
Object-centered Process Modeling
Towards a Modeling Approach for Data-Intensive Systems

Rui Henriques

Dissertation for the degree of Master in
Information Systems and Computer Engineering

Adviser Ph.D. António Manuel Ferreira Rito da Silva

Jury Committee

President Ph.D. Maria dos Remédios Vaz Pereira Lopes Cravo

Evaluation Jury Ph.D. Diogo Manuel Ribeiro Ferreira

Adviser Ph.D. António Manuel Ferreira Rito da Silva

October 2010

Abstract
The increasingly dynamic and data-pushed landscape, where some systems operate, triggers the need

to define new ways to model responsive processes that overcome limitations of traditional activity-

centered approaches. New modeling approaches appeared grounded on the premise that the coor-

dination of participants in data-intensive systems is pushed by object dependencies observed at the

data level. This thesis structures the set of requirements required for the modeling of responsive data-

intensive systems, uses this set to study emergent object-centered approaches from which it retrieves a

set of principles that constrain the solution space and, finally, develops a solution that integrates such

principles. This thesis updates and employs the event-driven theory to design the solution basis and

maps the proposed object-centered process models in YAWL to assure their correctness and executabil-

ity. Indicators and real-case confrontation reveal the adequacy of the new modeling approach to address

the evolution needs of data-intensive systems.

Keywords:
Process Modeling

Object-orientation

Evolution

Data-intensive System

i

Resumo
O crescente contexto dinâmico e orientado aos dados, onde alguns sistemas operam, desencadeia a

necessidade de definir novas formas de modelar processos ágeis que superem as limitações das abor-

dagens tradicionais centradas em actividades. Novas abordagens de modelação aparecem fundamen-

tadas na premissa de que a coordenação de elementos nestes sistemas é afectada por dependências

observadas ao nível dos dados. Esta tese define um conjunto de requisitos necessários à modelação de

sistemas fortemente orientados aos dados, deriva um conjunto de princípios do estudo de abordagens

emergentes centradas no papel dos dados, e desenvolve uma linguagem que integra estes princípios.

Esta tese define uma solução centrada na coordenação de objectos baseada em eventos para definir os

modelos-alvo, e mapeia-os em modelos YAWL para garantir a sua correcção e exequibilidade. Análises

baseadas em indicadores e na aplicação da abordagem em diferentes sectores revelam o seu potencial

em suportar a evolução de sistemas fortemente orientados aos dados.

Palavras-chave:
Modelação de Processos

Orientação aos Objectos

Evolução

Sistemas fortemente orientados aos Dados

ii

Acknowledgements
First, I would like to thank Professor António Rito da Silva for his incessant support, guidance and pa-

tient towards my way of working, and for always providing me with detailed and relevant suggestions

that led to the practical achievement of this work.

I also acknowledge the role of IST and, in particular, of CODE and INOV in supporting my research.

Finally, I would like to dedicate this thesis:

to Miguel Henriques, my brother, Rui Henriques, my father, and Elsa Henriques, my mother, for

all their Love, Will and Sacrifice. Ancestral journey mates;

to Maria Flávia de Monsaraz, for revealing me the meaning of Life. My source of inspiration;

to Master D.K. and A. Bailey, who taught me how to disclose the liberating Order of the Universe;

to José Augusto, João M. dos Santos, Gonçalo Ferreira, Francisco Maia, João Belchior, Carlos

Antunes, Elsa Torres, Ricardo Louro and Marta Oliveira. Soul friends, whose paths crossed

mine in a deep and irreversible way.

To them I owe the strength to approach this thesis with truth and dedication.

iii

List of Acronyms
AM Activity Model

ASF Algebraic Specification Formalism

BE Business Entity

(WS-)BPEL (Web Services’ extended) Business Process Execution Language

BPM Business Process Management

BPMN Business Process Modeling Notation

CEP Complex Event Processing

COREPRO COnfiguration-based RElease PROject

CRUDE Create, Read, Update, Delete and Execute

EdBPM Event-driven Business Process Management

GF Global Financing

GM Goal Model

HPMS Human Process Management System

IT Information Technology

LTL Linear Temporal Logic

PBWS Product-Based Workflow Support

PDM Product Data Model

PM Process Model

newYAWL new Yet Another Workflow Language

NP-hard Non-deterministic Polynomial-time hard

OLC Object Life-Cycle model

OM Object Model

RM Rule-set Model

SDF Syntax Definition Formalism

UML Unified Modeling Language

WfMC Workflow Management Coalition

XML eXtensible Markup Language

YAWL Yet Another Workflow Language

iv

Notation
Some structures apart from the usual text, figures and tables are adopted in this work. Their use aims to

better organize and emphasize the ideas to be expressed so its content can be easily assimilated by the

reader.

Definitions

The introduction of key concepts are framed by a light gray box. Exemplifying:

Def. n: A definition is a passage describing, and possibly formalizing, the meaning of a concept.

Source Code

Algorithms are presented using pseudo-code with a caption framed by a green box. Exemplifying:

Algoritm 1: The Min-Error algorithm with an earliest first heuristic

Input: Set of tasks and processors

Output: Mapping of tasks to processors

foreach Task i do
foreach Processor j do

Calculate EW(i, j);

if EW(i, j) ≤ EW(a,b) then
a = i;

b = j;

while Unscheduled tasks remaining do
foreach Processor j do

Calculate FT(a, j);

if FT(a, j) ≤ FT(a,c) then
c = j;

Schedule(Task a on Processor c) ;

v

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.2.1 Publications . 3

1.3 Structure . 3

I Conceptual Foundations

2 Thesis Context 5

2.1 The Systemic Context . 5

2.2 System Evolution . 6

2.3 Process Modeling . 7

2.4 The Role of Data . 8

2.5 Modeling Orientation . 9

2.6 Bridging the Concepts . 9

3 Thesis Problem 11

3.1 The application scenario . 11

3.2 Limitations of traditional approaches . 12

3.2.1 Activity-centered Modeling Approaches . 12

3.2.2 Traditional Document-based Modeling Approaches 14

3.2.3 Synthesis of Limitations . 14

3.3 The FIVE Requirements . 14

4 Thesis Statement 17

4.1 Research Artifacts . 17

4.2 Research Goals . 17

4.3 Research Methodology . 18

II Findings

5 State-of-the-Art 19

5.1 The Chosen Object-centered Approaches . 19

5.1.1 Advanced Document-based Modeling . 20

5.1.2 Artifact-centric Modeling . 21

5.1.3 Business Entities . 22

5.1.4 Product-based Workflow Support . 23

5.1.5 Data-driven Modeling . 25

5.1.6 Case Handling . 26

vi

5.1.7 Proclets . 27

5.1.8 Object-aware Business Processes . 28

5.2 Other Emerging Approaches . 29

5.3 Discussion . 30

III Solution Architecture

6 Solution Basis 32

6.1 System as Synchronized Set of State-based Entities . 32

6.2 The Process of Modeling Data-intensive Processes . 34

6.3 Solution Principles . 35

6.4 Principles and the Thesis Contribution . 37

7 Solution Derivation 38

7.1 Data Access . 38

7.2 Data-state Reaction . 41

7.3 Data-based Coordination . 43

7.4 Data-based Granularity . 46

7.5 Data Modeling . 47

IV Development

8 Object-centered Models Formalization 50

8.1 Object Models . 50

8.2 Activity Models . 54

8.3 Rule-Set Models . 57

8.4 Object-centered Process Models . 58

8.5 Object-centered Soundness Criteria . 60

9 Modeling Transformations 63

9.1 Map to plain YAWL models . 63

9.2 Map to proclets-enriched YAWL models . 65

9.3 Multi-colored places addition . 67

V Validation

10 Proof of the Concept 69

11 Practical Applicability 71

11.1 General Performance . 71

11.2 Sector-oriented Applicability . 72

11.2.1 Financing . 72

11.2.2 Manufacturing . 72

11.2.3 Healthcare . 74

11.3 Comparison of the Approaches Performance . 76

vii

12 Hypothesis Validation 78

12.1 System Implications . 78

12.2 Hypothesis Approval . 80

VI Concluding Remarks

13 Conclusion 80

14 Future Work 82

VII Bibliography

VIII Appendices

15 Event-driven Solution 90

15.1 Object-centered Systems are Event-driven by Nature . 90

15.2 Advantages . 91

15.2.1 Modeling Traceability and Correctness . 91

15.2.2 Modeling Usability . 91

15.2.3 Complex Event Processing and Modeling Abstractions 91

15.3 Notes on the Implementation Architecture . 92

16 Thesis Boundary 93

16.1 The Process Model Framework . 93

16.2 How Requirements foster Evolution of Data-intensive Systems? 95

17 Implementation Notes 97

17.1 The Application . 97

17.2 Models Syntax and Transformations . 98

18 GF Case Annexes 101

viii

List of Figures
1.1 Thesis Outline . 4

2.1 Abstract data-intensive system . 10

2.2 Abstract process model . 10

3.1 Activity-centered process modeling landscape . 11

5.1 Document-based simplified process model . 20

5.2 Artifact-centric simplified process model . 22

5.3 Simplified business operations model . 23

5.4 Product-based simplified data model . 24

5.5 Data-driven simplified data model . 25

5.6 Case Handling process model . 27

5.7 Proclets-based simplified process model . 28

5.8 Object-aware simplified process model and types of collective enactment of instances . . 29

6.1 Object-centered Processes Initial Meta-Model . 34

6.2 Basic Transformations on the Process of Modeling Object-centered Processes 35

7.1 The new landscape: integrating data in the process modeling landscape 39

7.2 Data-scope specification . 39

7.3 Form, the center notion for the execution of object-centered process models 40

7.4 Data-scope by omission . 41

7.5 Understanding the privilege access levels for an object-based authorization 41

7.6 How compound entities depend and affect the state of its internal entities 42

7.7 Definition of local precedences . 42

7.8 Precedences specification recurring to data dependencies 43

7.9 The need for objects’ encapsulation . 44

7.10 Synchronization of processes derived from objects communication 44

7.11 Default rule-set models dynamically generated . 45

7.12 Two different aggregation rules for instances that: i) share an upper parent, and ii) have

similar properties . 46

7.13 Zoom operations over different granular levels . 47

7.14 Framing activity will collective assignment of data, agent and constraints 48

8.1 Simple Object Model . 50

8.2 Two strategies for inheritance of data and constraints from a super-object model 52

8.3 Compound Object Model . 52

8.4 Atomic Activity Models: plain and using compound states 55

8.5 Modularity of a Process Model based on its Governed Models 56

8.6 Compound Activity Model . 56

ix

8.7 Mimic of simple gateway-patterns recurring to rule-set models 58

8.8 Notational convenience to depict advanced rule-set models 58

8.9 Simple Process Model . 59

8.10 Compound Process Model with a Marking . 60

8.11 How rule-set models affect the soundness of object-centered models 61

8.12 Transgress of proper termination criterion . 62

9.1 YAWL model generation and reduction . 64

9.2 Composition frames for the generated YAWL models . 65

9.3 Default rule-set models dynamically generated . 65

9.4 Derived proclets model from an object-centered process model 66

9.5 Solution to the proclet’s encapsulation problem: definition of a proclet mediator 67

9.6 Multi-colored tokens . 68

9.7 Default rule-set models dynamically generated . 68

11.1 Object-centered Modeling of the Global Financing case . 74

11.2 Object-centered Modeling of the Car Enginneering case . 75

11.3 Object-centered Modeling of the Clinic Diagnosis case . 75

15.1 Event-driven nature of data-intensive systems . 91

15.2 Architecture for the event-driven and object-centered modeling landscape 92

17.1 Extract of the algebraic equations used for the data-contexts definition 98

18.1 Simple data model . 101

18.2 Automatic generation of object models skeleton . 101

18.3 Manual enrichment of objects with data-dependencies and life-cycles 101

18.4 Dynamic life-cycle generation and manual definition of synchronization points between

object instances . 102

18.5 Dynamic generation of rule-set models and of an object model sound net 102

18.6 Dynamic derivation of activity execution behavior and default data-contexts (using de-

fault visibility criteria) . 102

18.7 Dynamic derivation of compound execution effects and manual definition of local order-

ings and of data-contexts . 103

18.8 Automatic derivation of the data-accessible objects (data-contexts can also be defined us-

ing object models) . 103

18.9 Dynamic derivation of object-centered process models based on object models 103

18.10Automatic completion of object-centered process models 104

18.11The mapping of object-centered process models into plain YAWL models and into a pro-

clets’ net . 104

18.12Mediator strategy to enable the composition mechanisms within proclets 104

18.13Data model for the GF case . 105

18.14Object placeholders defining GF points-of-synchronization 105

18.15GF object model (textual definition or views must be used to restrict complex graphical

dependencies) . 105

x

List of Tables
3.1 Problems of Traditional Modeling Approaches in Data-Intensive Landscapes 15

3.2 Data-related Requirements for Object-centered Approaches 16

5.1 Chosen Object-centered Approaches . 19

5.2 Evaluation of Advanced Document-based Modeling . 21

5.3 Evaluation of Artifact-centric Modeling . 22

5.4 Evaluation of Business Entities Modeling . 23

5.5 Evaluation of Product-based Modeling . 24

5.6 Evaluation of Data-driven Modeling . 26

5.7 Evaluation of Case Handling . 27

5.8 Evaluation of Proclets Modeling . 28

5.9 Evaluation of Object-aware Modeling . 30

5.10 Approaches Evaluation [subtitles: + answers; +/– partially answers; – not answers] 30

5.11 Brief Review of some of the Emergent Approaches . 31

6.1 Principles for the FIVE Requirements . 36

6.2 Source and Novelty of the proposed Principles . 37

11.1 Results: Generic Performance of Data-aware Approaches (with an available implementation) 72

11.2 Domain-specific modeling requirements for different sectors 73

11.3 Discussion of the Results for Data-aware Approaches in comparison with Object-centered

Modeling . 77

12.1 Implications of the use of the object-centered approach to model data-intensive systems . 79

16.1 Process Model Framework’s skeleton . 93

xi

List of Algorithms
1 The Min-Error algorithm with an earliest first heuristic . v

6.1 The Process of Modeling Data-intensive Processes . 35

7.1 Generation of Rule-set Models . 45

8.1 Derivation of a Sound Net for Object Models Composition 53

8.2 Derivation of a Sound Process Net . 59

9.1 Mapping of an Object-centered Process to a YAWL Process 64

9.2 Mapping of an Object-centered Process to a Proclets Net 66

17.1 Syntax specification of a simplified proclets net model . 99

17.2 Brief extract of the algebraic equations for the mapping in plain YAWL models 100

xii

1
Introduction

Evolution is the process of unfolding

a continually increasing power to respond to vibration.

– Alice Bailey, The Consciousness of the Atom

The operation of the Earth society system has become so complex that its elements have already lose the

whole view and do not know what role their work plays in the overall scheme. These elements are new

systems – nations, organizations or, at a more elementary level, agents – needed to carry out particular

processes. All of these elements have been fuzzily cooperating to develop and deliver productions

needed to keep their upper-systems evolving, i.e., continually increasing their ability to respond.

By decomposing complex systems in manageable subsystems, we are increasing the awareness at the

subsystems operation level but offering integration, adaptability and agility challenges to the root system.

Thus, to properly evolve, a system must be able to consistently and coherently operate as a unified

system and to answer to internal and external changes in a timely manner. Hence, the evolution of

a system depends on the system ability to coordinate its elements and their interaction with external

systems through exchanges of productions. These exchanges enable the satisfaction of a set of goals that

will increase the system effectiveness and efficiency to realize its purpose.

Since a system production is essentially an outcome of a set of actions performed in coordination

by a set of system elements, the ability of a system to evolve is strongly determined by the ability of a

system to continuously adjust its processes. Thus, to capture and adapt its processes, process models,

conceptualizations that abstract and prescribe a system operation, are adopted.

Process models can create an environment for the evolution of a system if they foster: i) system inte-

gration by prescribing the functional, informational, instrumental and contextual relationships among

the system elements; ii) system adaptability by promoting flexible and data-centered models; and iii)

system agility by assuring, through the adequacy of the sources of changes to the type of system, that

models’ adaptation is performed in a timely manner [70].

An elementary look at a system as a coordinated composition of participants allows us to precisely

identify the type of systems and source of evolution targeted by this thesis. A system participant can

either be passive if is subjected to transformation during the execution of a set of system actions (e.g. an

artifact), or active if performs actions aimed to change passive participants (e.g. an agent). At this scope,

a data-intensive system can be defined as a system that highly depends on how its passive participants

are defined, related and mediated among its elements to deliver a production to the environment.

Exemplifying, a health-care system operation, that relies on the state and mediation of patients,

examinations, reports and historical clinics to deliver a diagnosis, evolves by changing the way these

passive participants are related and constrained through its process models in order to abstract and

prescribe the new desired operation.

The increasingly diversity, complexity, data-dependency, unstructured degree and real-time dynam-

1

ics of these processes turn the study of their models’ evolution a specific and challenging task. Tradi-

tional approaches do not adequately answer this problem since fail to foster existing synergies between

the system informational and functional views as a result of separating the modeling of processes from

the modeling of system data, historically hidden behind applications [98].

This thesis is centered on how modeling approaches centered on passive participants structures,

the so-called object-centered approaches, support the continuous adjustment of its process models. The

research question can be formulated as following: How effective are object-centered process models supporting

the evolution of data-intensive systems?

1.1 Motivation

The increasingly uncertain, dynamic and data-pushed landscape where data-intensive systems oper-

ate triggers challenges to process models evolution, either when processes need to be modeled from

scratch (the revolutionary or clean-sheet approach [80][90]) or, as this work focuses, to organically adapt

through local improvements (the evolutionary or reference model approach [80][74]).

Barriers for the evolution of data-intensive process models are pointed in [74][64]. Their resolution

is particularly important for systems with particular complex data dependencies, systems that strongly

rely on the role of passive participants to constrain their operation, as encountered in: scientific work-

flow systems [4], manufacturing systems [90][77], health-care systems [112], government systems [27]

or insurance systems [3].

Common problems encountered by traditional approaches when modeling data-intensive processes

include the context-isolated enactment of activities causing data-access challenges and a loss of the

process global view, the absence of criteria for the activities granularity and the rigidity required to

specify networks of activities when loosely-coupled, dynamic and data-based constraints foster models

flexibility and expressivity.

Results from research [26][77] support the fact that system formalization with the data and process

perspectives integrated reveals opportunities that disrupt traditional modeling discipline. The natural

outcome orientation of many administrative and operational processes [106] turn the progress of sin-

gle process instances not directly dependent on the execution of activities but reactive on data changes

[64]. Contrasting to traditional modeling approaches which force the modeling of a system operation

into single activity-based monolithic processes, objects capture the operation as a collection of inter-

twined loosely-coupled life-cycles running at different speeds [112][26] and coping with different levels

of granularity [64]. There are also studies arguing that objects provide a natural basis to derive key per-

formance indicators [26], to become the ground of process stakeholders vocabulary [26] and to define

privilege access levels [35]. Linehan [67] states that a modeling centered in objects provides a natural

way for modeling system constraints.

Since data-intensive processes rely on the premise that relations between the passive participants

components implicitly define sub-process dependencies [64], new ways of dynamically support the

evolution of these processes can be exploited.

2

1.2 Contribution

This thesis proposes an analysis of the potentialities and problems triggered by object-centered modeling

approaches, to extract a set of principles, restrictions to process modeling freedom, on data-intensive

process models, and to define a solution basis where those principles can coexist thus leveraging the

ability of data-intensive systems to evolve.

Although several research exist in the scope of process modeling centered on objects [26][77] and on

process models evolution [46][99], since existing approaches were developed to face only a small and

specific set of concerns [64], their practical applicability is limited to a reduced set of domain-specific sce-

narios [64]. This seems unaccountable in the contemporary and digital era where, for instance, artificial

intelligence systems and several organizations and many of their subsystems are truly data-intensive

systems. This observation fosters the need to re-look to them from scratch in order to understand how

their potentialities can be combined.

The target audience for this thesis comprises, firstly, the computer science research focused on work-

flow and process management. Also, researchers from data and knowledge management may have

a potential interest as they respectively may find contributions on how system objects are modeled to

support process modeling and how objects capture systems tacit knowledge. The software community

can use the developed principles to engineer the logical systems for process management. Secondly, re-

searchers focused on enterprise design and engineering have also here a good pretext to broad, integrate

and challenge their understanding of these systems on the basis of object-centered models.

Concluding, this work propose validated directions to systematize and conceptualize the object-

centered process modeling universe and develops an approach that can be used as a meta-guider and

for principles integration on the modeling of data-intensive landscapes and as a catalyst for following

increments from studies on tacit and data-intensive processes.

1.2.1 Publications

Hitherto, the results of this research were disseminated to the community through the following publi-

cation: Rui Henriques and António Rito Silva, 2010, Object-centered Process Modeling: Principles to Model

Data-intensive Systems, Proceedings on the 4th International Workshop on Event-Driven BPM – EdBPM’10

(accepted and presented).

1.3 Structure

Accordingly to Fig.1.1, this thesis is divided into five logical parts.

First part, Conceptual Foundations, provides a structured context for the universe of discourse and

depicts the thesis problem, statement and validation methodology.

Second part, Related Work, presents how existent contributions and emergent data-aware approaches

answer to the requirements derived from the thesis problem.

Third part, Solution Architecture, incrementally describes the properties of the target object-centered

modeling approach. Relying on the previous part’s findings, it i) presents a set of principles that restrict

the solution space, ii) develops an initial skeleton for their coexistence, and iii) derives the modeling

approach using a formal reasoning guided by the introduced principles.

3

Figure 1.1: Thesis Outline

Fourth part, Development, guarantees the correctness and executability of the target models by for-

malizing and mapping them to an existing stable and expressive modeling language.

Fifth part, Validation, evaluates the research question in three distinct steps: i) description of the

developed proof-of-the-concept to assess the executability of object-centered modeling, ii) practical ap-

plicability evaluation using metrics and case-based application in comparison to alternatives, and iii)

retrieval of the main object-centered modeling implications to the evolution of data-intensive systems.

Finally, last part, Concluding Remarks, presents a set of theorems resulted from this work and possible

lines of though for expanding this work in the future.

4

IConceptual
Foundations

2
Thesis Context

Urano abre o Mental para uma imediata, intuitiva e global forma de Conhecimento.

As associações mentais passam a ser involuntárias, sintéticas, Universais.

Surgem súbitas, espontâneas, intuídas, como que reveladas.

– Maria Flávia de Monsaraz, A Onda de Urano

In order to introduce the theory on how models for data-intensive systems evolve, we need to struc-

ture the underlying universe of discourse. Section 2.1 adopts a systemic view to conceptualize the thesis

foundation. Sections 2.3, 2.4 and 2.5 incrementally develop the required context to understand the role

of data when modeling data-intensive processes. Finally, section 2.6 consolidates the depicted concepts.

2.1 The Systemic Context

The decomposition of complex systems in manageable subsystems is an important key to understand

their operation at arbitrates levels of abstraction. This decomposition increases awareness at the subsys-

tems operation level but offers integration, adaptability and agility challenges to the root system.

Inserted in the context of continually increasing data-intensive landscapes, this thesis adopts the

system process perspective to introduce new postulates on the modeling of system elements coordina-

tion to minimize these three challenges and foster system evolution. The process perspective sees each

system production as the outcome of a set of system reactions to internal and external system actions.

A system is a tuple < R,C, E,G >, where R is the structure, the set of bond relationships among a

composition of system elements C and a set of external elements E, that satisfies a purpose G grounded

on exchanges with the system environment [33].

The reader can always specialize the system concept to the enterprisea notion. This work will preserve

the use of the system notion as it promotes a simple and focused scope conceptualization and can be

easily extended to include other types of systemsb.

The system composition, C, is a set of subsystemsc or, from an elementary perspective, a set of partic-

ipants P. Participants can either be passive participants (PP ⊂ P) if subjected to transformation during

the execution of a set of system activities, or active participants or agents (PA ⊂ P) if performing actions

aimed at changing passive participants [17].

aa system with i) at least two purposeful elements with a common purpose, ii) a composition where its parts can respond to each other,

and iii) at least one element performing the system-control function [6]. In a narrower sense, an organized human undertaking, such as a

company, a government agency, a non-profit institution or a temporary project [53]
bdigital, mechanic or biological systems are possibilities. Systems exchanges can generically be captured as an energetic interplay and

the organizational, informational and functional coordination of its elements associated with vibration selection, storage and answering
ca system (R1,C1, E1,G1) is a subsystem of a system (R2,C2, E2,G2) if and only if R1 ⊂ R2, C1 ⊂ C2 and E1 ⊂ (E1 ∪ (C1 −C2)) [33]

The modeling of a system operation on the basis of its processes must be understood in broader

5

systemic context along with the system ontology1 and system architecture2 notions. They are decisive to

ensure the system integration, i.e., that the development and operation of a system is coherently and

consistently performed [32]. However, they cannot answer to the system improvement needs as they

cannot alone assure the system adaptability and agility3, i.e., the system ability to translate demands of

the system environment into action in a timely manner [53][100].

It is here that the modeling of a system operation centered in processes plays a key role as it pro-

motes the responsiveness needed for these systems to evolve by abstracting, prescribing and auditing

the system operation [114][88]. In fact, since process models promote a traceable environment to capture

the operation of a system, they leverage the system self-awareness4 and flexibility5, affecting the system

ability to learn and to respond and, thus, fostering an environment for the system evolution [6][121].

2.2 System Evolution

System evolution is the process of increasing the system responsiveness to its environment by contin-

ually optimizing the efficiency to pursue its purposea under changing conditions. System evolution

essentially depends on the ability of a system to behave as an integrated, adaptable and agile system.

Under the functional perspective, the ability of a system to evolve (S→S ′) is determined by the abil-

ity to cohenrently, incrementally and timely improve its structure (R→R′) when internal, external or

purposeful changes occur ({C, E,G}→{C, E,G}′).

athis thesis simplifies the system concept by only targeting open, purposeful and dynamic (or multi-state) systems

Note that since process models are embedded in the dynamic real-world, they are never right as it

is stated by the E-model perspective [44]. Although it is not possible to model a system that answers all

the needs at a certain point in time as each internal or environmental change implies a new model [70],

process models can be continuously adjusted to an appropriate level of service based on performance

metrics [66] and short feedback cycles [101].

These process-based knowledge increments of a system operation can be captured and shared as a

blackboard, where different knowledge sources ({modelers, developers, executors}⊆ KS ⊆ PA) contribute

with partial solutions, allowing the required experimentation for a system to evolve [71].

Given this collaborative and emergent nature of process modeling, there is the need to establish a sys-

tem governance competence that, based on the process models trace, coordinate distributed contributions

in a way that preserves the system architecture [42]. By providing connections to assets across time and

space, process models make it also possible for co-designers to engage in the present by building upon

the past in anticipation of a new future [92] alleviating the problems associated with systems memory

and "bounded rationality" [11].

Adaptability along with integration and agility determines the ability of a system to evolve. Expres-

sivity6 (sometimes referred as pre-designed flexibility) and flexibility7 are at the core of the evolution

notion as they define the system adaptability. Aalst and Jablonski [109] suggest a classification of sys-

1the understanding of a system in a fully implementation independent way [33]
2set of principles, which are essentially regarded as axioms and constraints on the system design and engineering freedom [33]
3not related with agile principles for product development – this work only develops theory on the system modeling (not operation) level
4the sum of each system element’s knowledge regarding the whole system operation

∑|C|
i k(Ci) [121]

5ability to change without loss of identity [113]
6the extent to which a process model captures the system execution constraints
7the ability of process models to adapt without loss of identity [86]

6

tem adaptations based on their: reason, effect and perspectives affected, kind, moment and durability,

and set of actions available. Regev et al. [87], although do not clarify the realization options, propose

a taxonomy based on the adaptation abstraction level, on its subject and on its properties. Snowdon et

al. [102] categorize adaptations according to its causal factors: type (arising from the diversity of infor-

mation being handled), volume (arising from the amount of information types) and structural (arising

from the need to operate in different ways). Along with expressivity, three types of flexibility must be

distinguish: i) by deviation8, ii) by defer or underspecification9, and iii) by change10.

2.3 Process Modeling

Functional decomposition of a system defines hierarchies of abstractions needed for the modeling of sys-

tems operation [120]. Activities, units of work, are the nodes of such functional decomposition. Since

we are addressing open (E , ∅), purposeful and multi-state systems, this work introduces the notion

of system behaviour11 as a set of system events that produces a change to the system state. The source

of this change can be external E or internal if caused by a state-change on a system agent PA, passive

participant PP or goal G. System activities are simply aggregations of system events.

By extracting the functional or activity-based perspective from a system structure R, we have already

all the concepts needed to introduce the process notion.

A system process, a tuple < A℘, P℘,G℘,R℘ >, is a constrained execution of a set of system activities

(A℘ ⊆ A), based on the coordination (R℘ ⊆ R) of a set of system participants (P℘ ⊆ P), to realize a set

of system goals (G℘ ⊆ G). Alternatively, a participant-driven sequence of behavior that constitutes a

sub-system with a goal-producing function.

A system model is the conceptualization, abstracted from details, of an aspect of an object system by

a user system [33][28]. System models are used not only to describe, but mainly to prescribe and trace

system aspects as its governance, design, engineering or operation. Thus, models must expressively

define specifications, acting as a blueprint for a set of similar cases, and capture their instances that trace

the way cases were enacted.

A process model is a model for system processes, an abstraction m(A℘, P℘,G℘,R℘), which concerns an

operational aspect of an object system by an interacting system. Process models describe and may trace

and prescribe the operation of a system through process specifications and process instancesa.

aprocess instance, i = (Ei, <i) ∈ PI, based on a process specification PS driven from a system structure R, is defined by a partially

ordered set of system events Ei such that the ordering <i either satisfies PS execution constraints [120] or acts as an exception [120]

Process models are described by a process meta-model, a complete set of process modeling concepts

and associations between those concepts, and expressed according to a specific notation [120].

Agostini and De Michelis [8] argue that, independently from the type of system, to support its evolu-

tion, very simple process models should be used and exceptions should be dealt with by hand through

so-called linear jumps. Herrmann [50] seeks a solution by using semi-structured process models. In or-

der to understand how modeling integration, adaptability and agility can be specifically achieved by the

8the ability of a process instance to deviate at runtime from its original execution path without altering the specification [99]
9the ability to execute an incomplete process model, a process that does not contain sufficient information to be executed to completion [99]

10the ability to dynamically modify a process model such that currently executing complying process instances are migrated [99]
11either triggered by system reactions (deterministic changes), responses (stimulated changes) or acts (autonomous changes) or simply by

system events whose antecedents are of interest. System behaviour, thus, consists of system events whose consequents are of interest

7

systems targeted by this thesis, we need previously to assess the role of data within process modeling.

