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Abstract
The discovery of discriminative patterns from high-dimensional data offers

the possibility to learn from informative subspaces and pattern-centric fea-
tures, paving the way to associative classifiers. Despite the success achieved
by associative classifiers, such as random forests or XGBoost, they generally
neglect discriminative subspaces with non-constant coherencies. Research on
biclustering has for two decades highlighted the role of non-constant pat-
terns in biomedical domains, including additive and order-preserving pat-
terns. Still, their relevance for classification remains unexplored.

This work assesses the impact of discriminative patterns with varying co-
herence and quality on associative classification. A novel classifier, FleBiC, is
proposed as a result. FleBiC extends pattern-based biclustering with princi-
ples to match observations against non-constant and noise-tolerant patterns,
address generalization difficulties, minimize scarcity of matches, support class
disjunctions, and offer statistical guarantees. Results on biological and clini-
cal data highlight the role of non-constant patterns, specially order-preserving
patterns, for improving the performance of state-of-the-art classifiers.

Keywords: associative classification, discriminative paterns, biclustering,
non-constant patterns, biomedical data, high-dimensional data

1. Introduction

Learning accurate classifiers from high-dimensional data is increasingly
relevant across biomedical domains [1]. High-throughput technologies cur-
rently enable the large-scale profiling of biological entities per sample (obser-
vation), including the expression of thousands of genes or the concentration
of hundreds of molecular compounds. Integrative healthcare systems give
rise to hundreds of physiological records per patient (observation). In these
data contexts, observations are often labeled according to their phenotypes,
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such as morphology, pathology, clinical assessments, applied treatment, re-
sponse to stimuli, or development stage. These labeled observations can then
be used to characterize phenotypes and support real-world decisions. How-
ever, learning biomedical markers and classifiers is challenged due to the:
1) complexity of the underlying biological and physiological patterns [2], and
2) high-dimensionality of biomedical data [3].

First, biomedical data is heterogeneous and typically characterized by the
presence of both constant and non-constant patterns. Constant patterns –
value expectations on a subset of variables (e.g. genes with specific levels of
expression) verified on a subset of observations (e.g. individuals with a given
phenotype) – are the paradigmatic case. In contrast with constant patterns,
non-constant patterns allow value expectations to vary across observations
as long as these variations are coherently explained by certain factors. Illus-
trating, two individuals may have a subset of genes with different expression
profiles, yet these differences can be coherently explained by an additive fac-
tor (genes coherently activated or repressed yet with lower levels of expression
for one of the individuals), or an order-preserving factor (identical ranks of
expression irrespectively of the absolute values). The presence of such fac-
tors gives rise to non-constant patterns, including additive, multiplicative and
order-preserving patterns. These factors are generally driven by:

1. varying profile of individuals and their unique biophysiological respon-
siveness to certain conditions;

2. varying morphology and other observable traits of the clinical conditions
under study;

3. assessments along different stages of disease progression or variations
on the treatment protocol; and

4. experimental and preprocessing biases per observation..

In this context, the traditional focus on constant patterns easily neglects other
less-trivial yet relevant patterns that could aid the learning.

Furthermore, the inherent high-dimensionality of most biomedical datasets
increases the susceptibility of classifiers to overfitting and underfitting [4]. Al-
though feature selection, data space transformations and sparse kernels have
been largely proposed to reduce dimensionality [5, 6, 7], these procedures
generally disregard the presence of discriminative patterns. As such, these
approaches often neglect subspaces of potential interest, thus unaddressing
underfitting risks, and are unable to flexibly discard uninformative subspaces,
thus unaddressing overfitting risks [8, 9]. Conceptually, these risks could be
minimized by focusing the learning on all subspaces of major interest, which
can be potentially given by discriminative patterns [10]. In fact, to address the
curse of high-dimensionality, an increasing number of classifiers able to learn
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from discriminative patterns, generally referred as associative classifiers, have
been proposed [11, 12, 13]. Notable cases of associative classifiers include: 1)
tree-based classifiers such as decision trees or random forests (where a pat-
tern corresponds to a path from root to leaf with the value expectations on a
subset of variables); 2) rule-based classifiers (where a pattern corresponds to
the antecedent of a class-discriminative association rule); and 3) any classic
classifier learned from features extracted using discriminative pattern min-
ing and biclustering [14]. Despite their relevance, associative classifiers are
generally only able to learn from constant subspaces [8, 11, 13].

These observations lead us to the following research questions : Can the
performance of (associative) classifiers be improved in the presence of non-
constant patterns? This question leads us to a second research question: How
does the behavior of (associative) classifiers vary with the underlying pattern
coherence and quality? In other words, to which extent do non-constant and
noise-tolerant patterns impact performance?

To answer these questions, we propose a new associative classifier, FleBiC
(Flexible Biclustering-based Classifier), able to learn from non-constant sub-
spaces with parameterizable coherence and quality using principles from the
biclustering field of research. FleBiC relies on three major steps: 1) discovery
and composition of discriminative patterns with diverse coherence and quality
(discovery); 2) scoring of the identified patterns (training); and 3) effective
classification of new observations against the scored patterns (testing). In
this context, FleBiC combines the following methodological contributions:

C1. discovery : extension of state-of-the-art pattern-based biclustering algo-
rithms [2] to discover discriminative patterns with parameterizable co-
herence (constant, additive, multiplicative, order-preserving and plaid
assumptions) and quality. As part of this contribution, we propose:

• the use of integrative biclustering searches to exhaustively discover
patterns with varying coherence and quality, thus minimizing the
known problem of scarce matches faced by associative classifiers [10];

• a new notion of support and confidence (weighted by the amount of
tolerated noise) to better assess the discriminative power of a pattern;

• associations between patterns and disjunctions of labels in order to
identify patterns able to discriminate more than one class;

C2. training : effective learning functions. Specifically, we propose:

• a new score combining the (weighted) support, length, quality (de-
viations from pattern expectations) and statistical significance of a
pattern. This tackles the problem of small patterns being prioritized
due to an overemphasis on their confidence;

• a penalization for non-constant coherencies to prevent the exclusion
of simpler patterns (such as constant patterns) from decisions.
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C3. testing : decisions sensitive to non-constant and noise-tolerant patterns.
In particular, we propose:

• an integrated score to compute the probability of a new observation
being labeled with a given class using multiple interestingness criteria
(support, quality, discriminative power, significance, size, coherence);

• new matching criteria for non-constant patterns;
• relaxations to guarantee an adequate number of matches in order to

minimize under/overfitting risks.

These contributions are integrated within FleBiC and their relevance are
empirically shown in synthetic and real data. The gathered results show the
superiority of FleBiC against peer classifiers and its unique ability to unravel
new discriminative patterns in biological and clinical data domains. The
results strongly support the relevance of considering non-constant patterns to
improve the performance of associative classifiers, opening new considerations
for research in the classification field.

The paper is structured as follows. Section 2 provides the motivation and
background for the targeted task. Section 3 surveys contributions and limita-
tions from related work. Section 4 describes the solution space by proposing
FleBiC. Section 5 gathers experimental results that provide initial evidence
of the superiority and utility of FleBiC. Finally, concluding remarks and im-
plications are synthesized.

2. Background

Def. 2.1 Given a set m variables Y={y1, .., ym}, a dataset is a set of n
observations X={x1, ..,xn} where each observation xi is described by a set
of numeric and/or categoric values, aij ∈ Yj where Yj is the domain of yj
variable. Given a set of classes, C, a labeled dataset is the set of pairs

{(xi, ci) | i = 1..n, ci ∈ C}..

Def. 2.2 Given a dataset, a bicluster, B=(I,J), is a subspace defined by
a subset of observations, I ⊆ X, with a pattern ϕJ on a subset of variables,
J ⊆ Y, satisfying certain criteria of interest.

Biomedical data are characterized by the presence of coherent subspaces
generally associated with putative regulatory or physiological mechanisms
[15]. Each subspace (bicluster) is a subset of samples/individuals, I, with a
coherent pattern ϕJ on a subset of biological entities/clinical tests, J. Table 1
lists meaningful subspaces found across biomedical data domains.
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Domain Illustrative biclusters with relevance for learning tasks

clinical [16, 17] Patients with correlated clinical profile (symptoms, diagnoses, prescriptions).
proteomics/metabolomics [10] Molecular compounds with correlated concentrations on subsets of samples.
gene expression [15, 18] Co-expressed genes involved in specific functional processes and pathways.
structural variations [19] Correlated groups of mutations and copy number variations.
growth phenotype data [20] Strain changes generating similar patterns of essentiality and dispensability.
biological networks [21, 22] Modules of genes, proteins or metabolites with coherent interactions.
physiological signals [17] Sliding features with coherent values across case or stimuli-elicited responses.
genome-wide [23] Conserved alignments, factor binding sites and insertion mutagenesis.
other Local patterns in translational [22], chemical [24] and nutritional data [25].

