
An Integrated Approach for Healthcare Planning

over Multi-dimensional Data
Using Long-Term Prediction

Rui Henriques and Cláudia Antunes
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Abstract. Themining of temporal aspects overmulti-dimensional data is
increasingly critical for healthcare planning tasks. A healthcare planning
task is, in essence, a classification problem over health-related attributes
across temporal horizons. The increasingly integration of healthcare data
throughmulti-dimensional structures triggers newopportunities for an ad-
equate long-term planning of resources within and among clinical, phar-
maceutical, laboratorial, insurance and e-health providers. However, the
flexible nature and random occurrence of health records claim for the abil-
ity to deal with both structural attribute-multiplicity and arbitrarily-high
temporal sparsity. For this purpose, two solutions using different structural
mappings are proposed: an adapted multi-label classifier over denormal-
ized tabular data and an adapted multiple time-point classifier over mul-
tivariate sparse time sequences. This work motivates the problem of long-
term prediction in healthcare, and places key requirements and principles
for its accurate and efficient solution.

1 Introduction

New planning opportunities are increasingly triggered by the growing amount,
quality and integration of healthcare data through multi-dimensional structures.
Research in classification over healthcare domains has been focused on early di-
agnosis, series description and treatment selection [5]. The mining of temporal
dynamics have been mainly applied over physiological signals, with few addi-
tional methods over sequential genomic and proteomic structures.

Dealing with temporal aspects in broader contexts represents an unprece-
dented opportunity for healthcare planning. An example is the task of planning
hospital resources by predicting if a patient will need a specific treatment within
upcoming periods. For this task, a multi-dimensional structure centered in health
records is commonly adopted [29]. Although there are mappings to temporal and
tabular structures for the ready-application of classifiers, as illustrated in Fig.1,
the resultant temporal event-sparsity and attribute-multiplicity trigger the need
for a new understanding and formulation. Additionally, challenges of long-term
prediction in the healthcare include the ability to deal with different time scales
[1][5], advanced temporal rules [23] and knowledge-based constraints for an ac-
curate and efficient long-term learning with minimum domain-specific noise [3].
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Fig. 1. Structural mappings to apply long-term predictors

The document is structured as follows. Section 2 introduces the current chal-
lenges of healthcare planning tasks. In sections 3 and 4, the problem of long-term
prediction over multi-dimensional structures is motivated and formulated. Sec-
tion 5 places key requirements for its accurate and efficient solution. Finally, an
overview of the relevant work in long-term prediction is synthesized.

2 Healthcare Planning Challenges

Healthcare planning tasks include improvement of care pathways, detection of
inefficiencies, resources allocation, health trends retrieval, and study of drug
reactions and treatment effects. These applications have the potential to improve
health, increase patient satisfaction and reduce costs. Similarly to predictive
medicine, planning models can personalize guidelines to the characteristics of a
single patient [5]. However, the assessment of his current state does not suffice.
Evolving behavior across temporal horizons needs to be present.

2.1 Integrated Healthcare Data

In the last decade, new patient-centric data sources emerged. Countries as United
Kingdom and Netherlands, already track patients’ movements across health
providers, payors and suppliers. The changing landscape has been shaped by:
i) consumer-pushed demand through direct-access to risk and diagnosis infor-
mation outside of the hospital setting, ii) new requirements for drug and treat-
ment development, iii) the use of expert-systems to support medical decisions
for quality compliance, and iv) remote home monitoring.

The stakeholders of healthcare planning are: i) data generators as hospitals,
clinics, payors, pharmacies, e-prescription companies, laboratories and diagnostic-
services providers; ii) data collectors as e-record vendors; and iii) data analyzers
as pharmacos, application vendors and the research community.

Datasets are increasingly less fragmented, with appearing both cross-country
and cross-player offerings, as provided by Cegedim and IMS. Datasets are derived
from claims (Ingenix, D2Hawkeye, CMS), e-health records (McKesson, GE, Prac-
ticeFusion), imported health records (GoogleHealth, HealthVault), content ag-
gregators (Walters Kluer, Reed Elsevier, Thomson), patient communities (Alere,
Pharos, SilverLink, WebMD, HealthBoards), consumer reports (Anthem, vimo,
hospitalcompare), online worksite healthcare (iTrax, webConsult), and physician
portals (Medstory, Sermo, Doctors.net.uk).