2.4 The Role of Data

Different data taxonomies for process modeling can be found in [122][104]. Weske [120] provides a

good start to understand the role of data within processes by structuring its aspects according to data

visibility, data interaction, data transfer and data-support to routing logic. Aalst [114] distinguishes two

main types of data: case and non-case. Case data is the data used by system applications to support

activities. The non-case data can be divided into support data, if it affects the process routing logic,

and management data, if it is produced by the process execution environment during the enactment of a

process instance (e.g. audit trails). Muehlen [122] does the same distinction under a different analysis,

but calls to case, support and management data, respectively, content, workflow and workflow-relevant

data.

In fact, this thesis simplifies this taxonomy into data generated and consumed by processes [122]

and it will focus on the aspects of case data or data consumed by processes. The reason behind this

simplification – the increasingly blurry boundary between data exposed for process routing decisions

and pure application data – lead us, finally, to the notion of data-intensive system.

In data-intensive system landscapes, the data consumed and generated by some of system elements

is related with the production of other system elements [122].

A data-intensive system is a system with a structure R that relates its elements C based on data medi-

ation and transformationa. Thus, the operation of a data-intensive system is strongly constrained by

its passive participants state and relations or, more broadly, by the way the system productions to the

environment realize the system goals [6].

athe importance and structure degree of signals exchange through vibration emission, storage and response (either gravitational, electro-

magnetic or quantum) may or not qualify a non-organizational system as data-intensive

For instance, automotive industrial systems rely on the entanglement of data components, the pas-

sive participants, to deliver a physical production. Claim-processing systems use claimer’s information,

regulatory and financial reviews and claim state to audit and deliver a decision. Contrasting, non-data-

intensive systems do not particularly depend on data mediation among its elements to affect the way the

system delivers a production as, for instance, a front-office or any system resultant from a composition

of service-oriented subsystems.

A process within a data-intensive landscape is referred as data-intensive process. Scientific research has

been focusing on two main types of data-intensive processes: i) processes driven by the structure of

passive participants [26][3] and ii) collaborative and tacit processes that use passive participants as

record objects to capture the system operation [7][105].

Since, the research on data-intensive models has been adopting many different directions, we com-

monly see different terms as documents, products and artifacts. Here all these notions are generalized and

captured as objects, either simple or compound (encapsulating a set of related objects). For now, we

aside notions as the case or proclet concepts since they are closer to the system functional view. Objects,

either representing logical or physical elements, can be seen as building blocks that bridge the functional

and informational perspectives [26][81]. An object model defines a class or object specification that may

prescribe the features of its object instances.

8

A system object represents any relevant system element, either a simple participant or a composition

of system participants. Its state is defined by the object content and it is modified during its life-cycle

as the result of an invocation of a set of activities that act upon its data-attributes.

In the same fashion as we saw with the functional decomposition of a system, the informational de-

composition of a system defines hierarchies of object models. A data model for a system can be identified

with the highest level of the object models’ hierarchy for that system in a functional independent way.

2.5 Modeling Orientation

Process modeling approaches can be divided according to their main focus of modeling: activity-flow,

data-needs or agent-coordination focus lead respectively to activity-centered (e.g. [1][119]), object-centered

(e.g. [26][85][3]) or agent-centered (e.g. [72][95][84]) languages. For instance, since agent-centered modeling

approaches first concern the order in which active participants (either human or application agents) get

and perform their part of work in a process, activities precedences are implicitly derived from agent-

interaction constraints. This is the natural choice for processes with strict distribution of responsibilities

owned by highly-specialized agents.

Each modeling approach can be characterized by the way execution constraints prescribe the coordi-

nation of system participants aiming to increase the system efficiency towards its goals satisfaction. Con-

straints specification can either be: imperative [88][96] or declarative [113][3], derived from roles-assignment

between participants [21][22] or from actions-assignment [41][85], derived from explicit ordering restric-

tions [113][96] or from implicit (either participant-pushed or goal-driven) coordination [3][41].

Since objects are generically used to model system participants, in particular, simple and compound

structures of passive participants in data-intensive landscapes, the execution constraints placed among

activities in object-centered approaches is derived from their state and expressive relations.

An object-centered process model is a process model that uses the knowledge of the participants

structure P℘ to derive the bond relationships of the system under modeling R℘. The modeling of

participants must be expressive and changes to the system data models must dynamically affect the

system process models.

Finally, we can also distinguish multi-paradigm approaches where process models do not have a clear

orientation [28], and hybrid approaches where different approaches co-exist together exposing different

views for different users [113].

2.6 Bridging the Concepts

Recovering the system definition, we detect four main perspectives: the functional, the informational, the

instrumental (or organizational) and the contextual, or, respectively, the activity-based, data-based, agent-

based and goal-based views. All the models from each perspective or system view are integrated by a

process model, the governance model, that establishes relationships between them and constrains their

interaction, thus capturing and prescribing the operation of a target system.

Since system modeling is a discipline of trade-offs – flexibility vs. traceability, expressivity vs. usabil-

ity – modeling approaches must, depending on the type of system, understand and prioritize the role of

each perspective to achieve manageable, suitable and evolutive abstractions.

9

Figure 2.1: Abstract data-intensive system

Figure 2.2: Abstract process model

Fig.2.1 depicts an abstract data-intensive system. Fig.2.2 abstracts a structure that separates and

relates the models from each system view. Since in data-intensive systems the evolution of process

models is triggered by the evolution of object-based models, the relations between systems structure

and systems data must be studied in an extended way than the existent contributions, which have been

limited real-case applications impact.

10

3
Thesis Problem

We can’t solve problems

by using the same kind of thinking

we used when we created them.

– Albert Einstein

This chapter presents the problem that this research aims to solve. Section 3.1 introduces the applica-

tion scenario used throughout this work. Section 3.2 exploits why traditional approaches are limited in

modeling data-intensive processes. Finally, section 3.3, uses such knowledge to decompose the problem

into a set of requirements.

3.1 The application scenario

To illustrate the problem of this work, we propose a look to the Global Financing (GF) case [23]. GF is a

company specialized in financing hardware, software and IT services. GF operates in several countries

and aims to execute its operations based on a global standard with disciplined regional variations.

Once a financing opportunity is identified, the customer request is reviewed, negotiating terms and

conditions are discussed and possibly agreed through contract signing, involved assets are supplied,

purchased and shipped to the client locations and, finally, client payments are tracked until closure. In

particular, the review sub-system is multiple times instantiated for every customer request received so

several employees are able to analyze it, to possibly interview the customer, to evaluate the request and

to take a final decision. If the request is approved, terms and conditions will be defined and negotiated,

otherwise a revised version of the commented request is returned to the customer for readjustment and

re-submission or for financing withdrawal.

Figure 3.1: Activity-centered process modeling landscape

A simplified and abstract representation of this scenario using a well-known modeling approach is

11

depicted in Fig.3.1. Although this image introduces already the way process models are linked to a

specific setting (here through the instantiation of software agents), this instrumental-tecnhological view

was only presented to exploit the true why behind the limitations of activity-centered approaches – the

reader should not lose the implementation-independent view adopted in this work.

3.2 Limitations of traditional approaches

The problem source of this thesis appears as a consequence of the pushing of passive participants to

the processes background that result from an hidden of data behind service-oriented system elements

[120][122]. Weske [120] and Muehlen [122] explain in detail the historical reasons for a hiding of busi-

ness data behind application layers. Only support data, sets of simple data objects needed to affect

the process routing logic, are created and maintained by the activity-centered modeling environment

[114][122]. Seven reasons are pointed in [98]. However, same reasons block benefits obtained from

the coupled evolution coming from a closer intertwine between functional and informational models,

i.e.,they do not enable an environment for the integrated management of system data and system activ-

ities.

Two main research directions compose the traditional process modeling landscape: the widely-

adopted activity-centered and the simple document-based approaches. They both consider the influence

of system participants a sequent aspect over the activities ordering constraints. Let us build upon the

limitations resultant from this premise.

3.2.1 Activity-centered Modeling Approaches

Activity-centered approaches model processes by explicitly defining networks of activities. GF financial

scenario (see Fig.3.1) raises five challenging sets of limitations when this is the chosen approach.

First, activity-centered process models do not want to know how the underlying data is structured

(a detailed why is presented in [98]) but only be able to use simple data objects, the support data, when

data affects the process routing logic. As a result, support data is redundantly created at the process

modeling level, which poses problems of consistency between support and application data.

This missing link between activities and underlying data leads also to a rigid definition of data-access

contexts since the scope of data must be explicitly depicted for every activity, usually by specifying data

objects as input parameters for each activity (see [119][120]). This aspect leads to non-usable process

models when an amount of data must be visible for several sequent activities [64][3], and when ordering

decisions are strongly dependent on data constraints [41] as it occurs in data-intensive scenarios. For

instance, request data may be maintained during all the Review – an employee may need to access

the customer history, credit risk or information regarding the requested assets. Note that even when

activities are truly atomic, they may still require access to contextual data, as, for instance, claimed by

the previous example.

Second, although it is possible to specify conditions over data objects to constrain the activities oc-

currence (e.g. as a gateway data-event), activities still have to be related according to a net of ordering

dependencies instead of dynamically react on those data conditions. Exemplifying, if Contract Elabo-

ration is dependent on a formula over a set of employees’ reviews, it should be immediately executed

a soon as this condition is satisfied, independently of the state of each Review process that may not be

finished and continue to run in parallel, i.e., activation of an activity does not directly depend on the

12

completion of other activities. Although the use of data-events together with concurrency patterns (see

BPMN [47]) can mimic the result, this solution: i) not takes advantage from data dependencies and may

contradict them, ii) may over-constrain the solution space: limiting flexibility, iii) not fosters a modeling

towards parallelization, iv) assumes that the data is modeled at the process level, and v) degrades us-

ability when there are several activities reacting upon data.

Moreover, ordering constraints also difficult the spontaneously repetition of process instances or

their stoppage and caught up at a later point in time. For instance, if the payments tracking, depending on

the contractual information, can be hold until the asset shipping activity is finished, several paths must

have to be incorporated in the process model to avoid the tracking payments path of execution from be-

ing blocked. For instance, complex specifications as ORpaymentcond(AND(TrackPayment, S EQ(S upplyAssets, S hipAssets)),

S EQ(TrackPayment, S upplyAssets, S hipAssets)) could be avoided and flexibilized if, somehow, these constraints

would come from expressive dependencies among the assets supply, shipping and payment objects.

Third, advanced patterns to coordinate different process instances (either from the same or from dif-

ferent process specifications) are roughly supported by activity-centered approaches, since process in-

stances are executed in isolation to each other. Exemplifying, if we want to separate the assets life-cycle

process from their request process, we may want to affect to synchronize progress of the super-ordinate

and sub-ordinate processes. Although a few activity-centered approaches try to mimic synchronization

patterns [64][96], that is only possible between super and sub-processes – only covers composition re-

lations and not communication among loosely-coupled processes, and processes become blocked until

sub-process instances are completed.

Additionally, if one customer starts two requests, both requests will be analyzed in completely ig-

norance of each other, avoiding possible benefits from their conjunct analysis. Aggregation of activities

from different process instances, such as the interviewing or assets supplying activities, is not also pos-

sible. Note that multiple-instance support languages, as colored Petri nets [58], only address synchro-

nization for the instances belonging to the same process type, and lack in usability degrading the ability

to manage and evolve process models.

Fourth, since activity-centered landscape promote the use of black-box functions provided by the

service layer (see Fig.3.1), the attempt to match system activities with those services leads to an absence

of a criterion for activities granularity as client application services may reside at different (probably

coarse-grained) levels of granularity. For instance, if a customer aims to change its shipping address, fine-

grained services to change and read the address must be available. Additionally, there is no criterion to

guide the decomposition of the GF asset financing process in new functional sub-levels.

Finally, evolution of data and activity models is decoupled. Although it fuzzily seems a good aspect,

our initial premise hold the fact that changes at the data level in data-intensive systems implicitly induce

changes at their process level. If, for instance, GF begins to accept a single request from multiple cus-

tomers, several changes are incurred in a typical activity-centered scenario. First, data models should

have the ability to migrate since the relationship between Customer and Request is no longer valid. Sec-

ond, client applications logic to offer the new set of services resulting from this change may also need

to be reviewed. And, lastly, the process model needs to evolve in order to reflect these new options.

Even the service layer must be continuously adapted to support system evolution when changes have

origin in data layers, the most trivial and common way to re-arrange a data-intensive system. Such fact

support the need for an integrated modeling environment for the adaptation of a system.

The rigidity leveraged by all these five factors promotes the hard-coded of processes logic within

13

client applications [64][3]. By going behind the support system’s back, process models become more

a liability than an asset, leading enterprises to lose control and traceability of its processes and, conse-

quently, turning unviable their continuous improvement.

3.2.2 Traditional Document-based Modeling Approaches

Document-based modeling approaches have their roots in Document Engineering [82][52] and rely on

the premise that system activities are centered, constrained and partially grounded in documents [60].

A document is a view for an information set of an organizational system that supports one or more

of its processes [60]. The partition of documents in meaningful segments defines work-units, sets of

data fields [10]. Documents are also referred as form-units, archival-units or records [10][105] since they

capture what it is intended to be processed by an organizational system.

Traditional streams of research [10][60][18] focus on how documents when associated with a process

define its content and turn meaningful its routing logic. For instance, a process with a flow dependency

between activities A and B uses A to produce a document that is required by B [34]. If process C defines

a sharing dependency with A and B, C produce a document that is used by A and B. If A and B have

a fit dependency with C, it means that A and B produce collaboratively a document used by C. These

dependencies can be extended to a complete support of activity-based control-flow patterns [60].

In fact, this approach can still be considered activity-centered in essence. Although it introduces the

notion of documents as a structured way to capture the system operation affected by execution flows, it

still has to explicitly define ordering constraints among activities [10][60]. This explains why traditional

document-based approaches can be easily reduced to graph-based workflows [119][57].

The limitations of these approaches are, consequently, similar to the activity-centered approaches,

with the exception that document-based structures assure the atomicity of activities based on work-

units. First, the documents view is often totally independent from the system data models, and docu-

ments or their work-units still have to be explicitly associated to activities to become visible and accessi-

ble in the context of an activity. Second, activities still have to be positioned in a network of precedences

instead of reacting on constraints possibly defined among work-units. Third, since document dependen-

cies derive from activities ordering relations, no sources of expressivity to support advanced synchro-

nization patterns are added over activity-centered models. Fourth, documents are plain structures and,

therefore, do not offer criteria to guide the functional composition of processes. Finally, data modeling at

this scope refers to the ability to define and adapt document specification. However document modeling

is not expressive as new specifications still need to be manually associated to activities.

Section 5.1.1 discusses how recent document-based directions surpass some of these limitations.

3.2.3 Synthesis of Limitations

A synthesized description of the traditional approaches limitations in supporting the evolution of data-

intensive process models is presented in Table 3.1.

3.3 The FIVE Requirements

This study led this analysis to a point where the initial problem was break-down into five pieces or

specific problems. Table 3.2 structures the five requirements triggered by the introduced limitations of

traditional approaches when modeling data-intensive processes.

14

Area of
Concern

Problems GF Challenges (Fig.3.1 upgrades)

Data
Access

Process data redundantly created with applica-
tion data poses consistency problems.
Isolated execution of activities cause a loss of
process contextual view. Data-access needs to
be explicitly specified for every activity, lead-
ing to non-usable models.
There is no support for an integrated access to
old or non-related process data;

Reviews or contract negotiations become: affected by
the state of assets procurement (if running in paral-
lel) or other request’s reviews, their progress depends
on customer’s past and similar requests’ information,
and their contextual data continues accessible without
the need to specify all attributes as input parameters
for each activity;

Data-state
Reaction

Activities have to be related in a net of ordering
dependencies, turning difficult a spontaneously
repetition of process instances, their stoppage
and caught up at a later point in time and a dy-
namic reaction on data conditions;

Contract negotiation becomes reactively available on
a condition satisfaction over reviews’ data, indepen-
dently from executing reviews’ progress. Assets and
reviews are dynamically instantiated based, respec-
tively, on request and customer’s data;

Data-based
Coordination

Process instances (from the same or different
process types) are executed in isolation to each
other, hampering the support for expressive
communication patterns among processes;

Decoupling of process segments in a modular way
(e.g. Reviews and Assets). Aggregation of related
segments: collective reviewal, collective asset sup-
plying and shipping;

Data-based
Granularity

Service layers turn impossible the definition
of criteria for the processes granularity since
client application activities may reside at dif-
ferent granular levels;

Activities for accessing and changing customer or re-
quest attributes (e.g. customer address) must be avail-
able, and their composition must follow concrete cri-
teria;

Data
Modeling

Since data-centered and activity-centered mod-
els are separated by an application layer,
modeling of data objects is roughly done at the
process modeling level.

A request becomes handled by multiple customers
(the process modeling environment detects the
change of an association multiplicity on an underly-
ing data model).

Table 3.1: Problems of Traditional Modeling Approaches in Data-Intensive Landscapes

15

Künzle and Reichert [64][63] propose a complementary analysis of data challenges. Other introduc-

tory remarks to deepen the understanding of each presented data-awareness requirement can be found

in [64][78].

Data
Access

Process and application data must be coherently and consistently integrated, meaning that system’s
activity and data models must be bridged and evolve in a coupled way according to a well-defined set
of relations.
Process models must avoid data-context tunneling (causing the loss of a broader view on the process)
when executing isolated or groups of activities, and additionally must expressively hold data-access
contexts from single to multiple activities [3]. Data-scope specification must additionally be usable,
seizing benefits of using data models expressivity (e.g. accessing compound or sets of data-objects).
Authorized users must access data at any time regardless of the process status [3][63];

Data-state
Reaction

Processes must dynamically react on data constraints, turning optional the definition of precedence
networks. Since activities are related to objects, they must adapt their behavior (e.g. availability) based
on objects’ state (horizontal dynamic granularity) [64] and provide a natural method to deduce omission
path localization, minimizing sequentiality and, thus, fostering process flexibility;

Data-based
Coordination

Processes must use data models constructors to express advanced patterns of synchronization, includ-
ing: i) the aggregation of multiple related instances to reduce execution effort (e.g. grouping related
requests – vertical aggregation) [12], ii) the definition of asynchronous points of coordination to mini-
mize processes coupling (e.g. synchronize the progress of a set of instances responsible for the assets
procurement with their related request) [64], and iii) the definition of expressive transition’s rule-sets;

Data-based
Granularity

Atomicity and composition of activities must be based on the underlying process data [64] to, respec-
tively, safeguard the availability of fine-grained activities and of a criterion to infer compound processes
using multiple levels of modeling abstractions;

Data
Modeling

There must be possible to model and adapt expressive data models at the process modeling level [64].
Evolution of processes is, thus, fostered by the previous requirements, which assure that execution
constraints are dynamically derived from the dependencies of object models in a usable manner, with
this one, which enables modeling flexibility.

Table 3.2: Data-related Requirements for Object-centered Approaches

An object-centered system is, thus, a data-intensive system with a structure R that satisfies the in-

troduced requirements, i.e., a system where its passive participants are visible to every system agent,

dynamically affect activities progress and composition, and are adequately accessed and expressively

captured at the process modeling level.

Synthesizing, requirements force the definition of dependencies between process and data models

that enable: i) a coupled evolution of these types of models and an automatic definition of editable data-

access contexts based on data models constructors and agent access levels, ii) data-pushed constraints

instead of an explicit ordering of activities, iii) expressive aggregation and synchronization of process

instances, iv) guidelines for models’ composition and v) an integrated environment for their conjunct

adaptation. The thesis problem can, thus, be rewritten as the definition of an expressive structure that

links the informational and functional perspectives.

This is a relevant problem since the main source of evolution of data-intensive systems begins with

the adaptation of informational structures. Also, as it will be exploited, emerging approaches are fo-

cused on reduced subsets of those requirements – there is space to develop more mature object-centered

modeling approaches. Note, additionally, that this set was developed under the hypothesis that these

requirements are not mutually exclusive. Annex 16 exploits the coverage, consistency and coherency of

requirements by mapping them in the developed Process Model Framework.

16

4
Thesis Statement

There are two mistakes one can make along the road to truth,

not going all the way,

and not starting.

— Buddha

Hypothesis: Object-centered models support the continuous improvement of data-intensive processes

Chapter 2 conceptualized the universe discourse required for a deep understanding of this hypothesis

and chapter 3 introduced the underlying problem and the motivation for its assessment in the increas-

ingly dynamic and data-pushed environments where systems operate [101][70]. This chapter exploits

this statement by presenting the research artifacts, goals and methodology.

4.1 Research Artifacts

The ability to expressively adapt system models determine the system responsiveness and, consequently,

its ability to evolve. Since changes to the operation of data-intensive systems mainly concern the way

passive participants are structured and produced, the continuous improvement of data-intensive pro-

cesses highly depends on the ability to dynamically adapt process models when the underlying infor-

mational models change.

Support means in this context “to turn possible“, to satisfy the requirements triggered by the thesis

problem. Therefore, in order to proof that object-centered process models support the continuous improvement

of data-intensive processes five outcomes must be clearly conceived:

1. a set of requirements required to process models evolve in data-intensive landscapes;

2. a set of principles based on existing approaches that restricts the solution space;

3. a meta-model and a formalization that precisely define object-centered models;

4. logical reasoning, acting as a set of proofs, on how such models satisfies these requirements;

5. a set of performance indicators to measure its practical applicability against alternatives.

These will be the five topics used to approve or reject our thesis statement. Additionally, a roadmap

exploiting the real-cases where the developed approach can have a positive impact will be presented.

4.2 Research Goals

• to conceptualize the object-centered process modeling universe of discourse;

• to retrieve a set of requirements that compromise the ability data-intensive processes to evolve;

• to define an object-centered structure for the consistent plug of requirements-driven principles;

• to understand and motivate to the potentialities on how to evolve process models based on the

adaptation of expressively enriched data models;

17

• to depict the requirements and implications of the application of object-oriented patterns (as com-

munication, composition and inheritances) in process modeling;

• to define how new soundness criteria can be seized for data-aware modeling approaches;

• to analyze the role of event-driven architectures on the implementation of data-aware process

modeling approaches;

• to present how advanced patterns of coordination can be expressively captured at the object level;

• to understand how data-centered criteria can be defined for the default generation of process be-

havior, access-contexts and encapsulation;

• to detach the applicability of object-centered modeling for different domains in comparison with

the available alternatives;

• to systematize the implications of the adoption of the object-centered modeling;

4.3 Research Methodology

The assessment of the thesis statement will neither follow a experimental nor a case-based research but

it will be grounded in formal reasoning and theoretical evidence. Nevertheless, a set of metrics applied

to three domain-specific scenario will be complementary used to study the practical usability of the

proposed approach. The development methodology can be decomposed in the following increments:

1. definition of a consistent and coherent set of requirements that compromise the ability to expres-

sively evolve data-intensive process models;

2. analysis and structuring of how state-of-the-art object-centered modeling approaches answer them;

3. design of principles that process models must comply with to satisfy these requirements;

4. definition of a solution basis that neither neglects nor contradicts the concretion of any principle;

5. derivation of a concrete process modeling approach through logical reasoning;

6. assessment of the correctness and executability of the developed approach;

7. assessment of how the target process modeling answer to data-intensive systems’ evolution needs;

8. hypothesis validation by: i) proving the object-centered modeling executability and soundness, ii)

assessing the main implications from its adoption, by iii) applying a set of performance metrics

to assess its ability to answer to the five requirements in comparison with existent alternatives,

and by iv) confronting these results with the empirical observations driven from its application to

financing, manufacturing and healtchare scenarios.

18

IIFindings

5
State-of-the-Art

Know the Law and Be Free.

Part I introduced the thesis context, problem and statement. It depicted why traditional modeling

approaches are limited to evolve data-intensive processes and derived five requirements from those lim-

itations. Alternatives to activity-centered ways of modeling exist. Section 5.1 studies with a moderate

detail six mature object-centered approaches according to their ability to answer to the introduced re-

quirements, section 5.2 presents other emerging directions, and section 5.3 retrieves a synthesized set of

learned lessons.

5.1 The Chosen Object-centered Approaches

Approach Process constraints driven from... Belief
Document-based
Modeling

[85][5] documents dependencies
documents shape and track all the oper-
ations of data-intensive systems

Artifact-centric
Modeling

[41][16][26] artifacts’ state and life-cycle
synchronization (restricting
activity models invocation)

artifacts’ information models and
synchronized states fosters data-access
and processes’ modularity

Business Entities
Modeling

[78]

Product-based
Modeling

[90][117]
production components dependen-
cies and quality criteria affecting
activity ordering

models for the systems production con-
tain the needed information to affect the
process flow

Case Handling [3][107][120]
data-objects labeled associations
and activities precedences

activities of data-intensive cases can be
captured and grouped as form-based
operations over simple data-objects

Data-driven
Coordination

[74][77]
object models’ internal transitions
and relationship types

dependencies among passive compo-
nents completely prescribe and support
evolution of complex processes

Proclets [2][112]
interaction of loosely-coupled non-
data-container objects’ life-cycles

modeling centered on processes com-
munication, instead of ordering empha-
sis, fosters modeling expressivity

Object-aware
Processes

[64][63][65]
objects’ life-cycle coordination
and reaction upon data-conditions

enriched basis driven from-case han-
dling and centric modeling

Table 5.1: Chosen Object-centered Approaches

The selection of a sample of object-centered modeling approaches to study was based on the practical

maturity, data-orientation and diversity of aspects of the existent process modeling approaches. Table

5.1 groups these approaches and clarifies their essential focus.

19

5.1.1 Advanced Document-based Modeling

More recent document-based research have been applying the document engineering principles earlier

discussed to process modeling according to two main streams of research.

The first stream of research [85][5] relies on the premise that the documents content and structure

determine how multiple processing tasks may be composed dynamically. Put in another way, since

documents’ work-units have also ordering relations (two work units can have a precedence relation or

run in parallel) and conditions, these document constraints implicitly define activities routing. If process

dependencies are derived by documents properties, changing a process means changing its documents.

Inter-dependencies among work-units (note that work-units may overlap in non-hierarchical ways [5])

and other document properties (e.g. comment regions) are captured in a policy document [5]. Thus, the

progress of activities is implied by a policy document. Since a set of documents acts as a data model,

policy documents of a system must rely on a standardized format [85]. Davenport [30] states that, as

document flows defines process flows, returning to a document-oriented view of information means a

return to greater simplicity, less detail, and the ability to accommodate less-structured information.

Finally, the second stream of research focuses on how documents capture ad-hoc forms of collabora-

tion in knowledge-intensive processes [105][82][54]. These documents, referred as active documents [93],

foster the tracking of activities based on heterogeneous collaborative applications (e.g. e-mail) since by

capturing their routing and tacit comments. They extend simple documents to include custom prop-

erties which can contain executable code that can make a document responsive to a great number of

situations [37]. We can simplify and think on these active properties as the read and write operations of

document fields. The stream of research focused on the collection, distribution, receipt, use and record

keeping of documents connected to processes is referred as Records Management [93][45][59].

Figure 5.1: Document-based simplified process model

Evaluation: this work adopted the contributions made in [85][5] of the first stream of research to

depict the GF application scenario. Fig.5.1 exploits graphically how documents’ internal and external

dependencies can determine the content of activities that may not be known a priori due to individual

peculiarities. This modeling approach does not explicitly define activities content neither precedence,

but, as we see on the right side of Fig.5.1 (step 1-5), agents are gradually assisted in selecting the most

20

appropriate enabled activity and execute them on the basis of documents’ fields. Table 5.2 exploits how

such approach answers to the previously introduced five requirements.

This scenario is a simplification as it only presents the so-called functional rules – documents con-

straints that support the finding of suitable activities as well as their dynamic enactment. Organizational

rules that relate documents with system goals based on metrics were not depicted. Using this approach,

one could think of models for a data-intensive system as a system policy – a set of policy documents

prescribing the system operation through functional and organizational rules [85].

Requirement Support Evaluation

Data Access +/−

Two drawbacks are observed. First, system data are constrained to documents’ plain structures.
Second, each activity still has one unique bounded document or work-unit (the one that supports
the user choice among potential activities) and do not recover contextual data by aggregating,
for instance, free document-fields. Rahaman et. al [85] introduces, however, the notion of
knowledge-base for documents, enabling authorized accesses to documents content;

Data Reaction + Conditions on document-fields are possible;

Data-based
Coordination

+/−

Note that documents result from the simple aggregation of information chunks. Thus, they are
limited in expressing complex data dependencies. Also, it requires document instances number
to be defined statically [85]. Nevertheless, dependencies between work-units from the same or
different document specifications are possible and dynamically expressed in process models;

Data-based
Granularity

−
Atomicity of activities is assured, however functional decomposition of processes is not sup-
ported as dependencies among units may cross any hierarchal level of data-fields [85].

Data
Modeling

+/−
Changes to document specifications are not possible in run-time and, for some approaches,
cannot be targeted by process executors as it requires knowledge of LTL formulas [85];

Table 5.2: Evaluation of Advanced Document-based Modeling

5.1.2 Artifact-centric Modeling

The artifact-centric approach1 was first introduced in [81], which triggered considerable following de-

velopment efforts [16][41][69]. Like objects, artifacts are either real or conceptual system relevant entities

that are created, evolved, and optionally archived as they pass through the system’s operation [81]. An

artifact type includes both an information model representing the data of a set of system objects dur-

ing their lifetime, and a life-cycle model, describing the possible ways and timings that tasks can be

invoked on these objects [26]. Data values from information models become defined during the arti-

facts’ life-cycle, or in other way, a life-cycle specification describes how an artifact evolve over time as

the result of an invocation of a set of services that act upon its data [41]. The set of available activities

constrained by artifacts internal state and synchronization dependencies defines a process model.

Artifacts align both process and data views into a unit, serving as the building blocks from which

models of a system operation are constructed. Recent derivations [16] capture process goals and allow to

track their achievement by dynamically breaking goals in rules that constrain operations over artifacts.

Evaluation: A simplified artifact-centric solution for GF case was developed around three main

artifacts (adopted from [26]). Deal artifact, contains the data context and triggers the activities needed to

evaluate a client request, to negotiate terms, to sign the contract, to issue invoices and to track payments

and their completion. Supplier Invoice is used for the purchase and shipping of the assets to the client

locations. And, finally, Asset captures the state of individual assets when accepted from the supplier,

titled to GF, delivered to the client, used by the client, and finally sold or disposed.

The Deal artifact, detailed in Fig.5.2, has an information model that starts out empty and over its life
1 since 2003, IBM Research applied it in different settings [15] resulting in improved understanding and tracking of changes [26][15][69]

21

Figure 5.2: Artifact-centric simplified process model

becomes complete and updated, and a life-cycle model that prescribes the artifacts interaction through

message passing as they transit between states. Process specification can now be derived from the set

of available operations over artifacts’ data elements according to their states, i.e., to some rule-set model

based on data conditions. Table 5.2 exploits how such approach answers to the five requirements.