Table 1: Relevance of (discriminative) biclusters across biomedical data domains.

Def. 2.3 Given a labeled dataset, the biclustering task aims to identify a
set of biclusters B={B1, ..,Bp}, where each bicluster, Bk, must satisfy specific
criteria of homogeneity, statistical significance and discriminative power.

The homogeneity of a bicluster specifies the allowed forms of correlation
among values (pattern).

The statistical significance of a bicluster is the probability of its pattern
to occur against expectations.

The discriminative power of a bicluster defines its probability to only
occur on a subset of classes, C ⊂ C.

The biclustering task is the generalization of the classic pattern mining
task, originally proposed to learn from transactional data, to: 1) enable the
discovery of patterns in real-valued, symbolic or mixed data (non-iid vari-
ables); 2) mine patterns with non-constant coherence and parameterizable
tolerance to noise; and 3) provide guarantees of statistical significance.

Biclustering algorithms place specific criteria of interest to guide the dis-
covery of patterns (Def. 2.3). These criteria determine the structure, coher-
ence and quality of a biclustering solution. The structure is defined by the
number, size, shape and positioning of biclusters. The coherence of a biclus-
ter is defined by the observed correlation of values (coherence assumption)
and the allowed deviation from perfect correlation (coherence strength). The
quality of a bicluster is defined by the type and amount of tolerated noise.

Figure 1 presents a flexible biclustering structure (biclusters with arbitrary
shape and positioning) and different coherence assumptions (Def. 2.4 to 2.6).

Figure 1: Flexible structure of biclusters and illustrative patterns with varying coherence.
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Def. 2.4 Given a real-valued dataset, let the elements in a bicluster aij ∈
(I,J) have coherence across observations given by aij=kj+γi+ηij, where kj
is the expected value for variable yj, γi is the adjustment for observation xi,
and ηij is the noise factor. A bicluster satisfying a specific coherence strength,
δ ∈ R+, has values described by aij=kj+γi+ηij and ηij∈[−δ/2, δ/2].

Def. 2.5 Given a bicluster (I,J) with coherence in accordance with Def. 2.4,
the γi factors define the coherence assumption: constant columns (pattern
on rows) when γi=0; additive pattern on rows when γi 6=0; and multiplica-
tive pattern on rows if aij is better described by kjγi + ηij.

The bicluster pattern ϕJ is the set of expected values in the absence of
adjustments and noise {kj | yj ∈ J}, where kj is defined according to Def. 2.4.

Consider the illustrative additive bicluster B in N+
0 from Figure 1. Assum-

ing B=({x1,x4,x5}, {y2,y3,y8}), this bicluster is described by aij=kj + γi
with the (non-constant) pattern ϕ={k1=0,k2=2, k3=1}, supported by three
observations with additive factors γ1=1, γ4=3 and γ5=2. As our purpose
is learning from labeled observations, we seek discriminative biclusters with
patterns on observations (rows) and, understandably, discard biclusters with
transposed coherencies given by patterns on variables (columns) [26].

Def. 2.6 A bicluster (I,J) is said to satisfy an order-preserving coherence
assumption when the values of variables J induce the same linear ordering
for each observation xi in I. An order-preserving pattern ϕJ thus specifies a
permutation of variables, π(J).

Consider the illustrative order-preserving bicluster B in N+
0 from Figure 1.

All observations xi satisfy the permutation π(J)=y3 ≤ y1 ≤ y2.
In accordance with previous definitions, constant and non-constant bi-

clusters (informally referred as constant and non-constant patterns) are
respectively characterized by ∀xi∈I γi=0 and ∃xi∈I γi 6=0.

Table 2 motivates the relevance of discovering biclusters with non-constant
patterns, highlighting their role when learning from biomedical data.

The discovery of discriminative biomedical patterns can be pursued to
characterize and differentiate phenotypes (descriptive setting) and support
clinical decisions (predictive setting). In fact, one can see a discriminative
pattern as a (structured) biomedical marker.

Def. 2.7 Given a labeled dataset, an associative model is a composition of
p association rules, f(R1, .., Rp), where Ri : ϕJi

⇒s Ci maps a discriminative
pattern ϕJi

(rule’s antecedent) into a set of labels C ⊂ C (rule’s consequent)
with a given score s. The composition function f guarantees the effective
traversal of rules according to their properties.
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Coherence Illustrative biclusters with non-constant patterns

Additive
and Multi-
plicative

Additive and multiplicative patterns accommodate shifting and scaling factors on the
values across observations (Figure 1). Illustrating, two genes may be regulated in the
same subset of conditions (variables) but show different expression levels explained
by a shifting or scaling factor associated with their distinct responsiveness, or the
bias introduced by the applied measurement and preprocessing [15]. These factors
are also critical to account for subject-specific differences associated with default
psychophysiological behavior and monitoring [17].

Order
Preserving

Order-preserving biclusters were originally proposed to find co-expressed genes within
a temporal progression (such as stages of a disease or drug response) [27]. They
have been also pursued in biological data contexts where molecular concentrations of
proteins and metabolites coherently vary across samples [28]. This coherence has been
further applied to find sets of nodes in biological networks with an order-preserving
degree of influence across another set of nodes [21, 24]. In clinical data contexts, order-
preserving are essential to deal with the impact of analyzing individuals at varying
stages within the progression of a disease [10]. Order-preserving biclusters can emulate
constant, additive and multiplicative coherencies, leading to more inclusive solutions
associated with larger modules with less susceptibility to noise.

Table 2: Relevance of non-constant biclusters when learning from biomedical data.

Moving from descriptive settings (Def. 2.7) to predictive settings (Def. 2.8)
becomes a matter of defining effective training and testing functions.

Def. 2.8 Given a labeled dataset with observations in X , a classification
model is a mapping function between observations and classes, M : X → C,
for labeling (unlabeled) observations.

In particular, given an associative model (Def. 2.7), an associative clas-
sification model relies on the f composition of discriminative patterns to
learn one model to label new observations, M(xnew|f(R1, .., Rp)).

Rule-based classifiers such as CMAR, decision trees, and random forests are
notable cases of associative classifiers where the composition function places
discriminative patterns within tree structures [29, 30, 12].

In this context, the learning of associative classification models from rel-
evant patterns is driven by three major requirements:

• effective discovery of coherent and discriminative patterns;

• adequate scoring and composition of association rules based on these
patterns (training function);

• effective matching schema to test a new observation against the scored
patterns (testing function).

As illustrated in Figure 2, learning associative classifiers is a well-established
way of dealing with high-dimensional data [9, 8]. State-of-the-art associative
classifiers, such as XGBoost [31], rely on discriminative patterns, offering
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Figure 2: Role of discriminative patterns to learn classifiers in high-dimensional spaces.

a way of selecting all (and only) relevant subspaces, thus minimizing over-
fitting and underfitting risks. In contrast, non-associative classifiers typi-
cally place alternative principles to reduce dimensionality. Feature selection,
(I=X,J⊆Y), generally focus on a single subspace and often neglects sub-
spaces of potential interest, whose relevance might be only observed on a
subset of observations. Classifiers based on mixtures, structured generative
models and support vectors are able to learn from high-dimensional data by
relying on sparse priors and hyperdimensional transformations [1, 7]. Still,
these options are insufficient to find a flexible structure of arbitrarily posi-
tioned subspaces, being prone to: 1) include non-relevant subspaces (increas-
ing the overfitting risk), and 2) exclude relevant subspaces (increasing the
underfitting risk) [9, 1].

Given a (high-dimensional) dataset, the task targeted in this work can
be formulated as learning effective associative classifiers from discriminative
patterns with parameterizable coherence and quality, and assess the impact
of non-constant coherence assumptions on the classification performance..

3. Related Work

Associative classification. The discovery of relevant patterns in labeled
data has been mainly driven by research on information theory [32], discrimi-
native pattern mining [12], discriminative matrix factorization [33], and, more
recently, discriminative biclustering [17, 34]. Given a set of patterns of in-
terest, different composition functions have been considered to learn an as-
sociative model, ranging from ordered sets of weighted association rules to
more structured models. Examples include the integration of these patterns
within Bayesian classifiers [35], decision trees [36, 37], and support vector
machines (SVMs) [38]. Carreiro et al. [17] surveyed additional ways of com-
posing biclusters from gene expression data to improve classification. In this
context, adequate scoring methods are required to weight the interestingness
of each pattern, ranging from simple metrics, such as the support-and-length
(an indicator of the pattern’s significance) and the confidence (an indicator
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of discriminative power) of each rule, towards more complex metrics based
on probabilistic induction [39] and optimization criteria [40]. More recently,
association rules have been extended to allow for both disjunctive patterns
(patterns ϕJ with more than one expected value per variable in J) and dis-
junctions of classes (patterns discriminating more than one class) [41].

