world-wide adoption of data
warehouses. For this setting, the study of long-term prediction in evolving contexts
can increasingly provide additional value [6][34]. Applications may range from clin-
ical prevention to several planning tasks in retail, educational, commercial, financial
and social security domains [26][6]. An example may be the long-term planning of
hospital resources based on underlying healthcare needs (for instance, seen as the
need of a patient get a specific treatment within upcoming years).

The mining of temporal dynamics using multistep-ahead classifiers has been
mainly applied to temporal and sequential structures [48][10]. In practice, this body
of knowledge is hardly applicable to multi-dimensional data structures. Although
mappings between these structures exist, the resulting temporal event-sparsity and
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attribute-multiplicity claim for new research. Additionally, although multi-label
classifiers can be adopted by denormalizing multi-dimensional into tabular struc-
tures, they fail to deal with temporal dependencies. Further challenges of long-term
prediction in evolving contexts include the ability to deal with different time scales
[1][7], advanced temporal rules [4] and knowledge-based constraints [3].

When considering, for example, an hospital planning task, multi-dimensional
structures are centered in health-records (the fact) and grouped based on a dimen-
sion, usually the patient. Health records may track a multiplicity of measures re-
lated to diagnostic, prescription or treatment dimensions. Additional challenges
arise from the arbitrary sparse nature of measure recordings. Thus, this structure
does not allow the application of existing well-studied predictors.

The document is structured as follows. Section 2 discusses the novelty of this
problem and introduces a case to illustrate its significance. Section 3 formulates the
problem of long-term prediction over multi-dimensional structures. Section 4 dis-
cusses the key aspects for its correct assessment. Finally, an overview of the relevant
work in long-term prediction is synthesized and existing contributions plugged as
potential principles to address the problem.

2 Why a New Long-term Prediction Formulation?

Consider a training dataset following a simple multi-dimensional structure, a star
scheme centered in one fact that track events unevenly spread across time. In health-
care, a health record can flexibly capture measures related to laboratory results, pre-
scriptions, treatments and diagnostics. Health records can be used to learn a multi-
step-ahead learner that classifies a measure across multiple periods for planning
tasks as the hospitalization needs of a patient in the upcoming months. Lower-level
planning tasks and personalized tasks (as the prediction of evolving physiological
states) can be additionally consider. Despite the relevance of this problem, to the
best of our knowledge there is not yet a dedicated research stream for its solution.

Fig. 1: Contributions from existing research streams



Fig.1 gathers the existing research streams that can provide important contri-
butions to the development of novel approaches for long-term prediction. These
contributions may be applied as-is or through mappings into tabular and temporal
structures, as illustrated in Fig.2. Next subsections synthesize their limitations.

Fig. 2: Structural mappings for an adapted multistep-ahead classification

2.1 Limitations of multi-label classifiers

A simple procedure to deal with prediction over multi-dimensional structures is
to denormalize these structures into a plain tabular structure and to apply a multi-
label classifier. A first set of challenges appear as multi-label classifiers were de-
veloped with a different purpose – categorization and multi-parameter diagnosis.
First, multi-label classifiers are not prone to label ordinal attributes, but to label dis-
joint binary attributes. Labeling of nominal attributes requires the mutual exclusive
labeling of binary attributes. Second, attributes are considered to be independent.
Temporal dependencies are not captured in the learning process.

Additionally, two core and severe problems arise when adopting tabular struc-
tures. First, when capturing each event occurrence as an attribute, the size of the
table may grow dramatically, which can significantly reduce the efficiency of the
learning process and the accuracy of the classifier. Second, its viability strongly
depends on the ability to capture the temporal dependencies both among domain
attributes and across the periods under prediction.

2.2 Limitations of sequence and time series predictors

Given a training dataset with series composed by n+h observations, multi-step-
ahead prediction over univariate series is the task of learning a model to predict
the h next observations of a n-length series, where h>1 is the prediction horizon.