Requirement Support Evaluation

Data Access −
Although atomic artifacts information model and activities are related, accessing activities avail-
ability is restricted by state-based rules instead of authorization-based rules;

Data Reaction + Realized by artifacts’ internal state (based on information model conditions);

Data-based
Coordination

+/−

Dependencies among artifacts are realized through life-cycles’ synchronization (see Fig.5.2 to
see how state transitions can result in messages that affect the state of other artifacts). These
relations, as creation or removal, enable the creation of points of synchronization. However,
other advanced patterns are not supported;

Data-based
Granularity

+/−

Although the approach enables a natural modularity for capturing a system operation, it does
not support the composition of artifacts. An interesting direction would be to use [56] notions,
which includes projection and selection on the information model, and a form of condensation
of states for the life-cycle model; an analog direction for declarative life-cycles remains open.
Atomicity of activities is supported since is driven by artifacts’ information model;

Data
Modeling

+/−
It does not allow for expressive data-based modeling (as information models only support simple
data objects) and dynamic changes was not yet studied in the scope of imperative settings [26].

Table 5.3: Evaluation of Artifact-centric Modeling

5.1.3 Business Entities

Complementary to the artifact-centric direction, IBM is also developing a variant, named Business En-

tities, with the entity term replacing artifact notion. This approach is centered on how to produce a

Business Operations Model by bridging the entity definition (using the business entity definition language)

with activity-centered processes (using WS-BPEL or BPMN).

Note that the activities definition is not driven by the information model, but being manually defined

in a functional basis with explicitly ordering constraints. Such activities have links that enable the access

and manipulation of one or several entities, smoothing the modelers ability to think in activity-centered

terms but hurting the ability to entities self-evolve by adapting their loosely-coupled interactions.

Evaluation: Fig.5.3 presents an illustration for the GF case, with its analysis being done on Table 5.4.

22

Figure 5.3: Simplified business operations model

Requirement Support Evaluation

Data Access +/−
The aggregation and presentation of data-contexts is handled outside of the process definition
using generic service calls based on role and life-cycle state access policies;

Data-based
Reaction

+/−

Although a structure based on notifications of state and data change events is used, every BE
must be specified in combination with a WS-BPEL or BPMN process that specifies the various
processing steps of the accessing BEs. BEs dynamic ability response is limited by the activity-
centered precedences introduced by linking layer;

Data Coordi-
nation

+/−
Synchronization between BE instances can only be achieved by using processes that manipulate
two or more BE instances at the same time. BE life-cycle models do not support parallelism;

Data-based
Granularity

−
Intertwining of BEs by WS-BPEL processes with an absence criteria to assure atomicity and
uniform composition. No aggregation or composition patterns of BEs is possible;

Data Modeling +/−
Limited to static-time modeling of BEs with plain information models, whose specification and
filling is totally independent from the system data models.

Table 5.4: Evaluation of Business Entities Modeling

5.1.4 Product-based Workflow Support

Product-based Workflow Support (PBWS)is an approach to model data-intensive processes on the basis

of their production specification [90]. By centering the modeling and changes on such production a

new dynamic and flexible support is possible [117]. It particularly fits models that periodically require

a clean-sheet [90]. PBWS is inspired by manufacturing principles, where a close interaction between

the design of a product and the process to manufacture is visible [106][118]. Nevertheless, like artifacts,

products can be both physical and conceptual. The production specification, the so-called Product Data

Model (PDM), has its roots on the manufacturing Bill-of-Material graphs [118], tree-like structures with

the end product as root and sub-assemblies, raw materials and purchased products as middle and leaf

nodes connected through composition relations.

In general, a PDM consists of a number of data elements linked through operations (or activities)

[117]. Each operation has a set of input data elements and produces one output data element. The op-

eration on the input elements, executable when all of them are available and their execution conditions

satisfied, can be a calculation, an assessment by a human, or a rule-based decision to determine the

output element [116]. Alternative ways to produce the output product are possible if different opera-

tions for the same output have different input elements [117]. Finally, operations have a set of quality

attributes used for the run-time decision of the most proper next operation to execute [90].

Evaluation: Fig.5.4 presents a simplified PDM for the GF’s contract delivery. Although we cap-

ture data components dependencies, since they are intertwined by activities there is still an activity-

orientation. Note that by adding quality attributes to activities (e.g. A1) we not only have process mod-

els based on functional behaviour but activities selection strategy also focused on performance. Table

5.5 exploits how PBWS answers to the introduced five requirements.

23

Figure 5.4: Product-based simplified data model

Requirement Support Evaluation
Data Access − Activities have only access to the explicitly specified input components;
Data-based
Reaction

−
Although conditions on data elements are verified by activities, activities do not truly react upon
them since they are constrained by an explicit precedence network of operations in a PDM;

Data-based
Coordination

−

PBWS applicability depends on how system operations can be described through a product using
composition relations between its components, limiting complex data structures and discourag-
ing loosely-coupled entities as they have to be assembled into a single product;

Data-based
Granularity

+/−

PBWS foster (but not assures) atomicity of activities based on the input data to produce an
intermediate outcome. Although the notion of sub-processes does not exist, granularity can be
achieve by by collapsing product model nodes through the use of projections;

Data
Modeling

+/−
Only enabled at design time, according to the previously introduced restrictions and intertwined
with the modeling of activities.

Table 5.5: Evaluation of Product-based Modeling

24

5.1.5 Data-driven Modeling

Data-driven approaches are based on the premise that relations between components of a data model in-

dicate dependencies between the activities that modify those components [74]. The specification of data

is, thus, possible at the model level and it is used for automated derivation, coordination and main-

tenance of correspondent processes dependencies that define process model constraints [77]. Although

with small variances, this approach follows the principles introduced in the COREPRO framework2 [75].

Data-driven modeling was triggered by the need to reduce efforts and inconsistencies of modeling pro-

cesses that consist of numerous concurrently executed interdependent sub-processes as encountered,

for instance, in automotive industries or health-care sectors [75]. Such process structures have in com-

mon that changes (e.g. adding a dependency between components) and real-world exceptions occur

frequently and may affect not only single sub-processes but also the whole process [14]. Such changes

are supported as they are derived from the adaptation of data structures.

Efforts have been focused on: i) how to describe the processing of single objects (i.e. relations be-

tween an object and its modifying processes), ii) how to define the processing of the overall data struc-

ture (i.e. dependencies between sub-processes in relation to object models), and iii) how to automatically

derive a proper process structure based on the underlying data structure.

Objects, similarly to artifacts, have a life-cycle (OLC) that define their single processing and that are

synchronized with other life-cycles to define the coordination of processes [74] using both internal and

external state transitions [77]. An internal state transition is associated with a sub-process modifying

the object (thus inducing a state change) and is triggered when the object conditions are met. External

state transitions connect states of different OLCs by defining relation types which synchronize related

objects. The resultant process model view based on such constraints is the so-called life-cycle coordination

model which captures this state-based coordination and acts as a blueprint for life-cycle coordination

structures which describe a process instance for a particular data structure [74].

Figure 5.5: Data-driven simplified data model

Evaluation: A simplified data-driven OLC model for the GF operation is depicted in Fig.5.5. Using

this approach a monolithic process can be decomposed in loosely-coupled processing objects based on

the system data model. If we confront this model with the activity-centered process model in Fig.3.1,

2COnfiguration based RElease, a project owned by Daimler AG Group Research

25

we see that object models are driven by the system underlying participants relation. The potentiality

of data-driven relies on its expressivity to synchronize objects on the basis of internal and external state

transitions – see, for instance, the requires relation type between Deal and Employee objects. Table 5.6

exploits how such approach answers to the five requirements.

Requirement Support Evaluation

Data Access −
Activities data scope is limited to their OLC data environment (e.g. Deal activities have only
access to the Deal data objects) and restricted by OLCs’ internal and external state transitions;

Data-based
Reaction

−
Since data elements are roughly captured by data-driven process models (only their structure is
relevant), data conditions are not supported;

Data-based
Coordination

+

Data-driven modeling is the more expressive approach that capture objects relations to define
process constraints. A process model can create different types of relations among objects to
express a dependency, an aggregation or other patterns for the synchronization of instances be-
longing to the same or different process types. In Fig.5.5, requires relation between Deal and
Employee objects enables the dynamic aggregation of customer’s Deals while allows the paral-
lel continuation of the Deal process and the later catch of the triggered Employee Reviews in
an asynchronous manner;

Data-based
Granularity

+/−

Since COREPRO coordinates processes based on the underlying object-oriented structures,
granularities can be freely chosen and be composed according to object-based criteria. Never-
theless, as objects’ activities are not driven from data operations, their atomicity is not assured;

Data
Modeling

+/−
Although data objects are not specified at the modeling level, data-driven approaches allow
dynamic changes to objects structure [74];

Table 5.6: Evaluation of Data-driven Modeling

5.1.6 Case Handling

Case handlingwas first introduced in [107] and posteriorly deepen in [3][9]. Here, the enabling of activ-

ities, chunks of work recognized by users, is a mix of data objects conditions and ordering constraints

that jointly define the case (system’s service to its environment) state. By representing in case models

the fine-grained data dependencies associated with activities, additional valid executions can be allowed

without violating the overall consistency of a process [3]. This offers the flexibility to view and to change

data before or after the corresponding activities have been executed.

Providing knowledge with as much information as possible is another important aspect of case han-

dling systems [3]. The focus of case handling is on the whole case, i.e., unlike the previous approaches

there is no context tunneling by limiting the scope of data of single process fragments. Thus, all relevant

information is presented to the user. Forms are used in this context to simply aggregate and to present

different views on the data objects associated to a given case [3]. Forms may also contain data objects

that are only mandatory for sequent activities or free data objects associated to the overall case.

Case handling also allows for a separation of authorization and distribution [3]. Access rights take

place to adjust the access to data objects. Moreover, the mapping of activities to workers is not limited

to the execute role but extended to skip and redo roles.

Evaluation: Fig.5.6 depicts a simplified case model for the GF case. Note that, in order to capture

a high-level view of the GF operation, we introduced the notion of sub-case and the notion of com-

pound data-object as an aggregation of data-elements. This image explicit how data is associated to

case to activities or to the entire cases through labeled associations realizing the data access require-

ment. Exemplifying, Interview activity can access and modify the case free data, its optional data fields

and mandatory data objects associated to its sequent activities. The process progress or case state is de-

fined by activities state space and data state space, respectively, driven by activities precedences and data

26

Figure 5.6: Case Handling process model

conditions. Table 5.7 exploits how such approach answers to the five requirements.

Requirement Support Evaluation

Data Access +

Case handling maintains data objects to be read and written within several activities through the
use of forms and free, mandatory or optional association labels. Moreover, users can surpass the
activities by accessing any data element for which they have privilege access levels;

Data Reaction + Although activities precedences exist, activities also react upon data conditions;
Coordination − Case handling does not provide support for data objects relation;
Data-based
Granularity

−
Although activities are described in terms of atomic data elements, since cases generalization is
not considered, hierarchies of processes are rouglhy supported;

Data
Modeling

+/−
Dynamic modeling of new data objects is not supported, and new objects still have to be linked
to activity models.

Table 5.7: Evaluation of Case Handling

5.1.7 Proclets

Proclets3 approach is covered in [2][111][115] as an effort to define a modeling approach well suited to

environments where processes are fragmented, interaction is important, and tasks are done at different

levels of granularity.A proclet can be seen as a lightweight workflow process that interacts with other

proclets that may reside at different levels of aggregation [111]. Despite proclets still suffers from data

and processes perspectives integration, it is often referred as an object-centered approach as one can

think of proclets as objects equipped with an explicit life-cycle or as active documents [37].

Proclets interact via channels, mediums used to transport messages from one proclet to another

[115]. Channels support different types of interaction according to the medium type, reliability, security,

synchronization, closure and formality [2]. In order to proclets find each other, there is a naming service

that keeps track of registered proclets. The messages exchanged among proclets are precisely specified

in performatives. A performative is defined by its channel, senders, receivers, type or action and the

content exchanged [2]. Proclets are connected to channels via ports. Each port has a cardinality (number

of recipients) and a multiplicity (number of performatives exchanged during a proclet life-time) [115].

A proclet defines a class describing the life-cycle and ports for a set of instances. Using these con-

cepts, complex monolithic process definitions can be broken up into smaller interacting proclets. Adding

3must not be confused with the worklets notion [46], orthogonal add-in that allows flexibility by the late binding of process fragments

27

Figure 5.7: Proclets-based simplified process model

proclets to an activity-centered approach promotes a shift from control to communication emphasis

[111].

Evaluation: A simplified proclets-based model for GF scenario is depicted in Fig.5.7. The activity-

centered entangled process model is, through the use of proclets, divided into simpler objects with an

increased emphasis on interaction. Table 5.8 exploits how proclets answer to the five requirements.

Requirement Support Evaluation

Data Access −
Although proclets are decoupled process fragments, each fragment can still be considered an
activity-centered model, thus, suffering from same limitations;

Data-based
Reaction

−
Activities become available as a result of the work performed (explicit life-cycles where their
nodes do not represent states but activities);

Data
Coordina-
tion

+

The potentiality of this approach resides in the way objects can synchronize with each other
through multiple and quality-pushed messages-exchange patterns by recurring to the use of
ports and channels. Proclets support batch-oriented tasks which enables vertical dynamic ag-
gregation of proclets instances [74]. Although not so expressive as data-driven objects relations
in covering advanced synchronization patterns, it provides a basis to integrate system platforms;

Data-based
Granularity

−
Although referred as candidates to decompose monolithic processes into decoupled classes
[111][115], they neither support atomicity of activities nor proclets’ compositions.

Data Modeling − Not supported.

Table 5.8: Evaluation of Proclets Modeling

5.1.8 Object-aware Business Processes

The object-aware modeling direction results from a theoretical effort to understand the role of data

within unstructured and semi-structured processes driven by user decisions [64]. Although this re-

search stream introduces novel principles, has not yet present concrete constructs to support them [65].

However, its analysis is relevant since object-aware modeling integrates different ideas in an aligned

way with the target object-centered modeling4.

Object-aware process models integrate process and data structures [65]. The data structure is com-

posed by object types, their attributes and inter-relations. At runtime object types refer a varying num-

ber of inter-related object instances, whereby the number can be restricted by lower and upper bounds.

Such number may dynamically evolve depending on the state of the created object instances. Higher-

4recent object-aware contributions [65][63] were published when the object-centered modeling was already in the implementation stage

28

level object instances are directly or transitively referenced by a lower-level object instances, for instance,

a Request is a higher-level instance for a set of Assets, lower-level instances.

The process structure assigns behavior to objects using life-cycles to determine in which order and

by who object attributes were validly written. Similarly to artifact-centric modeling, a transition may

depend on the attributes-value conditions or on the state of its related object instances.

Object-aware research distinguishes form-based activities (used to access or change the objects’ at-

tributes) from black-box activities (may integrating advanced functionalities)5. Forms progress enable a

flexible process execution as change of form-values may lead to the skip or appearance of other form-

fields on-the-fly, and also support the re-execution of activities to agents be able to update previously

submitted form-fields [65]. Additionally, it integrates the form-view with process-view by by adding

form-based activities to the responsible agent’s work-list [63].

Form-fields are composed by instance-specific activities, batch activities (collective enactment by

using a common form-field) and context-specific activities (collecting related higher and lower-level

instances in a form) depending on the number of instances they apply to [65], as depicted in Fig.5.8.

Figure 5.8: Object-aware simplified process model and types of collective enactment of instances

Evaluation: A simplified object-aware process model for GF scenario is depicted in Fig.5.8. Table 5.9

introduces new object-aware aspects by exploiting how it answers to the five requirements. Since this

approach was not yet implemented, this evaluation may be optimistic.

5.2 Other Emerging Approaches

Other modeling approaches exist which add important contributions to the reasoning of the target mod-

els. Batch-oriented approaches [12] support tasks definition that are based on groupings of small ele-

ments to allow simultaneous execution, enabling vertical dynamic aggregation. Multiple instantiation

of activities based on simple data structures, such as sets and lists [110][49], is supported by UML 2.0

activity diagrams (Expansion Region) [83] and by BPMN (Multiple Instances) [47]. They enable iterated

or concurrent execution of the same activity for each element given by a flat data container.

The Object-Process Methodology (OPM) [36] is an object-centered approach focused on connect-

ing object states and processes through procedural links. Similarly to data-driven modeling, Team

Automata [38] provides a formal method to describe the connection of labeled transition systems (au-

tomata) via external actions associated with internal transitions based on events.

5this work does not make this distinction as: i) either state-changes on form-based or black-box activities correspond to a normalized event

that can be directly triggered by a software agent, and ii) it assumes that atomic black-box activities are as well captured by a data-attribute

29

Requirement Support Evaluation

Data Access +

Integrates case-handling principles as the inclusion of authorization or the separation of agent
authorization and allocation. It adds the concept of vertical authorization for the selection of
potential actors not only be dependent on the activity itself, but also on the object instance
processed by it [65]. Complementary to this instance-based authorization, process- or state-
based authorization to access and modify objects’ attributes must be available [63];

Data-based Re-
action

+

Process progress depends on objects’ life-cycle progress which is responsive on data-
conditions and state-changes of the related object instances. Execution is flexible as forms
dynamically change and their fields-filling order is decided by their enacting agents instead of
automatically chosen based on historic data [63];

Data
Coordination

+

Object concurrent interactions are supported by three types of state-dependencies: i) creation
(when the creation of an object instance is dependent on the state of the related higher-level
object instance), ii) aggregation (when information from its lower-level object instances should
be accessible), and iii) execution (when an object instance to transit between states depends on
the state of another object instance) [65]. However, advanced patterns, as the definition of a
synchronization point for all the running Assets from a particular Customer, are not supported;

Data-based
Granularity

+/−
Atomicity is assured, composition is referred as a requirement but not yet presented how mod-
eled in practice and their fit with existing object type relations and grouping of activities;

Data Modeling +/−

Data is modeled at the process modeling level, but in a redundant way with systems’ application
data [65]. It does not support expressive patterns, as observed in data-driven modeling. The
adaptability of data models is not referred.

Table 5.9: Evaluation of Object-aware Modeling

Support for the product specification, based on how data should be clustered to form the key objects,

is an emerging issue [69]. Also, specification of temporal constraints is an important direction [48].

Finally, Operation Specification (OpS) [81] define ways to describe operational semantics within objects.

5.3 Discussion

Results were collapsed in Table 5.10. We say that an approach answers a requirement when satisfies

almost of its clauses, partially answers a requirement when satisfies at least one of its clauses, and not

answers a requirement if does not approach it. A brief analysis done in Table 5.11 supports the presented

results.

Approach
1.Data
Access

2.Data-
state
Reaction

3.Data-based
Synchronization

4.Data-based
Granularity

5.Data
Modeling

Document-based Modeling +/– + +/– – +/–
Artifact-centric Modeling – + +/– +/– +/–

Business Entities +/– +/– +/– – +/–
Product-based Modeling – – – +/– +/–

Data-driven Coordination – – + +/– +/–
Case Handling + + – – +/–

Proclets – – + – –
Object-aware Modeling assuming a viable implementation + + + +/– +/–

Table 5.10: Approaches Evaluation [subtitles: + answers; +/– partially answers; – not answers]

Discussion reveals that each approach answers differently to the introduced requirements. Neither

approach satisfies all of them, which may justify their limited real-case applications coverage and im-

pact. However, lessons can be used to retrieve principles to derive a more mature modeling approach.

30

Document-based
Modeling

It fosters simplicity by modeling constraints recurring to data-dependencies, guides enactment, sup-
ports authorized data-access using knowledge-bases and captures ad-hoc forms of collaboration.
However, it limits data modeling to plain structures, does not support advanced relations among
documents, and instances are defined statically;

Artifact-centric
Modeling

It is oriented to business needs and execution constraints are automatically driven from artifacts
modeling. However, activity data-access is limited to the related artifact, life-cycles synchronization
only supports few patterns and, finally, composition of artifacts is not possible;

Business
Entities

This artifact-centric variant offers additional access policies based on role and life-cycle states,
although it hurts flexibility by limiting the ability of entities interact in a loosely-coupled way and,
consequently, their adaptation, since activities are manually defined and explicitly constrained;

Product-based
Modeling

It is good for process models that periodically require a clean-sheet, uses quality attributes for
dynamic path choice. However, data-access is restricted to operations’ input components, there
must exist an explicit precedence network of operations, and applicability relies on the ability to
specify productions using composition relationships that can be assembled into a single product;

Data-driven
Coordination

It is indicated for large and numerous concurrently executing processes. It adds advanced com-
munication patterns, as the definition of synchronization points among instances belonging to the
same or different process type, based on objects relationship types, and allows for complex struc-
tures specification that can guide functional decomposition. However it disregards simplicity, data
content that leads to data reaction and access problems, and atomicity of activities;

Case Handling

It is unique in providing a global view of the process to its users, data-access is expressive and users
can surpass the activities by accessing data for which they have access levels. It allows for hori-
zontal aggregation and, since it is fully state-based, it is easy to conceptualize. However, processes
hierarchies and data object-oriented patterns for synchronization purposes are poorly exploited;

Proclets

It promotes a shift from control to communication emphasis, where processes interact according
to an agreed level of reliability, security, closure and formality. It supports multiple messages-
exchange patterns and batch-oriented tasks, thus, enabling vertical dynamic aggregation of proclets
instances. Although proclets are decoupled process fragments, composition is not supported and
each fragment can still be considered an activity-centered model, thus, suffering from same data-
access and data-state reaction limitations.

Object-aware
Modeling

It integrates case handling’s data-access, enriching authorization with state-based and vertical
(instance-based) levels, and form principles. It supports artifact-centric patterns of coordination.
It introduces collective enactment of batch activities, on-the-fly form changes, multiple instantia-
tion using cardinalities, re-execution of submitted activities and offers a natural integration with
process-view by assigning mandatory activities to work-lists. However, it does not support vertical
aggregation for instances with different higher-level object instances, sound criteria and object-
oriented modeling patterns as inheritance and composition.

Table 5.11: Brief Review of some of the Emergent Approaches

31

IIISolution
Architecture

6
Solution Basis

I keep the subject constantly before me

and wait till the first dawnings open

little by little into the full light

— Isaac Newton

This chapter uses the understanding of how emergent approaches answer data requirements to struc-

ture a solution basis for the definition of principles. Section 6.1 introduces a set of object-centered system

aspects for the development of an object-centered meta-model, and section 6.2 identifies the main steps

for the modeling of object-centered systems. Relying on this structure, a set of principles are retrieved

in section 6.3 and section 6.4 will use this set to revisit and clarify the thesis contribution.

6.1 System as Synchronized Set of State-based Entities

A process is here captured as a set of state-based and synchronized entities – objects, activities, goals and

time. Exemplifying, a transition between states of an entity A can trigger an event for another transition

occurrence in an entity B if B has some sort of dependency with A.

Two key axioms must now be introduced. First, process state is a function of time and of its activity,

object, and goal models. Second, synchronization among entities is defined through event-driven state

transitions recurring to rule-set models.

Object models and activity models in the modeling landscape of data-intensive systems are integrated

by a process model (the governance model) that establishes relationships and constrains their interaction

through rule-set models. Although the main focus of object-centered approaches is placed on how these

models relate, goal-based models may also be key governed models.

Relations among these object-centered models will be deepened and formalized through this work.

Introduced problems require objects to constitute a basis to derive activities’ constraints, context access,

coordination and composition. In particular, agents must compose all the behavior needed to support

activities. Activities progress must affect objects state, possibly creating, changing or removing related

object instances. Rule-sets place constraints within and among object and activity models. Rule-set

models must, additionally, bind goals to an object, as system goals satisfaction dynamically derive from

its employees or productions state, and, complementary, use goal’s formulations to dynamically derive

objects’ constraints pre-assuring the system ability to deliver its productions [41][20].

Note that the notion of system applications that traditionally intertwined data and process models

are in data-intensive landscapes pushed back and captured as workflow systems’ additions to imple-

ment non-trivial system rules.

A meta-model for an activity-centered process model defines: i) a set of concepts, the nodes N, that

comprise activity models AM, event models EM that turn explicit the process state, and gateway models

GM that define a set of control-flow constructs C; and ii) a set of relationships between these concepts,

32

the edges E. Thus, when we want to integrate the modeling of participants, in particular the passive

participants, no longer the focus on this formalization1 suffices.

An object-centered process model, <OM, AM,GM,RM>, is a model derived from a set of state-based

object (or participant) models OM, related activity models AM and goal models GM. These governed

models are synchronized through rule-set models RM that constraint the availability to invoke activi-

ties based on state restrictions or concessions to the governed models. It can generically be defined as

a pair <N, E> where N = NOM ∪ NAM ∪ NGM ∪ NRM , and E ⊆ N × N.

Note that this definition broads the initial activity-centered perspective by integrating the informa-

tional view and generalizes the notions of event and gateway models into rule-set models. Note also

that every activity is related with an object – functional and informational structures are similar, al-

though their content and goals differ. In this sense, in the absence of additional rule-set models, activity

instances become available (initialized→available) when the corresponding object instance is created. The

creation of object instances arise from system agents – either human (conversation object is instantiated

and manually filled when a physical-mail is received) or artificial (conversation object is instantiated and

automatically feed when an e-mail is received, assuming that the e-mail platform is integrated with the

process execution environment through an agent able to trace collaborative information flows2).

A simple scenario is now introduced to clarify the introduced axioms – a system composed by A

and B simple objects, by a third compound object C (that associates a B instance with two or more A

instances), by their related activities (respectively, X, Y and Z), and by a goal K. The state of the process

model derived for this system is defined as the external product among the object, activity and goal

models state3. Rule-set models are by default (although editable) assigned to every state-transition, for

instance, rule γ1 triggers the BS 1 → BS 2 state transition when its condition (at least two A object instances

related with the target B instance are in the AS 2 state) is satisfied.

Presently, this system has the AI and AII object instances related with an object instance BI , and XI ,

XII and Y I activity instances acting, respectively, upon AI , AII and BI data. As activities XI and XII , in

execution state, change AI and AII data, they cause a change of their states from AS 1 to AS 2. When both

object instances reach the AS 2 state, γ1 is satisfied and BI object instance transits from BS 1 to BS 2 state,

causing activity instance Y I to transit from the initialized to available state. An agent enacts Y I , triggering

its transition to the execution state, and by changing the data of related BI object instance (that transits

from BS 2 to BS 3 state) triggers the transition of Y I to the succeed state. Since object instance BI is in the

BS 3 state, process model’s goal instance K I transits to the satisfied state.

The notion of a data-intensive system as a synchronized set of state-based entities is event-driven by

nature. Entities dynamically publish and subscribe sets of events related to data and marking-changes.

Annex 15 explain how an event-driven architecture may fit with this paradigm, and its implications on

modeling traceability, correctness and usability.

A simplified meta-model for the object-centered modeling landscape, capture its key concepts and

their associations is depicted in Fig.6.1. The distinctive value for this approach resides on the be-

havourial perspective, which not presents complex control-flow patterns, but expressively constrains

the systems’ operation freedom from both functional and informational perspectives. Note also that

1(N, E, type), where N = NAM ∪ NEM ∪ NGM , E ⊆ NxN and type : NGM 7→ C
2this field of research is reffered as Human Process Management and is centered on governing ad-hoc, human-centric, unstructured processes

by integrating office, e-mail and document-based applications while providing end-to-end real-time visibility and complete audit trail [7]
3Cv

state × Zw
state × Ku

state, with Cv
state = f (Aq

state, B
r
state), Zw

state = f (Xs
state,Y

t
state), and < q, r, s, t, u, v >∈ N

33

contextual and instrumental perspectives (based on [68][28][120][101]) are present although not pri-

marly influencing the behaviourial perspective of process models.

Figure 6.1: Object-centered Processes Initial Meta-Model

6.2 The Process of Modeling Data-intensive Processes

With the understanding of the main object-centered modeling concepts and relations, it becomes crucial

to distinguish the main steps required to model an object-centered process. The process of modeling

the target process models begins with the objects’ specification by enriching the system data models

with synchronized life-cycles and data dependencies. Rule-set models are used to specify advanced

behaviour. Activity models, partially derived from object models, contain editable functional aspects

and data-scope. Process models are dynamically derived from the previously defined models.

Object-centered modeling steps are synthesized by the following algorithm:

The object-centered modeling starts with the objects’ specification, i.e., with the definition (step 1)

and enrichment (step 2) of system data models by defining synchronized life-cycles and data depen-

dencies. Based on the direction and multiplicity of the transitions that synchronize these life-cycles,

rule-set models are automatically derived. Rule-set models can, however, be edited to specify advanced

34

Algoritm 6.1: The Process of Modeling Data-intensive Processes

1. (Manual) Definition of a data model for the target system using UML;
2. (Automatic) Generation of the object models skeleton;
3. (Manual) Edition of object models to capture the system semantics;
4. (Automatic) Test of object models’ soundness. Generation of activity models;
5. (Manual) Activity models’ constraints and data-scope edition;
6. (Automatic) Test of activity models’ soundness. Derivation of the object-centered process models net. Generation of
default rule-set models;
foreach true do

7. (Manual) Adaptation of one of the system object-centered models;
8. (Automatic) Test of models’ soundness. Change of the affected models;

behaviour (step 3). Activity models are, then, derived (step 4) and enriched with additional functional

data-access aspects (step 5). Finally, a sound process model is derived from the previously introduced

object-centered models (step 6). Informational and functional views are, thus, coherently bridged and

avoid the use of non-source-traceable events that limit sound criteria expressivity.

Note that these steps are only required for a clean-sheet modeling of systems. This work is mainly

focused on steps 7 and 8, that enable the organic evolution of the target process model through real-

time adaptations of both activity models and object models. Fig.6.2 graphically presents the process of

dynamically derive an object-centered process model, progressively concretized through this work.

Figure 6.2: Basic Transformations on the Process of Modeling Object-centered Processes

6.3 Solution Principles

Using the knowledge of the previously studied approaches, this section retrieves a set of principles,

solution space constraints, that foster the satisfaction of the introduced requirements. In order to assure

the consistency and coherency of these principles (i.e., to avoid the non-coverage of requirements and

mutually exclusive principles), they rely on the solution basis developed in the previous section. The

principles are synthesized in Table 6.1. Following chapters will exploit in detail how the target object-

centered approach supports each principles.

35

Data
Access

First, all system data is captured (by modeling either tacit or non-tacit applications and using their trace
to feed their objects), standardized (by using a widely-accepted data modeling notation) and accessible (by
not hiding data behind applications).
Second, activity models prescribe objects’ data access by specifying labeled associations, both imperative
and declarative, at any granular level of activities and of objects.
Third, related running activities are presented together using forms. Forms fields change dynamically
since aggregate activity-related attributes can be alternately submitted and may turn new attributes available
(soundness criteria must answer to form’s deadlocks).
Fourth, there is a default criteria for the automatic definition of the activities’ data scope based on the object
models. An activity has not only access to its related object or attribute but may access related/internal/super
objects and attributes if these associations declare public visibility.
Fifth, authorization is separated from distribution using an object-based structure to manage agents’ privi-
lege access levels. Vertical (instance-based) and state-based authorization also define access levels.