Multiple testing functions over the identified patterns have been also pro-
posed to robustly classify new observations [17, 11, 12, 37]. Illustrating, given
a new observation x, CMAR [29] retrieves association rules with exact pattern
matching and computes the classes’ strength P (c ∈ C|x) using a weighted χ2

calculus. However, the exact matching criterion is restrictive in many data
contexts since it can lead to a small (possibly empty) set of matched rules, ne-
glecting relevant patterns due to the presence of noise. To tackle this problem,
relaxations on the matching functions (allowing, for instance, the presence of
shifts or the matching of a subset of overall values), as well as penalizations
(affected by the extent and differences on the matching values) have been
proposed [42]. Lazy classifiers that retrieve classification rules once a new
observation is given are also able to address this challenge [43, 17]. In the
presence of massive data, CARs-Lands [11] matches a test instance against
association rules from nearest training data chunks.

Discovery of discriminative patterns. The search for discriminative pat-
terns has received a wide-attention in literature, with multiple works provid-
ing categorizations on how to use discriminative pattern mining to learn as-
sociative classifiers [12, 8, 13]. Bringmann et. al [12] categorize these searches
along two axes: whether they discover a pre-computed set of patterns apriori
or iteratively discover new (or extend existing) patterns, and whether the
search is guided or not by the properties of the target model. On the first
axis, earlier studies focus on mining all constant patterns per class at a time.
From the found set of patterns, many metrics have been proposed to fix ad-
equate class-conditional support levels and to assess the correlation strength
φ between a pattern and a class, as well as to relate both these views within
a single score [12]. Illustrative associative classifiers with alternative scor-
ing schema include CBA [44] (φ=confidence), classifiers based on emerging
patterns [45] (φ=growth), CMAR [29] (φ=χ2), CPAR [46] (φ=foil gain) and
RCBT [47] (φ based on top-k covering rule groups). Even in the presence of
constraints and condensed representations to deliver compact sets of distinct
patterns, these methods are computationally expensive for large datasets or
low supports. Contrasting, branch-and-bound or iterative-deepening searches
avoid the generation of the complete pattern set [13], including decision trees
[48], Harmony [49], DDPMine [50], MbT [51]. On the second axis, model-
dependent approaches rely on the properties of the classifier to affect the
discovery/selection of patterns [12]. Recently, classifiers based on ensembles
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of pattern-sets, discriminative patterns found from engineered features [31],
and sampling procedures [52] were shown to achieve distinctive performance
in several real-world classification problems [53].

Despite its relevance, discriminative pattern mining has major limitations:

L1. inability to discover non-constant patterns, thus preventing the retrieval
of non-trivial yet meaningful patterns commonly present in biomedical
data domains (see Table 2);

L2. inability to discover (real-valued) patterns robust to noise, thus being
susceptible to the inherent stochasticity of biological and physiological
systems and biases incurred along data acquisition and preprocessing.

To address these limitations, discriminative biclustering algorithms have
been proposed with specific criteria of interest to affect the structure, coher-
ence and quality of the desirable patterns [26]. This is commonly guaran-
teed through the use of a merit function (such as the variance of the values
in the bicluster) to guide the search. Following the taxonomy proposed by
Madeira and Oliveira [26], biclustering algorithms can be characterized by
their search paradigm, which determines how merit functions are applied.
Greedy iterative searches rely on the selection, addition and removal of rows
and columns until the merit function is maximized locally [27]. Exhaustive
searches use merit functions to guide the space exploration [54]. Approaches
combining clusters from both dimensions place merit functions for the clus-
tering and joining stages [55]. Divide-and-conquer searches exploit the ma-
trix recursively using a global merit function [56]. Stochastic approaches
derive biclusters from multivariate distributions [19] and learn their parame-
ters by maximizing a likelihood (merit) function. Biclustering can be easily
extended for associative classification by defining class-conditional searches
and adequately scoring the discriminative power of biclusters. Discriminative
biclustering methods have been recently proposed for biomedical data anal-
ysis with different scores, including FDCluster [57], DRCluster [8], among
others [17, 38]. Di-RAPOCC [13] considers a bicluster to be discriminative if
it has high confidence and low inter-class overlapping. The major problems
with the traditional discriminative biclustering approaches are two-fold:

L1. restrictions on the allowed number, positioning and quality of biclusters
[15], causing associative classifiers to miss relevant subspaces;

L2. associative classifiers are unable to find non-constant patterns.

Discovery of non-constant patterns. Although many biclustering algo-
rithms emerged in the last decade to find non-constant patterns (as motivated
in Table 2), most algorithms still suffer from key limitations (see Table 3).
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Coherence State-of-the-art algorithms Limitations

Additive
and Multi-
plicative

Major attempts rely on merit functions based on vari-
ance, either more suitable to model additive factors
(including residue-based approaches [58, 59]), or mul-
tiplicative factors (such as Fabia [19]). Some ap-
proaches unify these seemingly incompatible factors
using linear geometry in hyper-spaces [60], evolution-
ary computing [61], and swarm intelligence [62].

1) Higher propensity to discover noisy constant
biclusters instead of biclusters with strict ad-
ditive and multiplicative coherence [15];
2) Restrictions on the structure and quality of
solutions.

Order
Preserving

Greedy approaches iteratively discover-and-mask bi-
clusters, including the pioneer OPSM [27] and its ex-
tensions to handle uncertainity [63]. Contrasting, few
exhaustive approaches, such as uClustering [24], iden-
tify the largest subspaces that respect ranking order
constraints, overcoming the quality and flexibility is-
sues of the greedy peers.

1) Greedy solutions with restrictions on the
structure (no overlaps) and no optimality
guarantees;
2) Exhaustive approaches have efficiency bot-
tlenecks and are highly susceptible to noise
(perfect orderings only).

Table 3: Contributions and limitations of algorithms to discover non-constant biclusters.

A recent class of biclustering algorithms – pattern-based biclustering – can
be used to tackle these limitations, opening a new door to study the impact
of using non-constant coherencies for associative classification. State-of-the-
art pattern-based biclustering algorithms rely on largely researched principles
from pattern mining to guarantee an exhaustive yet efficient exploration of
the search space with parameterizable coherency and quality [64, 28, 15]. In
this context, frequent itemset mining, association rule mining, sequential pat-
tern mining and graph mining can be applied to find constant, noisy, order-
preserving and dense biclusters, respectively [64]. Principles can be placed to
guarantee the scalability of these pattern mining searches under guarantees
of optimality [28]. BicPAM [15], BicNET [21], BicSPAM [28] and Bic2PAM
[65] extend the original pattern-based biclustering approaches [66, 67] (pre-
pared to model constant coherencies) to further find additive, multiplicative
and order-preserving biclusters robust to noise. Table 4 synthesizes their
properties, while Fig.3 provides an illustrative result of their application. Re-
cently, BicPAMS [2] was proposed to integrate state-of-the-art pattern-based
biclustering algorithms, exploring their synergies.

Figure 3: Integrative biclustering solution: search for biclusters with varying coherence.
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Coherence
and method

Behavior Tackled Limitations

Constant

BicPAM [15]
BicNET [21]

BicPAM and BicNET integrate dispersed contributions from
pattern-based biclustering approaches to offer the unprecedented
possibility to customize the desirable properties of biclustering
solutions, including their coherence strength, structure and tol-
erance to noise and missings. These algorithms may further in-
corporate domain knowledge [65].

Robustness to noise; Exhaus-
tive (yet efficient) searches;
Flexible structures; Extensi-
ble to multi-class settings.

Additive and
Multiplicative

BicPAM [15]

BicPAM makes use of variable-specific differences (additive case)
and least common divisors (multiplicative case) between observa-
tions in order to perform iterative corrections for remove shifting
and scaling factors. Pruning strategies are considered to avoid
redundant calculus and reduce the computational complexity of
these searches.

Solutions with flexible struc-
ture; Parameterizable qual-
ity; First exhaustive search to
find shifting and scaling fac-
tors across observations.