This work uses health records as the mean to organize the wide variety of
episodes into a single and compact fact [29]. In order to deal with record data



38 R. Henriques and C. Antunes

flexibility, which may include laboratory results, prescriptions, treatments, diag-
nostics, free-text and complex structures as time series, an health record defines
what the fact represents and the type of its fields. Amounts are mined as ordinal
symbols, free-text is ignored, and complex data is converted into categorical sets
of symbols. In Fig.2, an illustrative health record is presented.

Fig. 2. Health record-centered multi-dimensional structure

2.2 Emerging Challenges

The increasing integration and volume of healthcare data trigger new challenges
in terms of learning efficiency, attribute multiplicity and occurrence sparsity.
These challenges are synthesized in Table 1.

Table 1. Critical requirements of healthcare planning

Predictor requirement Healthcare data properties
Methods to deal with missing values and
event sparsity

Health records are irregularly collected due to an uneven
schedule of visits or measurements made;

Strategies to deal with multivariate struc-
tures

Health records can flexibly define a high-multiplicity
of attributes (e.g. wearables can produce measures for
more than 20 attributes);

Efficient structural operations for record
alignment and temporal partitioning

Health records’ sampling grid varies both within and
across patients;

Calendric-pattern discovery and aggrega-
tion techniques to deal with the different
sampling rate of health records

Physiological measurements may be continuously gener-
ated, while administrative records as time-stamped pre-
scriptions or hospitalizations exist at a coarser scale;

Convolutional memory techniques and
pattern-based learning ability to detect
evolving health trends

Evolutionary patterns, as the slow progress of a disorder
or a reaction to a prescription or treatment, are spread
across many potentially non-relevant health records;

Background knowledge guidance to avoid
efficiency and domain-noise problems

The number of health records can be significantly high
and its flexible nature hampers the learning;

3 A Need for a Novel Long-Term Prediction Formulation

Given a training dataset of series composed by n+h observations of the form
(x, y), where x={ϕ1, ..., ϕn} and y={ϕn+1, ..., ϕn+h}, the task of traditional long-
term prediction is to learn a predictive model to label the h next observations,
where h > 1 is the prediction horizon.

This definition enters the scope of long-term prediction over series of elements.
Since this work targets multi-dimensional structures characterized by multivari-
ate and non-equally distant observations, there is the need to understand existing
approaches and to incrementally extend this definition.
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3.1 Limitations of Long-Term Prediction over Tabular Structures

A simple way to deal with long-term prediction over multi-dimensional structures
is to denormalize them into plain tabular structures. The long-term prediction
task over tabular data can be target by an adapted multi-label classifier, as
illustrated in Fig.3a. The goal of multi-label classification is to learn a model
from an input dataset to predict a set of attributes whose class label is unknown.

(a) Denormalization (b) Temporal shifting

Fig. 3. Long-term prediction over tabular data

This option has several challenges. First, its viability strongly depends on the
ability to represent the predicting horizon as attributes, and on the temporal
compliance with the dataset instances. Second, by capturing each health record
as a set of attributes, the size of the table may grow dramatically, which can
significantly reduce the efficiency of the learning process and the accuracy of
the classification model. Third, multi-label classifiers are neither prone to deal
with ordinal attributes nor to capture the temporal dependencies among them.
To solve these challenges, adaptations to multi-label classifiers are required to
consider temporal dynamics and to constrain the learning over large datasets.

3.2 Limitations of Long-Term Prediction over Temporal Structures

Let us assume that a mapping between a multi-dimensional and a temporal
structure is possible, as illustrated in Fig.4. Let time sequences be the target
temporal structure, as they do not put constraints on the arriving distribution
of events. With this formulation, three challenges arise. The first challenge is
of adapting predictors to deal with arbitrary-high sparse time sequences. When
mapping multi-dimensional data to time sequences, the rate of health records’
occurrence per patient and across patients may vary significantly. Structural
sparsity results from the alignment of records across time points. Additionally,
a mapping between a multi-dimensional dataset into non-temporal sequences
would only consider events’ precedences (Fig.4). Thus, existing learners are not
ready for time-sensitive prediction over time sequences.