Data-state
Reaction

First, the object-centered models’ interplay assures that activities react on objects state in a traceable man-
ner. Even activity’s completion, failure or cancellation behaviour is, by omission (although editable), re-
trieved from related object specification.
Second, it is possible to specify dependencies of different types (e.g. start-to-start, finish-to-start, start-to-
finish, finish-to-finish) among data-attributes or any granular level of objects, which generates expressive
dependencies on the functional level and fosters an usable parallelization of attributed-based activities and
the ability of process models to evolve through object models adaptation.

Data-based
Coordination

First, object state transitions may depend and affect other object instances’ markings. Communication
among objects, always mediated by a third object, is derived from object models to process models and it
enables the definition of asynchronous points of synchronization between processes.
Second, the skeleton for the rule-set models is automatically generated on the basis of their input and output
states and of expressive constructors.
Third, rule-set models placed in objects’ state transitions can comprise advanced formulas based on aggre-
gation constructors, data-scope settings, time conditions and executable code additions.

Data-based
Granularity

First, each compound activity is a composition of fine-grained activities and for each data-field there is an
activity that triggers system acts to access and modify its content.
Second, object model’s relations of encapsulation constitute a criterion to derive the processes’ composition,
enabling zoom operations through different operational levels either by hiding internal life-cycles or by
collapsing them into compound states.

Data
Modeling

Definition and continuously adaptation of data-intensive system is possible through dynamical creation,
edition and removal of objects at the process modeling level by assuring that the derivation of processes
from data-structures is performed on-the-fly. Soundness is verified before each modeling change and a
coherent migration of the affected object-centered instances applied when changes are sound.

Table 6.1: Principles for the FIVE Requirements

36

6.4 Principles and the Thesis Contribution

Before assessing the degree of novelty proposed by these sets of principles, four key issues must be kept

in mind. First, this thesis is centered on the definition of an event-driven solution for the solid plug of

principle, i.e. works on a higher level of abstraction providing useful constructors to support principles

and adaptability for the integration of new ones. Second, many of the presented principles are novel.

Table 6.2 identifies the source of contributions of the introduced principles. Third, studied approaches

are only focused on some principles, turning hard the integration of other as their architectures do not

respect the previously depicted axioms. Fourth, recently directions, although provide a good principles

coverage degree, still lack to support key principles [78][65].

Requirement Principle Novel Source Singularity

Data Access

1. Data Integration partial [64][7]
Modeling landscape forbids hiding of data be-
hind agents. Ad-hoc and collaborative interac-
tions are modeled and fed through HPMS;

2. Data Contexts no [3] –

3. Whole View partial [65][107]
Criteria for adaptive forms: collective enact-
ment and on-the-fly effects of submit, skip, can-
cel, suspend and re-execut activities;

4. Default Access yes – Data-centered criteria to generate data-contexts;
5. Authorization no [63][3] –

Data-state
Reaction

1. Cross-model Affectance no [81][74] –
2. Data Dependencies no [85] –

Data-based
Coordination

1. Process Communication partial [115][64][77]
Traceability of the event-based interactions.
Encapsulation of communicating processes;

2. Default Behavior yes –
Generation of expressive and editable formal
rules grounded on set theory;

3. Advanced Behavior partial [12][37]
Joining of time-constraints, active records and
batch-orientation;

Data-based
Granularity

1. Atomicity no [89] –
2. Composition partial [89] Data-centered criteria to compose processes;

Data
Modeling

1. Coupled Adaptation partial [77]
Coupled evolution of data-models (e.g. change
of relations multiplicity) and activity models.
Dynamic adaptation.

Table 6.2: Source and Novelty of the proposed Principles

Additionally, the present object-centered investigation is unique in presenting a direction for an ap-

proach that: i) fully derives and adapts process models from enriched data models ([78] still requires

the manual definition of activities for the manipulation of participants), ii) defines advanced behavior

based on formal rules, iii) uses objects data-visibility to formulate new soundness criteria, and iv) ex-

ploits object-oriented inheritance and encapsulation patterns for an expressive derivation of processes.

37

7
Solution Derivation

Your work is to discover your world

and then with all your heart give yourself to it.

– Buddha

Through this work we conduct an analysis centered on the problems of modeling responsive data-

intensive systems – a set of requirements were defined, principles that answer them were retrieved

based on the analysis of emergent approaches, and an event-driven solution basis for the object-centered

process modeling were defined. As emerging are centered on a specific sub-set of the overall data-

centered process modeling challenges, an extended approach need to be targeted. This chapter, guided

by the principles support, concretes such approach. This concretion is here done incrementally by

adding features to the developed solution basis.

Before move on, it is important to recover the object-centered three types of governed models re-

quired to derive complete and sound process models. First, object models specify sets of data-elements,

places and transitions that describe the system productions progress traced by marking function. Sec-

ond, activity models specify a normalized (although editable) state-machine, partially derived from re-

lated object models and centered on behavioral aspects. Third, rule-set models, condition-action pairs

associated to each transition of any object-centered model. Conditions are formulas based on the transi-

tions domain (or input places), whose satisfaction triggers an action affecting the marking of the transi-

tions image (or output places). The synergies with a fourth type of governed model, the goal models, are

out of the thesis scope.

7.1 Data Access

Data Integration. How to use and affect system data if it is hidden behind applications or even lost

among collaborative platforms? When modeling a data-intensive system, expressivity arising from its

data models must be seized. This statement has one main implication1: data models must be visible to

the process modeling environment, as illustrated in Fig.7.1.

This roughly seems to hurt the independence among the informational and functional architec-

tures. However, the introduced principle creates an environment where process models are dynamically

adapted when changes occur at the data level. Additionally, the unhiding of data from applications may

also bring challenges. However, applications, as already referred, are seen in data-intensive landscapes

as loosely coupled data-processing additions to the process modeling environment [25]. As exploited in

Annex 15, this improve process modeling flexibility since human and application agents can be freely

added, removed or upgraded as they only interact with system modeling landscape via events (either

by manual filling of forms or through by attaching normalized adaptors [73]).

1another implication, out of this thesis scope, is the capture of tacit knowledge. Possible solutions can be leveraged on recent Active

Record [93][45] directions, where records are used to capture tacit communication, and on the ideas of ActionBase [7], where email-based and

collaborative-work-based tools trace the information flows of system agent-empowered platforms.

38

Fig.7.1 captures in a simple this new modeling environment. Note that, since all information flows

occurred in a data-intensive system must be captured, tacit interaction through collaborative platforms

must be modeled. For instance, a conversation through an e-mail application is an object as a customer

or any other object, with a life-cycle, data-attributes and internal objects, the entries, and external tran-

sitions that, by triggering events, may affect other objects (e.g. creation of a customer request). The

artificial agent or application responsible for the filling of the respective forms must be built upon exist-

ing communication platforms for real-time tracking to be possible [7].

Figure 7.1: The new landscape: integrating data in the process modeling landscape

Data Contexts. How to specify access to contextual data in an usable way? Every simple activity

model is related with the read or modification of a data-value. Compound activities may relate with the

access of a set of data-values, possibly empty as its internal activities are neither available nor running.

However, most of the changing activities (e.g. risk rating) may require access to contextual data without

the need to specify every data-element as an input parameter for every activity. Thus, our approach

needs to provide associations between object models and activity models.

First, note that associations can either be imperative (e.g. activity A have access to data object D)

or declarative (e.g. object D is accessed by all activities except by A), depending on the system profile.

Second, note that associations can be made with any granular level of objects (assuming access to each

internal object) and activities (which automatically affects the data-contexts of each internal activity).

Compound activities can be always created to group a set of data-context related activities. These prop-

erties simplify the modeling task and avoid the complexity of data-context propagation. Fig.7.2 illustrates

how activities access data for reading purposes.

Figure 7.2: Data-scope specification

Whole View. How to avoid data-access tunneling? Although data-contexts solves the problem of

reading contextual data to execute an activity by creating a relevant data-environment, since every ac-

tivity is executed in isolation to other changing activities agents do neither have flexibility nor global

picture over cohesive process fragments. Exemplifying, Review activities to fill (InterviewNotes)1..n
userI

,

ProfileuserI , AdditionalCommentsuserI and GradeuserI should not be executed in sequence (even if the

agent has the right to choose since edition and complete understanding of the process fragment is vital).

A form is, at this scope, used to aggregate all the activities that are on the running states. The submission

39

of a form field is associated with an event that changes the activity state and possibly its related object

state. If such changes produce new events that may turn activities available and then running, new form

fields can be dynamically added and even removed (e.g. a submission of a form field may trigger an

event that aborts or suspends a running activity).

This environment for the derivation of forms, although it has its roots on Case Handling, does not

results from labeled associations to data objects, but derived from the data-filling constraints within

the life-cycle. Affecting data-requirements at different states of a life-cycle mimic mandatory, restricted,

optional and free aggregations in a more natural and complete way.

Recovering the Review scenario, when a Request instance is created Review object instances transit

from init to created state triggering the transition of the introduced activities from the init to available

state, that become running when a valid agent accepts them. As activities change their states at their

own rhythm, the compound activity that aggregates them or the absence of precendences that makes

them parallel result in a form with dynamically changing fields. Fig.7.3 depicts the form present during

the Request execution for two distinct moments.

Figure 7.3: Form, the center notion for the execution of object-centered process models

Default Access. Is it possible to automatically generate expressive data-contexts? Until here we

assumed that changing activities data-scope begins empty and become filled as a result of activity-object

associations at different level of granularity. However, since activity instances are intricately related

with object instances, advanced support patterns are possible. Object structures constitute a criterion to

pre-define activities data scope. Three different criteria must be introduced deepening on the type of

relationship and on their visibility label, thus bring the potentialities of the object-oriented paradigm to

the process modeling discipline.

First, composition/encapsulation relationships are by default public, meaning that if an activity has

access to an object, it has also access to all its internal objects. The same does not happens when the rela-

tionship is private and for the inverse relationship (assessing the parent object). Second, communication

relationships are private by default, however if an object sets its relation with another object as public, its

related activity has access to the other object’s data. Third, inheritance relationships are public by default,

meaning that an activity related to a specialized object has also access to its generalized object data as it

is inherited by the specialized object.

Recovering the Request scenario, now depicted in Fig.7.4, we can detect that by defining visibility

criteria by omission, the task of modeling data-access becomes simpler and, when not adjusted (as

40

intended to be on the basis of available visibility constructors), constraining of the data-scope to foster

the focus of the agents increasing their efficiency is a possible way through the use of strikethrough line.

Figure 7.4: Data-scope by omission

Authorization. How to access non-contextual data? When data scope is specified for an activity,

although it is provided a chunk of relevant information for an agent answer that task, in fact, we are

also limiting its space ability or creativity since he has to answer the task using the provided data set.

Without going back to the flexibility-traceability tension again, it is, however, comprehensive that the

access problem is not yet finished. For instance, if an agent wants to evaluate a request he may needs to

recover some of his past evaluations in order to leverage the accuracy of his task. Thus, authorized users

must access data independently from the process progress, which requires a separation of authorization

and agent-work distribution.

Domingos et. al [35] presents an object-based framework for the management of privilege access

levels. By now we can assume that the authorization is defined according to a role-based access control

with CRUD permissions being associated to object entities (that may exist at different granular levels) on

the basis of agents’ roles, skills, position and events-publishing (that can be synthesized as a data-field

filling from a form), according to a specific criteria. These structured permissions are link between the

informational and instrumental views. Fig.7.5 illustrates such scenario.

Figure 7.5: Understanding the privilege access levels for an object-based authorization

7.2 Data-state Reaction

In data-intensive systems the activation of an activity must not directly depend on the completion of

other activities but occur as soon as its related object triggers a subscribed event. As a data-intensive sys-

tem strongly relies on the data-flows among its system elements, system entities must instantaneously

response to data-driven events and, thus, coordinate their interaction by synchronizing their life-cycles

through event publishing and subscription.

Cross-model Reaction. How to turn activities more responsive and not dependent on a network of

precedences? One of two sources is responsible to trigger a state-transition within a system entity. First,

a form-field submission, cancellation, skipping or suspension. Forms are dynamically changing and

their filling triggers all the system agent efforts. When a field is submitted, a data-field from an object

41

is changed which may affect the state of its related activity to transit to the succeed, failed or running

states. Second, a state-transition from a related entity, with whom the target entity is synchronized.

Exemplifying, the skipping of an activity may trigger an object transition, which may affect its synchro-

nized objects and, consequently, the availability of their related activities. The event-driven basis that

supports the target solution is exploited in Annex 15.

An activity begin- and end-criteria, the transitions affecting its availability and closing, must de-

pend on objects’ state-transitions instead of pointing directly to data-values conditions. This fosters the

encapsulation, simplicity and adaptability of object models and enforce a correct life-cycle definition.

Two notes must be introduced on the life-cycles synchronization. First, as an entity may reside on any

granular level, the life-cycle of a compound entity may depend on the state of its internal entities. Thus,

an occurrence of a transition may not only depend on events triggered by external entities (association)

but also by internal entities (composition). Fig.7.6 uses three objects from GF scenario to illustrate it.

Second, the life-cycle of a compound entity model may affect the state of its internal entity models. Fig.7.6

exploits the default scenario for compound activity models.

Figure 7.6: How compound entities depend and affect the state of its internal entities

Finally, the target object-centered approach also enables the incorporation of ordering precedences

among activities. Note, however, that these precedences are just local, since it is inadvisable the defi-

nition complete end-to-end paths as this may hurt entities ability to react to events. Fig.7.7 presents an

example of a local ordering constraint.

Figure 7.7: Definition of local precedences

Data Dependencies. How to use data models expressiveness to retrieve process basic constraints? If

every simple activity is related the access or modification of an object, if a precedence exists between

two activity models it also exists between two objects. As the targeted challenge by this thesis is on how

to evolve system processes by adapting enriched data models, dependencies must be defined at the data

level and dynamically translated into functional constraints. This observation has its roots on advanced

document-based modeling.

Dependencies between attributes can be one of four types. First, finish-to-start, when the modifi-

cation of an object requires the filling of other object. Second, start-to-finish, when the modification of

an object it is only accepted – correspondent activity instance transits to succeed state – when another

42

object becomes enabled to change. Third, start-to-start, when a set of objects jointly become available

for modification. Fourth, finish-to-finish, when an object change is automatically accepted when another

object change succeeds. A useful exercise may be the reader to think on how a form-field entry and

submission may affect a complete form if different types of precedences among data-attributes are used

– these precedences foster an usable and object-centered way to capture expressive process constraints.

Additionally, such dependencies can reside at any granular level. In compound cases, we are not

limiting a dependency to a specific attribute but to all the attributes aggregated by an object. Fig.7.8

illustrates the modeling of different types of data-dependencies at different granular levels.

Figure 7.8: Precedences specification recurring to data dependencies

Note that the definition of these dependencies may not extinguish the need to define constraints for

activity models, although default behavior is provided. First, activities define other transitions than

init → available and running → succeed. Second, conditions for these transitions occurrence can be

additionally constrained (e.g. definition of local precedences). Third, constraints can be defined for

compound activity models not related with a compound object model – these compound activities are

used to assign constraints or enacting roles-skills-tasks to a collection of activities – as these constraints

cannot be derived using object constructors.

7.3 Data-based Coordination

Since data-intensive processes constrains are mainly grounded on data models expressivity, the speci-

fication of dependencies between process models must be based on simple and advanced methods to

synchronize object models’ state (directly affecting activities occurrence).

Process Communication. How to define loosely-coupled interacting processes? Previously it was

presented that a state-transition of an object instance may depend on and affect the state of the related

object instances. However, if an object (or, generically, a system entity) can be related to every entity

system, the modeling is no longer usable (and, thus, agile and adaptable) since it is hard to understand

the system big-picture, i.e., to capture the main events dependencies exchanged among a set of objects.

In order to leverage usability and granular consistency, the relations established by a set of objects

are always encapsulated or mediated by a third object. This fosters a stronger intra-component cohesion

and a weaker inter-component coupling [51]. It also enables a visual relation of the events affecting the

synchronization of a set of life-cycles. Fig.7.9 uses a manufacturing scenario to exploit why encapsula-

tion is relevant on the scope of a system production modeling.

43

Figure 7.9: The need for objects’ encapsulation

This principle is realized in two steps. First, based on data models’ composition and aggregation

patterns, a skeleton for the communication of objects is generated. Second, such communication basis

is detailed by editing i) rule conditions that include constraints over the marking of the related objects,

and ii) rule actions, used to affect those markings. These two simple steps enable the definition of points

of synchronization among the processes automatically derived from these expressive objects relations.

Each process can simultaneously progress in an asynchronously manner such point is reached.

Fig.7.10 introduces a scenario that depicts how such interaction pattern among objects affect pro-

cesses synchronization. In this scenario two object models have their life-cycles synchronized, defining

six synchronization points among the derived process models, six points-in-time when data is required

to progress although they run in parallel – such loosely-coupled interaction is not supported by tradi-

tional approaches.

Figure 7.10: Synchronization of processes derived from objects communication

Default Behavior. How to create advanced communication patterns recurring to simple construc-

tors? A system model may have a Request object instance related with an arbitrary number of Asset

object instances. A typical point of synchronization for the Request object usually requires that all the

Assets to be on a certain state (e.g. on Priced state in order to price the Request) or, at least, one related

Asset to be on a specific state (e.g. on Unavailable state in order to reject a Request). Therefore, when

using cross-object association arrows to express communicating patterns, the rule-set models must be

expressively captured in a dynamic fashion.

A set of rules are used to derive automatically the basis for rule-set models. The algorithm 7.1 is

44

a simplified method for this derivation. Fig.7.11 provides the application of this algorithm to two GF

objects. Note that these generated rule-set models can be manually edited to express advanced behavior.

Figure 7.11: Default rule-set models dynamically generated

Algoritm 7.1: Generation of Rule-set Models

Input: Let F be the set of all transitions shared by the rule-set model RM
Input: Let srcF = U(dom(F)) and destF = U(range(F)) be, respectively, its input and output places
if condition-not-edited(RM.cond)∨condition-is-empty(RM.cond) then

1. For all input places the next condition must be satisfied: ∃x ∈ srcFM(x) ≥ 1;
2. For all input places the next condition must be satisfied when a strict (AND) association is used:
∀x ∈ srcFM(x) ≥ 1;
3. For all the input places that do not belong to the object where the rule-set model is assigned (E ⊆ F) the next
condition must be satisfied: ∀x ∈ dom(E)M(x) ≥ n, where n is the cardinality (may be established dynamically) of
the related object;

if action-not-edited(RM.act)∨action-is-empty(RM.act) then
1. For all input places belonging to the object where the rule-set model is assigned (A = F − E) the next action must
be taken: ∀x ∈ dom(A)M(x)− = 1;
2. For all output places belonging to the object where the rule is assigned the next action must be taken:
∀x ∈ range(A)M(x)+ = 1;
3. For all output places belonging to the object where the rule is assigned the next action must be taken if random
progress (XOR) is used: ∃x ∈ range(A)M(x)+ = 1;
4. If the association enforces related model continuation, the next action must be taken:
∀x ∈ dom(B)M(x)− = n ∧ ∀x ∈ range(B)M(x)+ = n;

Advanced Behavior. How to model domain-specific behavior? Three main directions are pointed.

Only the last one will be fully target as its contribution better addresses the third data-requirement.

First, the use of time formulas within the formal conditions and actions of rule-set models. Streams

of research pointed in [48] present important contributions for this field of knowledge. A scenario is

introduced in [31] where its modeling require time constructs to be used in relation to objects’ historic

data to affect rule’s decisions. Additionally, process mining input can also be used to enrich the decision-

making space assigned to a rule-set model.

Second, executable code can be assigned also to a rule-set model, enabling the extension of our formal

syntax expressivity from sets theory to, possibly, a programming language. To support in the target

object-centered approach, an engine that runs an algorithm that receives input markings as arguments

and returns updated output markings must be developed.

45

Third, aggregation-separation constructors for sets of related instances must be introduced. Such

constructors can also be placed in rule-set models, which result in an integrated multi-tab form, where

each tab presents a set of data-fields both specific for each instance and shared by a set of instances.

Two different concerns are involved. First, the aggregation of a set of object instances which may

have a common parent or related object instance. Exemplifying, the aggregation of all the running

Assets associated to all of the Requests of a specific Customer. This can be done before the supplying

of Assets so they can be collectively ordered. This vertical synchronization point is depicted in Fig.7.12

using notational convenience (the generation of its formal expression is studied on the next chapter).

In order to satisfy this, relations between child and parent objects must be defined, and due to agents

authorization and allocation properties, one agent may lose visibility from one or more of its form-tabs.

Advanced constructors, as the ones provided by Data-driven Modeling (see Fig.5.5) now become

fully supported through life-cycle synchronization of multiple instances. Note that the Proclets Modeling

potentialities were already supported using the previously introduced communication pattern, although

it uses sockets to implement processes interaction possibly mediated by system applications2 instead of

relying on an event-driven structure.

Second, the aggregation of a set of object instances that may share something in common – grouping

all the Assets within the same category and still not supplied. Fig.7.12 depicts such scenario.

Figure 7.12: Two different aggregation rules for instances that: i) share an upper parent, and ii) have similar properties

7.4 Data-based Granularity

Modeling of system elements must preserve elementary atomicity and be possible at different levels of

granularity, assuring they are coherently bridged and have a criteria for their uniform development.

Process models must comprise two principles at this scope. First, for each object data field there

must exist an activity based on a service that accesses and modifies its content or on the semantically

composition of these atomic services. Second, relation types among object models must constitute a

criterion for the functional decomposition of processes towards atomic activities. For instance, if an

object model Deal has a uses relation type with RequesterRiskRating and a composition relation type with

a set of Review object models, it is possible to conceive a modular aggregation with two loosely-coupled

process models, the Deal process (with Review sub-processes) and the RequesterRiskRating process.

Atomicity. For each object data-field there must exist an activity that triggers a set of system acts

(possibly a semantic composition of system agents’ efforts) to access, modify and submit its content.

Since the basic axiom underlying this thesis is that every relevant action can be captured as an amount

2the target object-centered approach interact with agents (whether human or software) through form-fields filling as their intermediation

would increase the modeling complexity and spoil the existing independence from the system instrumental layers

46

of data, the target form-centered approach assures that the system behaviour is always a constrained

execution of atomic activities.

Note that the target approach, thus, have three different types of activities: atomic, simple, com-

pound and framing, which are, respectively, related to data-attributes, simple objects, compound objects

and framing objects. Simple, compound or framing activities are nothing but a state-based synchronized

aggregation of atomic activities. We can hypothesize for future research that, if each atomic activity has

a semantic meaning, their aggregation into compound activities (orthogonally from data-based com-

pound activities) can automatically be obtained, and constraints can be automatically derived in order

to satisfy the system goals.

An additional and orthogonal point to note is the fact that object authorization levels enable the use

of atomic activities to update specific data-attributes. Compositions of atomic activities are possible if an

agent is authorized to modify all of the related data-fields. For instance, to retrieve or update a customer

phone number must be possible independently from process state.

Composition. Expressivity of data models must be used to guide the automatic functional decom-

position of processes towards atomic activities, thus reducing the focus of system modeling that become

focused on system constraining and adaptation. Three considerations must be introduced here.

First, relations of encapsulation among objects must constitute a criterion to compose processes. The

generated process models must respect the objects’ hierarchy and turn possible to zoom in and zoom

out on this hierarchy depending on the agent privilege accesses. Fig.7.13 depicts simple constructors to

define different levels of visibility for a process model (also valid for any governed entity).

Figure 7.13: Zoom operations over different granular levels

Second, automatic generation of compound activity models based on other objects relation types (e.g.

composition, extension) is also possible. For instance, if O1 depends on O2 and O3, and O2 depends

on O3, two compound activity models can be derived: one comprising related activities to O2 and O3

objects, and another with all the objects. Since this property does not strongly impact composition

principle, this thesis will not consider it.

Third, the use of framing objects or activities to aggregate cross-related objects or activities instances

is also possible. These framings are used to facilitate the assignment of data-contexts, access-rights and

common constraints, as illustrated in Fig.7.14. Note that zoom in and zoom out operations may become

unavailable for regions where one frame crosses different levels of granularity.

7.5 Data Modeling

The modeling and adaptation of object models and their rule-set models must be possible at the process

modeling level, thus, extending the source of adaptation from behavioral aspects to dynamical creation,

47

Figure 7.14: Framing activity will collective assignment of data, agent and constraints

edition and removal of objects.

Two main challenges exist. First, to assure that the new models are sound. If a correctness criterion

is defined for object models we just need to apply them when a change is submitted to accept or reject

with detailed reasoning the adapted model. Second, to support an adequate migration strategy. For

now we can assume that executing process instances do not migrate (only new process instances) — the

study of this topic will be simplified since the proposed mapping to YAWL as the implementation basis

adopts already relaxed ways to migrate process instances.

The adding, removing and edition of object models and of their data-attributes, states, transitions,

rule-set models, data-dependencies and inter-relation types must be covered. Since execution con-

straints for data-intensive processes mainly derive from objects models, these operations become the

central source to evolve processes.

Additionally to the introduced source of adaptation, arising from flexibility by change, this thesis

also analyzes (although not formalizes in detail) the flexibility of the target object-centered models in

terms of deviation and deferring. Flexibility by deviation is used to embrace exceptions, so instances

become more reactive as they can temporarily deviate from specifications until possibly standardized

[99]. Flexibility by defer or underspecification is used to accommodate unforeseen situations without

the complexity of defining all the paths in advance. This is done through the definition of incomplete

processes that by specifying one or more placeholders, nodes whose content is unknown and specified

later on by late binding, either only affecting present execution (static realization) or every subsequent

execution of the process (dynamic realization) [99].

First, deviation patterns must be carefully applied since the target approach breaks monolithic pro-

cesses into loosely-coupled communicating processes – if an entire process is deviated it may affect all

of its related processes in a cascade manner. Two considerations must then be introduced to solve this

problem. First, deviation must be reduced to process fragments limited by two points of synchroniza-

tion. Second, deviation of processes containing one or more points of synchronization is possible since:

i) the affected process instances become also deviated, ii) the deviated places affecting the synchroniza-

tion points still become filled, or iii) the satisfaction of the rule-condition that affects the progress of the

related instances forced.

Note that deviation can also be locally applied to rule-set models, as formal and algorithm-based

conditions and action can be case-by-case deviated to test the ability of a new system behavior to answer

to its internal and external changing conditions in a trial bottom-up fashion.

Second, placeholders definition and their late binding, in line with what was said regarding deviation

limitations using the target approach, must also consider the potential effects on the related processes if

a placeholder covers object fragments with one or more places associated to a synchronization point. In

this case, a placeholder must turn mandatory the use of such places when binding a specification.

Note also an object with an unclear role (e.g. a type of supplier, with whom the target system

48

does not yet structured the data to exchange) may be itself a full placeholder with a set of manda-

tory communication-required places. Also, dataholders on the object’s information model is possible, if

some system production does not have a standardized structure. These aspects enable the definition of

incomplete models for systems and their gradual refining and completion.

49

IVDevelopment

8
Object-centered Models

Formalization
Sendo impossível exprimir o Absoluto, só o Símbolo o pode conter.

Pela sua capacidade invocadora, acorda no inconsciente um Saber perdido.

Traz o inconsciente ao consciente.

– Donald Kuspit, Concerning the Spiritual Contemporary Art

In last chapters, process models’ basis was defined as a set of event-driven synchronized state-based

entities and their properties were derived. Sections 8.1, 8.2 and 8.3 formally describe the object-centered

models and their soundness criteria, and section 8.4 presents the steps required for the derivation of a

process model based on its governed models.

8.1 Object Models

The notion of object was already defined. Objects are system entities containing data-elements, a life-

cycle that may relate with other objects, either through communication, inheritance or mediation.

A simple object model is a tuple < A, P, F,C,M >, where:

• A is a set of data-attributes. Each attribute, a ∈ A, is a tuple < tp,V > where tp is its data-type and

V (⊆ ℘, all tp domain values) is a set with zero, one or multiple values (if tp:=Set< tp >);

• P is a list of places/states;

• F is a set of flow relations or transitions (⊆ (P× P)∪ (P× A)∪ (A× P)∪ (A× A× {FF, S S , FS , S F}));

• C : F → RM assigns a rule-set model to a flow relationa. Rules, RM, are essentially pairs <

ID, cond, act >, where: i) cond is a set of conditions either based on the object data-values ∪i∈AVi

(or, more accurately, over the state of their related atomic activity models: ∪am∈AM M(am)) and

over the marking of its input transitions’ places, srcF = ∪(dom(F)), and ii) act is a set actions

performing changes on the marking of the input and output transitions’ places, srcF∪(range(F));

• M is the model state or marking defined by a function P→ N.

aC is not a partial functional, since every transition has a condition. See Alg.7.1 for default rule models’ generation

Figure 8.1: Simple Object Model

An example of a simple object model, Request, including data-dependencies and generated rules, is

50

presented in Fig.8.1. Its state is defined by a marking M joining individual places marking. Since P is

a list (its elements have an index – e.g. P(0)=init, P(1)=created...), a marking can be defined by a vector.

Exemplifying, if M=[0 1 0 0 0 0], M(created)=1 and M(init)=M(formatted) =...=0, there is one Request

instance in the created state. However if we would want to address all of the Request instances running

in GF, different markings such as M=[0 0 0 0 1 2], decomposable in a matrix with six columns and n

rows, being n the number of Requests (e.g. M(1,6)=1).

A possible rule-set model assigned to valid→priced transition would be: C(valid→priced)=< cond,act>

with emphcond={Price!=NULL}. However, it is important to understand that each data-attribute has a

correspondent atomic activity with an end-criterion (by omission, the submission of a not-null form-

field value). Thus, preferably, the condition can be defined as cond={Price.succeed} since activities may

rely on multiple data-value conditions for each transition.

Let us introduce the semantics to study soundness criteria. Let < P,T,C > be a state-machine and

M its marking. The firing of a transition is a state change occurring when its rule condition is satisfied

[120]:

• M−→tM’ indicates that by firing t, the state of the machine net changes from M to M’;

• M−→M’ indicates that there is a transition t such that M−→tM’;

• M1−→
∗Mn means that there is a sequence of transitions t1, t2, ..tn−1 such that Mi−→

ti Mi+1 for 1≤i<n;

A state M’ is reachable from a state M if and only if M1 −→
∗M’.

A simple object model, < A, P, F,C,M >, is correct if and only if the following conditions hold:

• it is structurally sound, that is, it has two distinguished places: i ∈ P with no incoming edges and

f ∈ P that has no outgoing edges, and every place is located on the path from the i to f ;

• for every marking M reachable from state i there exists a firing sequence leading from M to o:

∀M(i→∗ M)⇒ (M →∗ o) with no dead transitions, i.e., ∀t∈T∃M,M′ i→∗ M →t M′;

• the attribute dependencies, A × A × {FF, S S , FS , S F}, are live and bounded;

• the attribute optional start place markings precedes the end place markings and both are reach-

able, i.e., ∀ai∈A,(p0,ai)∈(P×A)∨p0=i,(ai,p1)∈A×P∨p1=oM(p0)→∗ M(p1);

If a simple object model is not correct since it has not a distinguished init and final states, an init state

must be added with transitions to all beginning states with default rule-set models, and a final state

linking all the end-reachable states with a default rule (if no ending state is eligible due to graph cycles,

the object is not sound).