Order
Preserving

BicSPAM [28]
BicNET [21]

Patern-based searches can be parameterized with sequential pat-
tern mining for an exhaustive discovery of biclusters with noise-
tolerant orders. For this aim, the indexes of the features are re-
ordered according to their values per observation and the biclus-
ters are mapped from the frequent subsequences. BicSPAM and
BicNET further allow a parameterizable variation of the degree of
co-occurrences (elements with similar values) versus precedences
to tune the desirable properties of the order-preserving coherence.

Tackled noise-intolerance and
efficiency bottlenecks of ex-
haustive approaches; Flexible
structures with guarantees of
optimality, addressing prob-
lems of greedy approaches.

Table 4: Recent breakthroughs on biclustering (tackling limitations from Table 3).

4. Solution: Upgrading Associative Classification

With the aim of assessing the impact of enriching associative classifiers
with non-constant patterns, this section introduces a new associative classi-
fier, FleBiC (Flexible Biclustering-based Classifier). FleBiC explores the re-
cent breakthroughs on the discovery of non-constant patterns (Table 4), and
further addresses general limitations of existing associative classifiers [12, 10],
including i) scarcity of matches, ii) intolerance to noise, iii) patterns without
guarantees of statistical significance, iv) uneven space exploration, and v)
generalization difficulties. Figure 4 summarizes the proposed contributions.
Accordingly, FleBiC is driven by the following requirements:

R1. effective discovery of discriminative patterns (discovery);

R2. effective scoring and composition of discriminative patterns (training);

R3. effective matching of observations against scored patterns (testing).

In accordance with these requirements, FleBiC: 1) discovers flexible struc-
tures of discriminative biclusters with diverse coherence and quality (Sec-
tion 4.1); 2) relies on state-of-the-art training functions with revised scoring
schema to weight coherence type and strength (Section 4.2); and 3) defines
testing functions tolerant to noise and able to match new observations against
non-constant biclusters (Section 4.3). The pseudocode of FleBiC is provided
in Section 4.4. Figure 5 summarizes the behavior of FleBiC.

4.1. Discovery of discriminative patterns

The state-of-the-art pattern-based biclustering algorithms surveyed in Ta-
ble 2 were recently integrated in BicPAMS (Biclustering based on PAttern
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associative
classification

motivation

contributions
(requirements)

tackled criticisms

non-trivial biomedical patterns

high-dimensional biomedical data

decisions from all relevant patterns

exclusion of uninformative patterns

tractable computational complexity

discovery of relevant patterns

effective training

effective testing

homogeneity

discriminative power

statistical significance

non-constant coherence

noise tolerance

imbalanced data

disjunctions of labels

statistical viewscomposition (adequate structures)

coherence-sensitive scoring

noise-tolerant scores

revised class strength calculus

non-constant coherence matching

noise-tolerant matching

scarcity of mathces

intolerance to noise

non-significant regions

uneven space exploration
(no guarantees of dissimilarity)

under/overfitting propensity

Figure 4: Structured view on the target associative classifiers: relevance, contributions and
tackled criticisms. The FleBiC classifier incorporates all these principles.

Figure 5: Summary of FleBiC behavior: discovery (biclustering with parameterizable ho-
mogeneity and generation of rules with disjunctive labels), training (scoring, penalization
and composition of patterns) and testing (pattern matching and class strength calculus).

Mining Software) [2] and provide two major properties of interest: 1) the un-
precedented possibility to discover biclusters with parameterizable coherence
and quality, and 2) efficient searches with optimality guarantees. The exhaus-
tive nature of BicPAMS, without restrictions on the number, size, positioning
and homogeneity of biclusters, provide the unique possibility to:

- consider all potentially relevant patterns to support decisions, thus min-
imizing the criticisms of existing associative classifiers, namely under-
fitting propensity, and scarcity of matches;

- find noise-tolerant patterns with guarantees of statistical significance;

- assess the relevance of non-constant patterns on classification tasks.
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Below we enhance BicPAMS – originally prepared for unsupervised learning
tasks – to find patterns with guarantees of discriminative power.

Discovery of non-constant and noise-tolerant patterns. FleBiC ap-
plies BicPAMS [2] for each class-conditional data partition, returning |C| sets
of biclusters. BicPAMS is applied with:

- constant, additive, multiplicative, and order-preserving assumptions;

- varying coherence strength on numeric variables, δ ∈ {1
3
Ȳi, 1

4
Ȳi, 1

5
Ȳi,

1
7
Ȳi, 1

10
Ȳi} where Ȳi is the amplitude of the domain of variable yi;

- parametrically placed expectations on the quality of biclusters [2] (up
to θ ∈ {0, 10%, 25%} noisy elements);

- statistical significance guarantees at α=1E-3 [68];

- remaining default parameters of BicPAMS (discussed in [2]) preserved.

BicPAMS is able to tackle the inherent computational complexity of per-
forming numerous searches to satisfy the aforementioned homogeneity criteria
(multiple coherence assumptions, coherence strength and quality thresholds)
[2] by building upon intermediate biclustering solutions. Figure 6 illustrates
the major steps undertaken for the (class-conditional) discovery of biclusters.

Support of non-constant and noisy patterns. The traditional notion
of pattern support corresponds to the number of observations that perfectly
respect a given pattern, ∑

xi∈X

(xi ` ϕJ). (1)

Def. 4.1 Given a real-valued dataset with a bicluster B=(I,J) with coherence
strength δ and pattern ϕJ, an observation xi perfectly respects ϕB, denoted
xi ` ϕB, if ∀aij∈(xi,J) ηij∈[−δ/2, δ/2] (in accordance with Def.2.4). Given a
symbolic dataset and bicluster B, an observation xi perfectly respects ϕB if
∀aij∈(xi,J) ηij=0.

Given a dataset, and a bicluster B=(I,J) with coherence across rows and
pattern ϕJ, the exact support of the pattern ϕJ, supϕJ

, is given by (1), the
number of observations perfectly respecting ϕJ.

Figure 6: BicPAMS: major steps for the class-conditional discovery of non-constant and
noise-tolerant biclusters.
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This concept is not only valid for constant patterns but also for non-
constant patterns (whether they follow additive, multiplicative, or order-
preserving assumption) in real-valued datasets after removing the adjustment
factors γi (in accordance with Defs. 2.4-2.5).

Illustrating, given an integer data space with pattern ϕJ={k2=3,k3=4,
k5=0}, the x2 observation with a22=4, a23=5 and a25=1 perfectly respects this
pattern under an additive assumption (γ2=1), and x6 observation with a62=2,
a63=5 and a65=1 perfectly respects this pattern under an order-preserving
assumption, π(J)=y5 ≤ y2 ≤ y3.

Despite its relevance, the traditional notion of support cannot account for
deviations from pattern expectations in the presence of noise. For instance,
consider a constant pattern ϕJ={k3=0.4,k5=0.9,k7=0.1} and an observation
x2 with a23=0.4, a25=0.8 and a23=0.1. Given δ<0.1, the observation x2 does
not support the pattern ϕJ since η25 /∈ [−δ/2, δ/2] (η25=0.1). As illustrated by
this example, the exact support cannot account for the presence of localized
forms of noise. In this context, in order to correctly weight the effect of
noise, we propose a revised notion of support (Def.4.2) by assessing if a given
observation is satisfied a noise threshold (percentage of values not satisfying
a given coherence strength below the predefined threshold).

Def. 4.2 Given a bicluster B=(I,J) with coherence strength δ, the matching
factor κi between observation xi and the pattern ϕJ is

κi =
1

|J|
∑

aij∈(xi,J)

(ηij ∈ [−δ/2, δ/2] ∧ yi ∈ R) ∨ (ηij = 0), (2)

corresponding to the fraction of variables in J respecting value expectations.
Given a dataset and a bicluster B=(I,J) with coherence across rows and

pattern ϕJ= {kj | yj∈J}, the weighted support of the pattern ϕJ is

wsupϕJ
=

∑
xi∈X∧κi<ε

(κi)
a, (3)

where κi is the matching factor, ε is the minimum match threshold, and a is
the noise penalization factor.

Illustrating, given a constant pattern ϕJ={k3=0.4,k5=0.9,k7=0.1} and
δ<0.1, the observation x2 with a23=0.4, a25=0.8 and a23=0.1 has a κ2=2

3

matching factor against ϕJ, contributing to the support of ϕJ with κ2
2=2

3

2
=0.(4).

By changing the noise-controlling factors a and ε in (3), the weighted sup-
port of a pattern can be adjusted to the level of noise according to sublinear,
linear or squared (default) penalizations (Def.4.2). From empirical evidence
(details in Section 4.4), ε=0.6 and a=2 are the suggested default values.
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Similarly to the classic support (Def.4.1), the weighted support is equally
applicable to non-constant patterns by detecting and removing the adjust-
ment factors γi (in accordance with Defs.2.4-2.5).