These series can either be sequences, as a genetic arrangement, or time series,
as a physiological signal. Research streams on these areas are important if we want



to work with one measure-of-interest. To deal with the multiple measures, one can
treat these measures as a multivariate sparse temporal structure. Let us assume that
a mapping between a dimensional and a temporal structure is possible. In this way,
the problem would be the prediction of multiple periods based on two types of input:
sparse multivariate time sequences derived from fact measures, and static attributes
derived from dimensions. With this formulation, three challenges arise.

The first challenge is to adapt long-term predictors to deal with arbitrary-high
sparse time sequences. The rate of events’ occurrence per fact may vary significantly
across time. This happens within and among patients in healthcare systems, but may
also occur with banking applications, genetic mutations or almost every dynamic
daily-life system. Structural sparsity results from the alignment of events across
time points. Sequential predictors can solve this problem as they are focused on
causalities [40]. However, since they do not account for temporal distances among
events, they are non-expressive candidates.

The second challenge is to enrich long-term prediction in order to deal with mul-
tivariate time sequences. For instance, determining if a patient is hospitalized across
multiple periods is conditionally dependent on the patient clinical history composed
by multiple attributes related to prescriptions, samplings, treatments and diagnosis.

The third challenge is to perform long-term prediction in evolving contexts. The
relevance of understanding evolutionary behavior in planning problems through pre-
dictive rules is discussed in [26][22]. Predictors can either scan large or local peri-
ods of a fact measure depending if the measure is considered to be stationary or
non-stationary. In the first case, cyclic behavior is key [26]. In the second case, un-
derstanding of evolving and calendric behavior is critical and rarely considered.

2.3 Illustration

Challenges for long-term prediction in healthcare are synthesized in Table 1.

Healthcare data challenges Requirement

Health records may define multiple measures of interest; Strategies to deal with multivariate structures

The number of health records can be significantly high and its flex-
ible nature may hamper the learning;

Background knowledge guidance to avoid efficiency
and domain-noise problems

Health records are irregularly collected due to an uneven schedule
of visits or measurements made;

Methods to deal with missing values and event spar-
sity

Health record sampling grid varies both among and within pa-
tients;

Efficient structural operations for record alignment
and time partitioning

Different measures can be recorded at distinct time scales; Calendric-mining and aggregation techniques to deal
with the different sampling rate of health records

Evolving patterns, as the progress of a disorder or a reaction to a
prescription, are spread across many non-relevant records;

Convolutional memory techniques and pattern-based
learning ability to detect evolving health trends

Table 1: Requirements for long-term prediction over dimensional healthcare data



3 Problem formulation

This section formalizes the target problem. For this task, a formal review of the
underlying concepts is introduced.

3.1 Underlying definitions

Def. 1 Consider a dataset of training instances, D = {x1, ...xn}, of the form xi =
(a,y), where a= {a1 ∈A1, ..,am ∈Am} is a set of input attributes and y=(y1, ..,yh)∈
Y h is a vector of either numeric or categorical symbols, where h > 1 is the horizon
of prediction. Given a training dataset, the task of long-term prediction is to learn
a mapping model M : A→ Y h that accurately and efficiently predicts y based on a
particular x, i.e. y=M(x).

Given a training dataset D, the task of long-term prediction over tabular data is to
learn a model M : A→ Y h, where the domain is a set of alphabets, A = {Σ1, ..,Σm}.

Although this problem is similar to a multi-label classification problem, its defi-
nition explicitly considers conditional temporal-dependency among y symbols and
includes ordinal attributes.

Def. 2 Let Σ be an alphabet of symbols σ , and τ ∈R be the sample time interval
of a series, {θi | θi = τ0 + iτ; i ∈ N}. A sequence s is a vector of symbols

s=(ϕ1, ..,ϕn), with ϕi=[ϕi,1, ..,ϕi,d ] ∈ (R|Σi)
d .