An inherited object model from one or more object models is a tuple < ζ, P, A, F,M,C >, with ζ being a set

with its super-objects, and < P, A, F,C > net resulting from one of the two following methods: i) if no

super-places are referred, the super-life-cycle (with its attributes-constraints) is, by default, executed

in parallel; ii) if super-places are referred, it inherits the constraints from the referred fragment. The

study of overriding options and polymorphism methods for advanced rules is out of this thesis scope.

Fig.8.2 illustrates the two inheritance methods currently supported by the developed approach. The

application of such methods assures the soundness of the derived models.

51

Figure 8.2: Two strategies for inheritance of data and constraints from a super-object model

A compound object model is a tuple < P, A, F,M,C,Θ, P′, F′,M′,C′ >, where:

• < P, F,M,C, A > is a simple object model;

• Θ is the set of all internal object models;

• < P′, F′,C′ > is the derived life-cycle resulting from the synchronization among internal objects,

Oi ∈ Θ, and the compound object life-cycle < P, A, F,C >, such that P ∩ P′ = ∅, F ∩ F′ = ∅,

F′ ⊆ ((P∪ A)× PΘ)∪ (PΘ × (P∪ A))∪ (PΘ × PΘ)) and such that a rule is assigned for each new flow

relation, C′ : F′ → RM;

• M′ : P′ → Nn (with n ∈ N) is the compound object model multi-colored marking.

Fig.8.3 exploits a simplified compound object model, Deal or the unnamed has(Request,Asset,1..n),

relating one Request object instance with a set of Asset object instances. The Algorithm 8.1 defines the

object model transformations required to guarantee basic soundness criteria for a compound object.

Figure 8.3: Compound Object Model

When the encapsulating object’s life-cycle is not explicitly define, < P, F,C, A > is automatically

generated with new flow relations to its internal objects, as illustrated in Fig.8.3. A sound place net

<P′,T ′,M′,C′> results from the interaction of this life-cycle with the internal life-cycles.

Another relevant aspect to exploit in this definition is the M’ marking. Since several Asset instances

may belong to different Request, no longer a simple marking, M′ : P′ → N, is enough. Instead of de-

composable vector, for the Deal example we need to have a 2-dimensional matrix that for each request

(lines) obtains a vector with the correspondent assets marking (columns). Depending on the objects un-

der relation this marking is, generically, a matrix with n dimensions. The use of these colored markings

is further visited on next chapter, and its application in advanced rules discussed.

52

Algoritm 8.1: Derivation of a Sound Net for Object Models Composition

Input: P,F,C,A,Θ with | Θ |= n ∧ ∪n
i omi = Θ

Output: P,F,C,A,P’,F’,C’
relatedObjs=∅, newInitialStates= ∅, newFinalStates= ∅, p= null, id=newID();
P’=∪n

i (omi.P), F’=∪n
i (omi.F), C’=∪n

i (omi.C);
foreach internal object om j ∈ = do

foreach internal object omk ∈ = do
if {om j,omk } < relatedObjs then

relatedObjs = relatedObjs∪({om j,omk})∪({omk,om j});
p=i(om j.omk); p= f(om j.omk);
newInitialStates = newInitialStates ∪ {p}; newFinalStates = newFinalStates ∪ {p};
P’=P’∪ {p}; F’=F’∪ {p→ iom j }; F’=F’∪ {p→ iomk };
P’=P’∪ {p}; F’=F’∪ { fom j →p}; F’=F’∪ { fomk →p};

P’=P’∪ icompound; P’=P’∪ fcompound;
foreach i j ∈ newInitialStates do

F’=F’∪ (icompound → i j), C’=C’∪ ((icompound → i j)→ (id, true));
foreach f j ∈ newFinalStates do

F’=F’∪ (f j → fcompound), C’=C’∪ ((f j → fcompound)→ (newID(),∀p∈newFinalS tates M(p) = (
∑|P|

i M(i))));
if P=null then

P={init,running,final};
F={f1=init→running,f2=running→final,init→newInitialStates,newFinalStates→final};
C={f1→<M’!=[1 0 0 0 0 0 ... 0],gen-act()>,f2→<M’(final)=1,gen-act()>};

foreach ai ∈A do
If @x x→ai Then init→ai;
If @x ai → x Then ai →final;

generate-rules(P’,A,F’,C’) %% see Alg.7.1;
soundness-checking(P’,A,F’,C’);

53

Having defined the structure of a compound object model, we need to define its correctness criteria.

A compound object model, < P, F,M,C, A, P′, F′,M′,C′ >, is correct if the following conditions hold:

• < P, F,M,C, A >, viewed as simple object model, is correct;

• all of its internal objects Θ are correct;

• exists an algorithm that, based on internal objects interaction, defines a constrained places’ net

<P′, F′,M′,C′>, with <P=P’,F=F’,M=M’,C=C’,A=null>, viewed as a simple OM, being sound.

Returning to our example, the Deal object model is sound since: i) its < P, F,M,C, A > elements are

derived by omission and its correctness automatically assured, ii) Request and Asset objects are correct,

and iii) there is an algorithm, Alg.8.1, that assures the third property.

8.2 Activity Models

Traditional approaches use activities as the key aspect to bridge the different system concerns – activities

are enacted by some agent (link to instrumental models) in a certain range of time (link to temporal

dimension), using a set of resources (link to object models) and affecting the set of system goals (link

to contextual models). In data-intensive landscapes these aspects become bridged by expressive data

models – agents are assigned to the outcomes they are able to produce, data-contexts are determined by

data-delivery dependencies and data-access levels, and goals are driven by the system productions.

Activities, in the target object-centered landscape, encapsulate and abstract from objects all the func-

tional aspects as transactions-concerns, extraordinary behavior like canceling, skipping and suspension

options and their non-local effects. Object models become simpler, thus more usable, agile and evolu-

tionary, as they become centered on the data progress and dependencies needed to deliver a production.

Taxonomies exist in literature that classify activities in primitive and complex, elementary and com-

posite or, more interesting, in atomic and compound (if an activity type can be expressed by more than

one activity types) [98]. The notion of compound activity is here used as a container for sub-activity

models (disregard of constraints) as their atomic parts can actually acquire a life of their own and fur-

thermore they may be regrouped with collections from other process instances [98]. Therefore, seeking

consistency, this work does not adopt the WfMC standard definition for activity [34] (equivalent to the

sub-process notion), since, as introduced, execution constraints are separated from the activity concept.

Activity models can either be structured (prescriptive), if explicitly represented, or unstructured (de-

scriptive), if focused on what to do (not on the how) [98][12].The object-centered activity models are

unstructured as they base the activity progress on the state of its result (data-filling), thus, do not limit-

ing the agents’ enactment creativity. Additionally, formal models are used to model activities, although

informal models or unstructured semantics can be attached to enrich their description [120]. Finally, an

object-centered activity can either be internal or external, depending if they are enacted by the system or

environmental elements, as both derive from an complete object and react on standardized events.

54

An atomic activity model is a tuple < a, P, F,C,M,D, no f i >, where:

• a =< tp,V >∈ α, is the activity outcome, its related data-attribute;

• < P, F,C > is a normalized (but customizable) state-machine, with F ⊆ (P × P) and C : F → RM,

where RM =< ID, cond, act > are defined by omission, but the condition assigned to the transition

to the final state is usually edited with an expression to test the validity of the related data-

attribute values V when the respective form-field is submitted;

• M is the model state or marking defined by a function P→ N;

• D is a set with the accessible objects’ data-values, the activity’s data-scope;

• no f i = Nin f × Nin f × {dynamic, static} specifies the number of the instances – minimum, maximum,

threshold for continuation, and dynamic or static creation of instances, used for multiple itera-

tion when tp=Set<tp>.

This is a simplified definition. Advanced topics as locks-acquisition for data-manipulation or trans-

actional properties were intentionally left out since they are out of this thesis scope. Note that several

authors instead of using state-machine notation refer to events and their orderings with the same pro-

pose. Fig.8.4 presents two default atomic activity models, one with a plain structure and another with

compound states where execution norms from state-condensation theory must be applied.

Figure 8.4: Atomic Activity Models: plain and using compound states

Rules can be assigned to transitions between compound states and enforce marking changes at a

higher-level. Multiple marking functions for the different composition can be used – e.g. M=[1 0] is

a higher making to specify active or closed instances, and M=[2 0 3 1] is a lower marking that details

instances in the enabled, suspended, running and completed places. For the sake of simplicity we will be

focused on plain nets of places.

Every activity model adopts its name from the related data-attribute, although can edit for informal

semantics coherency (e.g. price > toPriceRequest). An activity becomes available when its form-field be-

comes visible (which coincides with an event triggered to the skill- and task-based subscribing agents),

i.e., when the constraints of its object model turn possible its edition.

Although, transition rules are defined by omission, criteria from the data-attribute’s object model

can be dynamically use to strengthen the rule. Exemplifying, init→ready, in the absence of additional

constraints, immediately occurs when an instance is created. ready→running occurrence depends on

the state of the enacting agent. running→succeed transition uses the relaxed condition, a.V!=null, to

set its occurrence. Additionally, the canceling, skipping, suspension or undone transitions by omission

can occur if such option is selected in the form under submission or the respective event is triggered.

Activity machine-edition enables to restrict some of these extraordinary options and their compound

activities to control their non-local effects.

Finally, no f i enables the run-time creation and iteration of instances. If the Reviews activity (related to

Set<ID> Request’s data-attribute) no f i is [n 5 3 d], this means that, at least, five reviews are dynamically

55

created and the activity will stop when three instances reach their final state.

A simple activity model is correct if <A = null, P, F,C>, viewed as a simple object model, is sound; and its

transitions with rules based on the related data-values can occur (∀a∈A∃a.V (cond(a.V) = true∧ a.V ⊆ ℘)).

Activity models can either be atomic or compound, containers for atomic activities. Simple activities

are compound activities that are related to simple objects. The hierarchical alignment between activity

and object models is illustrated in Fig.8.5.

Figure 8.5: Modularity of a Process Model based on its Governed Models

A compound activity model is a tuple < O,Λ, P, F,M,C,D, P′, F′,M′,C′,nofi,effect>, where:

• O is the related object model, possibly empty if the activity acts as a frame;

• Λ is the set of all internal activity models;

• <P, F,C> is a standardized (but editable) state-machine with a marking M and a data-context D;

• <P′, F′,C′> is a dynamically derived state-machine based on the interplay of activity places-net

with the internal activities places net, with a marking M : (P ∪ ΛP)→ Nn (with n ∈ N);

• no f i = {Nin f × Nin f × {dynamic, static}} defines its number of instances;

• e f f ect : ΛP 7→ P(P′−{i, o}) specifies the subnet of the <P′, F′,C′> state-machine that may become

cancelled, skipped, suspended and undone when an internal activity transits to one of those

states, where P(P′) denotes the powerset of P’, a net region.

Fig.8.6 shows how the state of a compound activity affects and is affected by the state of its internal

activities. This complex state-machine is a simplification of the <P′, F′,C′> net, which is automatically

derived on the basis of a formal algorithm that assures its soundness properties. In this example Deal

compound activity aggregates two simple activities, each one being a container for new atomic activities.

Figure 8.6: Compound Activity Model

The transitions added to develop a sound <P′, F′,C′> net, have default conditions, that may be

adapted into a new template depending on the data-intensive system’s properties. For instance, running→

56

f inished can either be triggered when all of its inner activity instances are in one of the next states:

f inished, succeed, f ailed, cancelled and skipped, or when its related object instance is one the f inal state, or

even when a sub-set of its inner activity instances reach the final place. Two example of the attached con-

ditions are: C:(initDeal →readyDeal)−→{ id,∃am∈AM M(am.ready) ≥ 1,default-act}, and C:(runningRequest →

cancelledRequest)−→{ id,super().M(cancelled)+super().M(skipped)=1∨Request f orm.isCancelled(),default-act}.

Additionally to this view, each internal activity model can hide some of its internal aspects. Using

this view, an user can add ordering constraints among activities, thus possibly defining activity-centered

paths or just important local ordering (recap Fig.7.7). Nevertheless, the definition of such constraints is

discouraged since: i) ability to evolve process models based uniquely on underlying object models is no

longer possible, ii) models flexibility is hurted, and iii) data-dependencies (FF,FS,SF,SS) can be used at

the objects modeling level to define similar local-ordering constraints.

Activities with Θ = ∅ are not related with an object model. They just aggregate related-activities that

may belong to different objects. These activities act merely as frames, thus, their no f i is not editable.

They are, by default, instantiated when one of its internal activities become available, and archived

when all of its internal activities reach the final place. Several benefits are seized as related activities are

aggregate so it is possible to collectively: i) assign data-access contexts, ii) define the activities tasks and

skills for an usable agent-allocation, iii) define local constraints, and iv) affect activities that are related

by non-local effects from extraordinary operations as cancelling or suspension.

A compound activity model is correct if and only if:

• < Θ = Λ, A = null, P, F,M,C, P′, F′,M′,C′ >, viewed as a compound object model, is correct;

• all of the internal activity models, am ∈ Λ, are correct (if internal activity models are compound

models this criteria must be recursively applied until simple activity models criteria is reached);

• the effect function changes the marking into a new reachable marking.

8.3 Rule-Set Models

Rules are used to model the execution constraints of a process. They are dynamically defined (although

editable) at the object, activity and goal modeling levels, and are grounded on formal set theory. The

automatic-generation of rules turns the specification of objects the modeling central aspect, leveraging

the focus in data clustering, progress and dependencies to deliver the target productions. Additionally,

it fosters process modeling simplicity and expressivity required for the objects adaptation.

A rule-set model is a tuple < ID, cond, action >, where:

• ID is the identifier for a set of transitions shared by the rule (F : src→ dest);

• cond is an expression based on: i) data-conditions, on ii) time-state, and on iii) the marking of its

transitions’ source places (S rcP = ∪
|F|
f∈F∧dom(f)∈Pdom(f));

• action is a function responsible to change the marking of the rule’s referred places

(∀ f∈F∧(dom(f)∪range(f))∈P(dom(f) ∪ range(f))→ N);

• <cond, action> can be formulated in the scope of: i) a specific instance or ii) multiple instances, ei-

ther related by a super or interacting entity or non-related (synchronized through data-similarity).

The way rules aggregate transitions can originate different control-flow patterns. In Fig.8.7 some of

the different patterns are exploited. However, the modeler must neglect this gateway-driven awareness

to avoid a biased thinking that can limit the ability to specify advanced synchronization patterns.

57

Figure 8.7: Mimic of simple gateway-patterns recurring to rule-set models

Rules are pairs condition-action, and may refer two types of variables: i) data-attributes of the object

where the rule is placed (e.g. Assets(∈Request.A)! = null or, more accurately, M(succeedAssetsAM) = 1), ii) places

markings of the super-, sub- and interacting-objects. These variables are arranged in an expressive

formula using set-operators (e.g. ∧,∨,∃,∀), mathematical notation (e.g. Σ,+,Π) and time-constructs.

Modelers of traditional approaches often recur to non-source-traceable events to specify complex

rules, as a data-change or the reception of a specific e-mail or supplying order. Non-source-traceability

means not knowing what activities originate a change that triggered an event. However, in our object-

centered landscape, if events corresponding to an e-mail conversation or order are triggered, is because

these entities are modeled as objects, and, thus, can interact with the object under modeling without

restricting the ability to trace events-causality.

The syntax for rule-set models fit well with formal languages [31][48][43]. Future research must

deepen: i) the study of its limitations and potentialities, ii) enrich it in a structured way using already

existing contributions as [94], and iii) turn their definition graphically expressive. In fact, we already

provide advanced aggregation-separation constructs in an usable notation as illustrated in Fig.8.8.

Figure 8.8: Notational convenience to depict advanced rule-set models

A rule is an event-subscriber (subscribes to related data and places-marking changes to evaluate its

condition) and an event-publisher (informs entities of the new places-marking when its condition is

satisfied). Annex 17 exploits in more detail the implementation concerns. Rules are, in fact, the glue to

support the thinking of a system as a set of event-synchronized entities – where their progress (measured

by their markings) and data are the key aspects for their dynamic response.

8.4 Object-centered Process Models

Having formalized the notions of object, activity and rule-set models, we need now to bridge all of

their information in order to derive a complete and sound process net. Only by joining the operational

and functional aspects, it is possible to derive an executable process net, where quality metrics can be

studied to detect bottlenecks. This new integrated structure must preserve the causal dependencies of

the original models, thus, can also be referred as a causal matrix or a heuristic net.

58

A simple object-centered process model is a tuple < OM, AM, P,T, F,M,C,D,,nofi,effect>, such that:

• OM and AM are, respectively, its related simple object model and activity model;

• T is the set of atomic tasks related to AM.Λ and P is a list of places (P=OM.P ∪ AM.P′);

• F is a set of transitions between places and tasks such that ((P∪P)∩ (P∪T)∩ (T ∪P)∩ (T ∪T)) = ∅;

• C : F → RM assigns rule-set models to flow relations;

• M is the process model state or marking (M: P→ N);

• D = AM.D is a set with the accessible objects’ data-values, the process data-scope;

• nofi=AM.nofi and effect=AM.effect are the iteration and behavior-control for net regions;

• <OM, AM, P ∪ T, F,M,C,D, ∅, ∅, ∅, ∅,nofi,effect>, viewed as an activity model, is sound.

Fig.8.9 presents how a simple object and activity model compose a process net. This illustration is

a simplification of the real scenario where each task T is decomposed in a set of places linked to the

functional places AM.P′. However, this is the default presentation to preserve the modeling usability.

The most important steps for this derivation are captured by the following algorithm:

Figure 8.9: Simple Process Model

Algoritm 8.2: Derivation of a Sound Process Net

Input: object-model OM; activity-model AM
Output: < OM, AM, P,T, F,M,C,D = AM.D,nofi=AM.nofi,effect=AM.effect>
1. < P, F,C >=retrieve-net-basis-using-name-disambiguations(OM,AM);
2. P=P∪{init}; F=F∪{init→initOM}; F=F∪{init→initAM}; 3. P=P∪{final}; F=F∪{finalOM →final}; F=F∪{finalAM →final};
4. T=translate-data-attributes-into-tasks(OM.A,AM.Λ);
5. F=F∪unfold-data-dependencies-into-ordering-constraints(T ,OM);
6. F=F∪link-tasks-to-init-place-attributes-without-ingoing-arc(T ,OM);
7. F=F∪link-tasks-to-final-place-attributes-without-outgoing-arc(T ,OM);
8. C=derive-all-rules-not-edited(P,T, F,C);

The later completion of the process net, makes the modeling of data-attributes and objects depen-

dencies not biased by the need to insert them in complete network of precedences. By not thinking in

paths specification, the target approach fosters a natural parallelization of activities.

To include the communication and encapsulation aspects, the notion of compound process model

must be introduced. Note that inheritance patterns are already supportted by the object transformations.

59

An object-centered process model is a tuple <OM, AM,Θ,Λ, P,T, F,M,C,D,P’,T’,F’,M’,C’,nofi,effect>, where:

• < OM, AM, P,T, F,M,C,D,nofi,effect> is a simple process model;

• Θ is the set with all internal object models of OM;

• Λ is the set with all internal activity models of AM;

• < P′,T ′, F′,C′ > is the derived process net resulting from the synchronization aspects among

internal entities, Oi ∈ Θ ∪ Ai ∈ Λ, and the compound process life-cycle < P,T, F,C >, such that

P ∩ P′ = ∅ and F ∩ F′ = ∅, with C′ : F′ → RM assigning a rule for every derived flow relation;

• M′ : P′ → Nn (with n ∈ N) is the process model multi-colored marking.

• < OM, AM, P ∪ T, F,M,C,D, P′ ∪ T ′, F′,M′,C′,nofi,effect>, viewed as an activity model, is sound.

Note that the need to isolate < P,T, F,M,C >, and not simply present the derived process net <

P′,T ′, F′,M′,C′ >, is to turn the encapsulation mechanisms possible. If a new mediator is defined and

uses a compound process model as an internal model, it has only access to its high-level life-cycle <

P,T, F,M,C > in order to reduce the range of objects’ dependencies.

Fig.8.10 illustrates a derived process model with a marking retrieved from the Deal object model,

assuming that no changes were done to the object-derived activity model. We used multi-colored tokens

to distinguish instances. These advanced marking, M′, are based on multi-dimensional matrices to

improve the ability to specify advanced rules, and manage multiple instances. The following chapter

will deepen on its implementation.

Figure 8.10: Compound Process Model with a Marking

8.5 Object-centered Soundness Criteria

Note that simple correctness criteria were defined for each object-centered model. But which type of

soundness does the target modeling approach assures? Normal? Relaxed? Weak? Lazy? The different

kinds of soundness criteria are tailored towards specific environments, where the original soundness

appears to be too restrictive [120]. In order to assess this, four sound properties are introduced [120]:

• Termination: any process instance that starts in the initial state can reach the final state, that is, for

60

every reachable marking there exists a firing sequence the final state: ∀M(i −→∗ M)⇒ (M −→∗ o)

• Proper termination: the final state is the only state reachable from the initial state in which there is a

token in the final place: ∀M(i −→∗ M ∧ M ≥ o)⇒ M = o

• No dead transitions: each transition contributes to at least one instance: ∀t∈T∃M,M′ : i −→∗ M −→t M0

• Transition participation: each transition participates in at least one process instance that starts in the

initial state and reaches the final state: ∀t∈T∃M,M′ : (i −→∗ M −→t M0 −→
∗ o)

An object-centered process model is correct if and only if its state-machinge < (P | P′)∪A,T | T ′,C | C′ >

verifies termination and no dead transitions properties.

Note that these first and third properties imply the fourth property. Thus our approach, additionally,

verifies transition participation.

Since it verifies termination, it does not allow deadlock behavior. Thus, it does not support relaxed

soundness. But since transitions occurrence are dependent on their rule’s conditions and actions, how

termination is assured? Two possible answers exist: it is assumed that they will occur (in fact, this is

what happens in activity-centered models when they attach an event to a transition), or, alternatively

and more interesting, an additional criterion must be defined to assess if they can occur and, in that case,

if in an independent or coupled way from other rules.

Since rules’ conditions and actions essentially depend on traceable marking-changes and data-changes,

the occurrence of those event-based control-flows in the object-centered modeling landscape is possible.

Fig.8.11 exploits how these criteria are being depict and how they affect the satisfaction of the termina-

tion property.

Figure 8.11: How rule-set models affect the soundness of object-centered models

By satisfying the third property we are also disallowing certain parts of the process not to participate

in any process instances. However, this is not a problem as the objects’ points of synchronization are

only verified in the scope of their encapsulating object. By default, there is always an upper object.

Additionally, proper termination is too restrictive as it states that from each state reachable, the final

state can be reached and that at this point in time there are no tokens left in the net. A example of how

this may block life-cycles expressivity is depicted in Fig.8.12. Thus, object-centered modeling thus does

not verify the second property and, consequently, does not also support weak soundness.

The study of lazy soundness deserves also some attention. Lazy soundness violates all properties

as reaching the final state o, there might be additional tokens in the net, reflecting lazy activities, that

will not terminate. Typically they result from the use of control-flow patterns as the discriminator, the

N-out-of-M join, and the multiple instances without synchronization. Note that our approach can mimic the

discriminator and the N-out-of-M join control-flow patterns. Using the GF scenario, an example would

61

Figure 8.12: Transgress of proper termination criterion

be the selection of the first three (or randomly three) available Reviews for a Request proposal. Note,

however, that when this happens the other related-executing instances, the rule mimic defining this

behaviour, uses its action to force the tokens of the related-executing instances to terminate, and then

clean them. This is also done when using the nofi function to create multiple instances, that no longer

can be named instances without synchronization. Using this strategy, the object-centered modeling can

verify the termination property even when using multiple instance creation and selection patterns.

Finally, since proper termination is not verified, object-centered modeling does not support all the

four criteria and, therefore, it does not support normal soundness. Thus, what kind of soundness is this,

that is neither normal, nor weak, nor relax nor lazy? This thesis names it scoped-termination soundness.

62

9
Modeling Transformations

Information is not knowledge.

– Albert Einstein

Through last chapters, the target object-centered modeling approach was derived. However, some

questions remain open. How advanced soundness criteria and migration strategies can be defined for

this modeling structure? How will object-centered process models be supported in practice?

Since the development from scratch of formal net theories and of a workflow-engine to support the

target models are not viable at this stage of the research – such efforts would require a more mature

study of its practical implications – this chapter defines a mapping between the object-centered process

models and mature process models to demonstrate their verification and executability. Incrementally

this chapter defines the mapping, first adopting plain Yet Another Workflow Language (YAWL), then the

Proclets addition and, finally, a proposed multi-colored places plug-in.

9.1 Map to plain YAWL models

YAWL is a process modeling language developed by the Workflow Patterns Initiative [97] grounded on

formal foundations, an extension of Petri Nets with an extensive list of additional workflow patterns

using a small set of constructs. Additions, as the newYAWL [96] or proclets [2], have been including new

control-flow patterns, resource perspectives and process decoupling techniques. Currently, YAWL only

considers a single implementation and it is not yet being supported by a great number of tools, as BPEL

standard language. Although several research exist on defining formal semantics to BPEL on the basis

of Petri nets, process algebra and finite state machines, BPEL still fails in providing native support to

workflow patterns, processes communication and human-oriented allocation and delegation [97].

The following properties of YAWL justify its choice:

• formal structure to study soundness properties;

• uniform basis that can be easily adapted to other notations such as the standardized BPMN;

• the proclets addition enables the definition of loosely-coupled communicating processes;

• expressiveness and coverage of control-flow patterns;

• native support for sub-processes (composition) and, thus, modular process models;

• executability, thus enabling the abstraction from workflow-engine specificities;

• non-local behaviour, where different process regions can be heterogeneously affected by a can-

celling, skipping, suspending or submitting decision;

• notational convenience – direct arcs between transitions and behavior attached to transitions;

• handling of multiple instances patterns, with their number might not know at design-time;

• the execution semantics of YAWL has a good fit with state-based entities synchronization since it

combines state-transition diagrams of process activities with Petri net markings;

Finally, since this research is introducing a new modeling paradigm, focus must be paid on the proof

63

of its effective execution instead on its compliance with standards that may limit modeling freedom.

A simplified definition of YAWL models, and the proposed mapping are presented below:

An extended workflow net is a tuple < C,T, F, split, join, rem, no f i > [120], such that:

• C is a set of conditions, which must have a initial condition, i ∈ C, and a final condition, o ∈ C;

• T is a set of tasks, such that C and T are disjoint;

• F ⊆ (C − {o} × T) ∪ (T ×C − {i}) ∪ (T × T) is a flow relation, with nodes in i to o path;

• {split, join} : T 7→ {And, Xor,Or} is a partial mapping that assigns the behavior to a task;

• rem : T 7→ P(T ∪C − {i, o}) specifies the subnet cleansed when the task T is executed;

• no f i = Nin f × Nin f × {dynamic, static} define the number of the task instances.

A simplified YAWL workflow specification is a tuple < Q, top,T ′,map > [120], such that:

• Q is a set of extended workflow nets and top ∈ Q is the top level workflow net;

• T ′ = ∪N∈QTN is the set of all tasks, such that the conditions and tasks of all extended workflow

nets are disjoint, i.e., N1 , N2 =⇒ (CN1 ∪ TN1) ∩ (CN2 ∪ TN2) = ∅,∀N1,N2∈Q.

• map : T ′ 7→ Q − {top}maps each composite task (t ∈ T ′) onto an extended workflow net.

Algoritm 9.1: Mapping of an Object-centered Process to a YAWL Process

Input: object-centered process model object-pm
Output: plain-yawl process model yawl-pm
if is-sound(object-pm) then

1. petri-net = decompose-rules (object-pm);
2. yawl-pm-complex = generate-control-flow-gateways (petri-net);
3. yawl-pm-simple = simplify-paths (yawl-pm-complex);
4. yawl-pm-data = enrich-data-access (yawl-pm-simple);
5. yawl-pm = define-composition-frames (yawl-pm-data);
if advanced-sound(yawl-pm) then

return yawl-pm;
throw sound-exception(process model is not sound);

Using an object-centered process model, an intermediary language-independent Petri net is derived,

a set of control-flows derived based its rules, and this net simplified according to a set of techniques (see

Annex 17). Fig.9.1 exploits graphically how the 2nd and 3rd steps are performed.

Figure 9.1: YAWL model generation and reduction

For the mapping of data-contexts, each compound data-objects is flatten into simple, sets and lists

of data-attributes and their data-access link turned explicit for every YAWL activity recurring to the

resources-view provided by the newYAWL [96] addition, using the formal parameters construct.

Finally, in the last step, the use of composition frames are defined when a subordinate-process is

totally executed between two states of a superordinate-process. Note, however, that communicating

64

processes may establish bidirectional synchronization points or a third process block the possibility to

use a composition frame, as depicted in Fig.9.2.

Figure 9.2: Composition frames for the generated YAWL models

The mapping to plain YAWL models presents two main drawbacks: i) decoupling intricately related

process fragments, and ii) the inability to support advanced rules using existent control-flows – events

may introduce time-state and data-values condition, although limit the ability to trace the source for

those changes. Fig.9.3 presents the generated YAWL process model for a simplified GF process model.

Figure 9.3: Default rule-set models dynamically generated

9.2 Map to proclets-enriched YAWL models

In order to surpass the limitations found when using plain-yawl processes, the proclets-addition will be

used by our mapping. A simplified definition and mapping for this addition may be the following:

65

A proclet class is a tuple < s, P, f ,Cond >, such that:

• s is an extended workflow net that models the proclet life-cycle;

• P is a set of port types, <direction, cardinality,multiplicity>∈P;

• f : T 7→ P assigns a set of life-cycle tasks to a set of ports;

• Cond is a set of conditions that tasks connected to ports may have.

A simplified proclet-based process model is a tuple <PC,Ch,Perf,ns> where:

• PC is a set of proclet classes and Ch is a set of channels;

• Perf, < id, pc ∈ PC, PC′ ⊆ PC, type, content>∈ Per f , a set of performatives exchanged among ports;

• ns is a naming service for proclets dynamic discovery.

Algoritm 9.2: Mapping of an Object-centered Process to a Proclets Net

Input: object-centered process model object-pm
Output: proclets model proclets-pm
if is-sound(object-pm) then

1. petri-net = decompose-rules (object-pm);
2. object-yawl-pm-complex = generate-internal-control-flow-gateways (petri-net);
3. object-yawl-pm-simple = simplify-paths (object-yawl-pm-complex);
4. object-yawl-pm-data = enrich-data-access (object-yawl-pm-simple);
5. plain-proclets-pm = define-objects-communication (object-yawl-pm-data);
6. compound-proclets-pm = decouple-encapsulation-into-new-proclets (plain-proclets-pm);
if advanced-sound(compound-proclets-pm) then

return compound-proclets-pm;
throw sound-exception(process model is not sound);

First four steps are similar to the plain-yawl proclets mapping but limited to each internal life-cycle.