The second challenge is of dealing with multivariate time sequences. Each
arriving health record can be seen as a vector of optional attributes. When
considering the task of predicting long-term hospitalizations, the attribute under
prediction can be the first vector position, while the remainder vector positions
correspond to optional prescriptions, symptoms, exams and diagnostics. These
adjunct attributes may influence the attribute under prediction (determining
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Fig. 4. Sequential and temporal prediction over time sequences

if either a patient is hospitalized or not) and, therefore, are not conditionally
independent from the attribute under prediction. At a finer granular level, vector
positions can be physiological measures. Research on multivariate responses has
been focusing on projecting multivariate attribute in the form of a matrix of
responses, but assuming independence among them [31][12].

The third challenge is of performing long-term prediction in evolving contexts.
Its relevance in planning problems is discussed in [20]. Different problems can be
identified depending on the adopted predictor. Predictors can either scan local
or large partitions depending, respectively, whether the time sequence is consid-
ered non-stationary or stationary. When considering local partitions nothing but
cyclic behavior can be mined. When large partitions are considered and a lazy
learner is adopted, over-fitting and pattern-negligence can arise. Alternatively,
by adopting a non-lazy approach, the learner has to collapse all the predictive
ability within a model. In this case, smoothing is an undesirable but possible
result in order to avoid model complexity and over-fit propensity. The under-
standing of evolutionary patterns, beyond cyclic and calendric patterns, may
be required to complement the learning [40]. An evolutionary pattern, as an
evolving disease, can either be a subsequence whose occurrence is not cyclic but
dependent on a time function or a cyclic subsequence whose arrangement pro-
gressively changes. The mining of evolutionary aspects can increase prediction
accuracy, particularly for time-points near the horizon of prediction.

4 Problem Formulation

Conventional predictors define a multiple-input single-output mapping. In iter-
ated methods [6], a h-step-ahead prediction problem is tackled by iterating h
times the one-step-ahead predictor. Taking estimated values as inputs, instead
of actual observations, has negative impact in error propagation [44][39]. Direct
methods learn h models, each returning a direct forecast. Although not prone
to the accumulation of prediction errors [44], they require higher complexity to
model the stochastic dependencies between non-similar series. Additionally, the
fact that the n models are learned independently:

P (y|x) = P ({ϕn+1, ..., ϕn+h} | x) = Πh
i=1P (ϕn+i |x),

prevents this approach from considering underlying dependencies among the
predicted variables that may result in a biased learning [9][39].
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Multiple-Input Multiple-Output (MIMO) methods learn one multiple-output
predictive model. This favors efficiency and preserves the stochastic dependen-
cies for a reduced bias, even though it reduces the flexibility of single-output
approaches that may result in a new bias [9][6]. To avoid this, Multiple-Input
Several Multiple-Outputs (MISMO) uses intermediate configurations to decom-
pose the original task into k = h/s prediction tasks, where h is the prediction
horizon and s is the size of horizon’s partitions. This approach trades off the
property of preserving the stochastic dependency among future values with a
greater flexibility of the predictor [50].

Definition 1. Single-output approaches either predict ϕ̂i: i) directly: fi∈{1,..,h}
(ϕn, .., ϕn−d), where h is the prediction horizon, d is a subset of total observa-
tions (embedding dimension), and f is the stochastic predictor; or ii) iteratively
as fi∈{1,..,h}={fi=1(ϕn, ..., ϕn−d), fi∈{2,...,d−1}(ϕ̂n+i−1, ..., ϕ̂n+1, ϕn, ..., ϕn−d+i),
fi∈{d,...,h}(ϕ̂n+i−1, ..., ϕ̂n+i−d)}. Multiple-output approaches predict the h=ks
time-points within k steps {ϕn+ps, ..., ϕn+(p−1)s+1}=fp(ϕn, ϕn−1, ..., ϕn−d+1),
with p ∈ {1, ..., k}, where s, the predictor’s variance, constrains the persever-
ation of stochastic properties of the series, null if s=1 and maximal if s=n.

4.1 Tabular Formulation

Definition 2. Consider a training dataset consisting of a set of m instances of
the form (x1, ..., xn, y1, ...yh), such that (y1, .., yh) ∈ Y is either a numeric or
a categorical vector (Y=R

h|Σh); and each xi takes on values from a domain
Xi = ∪k{(Σi|R, k)}, where k∈N defines the event occurrence’s order. The task
of long-term prediction over tabular data is to construct either a single-
output or multiple-output mapping model M : {X1, ..., Xn}→Y for the multi-
period classification of new tuples.