A time series t with regard to θi, is given by

t={(ϕi,θi)|ϕi=[ϕi,1, ..,ϕi,d ] ∈ (R|Σi)
d , i=1, ..,n} ∈ Tn,d .

A time sequence w is a multi-set of events

w={(ϕi,θ j)|ϕi=[ϕi,1, ..,ϕi,d ]∈ (R|Σi)
d ; i=1, ..,n; j∈N}.

s, t and w are univariate if d = 1 and multivariate if d > 1.

The domains of sequences is Sn,d , time series is Tn,d , and time sequences is Wn,d ,
where n is the length and d the multivariate order.

Exemplifying, a univariate time series capturing monthly hospitalizations can be
y={(0,τ1),(3-5,τ2),(>5,τ3),(2,τ4)}, with y ∈ T4,1. A multivariate time sequence
capturing two physiological measures from blood tests can be a = {([2 21],τ2),([3
19],τ3),([2 20],τ5)}, with a ∈W6,2.



Given a training dataset D, the well-studied task of time series long-term predic-
tion problem is to learn a mapping model M : A→ Y h, where A = Tm,1, and A and
Y values are either numeric or share the same alphabet Σ .

Given a training dataset D, the task of long-term prediction over multivariate
sparse temporal structures is to define the map model M : A→Y h, where A=Wm,d .

Def. 3 Given a training dataset D with tuples in the form of (a={a1∈A1, ..,
am∈Am},y∈Y h), the task of long-term prediction over multi-dimensional data is
to construct a mapping model M : {A1, ..,Am} → Y h, where a attributes are either a
symbol or a time sequence of l-length and multivariate d-order (Xi = Σ |Wl,d), y is
a vector of h symbols, and h > 1.

Exemplifying, an instance, ({x1,x2,x3},y), can represent a patient, where x1 is
his age, x2 and x3 are two multivariate time sequences capturing measures from
blood and urine tests, and y is his number of hospitalizations across different peri-
ods. The goal is to learn a model, based on a training dataset, to predict multi-period
hospitalizations y for a patient based on health-related data x.

3.2 Long-term prediction over dimensional data

In order to understand how to derive x from a multi-dimensional dataset, some con-
cepts are formalized below.

A multi-dimensional data structure, {(∪i{Dimi})∪Fact}, is defined by a set of
dimensions, Dimi, and one fact, Fact. Each dimension contains a primary key, a
set of attributes a, and no foreign keys. The fact contains one foreign key for each
dimension and a set of measures (b1, ..,bd).

Two special dimensions, the time and select dimensions, need to be identified.
The select dimension, the patient in the healthcare example, is used to group the
multiple fact occurrences across time in n instances (x1, ..,xn) according to the pri-
mary keys in this dimension. The number of instances, n, is given by the number of
these primary keys.

Given a multi-dimensional dataset D, its mapping in a set of instances of the
form (a1, ..,am) follows a three-stage process. First, using D select-dimension, the
set of all fact occurrences is grouped in n instances (x1, ..,xn). Second, the set of
fact occurrences for each instance is mapped into a multivariate time sequence,
b={(bi,θ j)| ϕi=[bi,1, ..,bi,d ]; i=1, ..,n; j∈N}, where the order d is the number of
fact measures. Third, the attributes from dimensions are captured as one-valued at-
tributes, aDimi=(ai,1, ..,ai,|Dimi|). After this three-step process the instances follow
the form (a1, ..,am), where ai attribute is either derived from a dimension or a mul-
tivariate time sequence of l-length derived from a fact (ai=b ∈Wl,d).

Illustrating, consider the dimensional dataset {Dimpatient= {id2,A1,1,A1,2},Dimlab
={id3,A2,1},Dimtime,Facthr={ f k1, f k2, f k3,B1,B2}}. An example of a retrieved pa-
tient tuple is (a1,1,a1,2,a2,1,{([b1,1 b1,2],θ1),([b2,1 b2,2],θ4),([b3,1 b3,2],θ5)}).