The 5th step defines the ports, channels and performatives needed to perform the communication.

Figure 9.4: Derived proclets model from an object-centered process model

The proclets-addition is used to decouple communicating process models that, otherwise, would

have to be in a plain form and, therefore, nor benefiting from the parallel execution achieved by as-

signment each object-based process to different workflow engines neither offer guidance to the process

instances’ scheduler. Fig.9.4 presents the generated proclets for a fragment of the GF process model.

Nevertheless, the encapsulation problem isn’t still solved, since this addition does not support the

66

notion of compound proclets. In fact, since each proclet communicates through channels with other pro-

clets, the understanding of how a proclet can encapsulate a set of related proclets is not trivial, although

required to isolate communication dependencies. To solve this aspect, the notion of compound proclet is

added, but implemented using the mediator design pattern. Fig.9.5 the mapping 6th step – disaggregation

of compound proclets into simple mediator proclets.

Figure 9.5: Solution to the proclet’s encapsulation problem: definition of a proclet mediator

9.3 Multi-colored places addition

To guarantee the executability of the proposed advanced rules, basics from Colored Petri nets1 must be

recovered and used to enrich the existent proclets addition. newYAWL [96], through its resource view

additions, provides data-enriched tokens and a new construct that supports color-based semantics –

link conditions assigned to tasks’ outgoing arcs.

The proposed solution assigns colors to net tokens, as depicted in Fig.9.6. The implementation uses

multi-dimensional matrixes with identifiers that work as links to their instances’ data-attributes. This

data-access is constrained by objects-relation visibility and authorization levels (section 7.1).

Exemplifying, if a Request is related with a set of Assets, each token from a Request instance has its

own color and each token belonging to an Asset instance has a multi-coloring composed by the color

of the related instances and its own color. If a set of Asset instances is correlated with different Request

instances in a non-coupled way, simple-coloring functions for both process places are used. Finally, if

a Request is related with a set of Suppliers and Assets, and each Supplier responsible for different Assets

from multiple Requests, next coloring must be found: {Creq, S et<Casset>, S et<Csup>} for Request places,

{Casset,Creq, S et<Csup>} for Asset places, and {Csup, S et<Creq, S et<Casset>>} for Supplier places.

Remember that places exist between and within YAWL’s tasks, thus the marking function in addition

with its colors (serving as links to recover data) complete describes the system state and it is, therefore,

the input for the system monitoring and optimization domains. Multi-coloring additionally enables an

expressive textual or graphical environment for the management of multiple-instance patterns.

Fig.9.7 depicts two possible scenarios specifying: i) a point of synchronization to supply all the

non-supplied assets belonging to the same customer, and ii) a point of synchronization to supply non-

supplied assets for similar customers in terms of riskRating, which led to the use of the colored-links

1a coloured Petri net is a tuple <Σ, P,T, A,N,C,G, E> such that: i) Σ is a finite set of types, called colour sets; ii) P is a set of places, T is a

set of transitions, and A is a set of arc identifiers, such that P∪ T = P∪ A = T ∪ A = ∅; iii) N : A→ (P× T)∪ (T × P) maps each arc identifier

to a pair (startnode,endnode) of the arc; iv) C : P→ Σ is a colour function that associates each place with a colour set; v) G : T → BoolExp is a

guard function that maps each transition to a predicate; and vi) E : A→ Exp evaluates to a multi-set over the colour set of the place.

67

Figure 9.6: Multi-colored tokens

to retrieve data-attributes (which are, in fact, the tokens’ colors as defined by Colored Petri nets [120])

when no mediators avoid the recovery of such attributes.

Figure 9.7: Default rule-set models dynamically generated

Concluding, these scenarios show a fragment of a proclets net solution enriched with multi-colored

tokens recurring to newYAWL’s link conditions. Note additionally that the dynamic multiple instanti-

ation of processes, nofi, is already support by YAWL, and the non-local behavior for the cancellation,

undone or advanced behavior patterns, effect is not fully supported by YAWL but already implemented

by newYAWL using the so-called cleanset, forced-completion and arc-disablement constructs.

Finally, the executability and advanced sound verification for the object-centered models are, there-

fore, dependent on the availability of a workflow engine that jointly supports newYAWL constructs (as

presented in [96]) and the proclets-addition (still in development [112]).

68

VValidation

10
Proof of the Concept

Alice: Would you tell me, please, which way I ought to go from here?

The Cat: That depends a good deal on where you want to get to

Alice: (...) so long as I get somewhere.

The Cat: Oh, you’re sure to do that, if only you walk long enough.

— Lewis Carroll, Alice in Wonderland

How was the mapping implemented in practice? How was the syntax of the object-centered models,

newYAWL and proclets captured? How language transformations were applied? Was it possible to

realize a complete mapping? If not, what are the implications? This chapter briefly introduces the

implementation for the mapping function introduced in previous chapters.

The developed object-centered models can be considered a high-level domain-specific language to

lower-level constructs provided by enriched YAWL models. Thus, the developed prototype was cen-

tered on model definitions and model-to-model transformations. The combination of Syntax Definition

Formalism (SDF) with Algebraic Specification Formalism (ASF) [19] was chosen for this propose.

SDF models describe language syntax using context-free production rules. This rules generate parse

trees. ASF take parse trees as input and by applying functions to their nodes produce re-written parse

trees as output that can be unparsed to obtain an output text. ASF models are collections of algebraic

equations to guide this term-rewriting. The following aspects justify the ASF+SDF choice [19][61]:

• high-level and modular formalisms for the analysis and transformation of formal meta-languages;

• concrete syntax for source code patterns turning easy and usable to transform languages;

• able to add type checking, formatting, fact extraction, and execution (run models with given input

values);

• ability to specify lexical and context-free syntax with the option to define meta-variables for the

concrete syntax patterns used in ASF to construct and deconstruct source code;

• automated parse tree traversal, keeps meta programs concise;

• static verification makes sure that code that can not be parsed is not generate;

• list matching, so any element can be accessed in a list without traversal;

• used in connection with graphical Meta-Environment tools to obtain an usable and integrated

development environment;

• default equations and test, memo functions, lexical constructor and traversal functions, and robust

ways to deal with layout and source code comments;

SDF was used to define the syntax of data models, object models, activity models, rules, object-

centered process models, YAWL models, multi-colored link conditions and proclets net. The syntax

of YAWL and some of its additions was translated from their official XML specification, courtesy of

Queensland University of Technology. Some transcripts can be found in Annex 17.

ASF was used to implement the required transformations, and, among other utilities, the language

69

pretty-printer and the soundness-checker.

Two types of transformations must be distinguished: i) the set of transformations required to derive a

sound and complete object-centered process models based on object and activity models that implement

the high-level algorithms previously introduced or referred, and ii) the set of transformations required

to map an object-centered process model in an enriched YAWL model. The length and complexity of

these transformations turn their detailed presentation on this thesis an impossible task. However, some

transcripts of these algebraic equations can be found in Annex 17.

The verification of sound properties is, presently, performed for object, activity and object-centered

process models. Guided by the introduced soundness criteria the following properties are assessed.

First, structural soundness is assessed by verifying if a tree (based on the input places and transitions)

has init node as root and final nodes as leaves. Second, it defines a set of live and bound reachability

graphs (so its analysis is not a NP-hard algorithm) based on rule-set conditions to verify the absence of

dead transitions (automatically satisfied as the composition of the target synchronized objects is previ-

ously performed) and termination (final state is reachable from any node of the graph).

Some of the limitations encountered on this mapping include: i) the use of omissive quality behavior

when defining the proclets’ channels and the their ports static registry on the naming-service, and ii) the

definition of assumptions when specifying the constructs defined by the resource-view of newYAWL

as its complete syntax was not obtained. However, none of identified problems refute the argued exe-

cutability of the target approach.

70

11
Practical Applicability

Meu devir fez-me, como Deus ao mundo.

– Fernando Pessoa, Mensagem

To assess the applicability of the developed modeling approach, this work uses a set of metrics applied

in comparison with existent alternatives and uses the target approach to model three domain-specific

scenarios: i) financing, ii) manufacturing, and iii) healthcare.

11.1 General Performance

To test the feasibility of the object-centered approach, an indicator composed by a set of weighted metrics

was defined. The weighting of the different metrics was based on the degree of relevance attributes by

empirical research [68][28][120][114], excepting null-weight metrics, which are metrics may requiring

further practical evidence or users’ inquiries. The performance indicator is simple, measurable and

traceable since it is decomposable in more specific indicators. Note that while some of the bottom-line

metrics are just booleans, others are formulas as the relative coverage of some aspects by comparison

with the available alternatives. Modeling Performance = 0.3×Modeling Usability + 0.7 × Σ5
i=1Reqi

5 , with:

• Modeling Usability = 0.4×Simplicity (relative number of objects or process structures × [relative

number of their intra- and inter-flow relations]2 for each granular level) + 0.3×Guidance (0.15×

expressive default behavior + 0.15×natural and compact specifications of advanced behavior)

+ 0.2×Memorability-Learnability (0.1×number of constructs + 0×improved time and errors for se-

quent similar scenarios to model) + 0×Efficiency (completion time of revolutionary and adap-

tive modeling + number of errors) + 0×Satisfaction (modeling experience grade) + 0.1×Security

(0.1×qualitative verification criteria + 0×quantitative evaluation criteria);

• Req1 = Data-Access = 0.3×Modular Data-Contexts Specification + 0.1×Default Data-Access Criteria +

0.3×Authorization + 0.3×System’s Data Accessible and Integrated in PM Landscape

• Req2 = Data-Reaction = 0.6×Dynamic Response to Object’s State-change + 0.4×Data-changes Traceability;

• Req3 = Data-based Coordination = 0.5×Decoupled Interaction + 0.3×Data-centered Expressivity (con-

straints coverage at the data level) + 0.1×Advanced Behavior + 0.1×Derivation of Default Behavior;

• Req4 = Granular Pliancy = 0.2×Atomicity + 0.2×Composition + 0.3×Criteria + 0.3×Zoom Abstractions;

• Req5 = Data Modeling and Flexibility = 0.4×Expressive Modeling of Data at PM Level + 0.4×Flexibility

by Change (coverage of constructs + relax degree of migration strategies) + 0.1×Flexibility by Defer

(placeholders role) + 0.1×Flexibility by Deviation (extent of PM regions supporting exceptions).

The results of the application of this indicator, applied to three different systems in financing, manu-

facturing and healthcare sector, are synthesized on Table 11.1. Although these results give a good insight

of how the modeling approach performs, they do not assure its practical applicability as domain-specific

aspects may reject the approach if not appropriately captures the domain constraints.

71

Object-centered Modeling

D
oc

um
en

t-
ba

se
d

M
od

el
in

g

A
rt

ifa
ct

-c
en

te
re

d
M

od
el

in
g

Pr
od

uc
t-

ba
se

d
M

od
el

in
g

D
at

a-
dr

iv
en

M
od

el
in

g

C
as

e
H

an
dl

in
g

Pr
oc

le
ts

fin
an

ci
ng

m
an

uf
ac

tu
ri

ng

he
al

th
ca

re

av
er

ag
e

avg(nr. objects per granular level) 15 20 16 17 120 80 140 17 120 80
avg(nr. inter-relations per object) 3 6 3 4 6 5 7 5 3 5

simplicity (17*42)/(17*42)=100% 6% 13% 4% 64% 25% 13%
guidance 0.5×100+0.5×80=90% 0% 50% 0% 40% 40% 50%

learnability 10% 80% 40% 60% 5% 90% 65%
weak-soundness true true true true true true false

usability 40+27+2+10=79% 28% 38% 24% 49% 50% 33%
data-access 30+10+25+30=95% 50% 50% 30% 15% 100% 15%

data-reaction 60+40=100% 80% 100% 0% 60% 70% 60%
data-based coordination 50+30+10+10=100% 30% 55% 30% 85% 30% 55%

granular pliancy 20+20+30+30=100% 50% 20% 20% 70% 20% 0%
data modeling and flexibility 40+40=80% 40% 50% 40% 50% 40% 10%

overall performance 0.3×79+0.7×95=90% 54% 50% 24% 48% 41% 30%

Table 11.1: Results: Generic Performance of Data-aware Approaches (with an available implementation)

11.2 Sector-oriented Applicability

Different types of systems may additionally provide domain-specific challenges. Table11.2 collapse such

domain-specific behavior per three different industries, which serve as additional indicators for the

object-centered modeling evaluation.

11.2.1 Financing

Fig.11.1 presents a high-level view of the object models defined for the Global Financing case, introduced

in section 3.1. This simplified illustration presents the multiplicities of the instances under relation,

and the points of synchronization between their life-cycles, showing how object instances are created,

evolving and archived. This is a clear example of how GF system can benefit from modeling its processes

based on its data model using weakly-connected interacting light-weight chunks of work.

The definition of regional variations for the global standard can be achieved by: i) using inheritance

specializations for the standardized object models, by ii) maintaining the object models’ coordination

points, but allowing adaptations on data-attributes, life-cycles and internal behavior, or by iii) defining

several placeholders for the parts subjected to change. Note additionally, that a rule deviation sometimes

suffices to capture short-period variations. All these strategies enable: i) the standard model to evolve in

coupled way with its variations, and ii) models traceability to comply and cross region-specific models.

Default data-contexts and authorization levels (see section 7.1) are used to recover contextual and

non-contextual data. The presented solution also enables the dynamic definition of many-to-many in-

stance relations, with each process instance having their own natural life-time. Finally, in Fig.11.1 were

also defined patterns for the aggregation of instances related by a common super-instance or by a data-

similarity (e.g. the assets procurement, supplying and delivery, or the requests review and pricing).

11.2.2 Manufacturing

Fig.11.2 synthesizes some aspects of a possible solution for an automobile engineering company – a

component-centered structure allowing the definition of loosely-coupled interacting objects progressing

at their own-rate in an asynchronous way.

72

Sector Modeling Challenges and Requirements

Financing
[23]

Data-intensive sector hardly modeled by activity-centered approaches (section 3.2). Main require-
ments:
1. use of global standards with disciplined regional variations;
2. ability to recover contextual and historical information to review, evaluate and price requests;
3. aggregated execution of related requests and reviews. Collective procurement, pricing, supplying
and shipping of assets;
4. data-grounded criteria to establish supplier’s agreements and customer’s contract negotiations;
5. long life-time of processes (payments, shipping, returns) requires relaxed migration criteria and
decoupling of processes having distinct life-cycles duration;
6. dynamic and multiple instantiation of assets and reviews, each may triggering non-local effects;
7. many-to-many process relations (e.g. requests may be handled by several customers and suppliers);
8. Complex, regulation-compliant and data-centered decisions to approve and price requests.

Manufacturing
[76][74]

The development of complex products, as cars or airplanes, requires the coordinated design, test and re-
lease of thousands of processes and inter-dependencies. Adaptations require profound process knowl-
edge, high-efforts and, as impact hundreds of components and their synchronization, are error-prone
and may can cause deadlocks blocking the execution of the whole process. Main requirements are:
1. dynamic adaptation of these complex and large process structures (e.g. add or remove of a compo-
nent as a navigation system);
2. multiple types of processes (e.g. design, testing and release) executed for each component;
3. different life-cycle times of the mechanical, software and hardware components;
4. the strong linkage of the process structures with the assembly of the product;
5. real-world exceptions (e.g. abnormal termination of a process) occur frequently and may affect the
whole process structure (non-local behavior);
6. reuse of processes for different productions as standards for development of components are in-
creasingly driven by quality frameworks and engineering guidelines (e.g. testing for the speed sensor).

Healthcare
[40][112]

Collaborative involvement, distributed roles, complex data transfer, non-integrated technologies and
limited centralized control can lead to fail of providing the right care to right patient at the right time.
Requirements:
1. collaborative modeling and assistance since complexity and area-specific details often arise;
2. capture of tacit knowledge, do not enforce structure for the medical staff activities;
3. history-based input for decision-making;
4. incremental and dynamic improvement of processes always capturing the who, how and why;
5. concurrency, sharing and up-to-date view of processes. Avoid waitings for the end of a process or
for obtaining of data, enable collective assignments and turn data-changes immediately visible;
6. multi-way communication among teams and departments;
7. secure development protecting the model under improvement from unauthorized external entities.
Comply with regulations. Enable simulations to capture dynamic behavior;
8. measurement and prevention of adverse events occurring during or after healthcare delivery;
9. ability to create high-level sketch for similar unities with large degree of freedom to be concreted by
each unit as the availability of resources and ratio of manual activities strongly affect unit processes.

Table 11.2: Domain-specific modeling requirements for different sectors

73

Figure 11.1: Object-centered Modeling of the Global Financing case

First, the use of the encapsulation mechanisms is of maximum importance on this sector. However,

the sharing of components by different compound objects is an important issue not already assessed by

the object-centered approach.

Second, the definition of template objects for the car components’ and their dependencies is a rel-

evant aspect, as their different specializations, as the modeling, versioning, development, integration,

simulation and test, must respect those dependencies to deliver their output. Inheritance is also used to

manage the logistics, employees, supplying assets, and technologies for each component. Note, how-

ever, that the notion of object-interface – not yet supported – would have a better fit for this problem.

Third, the capturing of real-world exceptions in components or on their integration and their non-

local effects is managed by editing the default activity models.

Finally, this solution presents a natural basis for the reuse and dynamic adaptation of objects.

11.2.3 Healthcare

A compact view for a set of synchronized object models of an healthcare clinic is presented in Fig.11.3.

As in other sectors, we see the importance of separating monolithic processes in data-driven object-

centered structures. An equivalent complete network of activities would be too complex. Note that the

management of visits, exams, analysis, consults, diagnosis, treatments and even the assets supplying

(when decreasing below a threshold) is easily modeled in a data-centered and modular way since there

is a natural isolation of aspects.

Different modelers can be assigned to each object, and collectively discuss their synchronization

points. Also, as the object-centered landscape is oriented to data-attributes filling, there is a natural

orientation towards tacit knowledge (e.g. use of form-fields as comments and suggestions, capture e-

mail collaborations) rather than enforcement as the way a form-field is filled may not be specified.

74

Figure 11.2: Object-centered Modeling of the Car Enginneering case

Figure 11.3: Object-centered Modeling of the Clinic Diagnosis case

75

Access to historical data is done through authorization, which must comply with privacy regulations.

Authorization table must additionally provide a link to the author, changes and time of each change

occurrence. Secure executions are also assured by the applying of the introduced soundness criteria.

The measurement and prevention for adverse events can be done recurring to complex event pro-

cessing techniques as described in Annex 15.

Optimized data-centered concurrency, sharing and up-to-date view are supported aspects by the

developed approach since all the system data is integrated in the process modeling landscape. Finally,

since units differ from each other, they must define customizations for some general objects.

11.3 Comparison of the Approaches Performance

Results for a set of performance metrics were already presented in Table 5.7. Case-based analysis was

done in previous section. Final aspects resulting from the confront of the developed object-centered

modeling approach with its alternatives is done in Table 11.3.

76

Approach Substitute? Description

Document-based
Modeling

no

Its customizable enactment and natural way to capture ad-hoc forms of collaboration
turns this approach attractive to model healthcare systems. However, since neither sup-
ports dynamic adaptation, multi-way communication, nor complex processing, it ends
being used for data capturing and tracking proposes as one in many technologies. Its
inability to support multiple instance patterns, advanced behavior, specialization and
complex data structures turns him a bad candidate for other sectors;

Artifact-centric
Modeling

financing

Its business orientation, modularity and ability to synchronize multiple instances turns
him a good candidate for financing, where practical evidence was already studied [26].
However, it neither offers support for composition nor for vertical aggregation. Since
it does not support encapsulation, non-local behavior and data-access methods, it is not
appropriate to model manufacturing and healthcare systems;

Product-based
Modeling

no

The poor overall performance obtained by this approach and its already introduced lim-
itations (section 5.1.4) makes this approach a non-potential substitute for the object-
centered modeling. However, it is the only using quality attributes to affect dynamic
path choice, which turns him feasible for the development of some components in the
manufacturing sector that may depend on run-time metrics and probabilistic calculus;

Data-driven
Coordination

engineering

This approach was developed centered on the manufacturing background, where its ap-
plication was successfully applies [74]. Despite its ability to define expressive inter-
actions between objects, including composition, it is not usable and does not support
complex event processing techniques and non-local behavior to deal with manufactur-
ing exceptions. Its inability to model data, required to define contexts and affect either
simple or behavior exclude this choice to model systems in other sectors;

Case Handling no
Although appointed as a potential choice to model healthcare systems due to its natural
form-field orientation based on required data, this approach still has to mature or to be
applied jointly with other approaches that support multiple-instance interaction patterns;

Proclets healthcare

Proclets fits particularly with the modeling of healthcare systems, although the absence
of a final implementation does not fully support this observation. The ability to synchro-
nize proclets, using different applications and platforms, enables the integration required
to harmonise the different hospitalar systems. However this fact does not solve its data-
awareness limitations, which constrains further applicability;

Object-aware
Modeling

financing
and
healthcare

Object-aware has a good fit with financing and healthcare since: i) it integrates best-
practices from artifact-centric and case-handling, granting business orientation and de-
coupled interaction, and since ii) it adds process execution flexibility, form-centered with
vertical authorization access (particularly fitting the tacit collaborations and security re-
quirements for healthcare) and batch-driven collective enactment of activities. However,
advanced coordination patterns as the vertical aggregation of instances that do not share
the same higher-level objects remain crucial for financing and soundness verifications
are increasingly demanded for healthcare. Additionally, the object-aware inability to
support default and non-local behavior, event-driven exceptional behavior, customiza-
tion and encapsulation may limit its success on the engineering domain.

Table 11.3: Discussion of the Results for Data-aware Approaches in comparison with Object-centered Modeling

77

12
Hypothesis Validation

As above, so below.

– Hermes Trismegistus, Emerald Tablet

With the understanding of how the object-centered modeling may perform for different real scenarios,

it is crucial to synthesize its main business implications and how they affect the ability to evolve data-

intensive system’s models. Finally, a set of theorems will be derived in order to approve or reject the

thesis statement – object-centered models support the continuous improvement of data-intensive processes.

12.1 System Implications

Table 12.1 presents a set of system implications of the adoption of the object-centered modeling.

In order to validate our hypothesis, it is required to understand how these implications affect the

evolution of data-intensive or object-centered process models. First, the modularity of objects in addi-

tion to the proposed object-oriented patterns as encapsulation or inheritance enable that changes are

performed locally to a set of objects with minimal impact to the others. State-based synchronization

when viewed as an interface for interaction with other objects also fosters the ability to evolve models.

Second, its compliance with an incremental and iterative way of modeling, turns it attractive for

changes seeking the completion, optimization and expansion of their models. Additionally its rapid

prototyping fosters its fit with systems under revolutionary changes, requiring new models periodically.

Third, the capturing of tacit communications, the tracing of events and the measuring of time-ranges

between object states or milestones (that may not correspond to an activity conclusion) improve the

feedback required to suggest, enforce or guide new changes.

Fourth, the object-centered transformations, default behavior, data-based access and granularity cri-

teria, and complex event processing techniques (fostering abstraction from low-level aspects and ex-

traordinary patterns) turn the evolution of models a simple, guided and focused task.

Fifth, the ability to: i) dynamically change models, through the creation, edition and removal of ob-

jects and of their inter-synchronization points, to ii) not fully specify objects or regions of their life-cycles,

and to iii) deviate from object models either using exceptional-behavior or creating specializations for a

specific set of instances, foster the ability of object-centered models to evolve.

Sixth, the natural parallelization, dynamic reaction to events and objects’ loosely-coupled interaction,

turn models flexible by design, as process progress dynamically affects its constraints and agents are

free to fill form-fields in multiple ways, and flexible by change, as model adaptations do not require the

redesign of paths of activities but are expressive and local.

Finally, the argued method of modeling object-centered process models that starts with the expres-

sive enrichment of data models by implicitly capturing system constraints at the object modeling level,

with part of its behavioral aspects being dynamically derived and encapsulated in activity models, turns

78

Po
si

tiv
e

Im
pl

ic
at

io
ns

. improved communication, as it spans multiples silos and provides common vocabulary for stakeholders;

. natural alignment with system goals, as life-cycle definition and coordination is driven by operating milestones;

. rapid prototype generation since objects easily capture the dynamics of system key entities, providing enough
semantic information to deliver an application almost from the first design iteration;
. incremental development expressing necessary changes and increasing confidence on the design by adding new
objects and refining their data-attributes and life-cycles (growth in scope or in details);
. the supported object-oriented patterns foster a new modeling paradigm with similar implications as the ones ob-
served for programming proposes – initial higher costs but further savings as learnability curve rises;
. source-traceable events and soundness enforcement ensuring new correctness criteria;
. the generation of default behaviour and data-centered guiding criteria to support the modeling task;
. since processes are factored around loosely-coupled interacting life-cycles, there is an increased scope for reuse,
agility of modeling as changes become local to process fragments – highly flexible fragments may encapsulate
changes with minimal impact to a stable base that anchors top-level objects;
. unified basis to gather up-front the system requirements and rules decreasing the need of re-factorizing and, con-
sequently, ripple downstream, deployment and maintenance costs;
. decreased risk and costly adaptations caused by integrating process and data concerns;
. framework to plug key aspects as agent-allocation, goals-measuring, and many other requirements (e.g. rules, user
interface, process variations, key performance indicators, low-level logic) centered on data;
. for large processes, starting the modeling with a few key objects provides a very early insight, hardly achieved
recurring to activity-centered multi-level abstractions (that can still be mimic using object mediation) [15];
. modeling at an arbitrary level of abstraction by using new behavioural patterns based on complex event processing
techniques that aggregate chunks of low-level events into new coarser events;
. capture of tacit communication through by incorporate model collaborative platforms as objects and feed them;
. the increased traceability achieved by integrate data and advanced behavior at the process modeling level improve
process monitoring and, consequently, business intelligence activities;

C
ha

lle
ng

in
g

Im
pl

ic
at

io
ns

. since it is a disruptive modeling approach, the data-pushed way to present activities in forms may decrease the
agents system-dynamics awareness as they may not be able to position each activity in a fully prescriptive path;
. loosely interacting processes may enforce patterns for agents collaboration (objects may represent a team or a
role). The cross-functional nature of end-to-end processes turns the arrangement of system agents less prescriptive;
. the increasing of parallelism and the absence of a quality-driven path choice by the process modeling landscape
turn the ordering execution of activities dependent on agents ability to decide and may disperse them;
. the new mindset may bring resistance and challenges to process modeling for system models’ stakeholders;
. object-centered modeling cannot be consider a what-you-see-is-what-you-get approach, as different types of mod-
els are used, default behaviour is automatically added, and transformations applied to derive complete models;
. the increased entanglement among event, data and process modeling roles may trigger resistance;
. ordering of activities may be totally unknown before the process derivation and execution as constraints are im-
plicitly grounded and dynamically react on data conditions. However, this is threat as long as modelers are biased
by the need to see networks of activities, instead of thinking on what essential dependencies underlie such network;
. data integration at the process modeling level may implicate changes to the existing applications, as their recodifi-
cation to use authorization levels instead of direct access or the use of adaptors to mimic the data-presence;
. the need to define states in addition to data-driven activities increase the complexity of the models as traditional
nets are in essence a constrained composition of activities that pushed milestones or places to background.

Table 12.1: Implications of the use of the object-centered approach to model data-intensive systems

79

the evolution of processes possible with the evolution of these enriched data models or object models.

As it was initially argued, in data-intensive systems, this coupled evolution is the way to assure the

consistency of informational and functional perspectives and to turn modeling a flexible task.

12.2 Hypothesis Approval

In order to assess if object-centered models support the continuous improvement of data-intensive processes,

five requirements were retrieved. Centered on these requirements, the following theorems testify the

validation or approval of the thesis statement:

• theoretical and empirical-guided study of existing data-aware modeling approaches shows that

none of them successfully support the five hypothesis-driven requirements;

• the consistent and coherent coexistence of multiple principles retrieved to satisfy each requirement

were argued possible in an object-activity-goal-time state-based synchronization basis;

• a proof-of-the-concept was successfully developed, proving the executability and soundness of the

properties for a derived modeling approach that obeys to the introduced principles as it imple-

ments the object-centered transformations and the mapping to an enriched YAWL net;

• metrics were defined to evaluate each requirement, evidencing the object-centered modeling in-

trinsic ability to satisfy them without hurting the modeling usability, and an overall performance

result that is positively demarcated in comparison with its alternatives (+30% than 2nd best choice);

• practical applicability was assessed by applying the target approach to three distinct domains, which

demonstrate its constructs coverage and its natural fit to deal with domain-specific requirements

when compared with its alternatives;

• a set of implications resulting from the adoption of this new modeling paradigm was retrieved, and

its role on fostering the evolution of data-intensive processes was studied, presenting benefits from

expressively enriched and adaptive data models not seized by existing data-aware alternatives and

that disrupt traditional modeling landscape.

Further research and practical evidence are required to confront these resulting theorems.

80

VIConcluding
Remarks

13
Conclusion

Simplicity before understanding is simplistic;

simplicity after understanding is simple.

Edward De Bono

A set of concluding remarks can be retrieved from the previous study:

• Activity-centered approaches are limited in modeling data-intensive processes. Such limitations

can be translated into a set of requirements. These requirements foster the ability to evolve process

models in data-intensive landscapes.

• Emergent object-centered approaches do not successfully satisfy all requirements. This observa-

tion may correlate with their limited practical applicability and impact. Such approaches provide

important principles to satisfy the introduced data-related requirements.

• Principles to deal with these different requirements are not mutually exclusive in an event-driven

solution basis centered on the state-based synchronization of activity, object and goal models.

• An improved responsiveness to events can be achieved by decoupling the traditional notion of

processes into interacting objects, since it discourages a thinking on constrained paths of activities

and fosters a natural parallelization of the derived activities.

• The use of object-oriented patterns as inheritance, encapsulation and communication, and the

specification of dependencies at the data level (implicitly defining local ordering constraints) en-

able an expressive derivation of process models centered on object models. Additionally, default

data-access contexts, default synchronization rules based on objects relations and data-centered

criteria to assure the atomicity and composition of object models offer modeling guidance.

• The enrichment of object models and their alignment with activity models, fosters an evolution

of process models centered on object models adaptation, since they can expressively capture the

system elements coordination and activity models dynamically evolve in a coupled manner.

• Orthogonally, agents can be dynamically added, removed or changing since: i) their interaction

with the object-centered landscape is standardized through flexible and dynamically changing

forms (either filled manually or event-pushed), ii) their allocation is based on declarative rules,

and iii) they do not hide critical data for the modeling environment since they use authorization

levels and activities’ data-contexts to perform their actions.