Discriminative patterns. Discovering class-conditional biclusters with high
support does not necessarily imply that they are discriminative if their sup-
port is high for all classes. In order to assess and guarantee the discrimina-
tive power of the (class-conditional) biclusters, FleBiC uses the introduced
weighted notion of support to revise scores from information gain theory and
performs additional statistical tests.

Def. 4.3 Given a set of labels C in C, the support of C, supC, is the number
of observations with a label in C, supC = |{(xi, ci) | i = 1..n ∧ ci ∈ C}|.

Given a set of observations X and an association rule R : ϕJ ⇒ C:
The weighted support of a rule is the weighted pattern support (accord-

ing to Def.4.2) for observations with a label in C, wsupR={wsupϕJ
| xi ∈ C}.

The weighted confidence of a rule is thus

wconfR =
wsupR
wsupϕJ

, (4)

and its weighted lift is

wliftR =
wsupR

wsupϕJ
supC

. (5)

FleBiC uses three discriminative indicators by default:

– weighted lift (5): the weighted lift extends the classic lift (originally
proposed in the context of transactional data analysis) towards noise-
tolerant patterns possibly following non-constant coherencies. Lift re-
veals the discriminative power of a pattern in accordance with the repre-
sentativity of the labels in the consequent. Thus, it is more appropriate
than confidence for imbalanced data.

– statistical significance: recent work on the statistical significance of
biclustering solutions [68] provides statistical tests to assess biclusters
with constant, additive, multiplicative, symmetric and order-preserving
assumptions. These statistical tests deliver a (corrected) p-value defin-
ing the probability of a (possibly non-constant) pattern support to de-
viate from expectations [68]. In this context, and given an association
rule R : ϕJ ⇒ C, FleBiC assesses whether the bicluster with ϕJ is sta-
tistical significant for the observations with label in C ⊂ C (p-value
lower than 0.01) and not significant for the observations with label in
C \ C (p-value higher than 0.05).

– χ2 test: complementary view of a pattern’s discriminative power placed
by peer state-of-the-art associative classifiers [29].
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Disjunctions of labels. Since specific patterns may not be able to dis-
criminate a single label but instead discriminate a set of labels, we allow for
disjunctions of labels in the consequents of the rules. Illustrating, given three
classes {c1, c2, c3}, a pattern that is only statistically significant for observa-
tions with c1 or c2 is able to discriminate {c1, c2} from c3.

As we allow for disjunctions of labels in the consequent, weighted lift is
preferable over weighted confidence to deal with the imbalance incurred from
grouping labels in the consequent.

FleBiC efficiently generates rules with disjunctive sets in the consequent
by analyzing the statistical significance and discriminative power of a pattern
for each class. If a pattern ϕJ is statistically significant on multiple classes
c ∈ C (where C ⊂ C) – ∀c∈CP (ϕJ|c)<1E-3 – yet not able to discriminate
each class individually, a new rule ϕJ ⇒ C is generated if P (ϕJ|C)<1E-3 and
P (ϕJ | C\C)>5E-2.

Since statistically testing biclusters can be performed in linear time [68],
the computational complexity of merging association rules to allow for dis-
junctions of labels is polynomial on the number of patterns and classes.

4.2. Training

Given a set of patterns, the subsequent question is how to adequately
score and organize them given their diverse size, coherence and quality.

Integrative scoring. Scoring is key in associative classification since it de-
fines the ability of a given pattern to discriminate a subset of classes. Effec-
tive scoring is also relevant to tackle problems associated with the imbalanced
number of patterns per class or the overemphasis on small patterns.

To guarantee a scoring that accounts for all these variables, we propose
an integrative score combining the rule’s discriminative power (using the pro-
posed weighted lift, discriminative significance and χ2 test) with additional
four indicators: 1) pattern length, 2) pattern weighted support, 3) quality
(deviation from the pattern expectations, ηij), and 4) statistical significance
[68]. This overcomes the typical problem of associative classifiers that prior-
itize small (often non-significant) biclusters as a result of an overemphasized
focus on the confidence of the rules.

Def. 4.4 Given a dataset with an association rule R : ϕJ⇒C, let Tsig(R)

be an assessment of the statistical significance of R: 1 if P (ϕJ|C)<0.01
∧ P (ϕJ|C)>0.05 and 0.1 otherwise. Let QB be the quality of a bicluster
B=(I,J) given by the fraction of non-noisy elements,

QB =
1

|I|
∑
xi∈I

κi, (6)

where κi is defined according to Def.4.2.
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In this context, the integrative score of a rule R : ϕJ⇒C is

ωR = Tdisc(R) × ω′R, with (7)

ω′R = α1

(
0.7

wsupR
wsupϕB

supC
supC

+0.3χ2
ϕB

)
+α2

(
0.5

wsupR
n

supC
supC

+0.5
|ϕB|
m

)
+α3QB, (8)

where, from empirical evidence, α1=0.6, α2=0.3 and α3=0.1 by default (de-
tails provided in Section 4.4).

To illustrate the proposed integrative score, consider the data in Table 5,
the shaded bicluster B1 with pattern ϕJ1={k4=2,k7=4,k9=3, k20=1}, and
rule R1 : ϕJ1⇒{c2, c3}. In this context, n=|X|=9, m=|Y|=20, supC=n=9,
supC=sup{c2,c3}=5, supϕJ1

=|{x5, x7}|=2, wsupϕJ1
=2+3×0.752=3.69, supR1=2,

wsupR1=3.13, χ2
ϕJ1

=2.72
9

=0.3, QR1=
4×4−2

4×4
=0.875, and Tsig(R1)=1 since

P (ϕJ1 |C)=
(

m
|ϕJ1
|

)
Σn
x=supϕJ1

(
n
x

)
pϕJ

x(1-pϕJ
)n−x=1.6E-7 and P (ϕJ1|C/C)≈1 [68].

As such, ωR1=Tsig(R1)×ω′R1
=1×(0.6×(0.7×0.47+0.3×0.3)+0.3×(0.5×0.193+

0.5×0.2)+0.1×0.875)=0.39. Identically, the rule associated with bicluster B2,
R2 : ϕJ2⇒{c1} where ϕJ2={k4=3,k7=1,k8=5,k20=4} has ωR2=0.05.

y1...y4...y7 y8 y9..y20 class

x1 1 3 1 5 4 4 c1
x2 5 1 2 5 2 3 c1
x3 3 2 3 2 3 1 c1
x4 2 3 1 5 1 4 c1

x5 4 2 4 3 3 1 c2
x6 5 2 4 2 2 1 c2

x7 1 2 4 4 3 1 c3
x8 2 1 1 2 1 2 c3
x9 3 3 4 5 3 1 c3

B1 = (I1 = {x3, x5, x6, x7, x9},
J1 = {y4, y7, y9, y20})

B2 = (I2 = {x1, x4},
J2 = {y4, y7, y8, y20})

Table 5: Illustrative dataset in N+
0 with two highlighted biclusters.

Pattern dissimilarity. FleBiC penalizes patterns that are similar to other
available pattern that discriminates the same classes with a higher integrative
score. Dissimilarity is defined by the number of non-shared variables, being
the penalization given by its square root (from empirical evidence).

Illustrating, given two patterns with |ϕJ1 |=|ϕJ2|=4, ωJ1⇒C < ωJ2⇒C and

three shared variables, then the scoreR1 : ϕJ1⇒C is
√

(1− J1∩J2

J1
)ωR1=

√
1
4
ωR1 .

Scoring non-constant patterns. The introduced integrative score does
not address the fact that different coherence assumptions may show differ-
ent degrees of flexibility. As illustrated in Figure 3, order-preserving biclus-
ters have higher flexibility degree as they are able to capture additive and
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multiplicative patterns, which in turn are able to capture constant patterns.
Understandably, coherencies with higher flexibility (typically associated with
larger biclusters) will have higher scores and can jeopardize the learning since
biclusters given by more restrictive coherencies become neglected. For this
reason, it is important to weight the score of patterns in accordance with
their coherency assumption.

To this end, we introduce a new penalization weight, ω × ν, for non-
constant coherencies based on their degree of flexibility. From empirical evi-
dence, the following penalizations are provided by FleBiC as default: order-
preserving (ν=0.7 with symmetries and ν=0.75 otherwise); additive (ν=0.8
with symmetries and ν=0.85 otherwise); multiplicative (ν=0.9); and constant
with symmetries (ν=0.95).