In real-world planning tasks, the training dataset may not be temporally compli-
ant with the instance under prediction. Two strategies can be used in these cases:
allowance of temporal shifts to the training tuples and project temporal behavior
from unsupervised learning (transiting from a pure supervised into an hybrid solu-
tion). For instance, if we consider health records between 2005 and 2011, and we
want to predict the hospitalizations for a patient until 2014, the model can either rely
on a 3-year temporal shift and on the projection of cyclic and calendric patterns.

Finally, the domain and properties of the adopted datasets (either multi-dimensional,
relational or series-based) should be made available. Variables should not only in-
clude sensitivity to temporal shifts, but additionally the degree of sparsity, noise sen-
sitivity, completeness, length, degree of stationarity, presence of static features, dis-
cretization constraints, and, in the case of temporal structures, allowance for item-
sets, multivariate order and alphabet amplitude.

4 Evaluation

Long-term prediction requires different metrics than those used in traditional single-
label classification. This section presents the set of metrics adopted in the literature,
and proposes a roadmap to evaluate long-term predictors.

Predictor’s efficiency is measured in terms of memory and time cost for both the
training and testing stages. The accuracy of a predictive model is the probability
that the predictor correctly labels multiple time points, P(ŷ = y). This probability
is usually calculated over a train dataset using a 10-fold cross-validation scheme.
If not, disclosure of the adopted sampling test technique (e.g. holdout, random sub-
sampling, bootstrap) needs to be present. Accuracy can be employed using similarity
or loss functions applied along the horizon of prediction. Next sections review ways
to translate horizon-axis plots of accuracy into a single metric.

4.1 Predictor’s accuracy

First, we visit metrics both from time series prediction and multi-label classification,
required if someone wants to establish comparisons with these works. Second, we
introduce key metrics to cover different accuracy perspectives for this problem.

Multistep-ahead prediction:
The simplest way of understanding the accuracy of a multistep-ahead predictor

is to use the mean absolute error (MAE), the simple mean squared error (MSE), the
mean relative absolute error (RAR) or the average normalized mean squared error
(NMSE), the ratio between the MSE and the time series variance. The normalized
root mean squared error (NRMSE) either uses the series amplitude (when the at-
tribute under prediction is numeric) or the number of labels (when the target attribute



is ordinal) to normalize the error. The accuracy is sometimes assessed through the
symmetric mean absolute percentage of error (SMAPE) [8]. The average SMAPE
over all time series under test is referred as SMAPE*. Other less frequent metrics,
as the average minus log predictive density (mLPD) or relative root mean squared-
error (RRMSE), are only desired for very specific types of datasets and, therefore,
are not consider.

In fact, every similarity function can be used to compute a normalized distance
error. A detailed survey of similarity-measures is done in [21]. Euclidean-distance,
similarly to SMAPE, is simple and competitive. Dynamic Time Warping treats
misalignments, which is important when dealing with long horizons of prediction.
Longest Common Subsequence deals with gap constraints. Pattern-based functions
consider shifting and scaling in both temporal and amplitude axis. These similarity
functions have the advantage of smoothing error accumulation, but the clear draw-
back of the computed accuracy to not be easily comparable with literature results.

NMSE(y, ŷ)=
1
h Σh

i=1(yi−ŷi)
2

1
h−1 Σh

i=1(yi−ȳ)2

NRMSE(y, ŷ)=

√
1
h Σh

i=1(yi−ŷi)2

ymax−ymin
∈ [0,1]

SMAPE(y, ŷ)= 1
h Σ h

i=1
|yi−ŷi|

(yi+ŷi)/2 ∈ [0,1]

To compute the predictor’s accuracy, the multiple correlation coefficient R2 is
adopted. Both the average and the harmonic mean (minimizing the problems of the
simple mean) are here proposed. A threshold for a set of testing instances below 0.9
is consider non-acceptable in many domains.