Using a multi-dimensional dataset, of we want to predict the number of hospi-
talizations for a patient j over a period i, yji , we need to perform three steps.
First, to use the patient dimension to select the health records per instance,
xj , based on patient primary key. Second, to use the time dimension for its or-
dering. Finally, to denormalize the health record measures in n attributes. For
instance, using blood pressure measures, an example of patient j attributes is
xj={xj

highbp, x
j
lowbp}, with xj

highbp={(10, t1), (9, t2), (11, t3), (∅, t4), .., (∅, tmax)},
and xj

lowbp={(7, t1), (5, t2), (7, t3), (∅, t4), .., (∅, tmax)}.

4.2 Time Sequence Formulation

Considering a sampling interval τ ∈ R and the alphabet Σ:

Definition 3. A time series with regard to a series of equally-distant time
points, I = {θ1, ..., θm} with {θi = τ0+iτ ; i ∈ R} of length m ∈ N, is z={(θi, ϕi) |
ϕi=[ϕi,1, ..., ϕi,d]

T ∈ (Σ|R)d, i=1, ..., n}. A time sequence is a multi-set of
events, z={(ϕi, θj) | ϕi=[ϕi,1, ..., ϕi,d]

T ∈ (Σ|R)d; i=1, ..., n; j ∈ N
+}. z is uni-

variate if d=1 and multivariate if d>1.
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Considering the illustrative sparse time sequence x = {([10 7], θ1), ([∅ ∅], θ2), ([∅
∅], θ3), ([9 5], θ4), ([13 7], θ5) composed of d=2 multivariate observations across
n=5 time points. Long-term prediction consists of using a dataset of similar time
sequences to predict a class of interest across h=p× s periods.

Definition 4. Given a training dataset consisting of m instances of the form
(x, y1, .., yh), where x={(ϕ1, θ1), .., (ϕn, θn)} ∈ X is a time sequence of n-length
and y ∈ Y is a univariate time series a set of h-length, the task of longterm
prediction over multivariate and sparse temporal structures is to con-
struct either a single-output model or multiple-output model M : X → Y , where
h>1 and ϕi = [ϕi,1, .., ϕi,d]

T with d>1.

The process of mapping a multi-dimensional dataset into a multivariate time
sequence differs from the previous on the third step. The time dimension is now
used to distribute the events’ occurrence according to a timeline, instead of a
simple ordering. The definition of aggregating functions as the average, sum or
count, can be used for events’ composition in coarser-granular time scales.

4.3 Problem Generalization

Depending on the availability of training tuples compliant with the temporal
horizon of prediction and on the allowance of temporal shifts, we may benefit to
transit from a pure supervised solution into an hybrid one. Fig.3b illustrates a
case where a 2-year shift is required. If significant noise results from this action,
additional semi-supervised and unsupervised principles are required [40][1][51].

4.4 Evaluation

The evaluation of long-term predictors requires different metrics than those used
in traditional classification. The accuracy of a predictive model is the probability
that the predictor correctly labels multiple time points, P (ŷ=y).

When the class for prediction is ordinal, the accuracy of the long-term predic-
tor should be based on a similarity function. The average normalized root mean
squared error (NRMSE) and the symmetric mean absolute percentage of error
(SMAPE) have been employed in the literature. If the class for prediction is
nominal, the similarity function should be replaced by the intersection operator.

NRMSE(y, ŷ)= 1
h

Σh
i=1

√
(yi−ŷi)2

ymax−ymin
SMAPE(y, ŷ)= 1

hΣ
h
i=1

|yi−ŷi|
(yi+ŷi)/2

[6]

Accuracyord=
1
mΣm

j=11−(NRMSE(yj, ŷj) | SMAPE(yj , ŷj))

Accuracynom= 1
mΣm

j=1(
1
hΣ

h
i=1 | yji ∩ ŷji |)

Predictor’s efficiency should be measured in terms of memory consumed and
time elapsed for both the training (model learning) and prediction stages.

Finally, complementary metrics to understand the predictor’s error accumu-
lation [15] and smoothness [15], when noise fluctuations are present, should be
adopted for a deeper understanding of the predictor’s behavior.
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5 Solution Space

Key variables, illustrated in Fig.5, must be considered to solve the introduced
requirements of long-term prediction in healthcare planning.

For instance, the target data variable is dependent on the health records’
representation, degree of sparsity, noise sensitivity, completeness, length, degree
of content-stationarity, presence of static features, multivariate order, patterns
presence, attributes’ alphabet amplitude, and sensitivity to temporal shifts.