• Formal algebraic equations, or model-to-model transformations, were used to derive complete

and sound process models based on the governed object-centered process models.

• Executability of the target process models was proven by mapping them into YAWL models en-

riched with resource constructs and with the proclets addition.

• Finally, this work conducted a studied based on a set of indicators applied to the developed ap-

proach in comparison with other emergent object-centered approaches, that presents a novel prac-

tical applicability with potential in the financial, manufacturing and health-care domains.

The contribution of this thesis to the process modeling research community centered on the role data

within processes can be synthesized in three fronts. First, the presentation of an effort towards a uniform

80

conceptualization of the object-centered modeling universe of discourse. Second, the definition of a

modular, loosely-coupled, traceable and sound event-driven solution for the modeling of data-intensive

systems where principles can be integrated in a solid way. Finally, the proposal of a new object-oriented

paradigm, leveraged on practical applicability, to model and evolve data-intensive processes centered

on the definition and agile adaptation of expressively enriched data models.

By extending the existing contributions on how to model and evolve systems in data-pushed land-

scapes, this thesis shortens the distance from the Utopian real-time responsive and auditable system by

simply enhancing the role of data within processes, whose potential was always there, waiting for a

disclosure able to reveal the simplistic nature of data-intensive processes.

81

14
Future Work

Possible lines of thought for future research may include:

• the object-centered modeling fit with human-centered processes [101][7]. Two directions must be ex-

plored. First, how adapters or a layer responsible to trigger normalized events may be added in top

of collaborative applications, in order to trace e-mail discussions or collective decision-making pro-

cesses. Second, since every relevant activity results in a data-attribute, how non-written human-

interaction can be captured by records without degrading the process agility. Here, the every im-

plication in auditability or flexibility for the object-centered approach must be carefully detailed;

• the implementation of the approach either as an addition to YAWL or following another strategy

(from scratch, based on COREPRO framework or on the top of the artifact-centric approach);

• the role of goals in the object-centered modeling. How to capture and to achieve object-driven sys-

tem goals? Since it is essential to avoid getting distracted by the activity-centered current modus

system operandi, a goal-driven definition of object-centered models plays a decisive role. Thus,

the relation between goal models and object models must be studied in detail. How goals can be

formulated based on the system productions? How to measure their progress? How to assure that

object-based goals are coherent and consistent? How they affect data-access? How object models

evolve when goal models evolve? Does it make sense to define an expressive link between them

that fosters some sort of dynamic coupled evolution? How the attachment of semantics to objects

can dynamically affect their composition, constraints and comply with the system goals?

• the continuously systematization and enrichment of rule-set models expressivity. The definition of a

clear syntax (e.g. build on top of existing formal languages [43][31] that already support a broad

range of constructors), the inclusion of advanced time-state expression or executable-code addi-

tions, and the exploitation of new and more declarative ways to represent life-cycles [55];

• the methods and patterns used for the objects finding, clustering and relation, according to different

types of systems. In concrete methods, existing data domain is analyzed to come up with the logical

view in a bottom-up fashion. In conceptual methods, the system goals are first understood to come

up in a top-down way with key objects to the system operation, which are containers for low-level

internal objects [26]. Orthogonally, the modeling of objects can either be firstly focused on interac-

tion (event-driven dependencies) by fragmenting the system in a set of synchronized incomplete

objects, or firstly focused on their self-completion and then on their interplay concretion;

• the conception of an hybrid approach for heterogeneous systems where object-centered modeling plays

its part. Here three artifacts are important: i) a road-map that helps to identify to which systems

an object-centered approach may have a better fit than activity-centered approaches, ii) techniques

to decompose a system in a set of subsystems in a way that each subsystem has a clear orientation

(either to data or to tasks) and that such division is coherent and consistent with the system oper-

ation (e.g. departments within an enterprise), and iii) a new modeling approach that governs the

interaction of processes resulting from these two different modeling approaches. Lines of thought

analyzed during this thesis must be seized, as the virtual transit of objects among subsystems, ei-

ther evolving through the filling of their data-attributes in data-intensive subsystems or evolving

82

by being accessed and manipulated by task-based activities in service-oriented subsystems;

• the development of a usable graphical layer on top of the existing textual models. How modeling

constructors should be presented to the user? This topic involves the need to exploit the profile and

skills of the object-centered modelers, how they differ from traditional modelers and, based on this

information, to trace new ways to improve the usability of the target approach, in particular, with

respect to the definition of advanced rules (e.g. visual way to depict points of synchronization, the

aggregation of related instances, etc.);

• the improvement of the developed domain-specific language, and, in particular, the study of how

to reduce its domain-coverage in order to give more guidance on the modeling task in specific

domains as the healthcare, manufacturing, financial or human-centered;

• the implications on different process management fields (see annex 16.1) – e.g. how new object-

driven mining patterns and techniques may affect process monitoring?

• the shift on the user roles for system modeling. Since data, event and process management are

coherently bridged through the object-centered modeling environment, the implications of the

collapse of these three roles – data, events and process modeler – into one unique role must be

studied in terms of the required skills, resistance and of the effects resulting from the possible re-

moval of coordination conflicts among the data, events and process management teams (reported

as the central aspect for the failure on the management of data-intensive processes in [91]);

• the implications to the book of knowledge on process management, which may require open dis-

cussions with the theoretical and practical community to define an accepted ontology for the pro-

posed concepts and their fit with existing way of modeling;

• the role of exceptions in the object-centered landscape. Since the improvement of a system op-

eration is not only done through cycles of exploitation or optimization, but also through cycles

of exploration that may require deviations or the definition of incomplete processes, it must be

clearly assessed how the target approach can cover both scenarios without the need of using sep-

arated models. The definition of object-centered relaxed compliance criteria to migrate complying

running instances must be present (note that system objects life-time may vary from seconds to

months);

• how the natural event-orientation of the target benefit from complex event processing techniques, as

the filtering or aggregation of lower-level events (e.g. a passenger entry, a mail reception) into

new higher-level events affecting instances progress. This research direction it is centered on the

implementation of advanced rules, and may determine the ability to specify object models at a

natural coarse-grained level of abstraction;

• the assessment, through real-case applications, of the practical feasibility of: the data and appli-

cation layers decoupling, of the definition of relevant tasks as form-field attributes, and of the

defaults effects defined for suspension, cancellation, skipping and re-execution of activities;

• the retrieval of requirements for the support of polymorphism for the process inheritance pattern, so

specializations can be dynamically adopted without requiring the definition of alternative paths;

• the deep review on how object-centered soundness criteria centered on reachability graphs (found

in polynomial-time) are affected by data-conditions and by rules’ actions marking-changes.

83

VIIBibliography

Bibliography
[1] Petri C. A. Communication with automata (phd thesis). Technical report, Universit at Bonn, Institut fur

Instrumentelle Mathematik, January 1966.

[2] Wil M. P. van der Aalst, Paulo Barthelmess, Clarence A. Ellis, and Jacques Wainer. Workflow modeling using

proclets. In CooplS ’02, pages 198–209, London, UK, 2000. Springer-Verlag.

[3] Wil M.P. van der Aalst, Mathias Weske, and Dolf Grünbauer. Case handling: A new paradigm for business

process support. Data and Knowledge Engineering, 53:2005, 2005.

[4] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Modeling and verifying active xml artifacts. IEEE Data Eng.

Bull., 32(3):10–15, 2009.

[5] Alan S. Abrahams and David M. Eyers. Using annotated policy documents as a user interface for process

management. In ICAS ’07, page 64, Washington, DC, USA, 2007. IEEE Computer Society.

[6] Russell L. Ackoff. Towards a system of systems concepts. Management Science, 17(11), 1971.

[7] ActionBase. Actionbase. http://www.actionbase.com/ (accessed June 1, 2009), 2009.

[8] Alessandra Agostini and Giorgio De Michelis. Improving flexibility of workflow management systems. In

BPM, Models, Techniques, and Empirical Studies, pages 218–234, London, UK, 2000. Springer-Verlag.

[9] Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV, Apeldoorn, The Netherlands,

2002.

[10] Hyerim Bae and Yeongho Kim. A document-process association model for workflow management. Comput.

Ind., 47(2):139–154, 2002.

[11] Albert-Laszlo Barabasi. The architecture of complexity: the structure and the dynamics of networks, from the

web to the cell. In KDD ’05, pages 3–3, New York, NY, USA, 2005. ACM.

[12] Paulo Barthelmess and Jacques Wainer. Workflow systems: a few definitions and a few suggestions. In COCS

’95, pages 138–147, New York, NY, USA, 1995. ACM.

[13] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic composition of transition-based

semantic web services with messaging. In VLDB ’05, pages 613–624. VLDB Endowment, 2005.

[14] U. Bestfleisch, J. Herbst, and M. U. Reichert. Requirements for the workflow-based support of release man-

agement processes in the automotive sector. In ECEC’05, pages 130–134, April 2005.

[15] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu. Artifact-centered operational modeling:

lessons from customer engagements. IBM Syst. J., 46(4):703–721, 2007.

[16] Kamal Bhattacharya, Cagdas Evren Gerede, Richard Hull, Rong Liu, and Jianwen Su. Towards formal anal-

ysis of artifact-centric business process models. In Gustavo Alonso, Peter Dadam, and Michael Rosemann,

editors, BPM, volume 4714 of Lecture Notes in Computer Science, pages 288–304. Springer, 2007.

[17] Ilia Bider. Choosing approach to business process modeling - practical perspective. In Inconcept, january 2005.

[18] R.W.H. Bons, R.M. Lee, R.W. Wagenaar, and C.D. Wrigley. Modelling inter-organizational trade using docu-

mentary petri nets. Hawaii International Conference on System Sciences, 0:189, 1995.

83

[19] M. Brand, P. Klint, and J. Vinju. The language specification formalism asf+sdf. Technical report, 2008.

[20] Eric D. Browne, Michael Schrefl, and James R. Warren. A two tier, goal-driven workflow model for the

healthcare domain. In ICEIS (3), pages 32–39, 2003.

[21] Artur Caetano, António Rito Silva, and José M. Tribolet. Using roles and business objects to model and under-

stand business processes. In Hisham Haddad, Lorie M. Liebrock, Andrea Omicini, and Roger L. Wainwright,

editors, SAC, pages 1308–1313. ACM, 2005.

[22] Artur Caetano, António Rito Silva, and José M. Tribolet. A role-based enterprise architecture framework. In

Sung Y. Shin and Sascha Ossowski, editors, SAC, pages 253–258. ACM, 2009.

[23] Tian Chao, David Cohn, Adrian Flatgard, Sandy Hahn, Mark Linehan, Prabir Nandi, Anil Nigam, Florian

Pinel, John Vergo, and Frederick Wu. Artifact-based transformation of ibm global financing. In Umeshwar

Dayal, Johann Eder, Jana Koehler, and Hajo Reijers, editors, Business Process Management, volume 5701 of

Lecture Notes in Computer Science, pages 261–277. Springer Berlin / Heidelberg, 2009.

[24] Peter Checkland and Sue Holwell. Information, Systems and Information Systems: making sense of the field. Wiley,

Chichester, UK, 1998.

[25] Jane Cleland-Huang, Carl K. Chang, and Mark Christensen. Event-based traceability for managing evolu-

tionary change. IEEE Trans. Softw. Eng., 29(9):796–810, 2003.

[26] David Cohn and Richard Hull. Business artifacts: A data-centric approach to modeling business operations

and processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

[27] F. Corradini, A. Polzonetti, R. Pruno, and L. Forastieri. Document exchange methodology for collaborative

work in e-government. In DEXA ’06, pages 283–287, Washington, DC, USA, 2006. IEEE Computer Society.

[28] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Commun. ACM, 35(9):75–90, 1992.

[29] Feriel Daoudi and Selmin Nurcan. A benchmarking framework for methods to design flexible business pro-

cesses. Software Process: Improvement and Practice, 12(1):51–63, 2007.

[30] Thomas H. Davenport. Process Innovation – Reengineering Work through Information Technology. Harvard Busi-

ness School Press, 1993.

[31] Stéphane Demri and Deepak D’Souza. An automata-theoretic approach to constraint ltl. Inf. Comput.,

205(3):380–415, 2007.

[32] Jan Dietz and Jan Hoogervorst. Enterprise ontology and enterprise architecture, how to let them evolve into

effective complementary notions. GEAO Journal of Enterprise Architecture, 2, 2007.

[33] Jan L. G. Dietz. Architecture - Building strategy into design. Academic Service, The Hague, Netherlands, 2008.

[34] Document. Workflow management coalition terminology glossary, 1999.

[35] Dulce Domingos, António Rito Silva, and Pedro Veiga. Workflow access control from a business perspective.

In ICEIS (3), pages 18–25, 2004.

[36] Dov Dori. Object-process methodology as a business-process modelling tool. In ECIS, 2000.

[37] P. Dourish, K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Petersen, M. Salisbury, D. Terry, and J. Thorn-

ton. A programming model for active documents. In UIST ’00, pages 41–50, New York, NY, USA, 2000.

ACM.

[38] Gregor Engels and Luuk Groenewegen. Towards team-automata-driven object-oriented collaborative work.

In Formal and Natural Computing, pages 257–276, 2002.

84

[39] Martin Fowler. Domain specific languages. http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

(accessed June 1, 2009), 2009.

[40] J. Framinan, C. Parra, M. Montes, and P. Perez. Collaborative healthcare process modelling: A case study.

In Luis Camarinha-Matos, Hamideh Afsarmanesh, and Angel Ortiz, editors, Collaborative Networks and Their

Breeding Environments, volume 186 of IFIP, pages 395–402. Springer Boston, 2005.

[41] C. Fritz, R. Hull, and J. Su. Automatic construction of simple artifact-based business processes. In ICDT ’09,

pages 225–238, New York, NY, USA, 2009. ACM.

[42] Raghu Garud, Sanjay Jain, and Philipp Tuertscher. Incomplete by design and designing for incompleteness.

Organization Studies - SAGE Publications, 29(03):351–371, 2008.

[43] Cagdas Gerede and Jianwen Su. Specification and verification of artifact behaviors in business process mod-

els. In Bernd Kramer, Kwei-Jay Lin, and Priya Narasimhan, editors, Service-Oriented Computing ICSOC 2007,

volume 4749 of Lecture Notes in Computer Science, pages 181–192. Springer Berlin / Heidelberg, 2010.

[44] Willy F. Gochet and Manfred W. Padberg. The Triangular E-Model of Chance-Constrained Programming with

Stochastic A-Matrix. Management Science, 20(9):1284–1291, 1974.

[45] E. C. Goodman. Records management as an information management discipline – a case study from smithk-

line beecham pharmaceuticals. International Journal of Information Management, 14(2):134–143, 1994.

[46] F. Gottschalk, W.M.P. van der Aalst, M.H Jansen-Vullers, and M. La Rosa. Configurable workflow models.

International Journal of Cooperative Information Systems, pages 223–255, 2008.

[47] Object Management Group. Business process modeling notation specification (omg final adopted specifica-

tion), February 2006.

[48] The Object Management Group. Semantics of business vocabulary and business rules. Technical report, The

Object Management Group, 2008.

[49] Adnene Guabtni and Francois Charoy. Multiple instantiation in a dynamic workflow environment. Advanced

Information Systems Engineering, pages 175–188, 2004.

[50] Thomas Herrmann, Marcel Hoffmann, Kai-Uwe Loser, and Klaus Moysich. Semistructured models are sur-

prisingly useful for user-centered design. In R. Dieng, A. Giboin, L. Karsenty, and G. De Michelis, editors,

Designing Cooperative Systems. Proceedings of Coop 2000, pages 159–174, Amsterdam, 2000. IOS Press.

[51] M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented systems. In Proc. Intl. Sym. on

Applied Corporate Computing, 1995.

[52] Josef Hofer-Alfeis. Document engineering: a preferred partner discipline in knowledge management. In

DocEng ’09, pages 1–2, New York, NY, USA, 2009. ACM.

[53] Jan A. P. Hoogervorst. Enterprise Governance and Enterprise Engineering (The Enterprise Engineering Series).

Springer, 1 edition, February 2009.

[54] Greg Horvath, Joe Bolinger, Jay Ramanathan, and Rajiv Ramnath. Document-centric collaborative spaces for

increased traceability in knowledge-intensive processes. In CTS ’09, pages 400–407, Washington, DC, USA,

2009. IEEE Computer Society.

[55] Richard Hull. Artifact-centric business process models: Brief survey of research results and challenges. In

OTM’08, pages 1152–1163, Berlin, Heidelberg, 2008. Springer-Verlag.

[56] Richard Hull, Nanjangud C. Narendra, and Anil Nigam. Facilitating workflow interoperation using artifact-

centric hubs. In ICSOC/ServiceWave, pages 1–18, 2009.

85

[57] Dirk Jäger, Ansgar Schleicher, and Bernhard Westfechtel. Ahead: A graph-based system for modeling and

managing development processes. In AGTIVE, pages 325–339, 1999.

[58] Kurt Jensen. Coloured Petri Nets : Basic Concepts, Analysis Methods and Practical Use. Volume 1 (Monographs in

Theoretical Computer Science. An EATCS Series). Springer, April 2003.

[59] Jay Kennedy and Cherryl Schauder. Records management: a guide for students and practitioners of records and

information management. Longman Cheshire, Melbourne, 1994.

[60] Jae Ho Kim, Woojong Suh, and Heeseok Lee. Document-based workflow modeling: a case-based reasoning

approach. Expert Syst. Appl., 23(2):77–93, 2002.

[61] Paul Klint and Jurgen Vinju. Writing language definitions in asf+sdf. Technical report, 2007.

[62] K. Kumar and M. M. Narasipuram. Defining requirements for business process flexibility. In BPMDS’06

(CAiSE’06), Luxembourg, June 2006.

[63] V. Künzle and M. Reichert. Integrating users in object-aware process management systems: Issues and chal-

lenges. In Rinderle-Ma, Sadiq, and Leymann, editors, BPM Workshops, volume 43 of Lecture Notes in BIP,

pages 29–41. Springer, 2009.

[64] Vera Künzle and Manfred Reichert. Towards object-aware process management systems: Issues, challenges,

benefits. In Enterprise, Business-Process and Information Systems Modeling, volume 29 of Lecture Notes in Business

Information Processing, pages 197–210. Springer Berlin Heidelberg, 2008.

[65] Vera Künzle, Barbara Weber, and Manfred Reichert. Object-aware business processes: Properties, require-

ments, existing approaches. Technical report, University of Ulm, Germany, 2010.

[66] Diego Adrian Naya Lazo. OSWorkflow. Packt Publishing, 2007.

[67] Mark H. Linehan. Ontologies and rules in business models. In EDOCW ’07, pages 149–156, Washington, DC,

USA, 2007. IEEE Computer Society.

[68] Beate List and Birgit Korherr. An evaluation of conceptual business process modelling languages. In SAC ’06,

pages 1532–1539, New York, NY, USA, 2006. ACM.

[69] Rong Liu, Kamal Bhattacharya, and Frederick Y. Wu. Modeling business contexture and behavior using

business artifacts. In John Krogstie, Andreas L. Opdahl, and Guttorm Sindre, editors, CAiSE, volume 4495 of

Lecture Notes in Computer Science, pages 324–339. Springer, 2007.

[70] R. Magalhães and A. Rito Silva. Organizational design and engineering. Technical report, Center for Organi-

zational Design and Engineering, Lisboa, Portugal, 2009.

[71] David Martinho. An organizational blackboard for business process management. Technical report, Center

for Organizational Design and Engineering, Lisboa, Portugal, 2009.

[72] Michael Merz, Boris Liberman, and Winfried Lamersdorf. Using mobile agents to support interorganizational

workflow-management. International Journal on Applied Artificial Intelligence, 11(6), 1997.

[73] B.M. Michelson. Event-driven architecture overview. Patricia Seybold Group, Feb, 2006.

[74] D. Müller, M. Reichert, and J. Herbst. A new paradigm for the enactment and dynamic adaptation of data-

driven process structures. In CAiSE ’08, pages 48–63, Berlin, Heidelberg, 2008. Springer-Verlag.

[75] D. Müller, M. Reichert, J. Herbst, and F. Poppa. Data-driven design of engineering processes with corepro.

Enabling Technologies, IEEE International Workshops on, 0:376–378, 2007.

86

[76] Dominic Müller, Joachim Herbst, Markus Hammori, and Manfred Reichert. Information technology support

for release management processes in the automotive industry. In S. Dustdar, J. Fiadeiro, and A. Sheth, editors,

BPM, volume 4102 of Lecture Notes in Computer Science, chapter 26, pages 368–377–377. Springer Berlin /

Heidelberg, Berlin, Heidelberg, 2006.

[77] Dominic Müller, Manfred Reichert, and Joachim Herbst. Data-driven modeling and coordination of large

process structures. In OTM Conferences (1), pages 131–149, 2007.

[78] P. Nandi, D. König, S. Moser, R. Hull, V. Klicnik, S. Claussen, M. Kloppmann, and J. Vergo. Introducing

business entities and the business entity definition language. Technical report, IBM, 2010.

[79] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and automated composition of web services.

In WWW ’02, pages 77–88, New York, NY, USA, 2002. ACM.

[80] Mariska Netjes, Irene T. P. Vanderfeesten, and Hajo A. Reijers. "intelligent" tools for workflow process re-

design: A research agenda. In Christoph Bussler and Armin Haller, editors, Business Process Management

Workshops, volume 3812, pages 444–453, 2005.

[81] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification. IBM Syst. J.,

42(3):428–445, 2003.

[82] Y. Nomaguchi, M. Yoshioka, and Tetsuo Tomiyama. Document-based design process knowledge manage-

ment for knowledge intensive engineering. In IFIP TC5 WG5.2, pages 131–144, Deventer, The Netherlands,

The Netherlands, 2001. Kluwer, B.V.

[83] OMG. UML 2.0 Superstructure proposal v.2.0., January 2003.

[84] Martyn A. Ould. Business Processes: Modelling and Analysis for Re-Engineering and Improvement (Role-Activity

Diagrams). John Wiley and Sons, 1995.

[85] Mohammad Ashiqur Rahaman, Yves Roudier, and Andreas Schaad. Document-based dynamic workflows:

Towards flexible and stateful services. Services Part II, IEEE Congress on, 0:87–94, 2009.

[86] Gil Regev, Ilia Bider, and Alain Wegmann. Defining business process flexibility with the help of invariants.

Software Process: Improvement and Practice, 12(1):65–79, 2007.

[87] Gil Regev, Pnina Soffer, and Rainer Schmidt. Taxonomy of flexibility in business processes. In Gil Regev, Pnina

Soffer, and Rainer Schmidt, editors, BPMDS, volume 236 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[88] Manfred Reichert and Peter Dadam. Adeptflex—supporting dynamic changes of workflows without losing

control. Journal of Intelligent Information Systems, Special Issue on WfMS, 10(2):93–129, 1998.

[89] Hajo Reijers and Jan Mendling. Modularity in process models: Review and effects. In Business Process Man-

agement, pages 20–35, 2008.

[90] Hajo A. Reijers, Selma Limam, and Wil M. P. Van Der Aalst. Product-based workflow design. J. Manage. Inf.

Syst., 20(1):229–262, 2003.

[91] Clay Richardson. Process data management (keynote). Technical report, 2010.

[92] Paul Ricoeur. Time and Narrative. University of Chicago Press, 1988.

[93] Mary F Robek, Gerald F Brown, and David O Stephens. Information and records management: document-based

information systems. New York : GLENCOE/McGraw-Hill, 4th ed edition, 1995.

[94] Willem De Roover and Jan Vanthienen. Unified patterns to transform business rules into an event coordina-

tion mechanism. In edBPM’10, 2010.

87

[95] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference Manual (Collabo-

ration Diagrams). Pearson Higher Education, 2 edition, 2004.

[96] N. Russell, A.H.M. ter Hofstede, and W.M.P. van der Aalst. newyawl: Designing a workflow system using

coloured petri nets. PNDS’08, 2008.

[97] Nick Russell, Arthur, Wil M. P. van der Aalst, and Natalya Mulyar. Workflow control-flow patterns: A revised

view. Technical report, BPMcenter.org, 2006.

[98] Wasim Sadiq, Karsten Schulz, Maria E. Orlowska, and Shazia Sadiq. When workflows will not deliver - the

case of contradicting work practice. In Witold Abramowicz, editor, BIS 2005, pages 69–84. Wydawnictwo

Akademii Ekonomicznej w Poznaniu, 2005.

[99] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil M. P. van der Aalst. Process flexi-

bility: A survey of contemporary approaches. CIAO! / EOMAS, 2008.

[100] Reza Shafii. Kaizen, bpm, and agile methodologies. http://www.oracle.com/technology/pub/articles

/dev2arch/2008/05/kaizen-bpm-agile.html (accessed December 1, 2009), 2008.

[101] António Rito Silva, David Martinho, Ademar Aguiar, Nuno Flores, Filipe Correia, and Hugo Sereno Ferreira.

The adaptive object-model architectural style. In The Second Workshop on Business Process Management and

Social Software, IST/UTL Center for Organizational Design and Engineering - INOV and INESC Porto, 2009.

[102] R. Snowdon, B. Warboys, R. Greenwood, C. Holland, P. Kawalek, and D. Shaw. On the architecture and form

of flexible process support. Software Process: Improvement and Practice, 12(1):21–34, 2007.

[103] M. Suntinger, H. Obweger, J. Schiefer, and M. E. Groller. Event tunnel: Exploring event-driven business

processes. Computer Graphics and Applications, IEEE, 28(5):46–55, Sept 2008.

[104] Hong Linh Truong and Schahram Dustdar. Integrating data for business process management. IEEE Data

Eng. Bull., 32(3):48–53, 2009.

[105] G. Van Bussel, F. Ector, G. Van der Pijl, and P. Ribbers. Building the record keeping system (rks). process

improvement triggered by management of archival documents. In HICSS ’01, page 8060, Washington, DC,

USA, 2001. IEEE Computer Society.

[106] W. M. P. van der Aalst. On the automatic generation of workflow processes based on product structures.

Comput. Ind., 39(2):97–111, 1999.

[107] W. M. P. van der Aalst and P. J. S. Berens. Beyond workflow management: product-driven case handling. In

GROUP’01, pages 42–51, New York, NY, USA, 2001. ACM.

[108] W. M. P. van der Aalst and Ter A. H. M. Hofstede. YAWL: Yet another workflow language. Information Systems,

30(4):245–275, 2005.

[109] W. M. P. van der Aalst and S. Jablonski. Dealing with workflow change: identification of issues and solutions.

International Journal of Computer Systems Science and Engineering, 15(5):267–276, September 2000.

[110] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow patterns. Distrib.

Parallel Databases, 14(1):5–51, 2003.

[111] Wil M. P. van der Aalst, Paulo Barthelmess, Clarence A. Ellis, and Jacques Wainer. Proclets: A framework for

lightweight interacting workflow processes. Int. J. Cooperative Inf. Syst., 10(4):443–481, 2001.

[112] Wil M. P. van der Aalst, R. S. Mans, and Nick C. Russell. Workflow support using proclets: Divide, interact,

and conquer. IEEE Data Eng. Bull., 32(3):16–22, 2009.

88

[113] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Balancing between

flexibility and support. Computer Science - RD, 23(2):99–113, 2009.

[114] Wil M. P. van der Aalst and Kees van Hee. Workflow Management: Models, Methods, and Systems. MIT Press,

2002.

[115] W.M.P. van der Aalst, R.S. Mans, and N.C. Russell. Workflow support using proclets: divide, interact and

conquer. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 32(3):16–22, 2009.

[116] Irene T. P. Vanderfeesten, Hajo A. Reijers, and Wil M. P. van der Aalst. Product based workflow support:

Dynamic workflow execution. In Zohra Bellahsene and Michel Léonard, editors, CAiSE, volume 5074 of

Lecture Notes in Computer Science, pages 571–574. Springer, 2008.

[117] I.T.P. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. Product based workflow support: a recommen-

dation service for dynamic workflow execution. Technical report, Eindhoven: BPMcenter.org, 2008.

[118] E.A. van Veen and J.C. Wortmann. New developments in generative bom processing systems. Production

Planning and Control, 3(3):327–335, 1992.

[119] M. Weske. Formal foundation and conceptual design of dynamic adaptations in a workflow management

system. Hawaii International Conference on System Sciences, 7:7051, 2001.

[120] Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2007.

[121] M. Zacarias, R. Magalhães, A. Caetano, H. S. Pinto, and J. Tribolet. Towards organizational self-awareness:

An initial architecture and ontology. In P. Rittgen, editor, Handbook of Ontologies for Business Interaction, pages

101–121. Idea Group Inc, 2007.

[122] Michael zur Muehlen. Volume versus variance: Implications of data-intensive workflows. IEEE Data Eng.

Bull., 32(3):42–47, 2009.

89

VIIIAppendices

15
Event-driven Solution

When implementing and executing the developed modeling approach, some considerations arise. First,

all the system entities creation, life-cycle progress and archival is dependent on rule-conditions’ evalua-

tion. Understandably, for hundreds of entities to interact in an efficient manner, active listening is not an

option to implement rules. The object-centered modeling, thus, adopts an event-driven solution. Every

system entity dynamically publishes and subscribes a set of events.

Published events can either be attribute value-changes or state-changes – when an entity instance’s

marking change, a new event associated with the entity instance is triggered with the new marking.

In fact, marking-change events are, in essence, a composition of a set of atomic events related to each

life-cycle place that suffered a change on its tokens. For instance, [1 1 0 0]→[0 0 0 1] is a composition of

three atomic events corresponding to the change of tokens associated to three places.

These events are triggered by rule’s actions that, in essence, fire, multiply or remove the tokens of

the set of referred places. Additionally the submission, cancellation, suspension or skipping of forms

and of its fields also trigger events, whose specification includes their identification, signal and filled-

values. Exemplifying, an atomic activity model related to the price data-attribute is on the running

state and, thus, have an available form-field. The filled form-field is submitted and, consequently, an

event is triggered. Since the running→succeed condition depends on such event (price>0), its condition is

evaluated and an action is triggered. Finally, if an object model transition depends on the price attribute,

m(price.succeed)=1, now can possibly progress to a new place.

Similarly, the subscribed events also relate to changes in data and in places’ marking. They are required

for the evaluation of rule-set conditions, that is performed whenever an atomic event related with a rule

input place is triggered. Note that not only the places from the target entity may be referred but also

places from an external or upper entity with whom the target entity is synchronized.

15.1 Object-centered Systems are Event-driven by Nature

Back to the introduced axioms on the modeling of data-intensive systems, systems can be modeled as a

set of state-based entities – objects, activities, goals and time – that interact with each other by synchro-

nizing their life-cycles. If system entities interact in an aynchronous and loosely-coupled manner and

coordinate their progress through event publishing and subscription, several benefits can be seized:

• system responsiveness – since events can occur at any time from any source and the use of ordering

precedences constraining the ability to scan these events is limited (as occuring in activity-centered

processes), activities respond to events immediately, whenever and wherever they happen;

• system agility – since the adaptation of system processes is dynamically retrieved from event-driven

objects, processes can response in a more timely manner to changing system requirements [25];

• system flexibility – since agents interact with process modeling landscape via events (either through

adaptors or by manual filling of forms), all the human and application participants can be added,

removed or upgraded without affecting process modeling [73].