Acci(y, ŷ)=1−(NRMSE(y, ŷ) ∨ SMAPE(y, ŷ))

Accuracy= 1
n Σ n

j=1Acci(y j, ŷ j) ∨ n(Σ n
j=1

1
Acci(y j ,ŷ j)

)−1

In sequence learning, additional accuracy metrics consider functions applied to
subsequences. The simplest case is of boolean functions that verify the correct label-
ing of contiguous points. The variance of functions applied to subsets of contiguous
periods is key if the performance of the predictor deteriorates heavily across the
horizon of prediction. This metric, here referred as error accumulation, avoid the
need of a visual comparison of accuracy across the horizon.

Multi-label classification:
Multi-label classification metrics are relevant to compare results when the class

under multi-period prediction is nominal. Beyond the common intersection operator
used to compute accuracy, additional functions can be adopted to differentiated costs
for false positives and true negatives or to allow for XOR differences.

Accuracy= 1
n Σ n

j=1
|y j∩ŷ j |
|y j∪ŷ j | [53]

HammingLoss= 1
n Σ n

j=1
|y j XOR ŷ j |

h [53]



Target accuracy metrics:
When the class for prediction is numeric or ordinal, the accuracy of the long-

term predictor should follow one of the loss functions adopted in multistep-ahead
prediction. Preferably, NRMSE and SMAPE if the goal is to compare with literature
results. A similarity function that treats misalignments should be complementary
applied for further understanding of the predictor’s performance.

If the class for prediction is nominal, the accuracy should follow the adapted
multi-label accuracy metric defined below, and be potentially complemented with
other loss functions to deal with temporal labeling misalignments.

Acci(y j, ŷ j)= 1
h Σ h

i=1 | y
j
i ∩ ŷ j

i | ∨ 1−LossF(y j, ŷ j)

Accuracy= 1
m Σ m

j=1Acci ∨ n(Σ n
j=1

1
Acci(y j ,ŷ j)

)−1

Accuracy may not suffice to evaluate long-term predictors. Specificity, sensitivity
and precision can be evaluated recurring to a 3-dimensional decision matrix, where,
for instance, a mean metric can be applied to eliminate the temporal dimension.

In non-balanced datasets, as the target healthcare datasets, most of the consid-
ered instances are in a non-relevant category. For instance, critical patients are just
a small subset of all instances. A system tuned to maximize accuracy can appear
to perform well by simply deeming all instances non-relevant to all queries. In the
given example a predictor that outputs zero hospitalizations for every patient may
achieve a high accuracy rate. A deep understanding can be made by studying recall,
fraction of correctly predicted instances that are relevant, and precision, the fraction
of relevant instances that are correctly predicted. F-measure trades-off precision ver-
sus recall in a single metric. By default, α = 1/2, the balanced F-measure, equally
weights precision and recall.

To redefine these metrics, a boolean criteria T is required to decide whether an
instance is of interest. For example, relevant patients have average yearly hospital-
izations above 2. Table 2 presents the confusion matrix for the target predictors,
from which a complementary set of metrics were retrieved.

Relevant Non-relevant

Positive tp=Σ n
j=1T (y)∧Acc(y, ŷ)≥β fp=Σ n

i=1(1-T (y))∧Acc(y, ŷ)<β

Negative fn=Σ n
j=1T (y)∧Acc(y, ŷ)<β tn=Σ n

i=1(1-T (y))∧Acc(y, ŷ)≥β

Table 2: Confusion matrix for long-term predictors

Precision= t p
t p+ f p =

Σn
j=1(T (y

j)∧Acc(y j ,ŷ j)≥β )

Σn
j=1(T (y

j)∧Acc(y j ,ŷ j)≥β )∨(1−T (y j)∧Acc(y j ,ŷ j)<β )