Fig. 5. Key research areas for long-term prediction

5.1 Adopted Learning Approach

Several implementations for both single-output and multiple-output approaches
exist. All of them, implicitly or explicitly, work around the multivariate con-
ditional distribution P (Y |X). Learners can either follow linear or non-linear
predictive models. Linear models can either follow a simple, logistic or Poisson
regression, as auto-regressions and feed-forward moving average mappings [33].

Non-linear long-term predictors can either define probabilistic or determin-
istic models. Most are adaptations of traditional classifiers using temporal slid-
ing windows. Probabilistic predictors include (hidden) conditional random fields
[28]; hidden and variable-memory Markov models (HMM) [34][4]; and stochastic
grammars [14]. Deterministic predictors include support vector machines (SVM)
[13]; recurrent, time-delay and associate neural networks [24][8][30]; multiple
adaptive regression splines [35]; regression and model trees [11][42]; multiple
lazy learning alternatives [9]; and genetic solvers [16].

5.2 Plugged Methodologies

Despite the relevance of the learning approach choice, the significant perfor-
mance improvements is triggered by the temporal criteria that predictors may
adopt [40]. Since the learning of long-term predictors are NP-hard [38], the un-
derstanding of efficient structural operations, time-based strategies, temporal
rules and knowledge-based constraints is key.
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Structural Operations. Suitable data representations [19], similarity-measures
[19] and time-partitioning strategies are required for a quick and flexible learning.
Criteria for temporal partitioning through clustering, user-defined granularities,
fuzzy characterization, split-based sequential-trees, episodes, domain-driven on-
tologies and symbolic interleaving can be consulted in [41][38][1].

Time-Sensitive Techniques. Strategies to enhance the performance of long-
term predictors for healthcare planning tasks are synthesized in Table 2.

Table 2. Long-term prediction principles and hypotheses

RequirementResearch contributions

data
sparsity

Time windows can be adopted to create ordering or temporal partitions [41]. This can
be used to constraint the exponential growth of denormalized tables and to selected
the most recent health records’ occurrences in order to avoid missing values. In time
sequences, they can be used for flexible learning approaches, but additional techniques
are required to deal with missing values, as proposed in [37][26];

temporal
granularity

Different levels of granularity defined using time windows and feature-based descrip-
tions hold the promise of minimizing problems of sparsity and efficiency, even though
the data loss can degrade predictors’ accuracy. To manage this trade-off, the study of
improvements using hierarchical zooming operations [22] and calendars [2] is key;

data
attributes
multiplicity

Dependencies among attributes have been captured either through the use of additional
attributes or by defining weights on how each attribute (e.g. prescription) influences
a different attribute (e.g. symptom) across the time horizon [40]. In time sequences,
learning strategies can be adopted to deal with sparse multivariate vectors that may
constrain the vector under prediction [31]. One option is to project each vector or at-
tribute to the target horizon [12], and to derive from them the vector under prediction;

memory
sampling

Covariance functions, following either a parametric or non-parametric approach, are
key for the selective forgetting of unimportant events and retaining of decisive events
[48]. In both tabular and temporal structures, these functions can assign weights to
each attribute or time point to be used by long-term predictors. Binary or exponentially
decaying weighted average of an input function can be used to set a trade-off between
depth (how far back memory goes) and resolution (the degree to which information
about individual time-points is preserved).

Evolutionary Behavior. Mining of evolutionary behavior, discussed in section
3, is required to avoid smoothing and overfitting problems. An understandable
case is prediction rules, which specify a causal and temporal correlation between
two time points or patterns. In [20], emerging or evolutionary patterns are defined
as patterns whose support increases significantly over time. Although pattern-
based classifiers seem a suitable choice, other approaches should not be excluded.
Examples may include the late combination of temporal rules within a predictive
model or, alternatively, their initial retrieval to assist its learning [41].

Background Knowledge. Finally, background knowledge is increasingly
claimed as a requirement for long-termprediction as it guides the definition of time
windows [41]; providesmethods to bridge different time scales, to treat monitoring
holes and to remove domain-specific noise [5]; defines criteria to prune the explo-
sion of multiple-equivalent patterns [3]; and fosters the ability to adapt and incre-
mentally improve results by refining the way domain-knowledge is represented [3].
A hierarchy of flexible sequential constraints, and of relaxations ranging from con-
servative to distance-based approximations is introduced in [1]. Further research
on domain-driven time modeling is required [2].