90

An event-driven solution applied to the object-centered modeling can additionally integrate external

system interactions using an unified interface [73]. External entity systems must subscribe events for

those entities with whom they want to contact and also publish events corresponding, for instance, to

a new order or to a notification’s response. Both notifications and publications are standardized events

that contain the entity, its new state and optionally a set of data-values. Fig.15.1 presents this landscape.

Figure 15.1: Event-driven nature of data-intensive systems

15.2 Advantages

15.2.1 Modeling Traceability and Correctness

One of the greatest problems of traditional process modeling approaches, not so often referred, are their

inability to trace events. In a simple scenario, where the occurrence of an activity is dependent on a

control-flow with an event being triggered on a data-condition satisfaction, if the event is triggered

the activity becomes available. But how does one know that such event is anytime triggered? If its

occurrence may depend on another event triggered by the waiting activity, this event will never occur,

so the process model is not sound. Correctness is a big issue in traditional modeling landscapes [47][108].

But even if this event can occur as result of a data-change, how does one know which system entities

were responsible for that change? In activity-centered landscapes events are hardly related, this works

names this problem as no-source-traceability.

In object-centered modeling no longer this problem arises since data and time are modeled at the

process modeling level, and since the entities’ coordination dependencies are used to build a complete

source-traceable net of events to formulate advanced soundness criteria.

15.2.2 Modeling Usability

Another concern arising from the use of events, is the possible great amount of event-dependencies

among all the system entities that would degrade the ability to evolve object-centered models as it

may require the understanding of all the event-based entities interplay. The object-centered modeling,

however, fosters the use of encapsulation methods to synchronize objects through events. By limiting

the scope of synchronization, it is easier to trace graphically the events’ dependencies. This results in an

improved usability and locality of changes that foster models’ evolution.

15.2.3 Complex Event Processing and Modeling Abstractions

Complex-event processing (CEP) is an emerging discipline to deal with event-driven behavior that en-

ables the processing of large amounts of events, using them to monitor, steer, optimize and discover

exceptional situations or opportunities in system processes with minimal latency [73]. The presented

way of publishing and subscribing events offers a formal and stable criterion to correlate temporally

and semantically events.

91

This brings two clear advantages. First, the ability to support advanced coordination patterns as the

vertical aggregation of activities based on the management of events. For instance, the joining of all the

assets already procured for collective supplying, can be done recurring to collective events-publishing

after a time-buffer, which can be easily implemented recurring to CEP rules. Advanced vertical aggre-

gation constructs implemented through CEP are well-covered in [103].

Second, the real-time selection, aggregation, and event abstraction may generate higher-level com-

pound events of interest. Entity instances may produce lower-level events as attribute-changes corre-

sponding to RFID tags or log-file entries [73]. Such events may be correlated to produce new higher-level

compound events, not only to be used by monitoring, business intelligence capabilities or exceptional

behavior but also to dynamically affect the normal progress of object instances [25]. Note that one of

the fundamental obstacles for intelligent systems is the absence of an automated ability to relate events

as the human intuition. With this solution, the role of an event modeler must be reviewed since it only

differs from a process modeler on the level of granularity of the target entities under modeling.

15.3 Notes on the Implementation Architecture

These advantages turn natural the choice of an event-driven architecture1 to support the object-centered

process modeling landscape. Note that data-intensive systems have a natural fit with an event-driven

solution as they are, by design, composed by loosely-coupled interacting entities (an event itself may not

know about the consequences of its cause), responsive to data-changes, and more prone to unpredictable

and asynchronous environments [25].

Fig.15.2 introduces a possible architecture. Where, as an independent system, CEP is a parallel run-

ning platform that analyses and processes events in an integrated fashion with the process monitoring

tool using additional events produced by the object-centered workflow engine.

Figure 15.2: Architecture for the event-driven and object-centered modeling landscape

1software architecture pattern promoting the production, detection, consumption of, and reaction to events

92

16
Thesis Boundary

This thesis has been focused around five requirements that compromise the ability of data-intensive

systems to evolve. Does, however, their satisfaction guarantee the applicability of an object-centered

approach? To which degree they cover all the requirements for a successful data-centered approach?

This annex uses the five requirements to understand how the cover the overall modeling aspects. Sec-

tion 16.1 introduces the developed framework to structure process modeling aspects, and section 16.2 ex-

ploits how each requirement relates with those aspects and, thus, fosters the evolution of data-intensive

processes.

16.1 The Process Model Framework

The Process Model Framework is a formal guideline for the development, improvement and analysis of

process models. This framework aims to structure a wide set of concerns in a consistent, coherent

and usable way. It was developed through an inductive path based on both theoretical and empirical

research, where concepts and relationships were firstly discovered and then organized into a theoretical

explanatory scheme.

This framework is defined as a tuple < M,D, A >, where M is a set of modeling approaches, D is a set

of modeling domains and A is a set of areas of concerns. Main contribution is on promoting an accepted

ontology of concepts and leveraging the awareness of different aspects when deriving a modeling ap-

proach. In practice this framework serves three main purposes: i) to classify or retrieve requirements

(descriptive side), ii) to guide the development of a process meta-model by turning natural the definition

of principles (prescriptive side), and iii) to serve as a basis for evaluating existing approaches.

M1 ... Mn

D1 ... Dn ... D1 ... Dn

A1

A11

...
A1n

... ...

An

A11

...
A1n

Table 16.1: Process Model Framework’s skeleton

The potential resides on its simplicity as a result of the visual orthogonality and from the fact that

the cells that result from the intersection of the three framework dimensions provide the right level of

abstraction to extract requirements, define principles and evaluate approaches (see Table 16.1).

Modeling Approaches M: Processes exist in every kind of system and, therefore, the way they are

modeled must be aligned with their system’s properties and needs. Two dimensions underpin the M

set: process orientation and constraints specification. Different orientation paradigms were introduced in

section 2.5. Each one of them can, however, follow an imperative or declarative way to specify constraints.

In imperative approaches the tasks, data or agents dependencies are explicitly defined [99][120]. In

93

declarative settings the focus is on what should be done, instead of how, by using constraints – either

mandatory (strictly enforced) or optional (possibly violated) – to limit the execution options [113].

modeling

approach

constraints
declarative

imperative

orientation

hybrid

multi-paradigm

exclusive
agent-centered
data-centered
activity-centered

Modeling Domains D: This dimension aims to properly separate and structure the aspects of a

particular area of concern and modeling approach. Concerns can be structured according to the process

stage where they occur. A simple and consistent space division defines design and run time. This

framework adopts, however, [113] classification as it better isolates different concerns into distinctive

five moments. Concerns also vary depending on the type of process under analysis. Type is defined by:

i) the scope or interaction extent (either intra- or inter-systemic) and by ii) the nature of a process [120]

that is defined by the process degree of automation1, repetition2 and structuring3 [120].

domain

process

type
scope

choreographical aspectsfocus on

internal aspects

nature
automationdegree of

repetition
structure

process

stage
design-time
configuration-time
instantiation-time
run-time
auditing-time

Areas of Concern A: Modeling approaches can be evaluated by the extent to which they provide

constructs useful for representing and reasoning about the various aspects of a process. This dimension

structures the intrinsic qualities and support ability of process models. The proposed taxonomy can be

mapped in the perspectives proposed in [68] and extended in [28]. The realization of these concerns is a

continuous playing of trade-offs.

Modeling qualities can be consistently divided according to:

• expressivity refers to the extent to which an approach models execution constraints, comprising the

ability to specify simple and advanced4 control-flow patterns based on participants and activities;

• granular pliancy is the ability to model system elements at an arbitrary level of granularity, to co-

herently bridge those nesting levels, and to assure the right level of atomicity and the use of a

uniform methodology to avoid incomparability among process fragments;

• flexibility is the ability of process models to adapt without loss of identity [102][29], i.e., without the

need to replace them completely [87]. Kumar [62] considers two types of flexibility: pre-designed

(here captured as expressivity) and just-in-time responsive. Responsive flexibility determines the

adaptation ability using dynamic changes, deferred decisions and deviation to specifications;

• usability, the ease process users can specify, configure and execute processes based on models,

1ability of a process to be supported by software systems
2ability of a process to sustain a set of execution paths
3ability of a process to completely prescribe activities and their execution constraints
4include: i) vertical dynamic aggregation (ability to synchronize multiple instances from different process types [64]), and ii) state-based

execution, which comprises horizontal dynamic aggregation (ability to turn activities available based on participants state conditions [64])

94

depends on metrics as model’s simplicity and readability and affects process agents state and

relations as fosters modeling learnability and communication [26];

• we can say that a model is integrated with other model if there are direct dependencies between

those models that consistently and coherently define a third model that can govern those models

evolution. Said this, data-, agent- and context-integration are defined as the ability to integrate data,

agent and goal models with activity models through a governance or process model.

Modeling support refers to the ability to transfer the process modeling concerns from human to soft-

ware agents. Since highly depends on how models are implemented in practice [120] and this work

adopts only a system modeling perspective, they will not be totally covered. Aalst et. al [113] distin-

guishes between: i) design-time support, as the ability to guide modeling and assure their correctness

and performance acceptability, and ii) run-time support, as the ability to guide monitoring and execution

of process instances. This work proposes a consistent fifth-nary division:

• automation area depicts the space of modeling handled by non-human agents. A fully-automated

environment is still utopian, nevertheless dynamic process derivation based on data models [77][117]

or on goal-based models [41][79][24] are two directions that shorten the distance to higher levels

of automation as, for instance, is observed in semantic process modeling [13]. In increasingly

complex environments, these strategies can strongly simplify the evolution of models;

• verification assures that processes are correct during the modeling and enactment of processes (as a

result of adaptations, deviations or deferred decisions) [114], and can be either syntactical (based

on models’ sound criteria) or semantical (grounded on domain knowledge) [113];

• performance control assures that support tasks are performed in useful time by obtaining and eval-

uating the acceptability of metrics as processes completion time, level of service, utilization of

capacity and verification period [114] (quantitative aspects vs. qualitative or correctness);

• enactment guidance refers to the assistance degree provided to users during process modeling and

enactment, since correct and efficient models may not behave as desired [113]. Domain specific

languages can be used either to enforce or recommend effective adaptations and executions [39];

• monitoring is the ability to trace and audit in real-time a process. By promoting control and leverag-

ing the knowledge of hidden process patterns [11], models trace enables the continuous improve-

ment of data-intensive systems fostering self-awareness and learnability.

area of concern

support

automation
verification
performance control
monitoring
enactment guidance

model’s

nature

context-integration
agent-integration
data-integration
granular pliancy
flexibility
usability
expressivity

model’s

16.2 How Requirements foster Evolution of Data-intensive Systems?

To answer this question, there is the need to understand which modeling aspects promote the desired

evolutionary landscape. In last section the process model framework was introduced as a matter to

evaluate or derive modeling concerns spread among a set of domains and according to a modeling

approach. Different approaches, thus, answer differently to modeling concerns in each domain. Since

95

meta-modeling is a science of trade-offs, flexibility and expressivity of models may not increase unless

their usability and verification are penalized.

In fact, all the concerns affect evolution. Recovering the fact that evolution is triggered by integra-

tion, adaptability and agility, several conditions can be stated. First, system informational, instrumental

and purposeful views must coherently be bridged and affect execution constraints by being an expres-

sive source for automatically detectable changes. Thus, evolution depends on data, agent and context

integration. Expressivity, flexibility and traceability are at the core of evolution notion as they define the

system adaptability. Finally, usability, granular pliancy, automation ability, enactment guidance, and

qualitative and quantitative compliance determine the agility of system adaptations.

By understanding how modeling concerns foster evolution, the requirements effects can now be

easily structured. First, each requirement may intersect multiple areas of concern at different process

stages. Let us focus on usability to understand how it is fostered by each requirement. Data-access

affects usability since advanced ways to capture activities’ data-context exist than explicit input and

output parameters for every activity. Data-based reaction and coordination lead to simpler models. Data

modeling affects usability as it promotes a near-complete derivation of process models from enriched

data models. And, finally, data-based granularity promoting functional decomposition also increases the

ability to work under abstractions, the process fragments.

All requirements affect not only modeling qualities but modeling support as well – e.g. data-based

coordination poses new challenges for model verification. The summarized rationale used for usability

can be extended for every modeling concern in order to study the extent to which these data-specific

requirements foster evolution.

96

17
Implementation Notes

As the set of object-centered models can be considered a high-level domain-specific language to lower-

level constructs provided by enriched YAWL models, syntax specification and model-to-model trans-

formations were defined in order to proof the mapping correctness. The choice of using the ASF+SDF

engine for this task was exploited in chapter 10. This chapter introduces the features of the developed ap-

plication (section 17.1), and briefly covers some of its syntax and transformation implementation aspects

(section 17.2).

17.1 The Application

To interact with the developed application the user just needs to specify one or more models and apply a

set of transformations (from the available and valid range) to it, which will return a transformed model.

For instance, if the reader wants to specify an object-centered process model for the GF case, it might

be a good option to simply start by defining a data model using UML notation. Using this input, a

transformation to generate an object model skeleton is available. Then, the reader just need to add data-

dependencies, life-cycles and points of synchronization. After this specification several transformations

are available, from the default generation of rule-set models or data-contexts until the related activity-

models generation. Assuming that activity-models are generated, the reader can now use both object

and activity models’ documents as input and apply the transformation responsible to generate process

models. Finally, using these object-centered process models new transformations can be applied in order

to derive a proclets net enriched with multi-colored places conditions.

The command available for the application of transformations is the following:

COMMANDLINE> ACTION=var1 FILE=var2 [FILE2=var3] , with var1=dm|om-1|om-2|om-3|am-4|am-5|am-

6|pm-8|pm-9|yawl-plain|yawl-proclets|om-sound|am-sound |pm-sound|format being the type of transforma-

tion to apply, var2 being the path to the input model to transform, and, optionally, var3 being the path to

a second input model to transform that is used when an object-centered process model is derived from

two documents containing, respectively, object and activity models.

Not only transformations are available, but also soundness verifications and a pretty-printer. In fact,

their use may not be so regular since both are internally applied after each transformation.

To support these transformations some steps need to be performed. First, an optional merging of

models. Second, the parsing of the input files using a parse table adequated to the type of the given

file (e.g. an object model needs to be parsed by a table derived from the object models syntax). Third,

the rewriting of the parsed tree according to the algebraic equations file for the chosen transformation.

This is the core step. Fourth, soundness is verified according to the input file – in case of failure, the

input model is rewritten as a simple message containing the sound failing clause. Fifth, formatting adds

constructs for the unparsed tree being printed in an usable manner. Finally, the parsed tree is unparsed.

The main modules of the application, for a possible further exploitation, are organized as follows:

97

syntax – object-centered models syntax;
transformations – the proposed transformations (DM->OM,OM->AM,OM,AM->PM, etc.);
format – pretty-printer;
soundness – soundness check (our language "typechecker");
migration – to support run-time adaptations/changes to the object-centered models;
mapping – mapping of the target language to enriched yawl models;
bin – contain the parsers, unparsers, trees’ transformers and additional auxiliary executables;
build – contain the language specific executables: ASF tables for parsing and algebraic equations;
examples – contain a set of input models to apply the defined transformations;
output – contain the intermediary and final outputs;

17.2 Models Syntax and Transformations

The length of syntax definitions and, mainly, of algebraic equations do not allow their full explanation.

However, two examples are provided for the reader understand the basics on how to capture the syntax

of a model using SDF (Alg. 17.1) and on how to specify rewriting rules using ASF (Alg. 17.2).

The ASF+SDF Meta-Environment, illustrated in Fig.17.1, is a very useful graphical interface for the

edition of SDF and ASF models, for the dynamic parsing and checking of the correctness of the specifica-

tion modules, and for generating parsers for the syntax modules and rewriter engines for the equations

modules. It may be used in alternative to the developed commands used in a shell-based interaction.

Figure 17.1: Extract of the algebraic equations used for the data-contexts definition

To obtain the application or for further clarifications please contact the author of this thesis.

98

Algoritm 17.1: Syntax specification of a simplified proclets net model

module object/mapping/yawl-syntax/proclets
imports

object/mapping/yawl-syntax/yawl
object/syntax/model
object/syntax/exp

hiddens
context-free start-symbols Application

exports
sorts ProcletApplication ProcletBasedProcess Proclet ProcletBody Definition ProcletsComposition
context-free syntax

ProcletBasedProcess* -> ProcletApplication{cons("App")}
AppStatusType ";" Top ProcletsComposition Channels

Performatives NamingService Definition* -> ProcletBasedProcess{cons("ProcletsProc")}
"Proclets" -> AppType{cons("ProcletsApp1")}
"Proclets" "->" Id -> AppType{cons("ProcletsApp2")}
Proclet -> Definition{cons("Proclet")}
"Proclet" Id "{" ProcletBody "}" -> Proclet{cons("Proclet")}
"Proclet" Id "(" {TaskInstance ","}* ")" "{" ProcletBody "}" -> Proclet{cons("CProclet")}
LifeCycle WData InPorts OutPorts -> ProcletBody{cons("PBody")}
"proclets" "=" "{" TREE "}" -> ProcletsComposition{cons("PHierarchy")}

sorts LifeCycle Performatives Performative Channels
context-free syntax

"life-cycle" "=" "{" Init Final NetConds NetTasks Flows "}" -> LifeCycle{cons("LifeCycle")}
"channels" "=" "{" {Channel ","}* "}" -> Channels{cons("Channels")}
"performatives" "=" "{" {Performative ","}* "}" -> Performatives{cons("Perfs")}
Id "(" ChannelId "," InPortsId "," OutPortsId "," Type ")" -> Performative{cons("Performative")}

sorts Port InPorts OutPorts InPortsId OutPortsId Cardinality Multiplicity
context-free syntax

Id Cond Cardinality Multiplicity -> Port{cons("Port")}
"in-ports" "=" "{" {Port ","}* "}" -> InPorts{cons("InPorts")}
"out-ports" "=" "{" {Port ","}* "}" -> OutPorts{cons("OutPorts")}
"in-ports" "=" "{" {Id ","}*"}" -> InPortsId{cons("InPorts")}
"out-ports" "=" "{" {Id ","}*"}" -> OutPortsId{cons("OutPorts")}
"cardinality" "=" "{" Card Card "(" Time ")" "}" -> Cardinality{cons("Card")}
"multiplicity" "=" "{" Card Card "(" Time ")" "}" -> Multiplicity{cons("Mult")}

sorts NamingService ProcletInfo ProcletId Endpoint
context-free syntax

"ns" "=" "{" {ProcletInfo ","}* "}" -> NamingService{cons("NS")}
ProcletId "=" Endpoint -> ProcletInfo{cons("Info")}
Id -> ProcletId{cons("Id")}
"http://localhost:8080/" Id -> Endpoint{cons("Id")}

sorts Channel QualityParameter Type Cond ChannelId
context-free syntax

Id "(" {QualityParameter ","}* ";" InPortsId ";" OutPortsId ")" -> Channel{cons("Channel")}
"type" "=" Id -> QualityParameter{cons("Type")}
"reliability" "=" Id -> QualityParameter{cons("Reliability")}
"security" "=" Id -> QualityParameter{cons("Security")}
"synchronization" "=" Id -> QualityParameter{cons("Synchro")}
"closure" "=" Id -> QualityParameter{cons("Closure")}
"formality" "=" Id -> QualityParameter{cons("Formality")}
"channel" "=" Id -> ChannelId{cons("Channel")}
"type" "=" Id -> Type{cons("Type")}
"cond" "=" Id -> Cond{cons("Cond")}

99

Algoritm 17.2: Brief extract of the algebraic equations for the mapping in plain YAWL models

equations
// PART1: Auxiliary functions [...]
// PART2: Creating the tasks’ join and split operators based on rules
[] fillYAWLTasks(,_C*)(_Task*)=_Task*
[] fillYAWLTasks(_Id,_Id*,_C*)(_Task*)=fillYAWLTasks(_Id*,_C*)(_Id (join(_Id,_C*),split(_Id,_C*)),clean(),1 1 static, _Task*)
[] split(_Id,_C*1,(_Id,_Id1)._Id0,_C*2,(_Id,_Id2)._Id0,_C*3)=and
[] split(_Id,_C*1,(_Id,_Id1)._Id2,_C*2,(_Id,_Id3)._Id4,_C*3)=or
[] split(_Id,_C*)=normal
[] join(_Id,_C*1,(_Id1,_Id)._Id0,_C*2,(_Id2,_Id)._Id0,_C*3)=and
[] join(_Id,_C*1,(_Id1,_Id)._Id2,_C*2,(_Id3,_Id)._Id4,_C*3)=or
[] join(_Id,_C*)=normal
// PART3: Integrating object-places and activity-places into one unique life-cycle
[] PM->T3; _Def*1 process _Identifier extends _Id1 encapsulates (_Id*) {

_Vars tasks={_Id*4} init=_Id2 final=_Id3 places={_Id*1} transitions={_T*1} conds={_C*1}
ort-init=_Id4 ort-final=_Id5 ort-places={_Id*2} ort-transitions={_T*2} ort-conds={_C*2} sub-processes={_Frame*} _Data}

_Def*2 = PM->T3; _Def*1 process _Identifier extends _Id1 encapsulates (_Id*) {
_Vars tasks={_Id*4} init=_Id2 final=_Id3 places={init,addP(obj,_Id*1)(),addP(act,_Id*2)(),completed}
transitions={addT(obj,_T*1)(),addT(act,_T*2)(),(init,_Id2.obj),(init,_Id4.act),(_Id3.obj,completed),(_Id5.act,completed)}
conds={addC(obj,_C*1)(),addC(act,_C*2)(),(init,_Id2.obj)._Identifier.wnet.R0,(init,_Id4.act)._Identifier.wnet.R0,

(_Id3.obj,completed)._Identifier.wnet.R1,(_Id5.act,completed)._Identifier.wnet.R1}
sub-processes={addF(obj,_Frame*)()} _Data} _Def*2

rule _Identifier.wnet.R0{domain=_Identifier.init} range={_Id6,_Id7} conds={true}
actions={marking(_Id6):=marking(_Id6)+1,marking(_Id7):=marking(_Id7)+1,marking(_Identifier.init):=0}}

rule _Identifier.wnet.R1{domain=_Identifier.completed} range={_Id8,_Id9} conds={true}
actions={marking(_Id8):=marking(_Id8)+1,marking(_Id9):=marking(_Id9)+1,marking(_Identifier.completed):=0}}

when _Id6:=add(_Identifier,_Id2.obj), _Id7:=add(_Identifier,_Id4.act),_Id8:=add(_Id.,_Id3.obj), _Id9:=add(_Identifier,_Id5.act)
%% [...]
//PART4: storage composition [...]
//PART5: mapping an object-centered process to a yawl process basis
[] PM->T5; _Def*1 process _Id extends _Id1 {

tasks={_Id*0} init=_Id2 final=_Id3 places={_Id*1} transitions={_T*1} conds={_C*1} data-access={_Id*2}} _Def*2 _Tproc
= PM->T5; _Def*1 WNet _Id { init=_Id2 final=_Id3 conditions={_Id*1} tasks={fillYAWLTasks(_Id*0,_C*1)()}

flows={flow(_C*1)()} data-access={_Id*2}} _Def*2 _Tproc
%% [...]
//PART6: composition of the WNet tree
[] search([_Id,_Id*],[_Id*1,_Id,_Id*2]) = _Id
[] search([_Id,_Id*],[_Id*2]) = search([_Id*],[_Id*2])
[] findTop(_Tproc) = search(keys(_Tproc),values(_Tproc))
[] extractNodes([_Id,_Id*],_Tproc)(_N*) = extractNodes([_Id*],_Tproc)(_N*,_Id;lookup(_Tproc,_Id))
[] extractNodes([],_Tproc)(_N*)=_N*
[] PM->T5; _Def* _Tproc = WNet; top=Object workflows={ buildTree(extractNodes(keys(_Tproc),_Tproc)())((Object))}

_Def* _Tproc when _Id:=findTop(_Tproc)
//PART7: completion of removal and instantiation patterns [...]
//PATY 8: Generating tasks for the support of control-flows [...]
[] or-out(_Id,_Flow*)==true, and-out(_Id,_Flow*)==false ===> pattern-out(_Id,_Flow*)=or
[] or-out(_Id,_Flow*)==false,and-out(_Id,_Flow*)==true ===> pattern-out(_Id,_Flow*)=and
[] or-out(_Id,_Flow*)==false,and-out(_Id,_Flow*)==false ===> pattern-out(_Id,_Flow*)=normal
[] or-out(_Id,_Flow*)==true ,and-out(_Id,_Flow*)==true ===> pattern-out(_Id,_Flow*)=compound
[] pattern-out(_Id,_Flow*)==or ===> addInitTasks(_Id,_Flow*) = _Id.out.or (normal,or),clean(),1 1 static
[] pattern-out(_Id,_Flow*)==and ===> addInitTasks(_Id,_Flow*) = _Id.out.and (normal,and),clean(),1 1 static
[] pattern-out(_Id,_Flow*)==normal===> addInitTasks(_Id,_Flow*) =

[] pattern-out(_Id,_Flow*)==compound ===> addInitTasks(_Id,_Flow*) = _Id.out.compound (normal,and),clean(),1 1 static,
_Id.out.and (normal,and),clean(),1 1 static, _Id.out.or (normal,or),clean(),1 1 static

[] isUnique(_Id2,_Flow*1,_Flow*2,_Flow*)==true ===> linkOutCompound(_Id,_Flow*1,(_Id1,_Id)._Id2,_Flow*2)(_Flow*) =

linkOutCompound(_Id,_Flow*1,_Flow*2)((_Id1,_Id.in.and)._Id2,_Flow*)
[] isUnique(_Id2,_Flow*1,_Flow*2,_Flow*)==false ===> linkOutCompound(_Id,_Flow*1,(_Id1,_Id)._Id2,_Flow*2)(_Flow*) =

linkOutCompound(_Id,_Flow*1,_Flow*2)((_Id1,_Id.in.or)._Id2,_Flow*)
[] linkOutCompound(_Id,_Flow*1)(_Flow*)=_Flow*1,_Flow*
[] addFlows(_Id.out.or_TBody, _Task*)(_Flow*)=addFlows(_Task*)(linkIn(_Id,_Id.out.or,_Flow*)(),(_Id,_Id.out.or)._Id.out.or)
[] addFlows(_Id.out.and_TBody, _Task*)(_Flow*)=addFlows(_Task*)(linkIn(_Id,_Id.out.and,_Flow*)(),(_Id,_Id.out.and)._Id.out.and)
[] addFlows(_Id.out.compound_TBody, _Task1, _Task2, _Task*)(_Flow*) = addFlows(_Task*)(linkInCompound(_Id,_Flow*)(),

(_Id,_Id.out.compound)._Id.out.compound, (_Id.out.compound,_Id.out.and)._Id.out.and, (_Id.out.compound,_Id.out.or)._Id.out.or)
%% [...]

100

18
GF Case Annexes

This chapter illustrates the object-centered modeling steps. The following illustrations do not dispense

the careful reading of the thesis content, as due to the sake of simplicity they just cover a subset of all

the proposed constructs. These illustrations have a quality that enables their amplification when using

the original pdf version. If the reader wants to obtain such pdf version, please contact the author.

Figure 18.1: Simple data model

Figure 18.2: Automatic generation of object models skeleton

Figure 18.3: Manual enrichment of objects with data-dependencies and life-cycles

101

Figure 18.4: Dynamic life-cycle generation and manual definition of synchronization points between object instances

Figure 18.5: Dynamic generation of rule-set models and of an object model sound net

Figure 18.6: Dynamic derivation of activity execution behavior and default data-contexts (using default visibility criteria)

102

Figure 18.7: Dynamic derivation of compound execution effects and manual definition of local orderings and of data-contexts

Figure 18.8: Automatic derivation of the data-accessible objects (data-contexts can also be defined using object models)

Figure 18.9: Dynamic derivation of object-centered process models based on object models

103

Figure 18.10: Automatic completion of object-centered process models

Figure 18.11: The mapping of object-centered process models into plain YAWL models and into a proclets’ net

Figure 18.12: Mediator strategy to enable the composition mechanisms within proclets

104

Figure 18.13: Data model for the GF case

Figure 18.14: Object placeholders defining GF points-of-synchronization

Figure 18.15: GF object model (textual definition or views must be used to restrict complex graphical dependencies)

105

	Introduction
	Motivation
	Contribution
	Publications

	Structure

	I Conceptual Foundations
	Thesis Context
	The Systemic Context
	System Evolution
	Process Modeling
	The Role of Data
	Modeling Orientation
	Bridging the Concepts

	Thesis Problem
	The application scenario
	Limitations of traditional approaches
	Activity-centered Modeling Approaches
	Traditional Document-based Modeling Approaches
	Synthesis of Limitations

	The FIVE Requirements

	Thesis Statement
	Research Artifacts
	Research Goals
	Research Methodology

	II Findings
	State-of-the-Art
	The Chosen Object-centered Approaches
	Advanced Document-based Modeling
	Artifact-centric Modeling
	Business Entities
	Product-based Workflow Support
	Data-driven Modeling
	Case Handling
	Proclets
	Object-aware Business Processes

	Other Emerging Approaches
	Discussion

	III Solution Architecture
	Solution Basis
	System as Synchronized Set of State-based Entities
	The Process of Modeling Data-intensive Processes
	Solution Principles
	Principles and the Thesis Contribution

	Solution Derivation
	Data Access
	Data-state Reaction
	Data-based Coordination
	Data-based Granularity
	Data Modeling

	IV Development
	Object-centered Models Formalization
	Object Models
	Activity Models
	Rule-Set Models
	Object-centered Process Models
	Object-centered Soundness Criteria

	Modeling Transformations
	Map to plain YAWL models
	Map to proclets-enriched YAWL models
	Multi-colored places addition

	V Validation
	Proof of the Concept
	Practical Applicability
	General Performance
	Sector-oriented Applicability
	Financing
	Manufacturing
	Healthcare

	Comparison of the Approaches Performance

	Hypothesis Validation
	System Implications
	Hypothesis Approval

	VI Concluding Remarks
	Conclusion
	Future Work

	VII Bibliography
	VIII Appendices
	Event-driven Solution
	Object-centered Systems are Event-driven by Nature
	Advantages
	Modeling Traceability and Correctness
	Modeling Usability
	Complex Event Processing and Modeling Abstractions

	Notes on the Implementation Architecture

	Thesis Boundary
	The Process Model Framework
	How Requirements foster Evolution of Data-intensive Systems?

	Implementation Notes
	The Application
	Models Syntax and Transformations

	GF Case Annexes