Recall= t p
t p+ f n =

Σn
j=1(T (y

j)∧Acc(y j ,ŷ j)≥β )

Σn
j=1T (y j)

FMeasure= 1
α

1
Precision+(1−α) 1

Recall
, where α ∈ [0,1]



RoundAccuracy= t p+ f p
t p+tn+ f p+ f n = 1

n Σ n
j=1(Acc(y j , ŷ j)≥β )

4.2 Other relevant metrics

Predictor’s error accumulation, the propagation of past prediction errors into future
predictions, can be expressed by a bias-variance for squared loss functions [17].

Predictor utility defines the interestingness of long-term predictors based on use-
fulness, novelty and understandability metrics. Usefulness concerns the probability
of an arbitrary instance to have their unlabeled multi-points classified according to
a well-defined behavior. Novelty measures the contribution of a predictive model to
increase the knowledge of the domain. Finally, understandability refers to the ability
of retrieving knowledge from the learner. This work does not consider utility due to
domain-driven multiplicity of usefulness and novelty criteria [1] and as consequence
of the increasingly available methods to achieve high understandability [43].

Finally, smoothness metrics [17] evaluate the ability of the predictor avoid over-
fitting when noise fluctuations are present.

5 Related Research

Work on active research streams, illustrated in Fig.5, have presenting important re-
sults to constrain the solution space.

Fig. 3: Key areas for the definition of principles across different settings

5.1 Prediction approach

A. Structural dependency. A decision axis is whether to consider or not depen-
dencies among the periods under prediction. Conventional approaches follow a



multiple-input single-output mapping. In iterated methods [11][8], a h-step-ahead
prediction problem is tackled by iterating, h times, the one-step-ahead predictor.
Taking estimated values as inputs has an evident negative impact in error propaga-
tion [46]. Direct methods perform the h-step-ahead prediction by learning h models,
each returning a direct forecast. Although not prone to error accumulation [46], they
require higher functional complexity to model the stochastic dependencies between
two non-similar series. Additionally, the fact that the n models are learned indepen-
dently, prevents this approach from considering underlying dependencies among the
predicted variables that may result in a biased learning [10]. In literature, successful
hybrids that combine both approaches exist [47].

Multiple-Input Multiple-Output (MIMO) methods learn one model that preserves
the stochastic dependencies for a reduced bias, although reduces the flexibility
and variability of single-output approaches that may result in a new bias [10][8].
To avoid this, intermediate configurations can be set by decomposing the original
task into k = h/s tasks, each output with size s, with s ∈ {1, ...,n}. This approach,
Multiple-Input Several Multiple-Outputs (MISMO), trades off the property of pre-
serving the stochastic dependency among future values with a greater flexibility of
the predictor [52].

B. Learning model. Independently of the structural dependency choice, several
learning paradigms exist. All of them, either implicitly or explicitly, model the mul-
tivariate conditional distribution P(Y |A).

Learners can either follow linear or non-linear predictive models. Linear mod-
els include simple, logistic or Poisson regression, as integrated recurrent auto-
regressions and feed-forward moving average mappings [34].

Non-linear long-term predictors can either define probabilistic or determinis-
tic models. Most are adaptations of traditional classifiers using temporal sliding
windows. Probabilistic predictors include (hidden) Markov models (HMM) [35],
variable-memory Markov models [5], conditional random fields [30], and stochastic
grammars [16]. Deterministic predictors include recurrent, time-delay and associate
neural networks [25][31], multiple adaptive regression splines [36], regression and
model trees [13][44], support vector machines (SVM) [15], and genetic solvers [18].

C. Plugged Methodologies. Significant performance improvements are triggered
by plugged temporal methodologies that predictors may adopt [43].