Composition of patterns. Given a set of scored patterns, the possibility to
traverse them efficiently is relevant for an efficient testing of new observations.
The simplest option is to simply rely on an ordered set of tuples (pattern ϕK,
labels C, score ωϕJ⇒C × ν). To guarantee a better navigation throughout the
patterns, FleBiC uses the tree structure proposed by CMAR [29], where rules
are organized according to their score, consequent and pattern length.

4.3. Testing

In the testing stage, the learned associative model is used to label a new
observation xnew by: 1) identifying matching patterns per class; and 2) com-
puting the class strength, ∀c∈CP (c | xnew), based on the extent and score of
the matched patterns.

Noise-tolerant matching of patterns. Given an association rule, R :
ϕJ⇒C where C⊂C, exact matching occurs if the values of the testing obser-
vation xnew respect a pattern, xnew ` ϕJ (Def.4.2).

Yet, even in the presence of a large number of patterns, the probability of
matches to occur can be considerably low. Thus, the introduction of relax-
ations is critical to consider matches when a testing observation: 1) respects
the majority (but not all) of the expected values of a pattern, or 2) the overall
noise is below a given threshold.

Def. 4.5 Given a rule R : ϕJ⇒C with score ωR×ν and a matching threshold
θ, an observation xnew matches ϕB if it respects ϕB (κnew>θ, where κnew is
given by Def.4.2) with matching score ωR × ν × κnewa, where θ=0.6 and
a=2 from empirical evidence (sensitivity analysis detailed in Section 4.4).

Given the rules R1 and R2 discussed in Table 5, an observation xnew with
anew,4=3, anew,7=4, anew,8=1, anew,9=3 and anew,20=1 matches ϕJ1 with score
ωR1×ν×κ2

new|B1
=0.39×0.752 and does not match ϕJ2 , κnew|ϕJ2

=0.25<0.6.
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Matching non-constant patterns. To determine if a testing observation
respects a non-constant pattern, we need to verify if the observed values can
be described by an adjustment factor. Given a non-constant pattern ϕJ, an
observation xnew matches ϕJ if it respects ϕJ assuming γ 6=0 or the presence of
ordering constraints. Illustrating, consider a bicluster with pattern ϕJ={1.2,
3.3, 2.0} on variables {y89, y459, y892}. If the bicluster is additive and a testing
observation has values {3.1, 5.3, 4.1} on the same variables, the values are
coherent under a shifting factor γ=2. If the same bicluster is order-preserving,
xnew is also coherently described ϕJ=π(J)=y89≤y892≤y459.

Class strength. In FleBiC, the strongest class, c ∈ Σ, is outputted as the
estimated class, if we want a deterministic output. Otherwise, the strength
of each class is normalized and returned.

Def. 4.6 Given a new observation xnew and matched patterns Φ, the strength
of a class c ∈ C is by default given by its weighted integrative score,

WISc =
∑

(ϕJ⇒C)∈Φ∧c∈C

supc
supC

ν × ωϕJ⇒C . (9)

Given the already covered properties of ω, the class strength calculus given
by (9) is simplistic and able to accommodate rules with disjunctions in the
consequent. Yet, it is empirically shown to be more effective than state-of-
the-art alternatives [29, 42], such as the weighted-χ2 (even when considering
its extension to deal with disjunctions of labels on rules’ consequent1).

Combining local and global views. Different testing observations may
be classified with different degrees of confidence due to the extent of matches
and the consistency of labels from the matched rules. FleBiC makes avail-
able strategies to tackle the following situations: 1) few matched patterns
or matched patterns with low scores, 2) no label with significantly higher
probability (weak consistency of rules’ consequent), and 3) observations not
only characterized by local patterns but also by global regularities.

First, FleBiC can rely on the (probabilistic) output of other well-known
classifiers able to focus on non-local data distributions, here referred as global
classifiers. For instance, the output of support vector machines, Bayesian
classifiers and multivariate discriminants can be considered due to their con-
trasting behavior against associative classifiers [69]. In this context, the (nor-
malized) probability per label, pL={P (c1|xnew), .., P (c|Σ||xnew)}, is weighted

1weighted-χ2(c)=ΣϕB⇒C∈P∧c∈C
supc
supC

(χ2
ϕB

)2/MCS, where MCS=(min(supϕB , supC)−supϕB supC/N)2N×e,
N is the number of matches and e=1/(supϕB supC)+1/(supϕBN−supC)+1/(N−supϕB supC)+1/(N−supϕB (N−supC)
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with the output of d global classifiers (pGi): p=αpL+ (1−α)
d

Σd
i=1pGi, where

α≈0.4 (from empirical evidence), by default.
Second, in the presence of matches but not a delineated preference towards

a single label, the labels with significantly low probability to occur for a
given testing observation can be excluded and not used as input to train
the global classifiers. Contrasting, when there is less than 2×|Σ| matches,
the inverse strategy is considered: the C labels with lower probability from
global classifiers are excluded from pL calculus (P (c ∈ C | xnew)=0) in order
to reduce the propensity towards unneccessary biases.

4.4. Algorithm

Algorithm 1 describes FleBiC. In the training stage, FleBiC relies on
the class-conditional application of BicPAMS for the exhaustive discovery

Algorithm 1: FleBiC Core Steps
1 Training

Input: data, /*remaining params dynamically fixed when absent*/ coherencies, PMiner
stopCriteria /*min. disc. biclusters per class*/, discretizer, noiseHandler

2 begin
3 /* multi-symbol assignments to surpass discretization drawbacks [15] */
4 multiSymbolData ← discretize(data, discretizer, noiseHandler);
5 transDB ← createTransactions(multiSymbolData);
6 foreach c ∈ classes do
7 minSup ← 1;
8 {minFeatures, noiseTolerance} ← findPatternExepctations(transDB[c]);
9 /* integrated BicPAM/BicSPAM/BicNET searches */

10 do
11 biclusters[c] ← search(PMiner, c, transDB, minSup, coherencies);
12 /* significance tests and other ratios */
13 scores[c] ← computeWeightedScores(biclusters, transDB);

14 if stopCriteriaAchieved( stopCriteria, biclusters[c], scores[c] then
15 biclusters[c] ← merge(biclusters[c], noiseTolerance);
16 /* non-mandatory filtering and extension */
17 biclusters[c] ← incDiscPower(biclusters[c], transDB, scores[c]);

18 minSup ← minSup×0.9;

19 while !stopCriteriaAchieved( stopCriteria, biclusters[c], scores[c]);

20 rules ← produceRulesWithDisjointLabels(biclusters, scores);
21 rules ← computeIntegratedScoreWeightedByCoherence(rules);
22 flebic ← composePriorTreeStructure(rules);
23 flebic ← compactAndDissimilarRuleSets(rules);
24 return flebic;

25 Testing
Input: observation, flebic, relaxation /*squared by def.*/, globalClassifiers /*optional*/

26 begin
27 /* matching depends on the coherencies of the discovered biclusters */
28 if maxNrClassMatches( observation, flebic)<2 then relaxation ← relax(relaxation);

foreach c ∈ classes do
29 strength[c] ← computeWIS(observation, flebic, c, relaxation);
30 if maxVal( strength)<secondMaxVal( strength)×0.8 then
31 strength ← 0.4×strength+classDist(observation,globalClassifiers)×0.6;
32 return maxIndex(strength);
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of coherent, dissimilar, statistically significant and discriminative patterns.
Second, it generates rules associating these patterns with disjunctions of la-
bels in the consequent, R : ϕJ⇒C where C⊂C, to minimize the problem of
match scarcity in multi-class data contexts. Third, these rules are used to
compose the classifier according to the proposed scoring schema and weights
for balancing coherencies with distinct degree of flexibility. In the testing
stage, the weighted integrated score is applied with relaxations to adequately
match observations against non-constant patterns. In the presence of classi-
fication decisions with low-to-medium levels of confidence, the resulting score
is integrated with the output of alternative classifiers.

Computational complexity. The computational complexity of FleBiC is
bounded by the complexity of the biclustering task, which depends on the
size and dimensionality of the class-conditional matrix, distribution of values,
selected coherencies and merging procedure (details in [15, 28]). Scalability
principles from pattern mining (data partitioning strategies and approximate
searches) [28, 2] and domain constraints (based on user expectations and
available background knowledge) [65] can be incorporated to promote the
efficiency of the biclustering task. The training and testing steps are linear
on the number of patterns and their average number of features.