Long-Term Prediction in Evolving Contexts 45

6 Related Research

Time series long-term prediction and sequence learning are the research streams
with major relevant contributions for the introduced problem.

Long-Term Prediction. A comparative study on the performance of iterated
and direct single-output approaches in terms of error accumulation, smooth-
ness, and learning difficulty is presented in [45]. In literature, hybrid solutions
that combine both approaches exist [45]. Experimental results in [39] show that
the robustness and error reduction obtained using direct and hybrid forecasts
do not justify the price paid in terms of increased sampling variance. Values
for the MISMO variance parameter can be derived from query-point functions.
Experimental studies [50] show that the s best-value strongly varies according
dataset, with s=1 (Direct method) and s=n (MIMO method) being good per-
formers in less than 20% of the cases. For large horizons h, improvements in
multiple-output approaches have been achieved by adopting operators as the
partial autocorrelation [50]. A comparison of five multi-step-ahead prediction
methods, two single-output and three multiple-output predictors is done in [6].

Potential linear, probabilistic and deterministic classifiers were discussed. In
[15] an hybrid HMM-regression is evaluated using different regression orders
and time-windows sizes. Evaluation of three multiple-output neural predictors,
simple feed-forward, modular feed-forward and Elman, is done in [7]. In [10],
Bayesian learning is applied to recurrent neural networks to deal with noisy
and non-stationary time series. In [9][27], multiple-output approaches, as least-
squares SVM, are extended with query-based criteria grounded on local learning.

Sequence Learning. Sequence learning methods are adopted when the mining
goal is either sequence prediction, sequence recognition or sequential decision
making [46]. Sequence recognition can be formulated as a prediction problem.

Learning techniques as expectation maximization, gradient descendant, pol-
icy iteration, hierarchical structuring or grammar training can be transversally
applied to different implementations [28]. Markov models are the most adopted
classification method [21]. Additionally, unsupervised and reinforcement learn-
ing techniques from machine learning have been applied to sequence prediction,
even though are still not scalable for large data volumes.

First, unsupervised learning rely on motifs, calendric rules, episodes, contain-
ers and partially-ordered tones [1][40][38] to assist prediction. In [36], patterns
are translated into boolean features to guide SVM and logistic regressions.

Second, reinforcement learning [49] have been applied in inductive-logic pre-
dictors (that learn symbolic knowledge from sequences in the form of expressive
rules) [32] and in evolutionary computing predictors (that use heuristic-search
over probabilistic models of pattern likelihood) [47]. In [18], sequence-generating
rules constrain which symbol can appear. In [17], series are used to train trees,
from which rules are retrieved and combined with logical operators.

Finally, a large spectrum of implementations are hybrid. An example is the use
of symbolic rules and evolutionary computation applied to neural networks [47].
The introduced reinforcement learning techniques are usually preferred when
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one is not interested in a specific temporal horizon, but rather in predicting the
occurrence of a certain symbol or pattern.

Healthcare Planning. A good survey covering temporal classification advances
in healthcare can be found in [5]. In [43], simple planning problems were address
relying on administrative health records including drug prescriptions, hospital-
izations, outpatient visits, and daily hospital activities. State-based character-
ization using Markov models were, for instance, applied to predict the risk of
stroke in sickle cell anemia patients [5]. Temporal abstractions have been used for
multiple time-point classification of physiological signals. In [25], a collaborative
approach is designed to mine biomedical multivariate time series to understand
vector evolution. The mining of evolving health aspects for planning tasks have,
however, received few attention. In [5], its combination with large-scale genomics
and proteomics is pointed as a decisive step to characterize disease progression.

7 Conclusion

This work addresses healthcare planning problems using long-term prediction
over multi-dimensional structures centered in health records. It introduced two
formulations based on structural mappings into tabular structures and multi-
variate sparse temporal structures. The combination of unsupervised and rein-
forcement learning techniques should be present when the training and testing
tuples are not temporally compliant and sensitive to temporal shifts. Evaluation
metrics for the target problem are proposed.

A set of requirements were introduced to deal with attribute multiplicity and
temporal-sparsity of health records. Contributions were identified. Literature is
either focused on long-term prediction over single-attributes or on causal learn-
ing, not answering the introduced challenges. Empirical contributions in the form
of principles that satisfy one or more of these requirements are the expected next
steps to promote an efficient learning of accurate long-term predictors with min-
imum domain-specific noise.
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