C1. Structural operations. Suitable dataset representations, similarity-measures
and time-partitioning strategies are required for a quick and flexible learning. Cri-
teria for temporal partitioning include clustering, user-defined granularities, fuzzy
characterization, split-based sequential-trees, domain-driven ontologies and sym-
bolic interleaving [42][40][1].

C2. Time-sensitive techniques. Strategies to enhance the performance of long-term
predictors for healthcare planning tasks are required to answer the introduced re-
quirements. Techniques to deal with data sparsity have been proposed, for instance,
in [38][27]. The goal is to avoid the exponential growth of the target data struc-



tures and to correctly interpret empty time points. Time windows and feature-based
descriptions have been proposed to deal with temporal granularity. [23] and [2] pro-
vide initial principles for hierarchical temporal zooming operations and calendars.

Techniques to deal with data attributes multiplicity have been addressed in mul-
tivariate response prediction research streams. The task is to predict a matrix of
responses based for multivariate time series [14]. Due to the complexity of this
task, existing solutions are linear vector auto-regressions [32]. Although multivari-
ate responses are useful to assist the prediction of class-of-interest, content-temporal
dependencies among the input attributes are not considered.

Finally, covariance functions to deal with memory sampling, following either
a parametric or non-parametric approach for the selective retaining of decisive
events have been proposed in [51]. Strategies, as binary or exponentially decay-
ing weighted of an input function, set a trade-off between depth (how far memory
goes) and resolution (degree of data preservation).

C3. Evolutionary behavior. The understanding of evolving behavior to balance the
smoothing and overfitting problems of long-term predictors is still a youth research
stream. Prediction rules, which specify a causal and temporal correlation between
time points, have been used to assist prediction [43]. In [22], emerging or evolution-
ary patterns, patterns whose support increases significantly over time, are adopted.

C4. Background knowledge. Finally, background knowledge is increasingly claimed
as a requirement for long-term prediction, as it guides the definition of time windows
[42]; provides methods to bridge different time scales, to treat monitoring holes
and to remove domain-specific noise [6]; defines criteria to prune the explosion of
multiple-equivalent patterns [3]; and fosters the ability to incrementally improve
results by refining the way domain-knowledge is represented [3]. A hierarchy of
flexible content constraints, and of taxonomical and relational time relaxations is
given in [1]. Further modeling of domain-driven temporal dynamics is required [2].

5.2 Related research streams

Time series long-term prediction, sequence learning and multi-label classification
are the research streams with major relevant contributions.

Long-term prediction. Although traditionally applied over time series, it can be
extended to deal with time sequences.

In [17], a comparative study on the performance of iterated, direct and hybrid
single-output approaches in terms of their error accumulation, smoothness of pre-
diction, and learning difficulty is done. Selected literature have been provided dif-
ferent methods to define s-variable in MISMO approaches (as cross-validation for
different values or as a function of the current query point). Experimental studies
[52] show that the choice of s strongly varies according to the case, with s=1 (Di-
rect method) and s=n (MIMO method) being good performers in less than 20% of



the cases. Improvements have been achieved in case of a large horizon h by adopt-
ing time series operators as the total or partial autocorrelation in multiple-output
approaches [52]. A comparison of five multi-step-ahead predictors is done in [8].

Linear AIRMA models have been applied to deal with non-stationarity by defin-
ing a separated model learning for each suitable temporal window assumed to be
stationary. Alternatively, in [45], clustering is combined with linear function approx-
imation. In [17], an hybrid HMM-regression is evaluated using different regression
orders and predicting windows sizes. Regression trees [13] and model trees [44] are
adapted decision trees, where each leaf stores a linear predictor.

Evaluation of three multiple-output neural network predictors (simple feed-
forward, modular feed-forward and Elman) is done in [9]. In [39] temporal con-
volution machines use Gaussian distributions to learn a class of multimodesl dis-
tributions over temporal data using three recurrent neural network variants. In [12],
Bayesian learning is applied to deal with noisy and non-stationary series.