FleBiC parameterization. Although parameterizable, FleBiC can be ef-
fectively applied with default parameterizations. In this scenario, BicPAMS
is applied with multiple coherence assumptions and remaining default behav-
ior (Section 4.1). The suggested parameters associated with the training and
testing functions (Defs.4.4-4.6) were fixed according to a sensitivity analysis
conducted for synthetic data (Table 6) by iteratively varying the values for
each parameter (α1, α2, α3, ν, θ and a) in order to maximize the harmonic
mean of accuracy and sensitivity. Still, for the purpose of understanding and
improving the performance of FleBiC for specific data domains, its behavior
can be easily parameterized. To this end, FleBiC provides the distinct pos-
sibility to parameterize the coherence and quality of the target patterns, a
lower bound on their statistical significance and discriminative power, as well
as scoring-and-matching thresholds.

5. Results and Discussion

Results are organized as follows. Section 5.1 compares the performance of
FleBiC against state-of-the-art classifiers using synthetic and real biomedical
data. Section 5.2 deepens the analysis of FleBiC’s performance, showing the
relevance of learning from non-constant patterns. Results were gathered using
a 10-fold cross-validation and differences statistically tested under a t-Student
(9 degrees of freedom) and α=0.05 significance threshold. FleBiC is available
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at http://web.ist.utl.pt/rmch/software/bclassifier. Experiments were run using
an Intel Core i5 2.80GHz with 6GB of RAM.

Synthetic data. FleBiC makes available a new generator able to plant global
regularities (class-conditional multivariate distributions) and local patterns.
Some of the parameters that can be varied include:

- data size (|X|× |Y|), number of classes, class imbalance, and a mixture
of multivariate distributions to describe class-conditional data;

- number of biclusters, allowed coherencies, noise and associated overlap-
ping/plaid effects [18];

- pattern’s discriminative power, support and length (using both Uniform
and Gaussian distributions).

The provided results are an average of 30 data instances per setting. Ta-
ble 6 describes the parameters used to generate the synthetic datasets.

Sizes (|X|×|Y |) 100×100 400×400 1000×1000 2000×5000

Number of biclusters 4 5 7 10
Bicluster length |J | [5,10] [10,20] [15,30] [25,50]
Absolute support |I| [20,50] [100,200] [250,500] [500,1000]

Settings for the 1000×1000 dataset (default in bold):

Number of classes |C| ∈{2,3,5} with {0,0.2,0.5} imbalance degree;
Coherence strength δ={5%,10%,25%,50%}×Ā and noisy elements {0%,1%,2%,5%,10%}
Coherence assumption B∼{{7 constant},{3 additive, 2 multiplicative, 2 order-preserving}}
Discriminative power µ(φ)={90%,80%,70%,60%} and σ(φ)={2%,4%}
Overlapping degree {0,0.1,0.2,0.5} with plaid effect f={sum,product} (according to [18])

Table 6: Properties of the generated synthetic data.

Real data. Classifiers were further assessed on 12 datasets: 4 gene expres-
sion datasets and 8 clinical databases. The selected gene expression datasets
are: lymph [70], leukemia [71], embryo [72] and colon [73] (accessible via the
webpage of BIGS research group1). These datasets were originally proposed
for the classification of: 1) distinct types of lymphoma (n=96 observations,
m=4026 variables); 2) leukemia (n=72, m=7129); 3) embryonal tumour out-
come (n=60, m=7219); and 4) colon cancer (n=62, m=2000).

In addition to high-dimensional gene expression data, the 8 selected clin-
ical datasets are: hepatitis2, postoperative3, lung4, mammography5, statlog6,

1http://eps.upo.es/bigs/datasets.html
2https://archive.ics.uci.edu/ml/datasets/Hepatitis
3https://archive.ics.uci.edu/ml/datasets/Post-Operative+Patient
4https://archive.ics.uci.edu/ml/datasets/Lung+Cancer
5https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
6https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29
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hungarian7, cleveland10 and breast8 (accessible in the UCI machine learn-
ing repository [74]). Table 7 synthesizes their major statistics, including
number of classes, size, dimensionality, types of variables and purpose. In
contrast with the synthetic and biological data, these datasets are not high-
dimensional and thus offer the opportunity for a broader assessment of FleBiC.

hepatitis postoperative lung mammography heart hungarian cleveland breast

|C|=2
n=155
m=20

|C|=3
n=90
m=9

|C|=3
n=32
m=57

|C|=2
n=961
m=5

|C|=2
n=270
m=14

|C|=2
n=294
m=14

|C|=5
n=303
m=14

|C|=6
n=106
m=10

Variables Nominal
Nominal
with missings

Mix (real,
binary)

Nominal
with missings

Mix (nominal,
ordinal, real)

Mix (nominal,
ordinal, real)

Mix (nominal,
ordinal, real)

Real

Outcome Die or live
Intensive care,
mid-care
or home

3 types
of lung
cancer

Benign vs.
malignant
tumor

Presence
of heart
disease

Coronary
artery
stenosis

Angiographic
pathologies

Carcinoma, connective,
mastopathy, glandular,
fibro-adenoma, adipose

Table 7: Properties of the selected clinical datasets.

5.1. Comparison with state-of-the-art classifiers

Figures 7, 8 and 9 compare the performance of FleBiC against state-of-
the-art classifiers over biological, clinical and synthetic data respectively. We
compared associative classifiers based on pattern mining (using CMAR [29]
after discretizing data using the suggested coherence strength thresholds) and
biclustering (using FDCluster [57]), as well as support vector machines (SVM)
and Bayesian networks (BayesNet) from WEKA [75]. For the sensitivity cal-
culus, we consider the positive class to be associated with the observations
having the pathology. Generally, the collected results show significant ac-
curacy gains (after t-testing differences), positioning FleBiC as a promising
approach for the analysis of high-dimensional data.

Figure 7: Comparison of FleBiC’s performance against state-of-the-art associative and
global classifiers over gene expression data.

7https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/
8https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
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Results collected in Figures 7 and 8 highlight the superiority of FleBiC
against peer pattern-based classifiers for the targeted biomedical datasets,
confirming the importance of relying on comprehensive discovery of patterns
with varying coherence and quality. BlueSecond, results further show that
the accuracy and F-measure of FleBiC is generally competitive against state-
of-the-art classifiers, and superior in some datasets, including lung, colon,
leukemia, or breast (t-Test at α=0.05). This observation confirms the impor-
tance of focusing on local patterns. Third, sensitivity estimates further show
the ability of FleBiC to handle imbalanced data. Finally, these analyzes also
quantify the gains from integrating the output of FleBiC with well-known
classifiers (as described in Section 4.3).

Figure 8: Comparison of FleBiC’s performance over clinical data (Table 7) against asso-
ciative classifiers and global classifiers. Sensitivity and F-measure computed for the minor
class (e.g. glandular cancer in breast data) and home care in postoperative data.

Figure 9: Accuracy and efficiency levels of FleBiC against state-of-the-art classifiers over
synthetic data (Table 6).
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Figure 10: FleBiC’s ability to learn from discriminative biclusters against peer classifiers
in the presence of patterns with varying support, discriminative power, coherency type and
strength, and noise.

Results from synthetic data (Figures 9 and 10) further confirm these ob-
servations. These analyses show that state-of-the-art classifiers are not well-
prepared to learn from data with discriminative yet non-constant patterns,
showing that there is still space to improve state-of-the-art classifiers.

The levels of efficiency in Figure 9 show that, although FleBiC’s efficiency
is penalized by the increased complexity associated with the discovery of
patterns with diverse coherence, it is scalable (even in the presence of high-
dimensional data). Figure 10 validates whether FleBiC is able to accurately
classify synthetic data with non-constant patterns when varying their: co-
herence strength, number of supporting observations, amount of noise and
discriminative power (Table 6). Results show FleBiC distinct superiority
against associative classifiers (CMAR [29] and FDCluster [57]) and global
classifiers (support vector machines, Bayesian networks and multivariate dis-
criminants), motivating the importance of non-constant patterns tolerant to
noise and adequate scoring criteria.

Figure 11 measures the impact of parameterizing FleBiC with alternative
training and testing criteria, showing the possibility to adapt FleBiC behavior
without hampering usability due to its effective default behavior.

Figure 11: Impact of parameterizing scoring and matching functions when learning from
gene expression data.



27

5.2. Relevance of non-constant patterns in biomedical data
Results presented along Figures 7-10 already evidence the relevance of

learning from patterns with varying coherence and quality. This section deep-
ens previous analyzes by quantifying the gains from considering non-constant
assumptions, and studying their properties and biomedical relevance.