In [10], multiple-output approaches are extended with query-based criteria grounded
on local learning. In [29], least-squares support-vector-machines (LS-SVM) are
adopted with a local criteria for input selection, mutual information, to estimate
dependencies according to Shanon entropy principle. In [46], k-nearest neighbors
selection and noise estimation are additional criteria applied to select parameters to
guide ARIMA and neural networks with encouraging results.

Sequence Learning. Sequence learning methods are adopted when the mining goal
is sequence prediction, sequence recognition or sequential decision making [48].
The sequence recognition problem can be formulated as a prediction problem, ŷ = y
where ŷ = M(a1, ..,am). In the field of sequential decision making, sequence el-
ements represent system states and the goal is to compose actions, Z, to reach a
specific state P(ZA→Y |AY ) or to satisfy a goal P(ZG=true|A) [48]. Only contributions
to the sequence prediction problem will be considered. Although sequence predic-
tion only considers the causal ordering of elements, it provides important principles
to consider in the solution space.

Unsupervised and reinforcement learning techniques from machine learning have
been applied to sequence prediction, although still not scalable for large data vol-
umes. We will briefly cover these contributions as they define important principles to
solve the introduced problem. Additionally, learning techniques as expectation max-
imization, gradient descendant, policy iteration, hierarchical structuring or grammar
training can be transversally applied to different implementations [30].

First, unsupervised learning are required in long-term prediction to avoid a bi-
ased learning towards smoothing or overfitting, and to deal with temporally non-
compliant instances. Motifs, calendric rules, episodes, containers and partially-
ordered tones [1][43][40] may be patterns of interest to assist prediction. Different
approaches for their use within predictors exits. In [37], patterns are translated into
boolean features to guide SVMs and logistic regressions.

Second, reinforcement learning [50] with two major types of predictors: induc-
tive logic predictors that learn symbolic knowledge from sequences in the form
of expressive rules [33], and evolutionary computing predictors that use heuristic-



search over probabilistic models of pattern likelihood [41]. Both methods are ap-
plied with temporal-difference methods [50]. These techniques are the preference
when one is not interested in a specific temporal horizon, but rather in predicting the
occurrence of a certain symbol or pattern. In [20], sequence-generating rule models
are defined to constrain which symbol can appear. In [19], time series are discretized
into feature vectors to train trees by varying parameters as the width of the sliding
window, from which rules are retrieved and combined with logical operators.

A large spectrum of implementations are, in fact, hybrid predictors. Examples
include the use of symbolic rules and evolutionary computation applied to neural
networks [49]. Although formal rule-based languages obtained by induction can be
used for long-term prediction, these methods have not been extensively applied due
to inference complexity [43].

Multi-label Classification. In [53] an overview of simple and hierarchical multi-
label classifiers is done. Multi-label learning provide basic principles to deal with
the long-term classification of nominal classes. Five methods that transform the
multi-label classification problem either into single-label classification or regression
problems are introduced. A set of classifiers and predictors are adapted for multi-
label data. Examples include a revised C4.5 with an adapted entropy calculation
[53], a kNN lazy learner that includes label-ranking probabilities [28], an extended
AdaBoost and a novel probabilistic generative model [24].

6 Discussion

This work formalizes the problem of long-term prediction over multi-dimensional
structures. It discusses the novelty and relevance of the problem in real-world appli-
cations. Accuracy, error propagation, noise sensitivity and complementary metrics
to deal with non-balanced datasets were pointed as critical and defined.

Limitations and potential contributions are detailed from the three related re-
search streams – multistep-ahead prediction, sequence learning and multi-label clas-
sification. Attribute multiplicity, conditional-dependency, and occurrence-sparsity
are key challenges to solve the target problem. Empirical contributions, in the form
of principles assessing one or more of these challenges, are the required next steps
to promote an efficient learning of accurate predictors.
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