Regulatory Patterns. Table 8 motivates the importance of discovering
non-constant patterns for biological data analysis. It measures the impact
produced by each coherence assumption on the: percentage of confident de-
cisions (over 10 matched patterns and a single class with distinctive higher
probability), average pattern length and average rule weighted confidence
(Def. 4.3). For this analysis, FleBiC was parameterized with δ=1/6 (after
column-based data normalization), 70% quality, and decreasing support un-
til at least 50 statistically significant rules per class are found. We observe
that including non-constant patterns tolerant to noise is key to better dis-
criminate classes (+20pp). The gains increase when moving from the isolate
use of each coherence towards their integrated use (+10pp). This improved
ability to discriminate classes seems to be correlated with the pattern length
and higher correlation strength of rules.

Coherence
% of decisions with high confidence Average weighted support Average weighted confidence
Colon Lymph Embryo Leukemia Colon Lymph Embryo Leukemia Colon Lymph Embryo Leukemia

Constant (baseline) 0.51 0.68 0.59 0.50 23±3 13±2 40±6 24±2 0.82 0.94 0.81 0.92

Noisy Constant 0.69 0.83 0.77 0.72 24±3 13±2 42±5 25±3 0.81 0.94 0.82 0.92
Symmetric 0.66 0.81 0.65 0.78 24±3 13±2 42±6 25±3 0.79 0.91 0.80 0.91
Additive 0.70 0.83 0.78 0.73 25±3 14±2 42±6 27±3 0.79 0.89 0.81 0.91
Multiplicative 0.69 0.81 0.77 0.68 24±3 14±3 40±5 25±2 0.79 0.88 0.80 0.90
Orde-Preserving 0.78 0.92 0.95 0.72 27±4 20±2 36±7 23±4 0.83 0.86 0.91 0.79
Plaid 0.70 0.81 0.79 0.72 22±3 13±2 39±5 25±2 0.80 0.90 0.81 0.90

Integrated (FleBiC) 0.81 0.93 0.95 0.78 25±3 14±2 42±5 24±3 0.89 0.97 0.90 0.95

Table 8: Impact of making decisions using non-constant biclusters from high-dimensional
biological data. Results from top-100 rules, with 30% to 60% supporting class-conditional
observations. Criteria: 1) percentage of testing observations (from 10 cross-fold valida-
tion) with >10 matchings and clear preference towards a single class (>20pp difference of
probabilistic outputs), 2) the proposed weighted support, and 3) weighted confidence.

The selected association rules identify discriminative regulatory patterns
for the phenotype under classification. An extensive analysis of the biological
relevance of non-constant patterns can be found in [15, 21, 18]. These studies
show that the possibility to discover less-trivial putative modules is essential
to accommodate meaningful variations between individuals (either associated
with different responsiveness of genes, stage of disease progression or with the
effects of drugs on gene expression).

Figure 12 assesses variations in FleBiC’s performance over gene expres-
sion data when parameterizing FleBiC with different coherence assumptions.
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Figure 12: Accuracy and sensitivity gains of modeling non-constant biclusters from high-
dimensional biological data.

Figure 12 shows significant improvements (p-value<0.05) in terms of accu-
racy and sensitivity for the integrated use of multiple coherencies, generally
explained by an increased number of matches during the testing phase driven
by the presence of a more diversified set of putative regulatory patterns.

The gathered results further highlight the significant role of order-preserving
patterns in offering additional guidance to the behavior of associative classi-
fiers. Improvements under the order-preserving assumption are statistically
significant for the colon, lymph and leukemia datasets (p-value<0.05).

To complement these analyzes, Table 9 provides statistics associated with
a few discriminative biclusters that share a single pattern ϕJ but differ with
regards to the quality (ηij) and coherence assumption (γij). The results of
this analysis further show the importance of using noise-weighted criteria to
better model the support of biclusters (and, consequently, to score rules),
and the relevance of using non-constant patterns to increase the probability
of matches and thus alleviate the common downsides of associative models.

data ϕJ |ϕJ| coherence
ε-noise
ηij<ε

abs. support
{L,L̄}

weighted
abs. sup.

integrative
score

%test
matches

leukemia P1 9 constant 0.0 {9,0} {10.3,0.9} 0.92 14%
leukemia P1 9 constant 0.2 {18,0} {10.3,0.9} 0.92 14%
leukemia P1 9 additive 0.1 {19,0} {13.4,2.1} 0.87 19%
colon P2 8 constant 0.0 {14,0} {16.2,1.9} 0.89 11%
colon P2 8 plaid 0.1 {19,1} {15.8,1.8} 0.90 13%
colon P2 8 order-preserving 0.1 {23,2} {18.9,4.1} 0.86 18%

Table 9: Illustrative rules with fixed pattern ϕJ (P1={6,5.4,2.7,8.4,-3.6,6.3,5.1,8.1,7.5},
P2={-3.3,-5.4,-5.7,-6,-2.7,-7.8,-8.1,-6.3}, aij∈[-10,10]) and varying coherence. Comparison
of (weighted) absolute support per class, integrative score w and percentage of testing
observations (under 10-CV) with θ=0.8 matching threshold.

Clinical Patterns. Tables 10 and 11 display the top discriminative rules (ac-
cording to their weighted confidence and lift) for the breast, statlog, hungarian,
hepatitis, postoperative, lung, and mammography datasets. Each rule is char-
acterized by the underlying pattern, ϕJ, and number of observations |I| that
strictly satisfy ϕJ. For this analysis, we applied FleBiC with default behavior.
Weighted confidence should be assessed against the total number of classes,
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connective fibro-adenoma

ϕ={k8=2} |I|=5 wlift=7.57 wconf=1.0 ϕ={k0=0,k1=0,k4=1,k6=0,k8=0} |I|=8 wlift=4.48 wconf=0.63
ϕ={k1=1,k4=2} |I|=5 wlift=5.4 wconf=0.71 ϕ={k4=1,k5=1,k7=1} |I|=8 wlift=2.69 wconf=0.38
ϕ={k2=1,k3=3,k5=1,k6=2,k7=3} |I|=6 wlift=6.39 wconf=0.84 ϕ={k0=0,k3=0,k4=1,k6=0,k8=0} |I|=6 wlift=2.66 wconf=0.37
ϕ={k4=1,k6=1,k7=2} |I|=5 wlift=4.73 wconf=0.62 ϕ={k0=0,k4=1,k5=1,k8=0} |I|=6 wlift=2.46 wconf=0.34
ϕ={k1=1,k3=3,k7=3} |I|=5 wlift=3.78 wconf=0.5 ϕ={k1=0,k4=1} |I|=7 wlift=1.97 wconf=0.28
ϕ={k1=0,k4=1,k6=1} |I|=6 wlift=3.49 wconf=0.46 ϕ={k4=1,k5=1} |I|=10 wlift=1.85 wconf=0.26

carcinoma fibro-glandular

ϕ={k0=1,k1=3,k2=3,k8=1} |I|=11 wlift=4.68 wconf=0.92 ϕ={k2=1,k3=0,k4=1,k7=0} |I|=10 wlift=3.8 wconf=0.57
ϕ={k2=3,k8=1} |I|=12 wlift=4.65 wconf=0.92 ϕ={k3=0,k4=1,k6=1} |I|=12 wlift=3.78 wconf=0.57
ϕ={k1=3,k4=1,k8=1} |I|=12 wlift=4.32 wconf=0.85 ϕ={k0=0,k2=1,k3=0,k4=1,k7=0,k8=0} |I|=12 wlift=3.38 wconf=0.51
ϕ={k1=3,k6=1,k8=1} |I|=10 wlift=4.2 wconf=0.83 ϕ={k1=2,k4=1} |I|=9 wlift=3.13 wconf=0.47
ϕ={k1=3,k3=1,k7=1,k8=1} |I|=13 wlift=2.88 wconf=0.57 ϕ={k3=0,k4=1} |I|=15 wlift=3.1 wconf=0.46
ϕ={k0=1,k8=1} |I|=19 wlift=2.52 wconf=0.5 ϕ={k0=0,k3=0,k4=1,k6=1,k8=0} |I|=9 wlift=2.88 wconf=0.43

mastopathy adipose

ϕ={k0=0,k4=1,k6=1} |I|=8 wlift=2.14 wconf=0.36 ϕ={k0=3,k3=3,k5=3,k6=3,k7=3,k8=3} |I|=14 wlift=4.81 wconf=1.0
ϕ={k3=1,k4=1,k6=1,k7=1,k8=1} |I|=9 wlift=2.02 wconf=0.34 ϕ={k0=3,k1=0,k6=3,k8=3} |I|=7 wlift=4.2 wconf=0.87
ϕ={k4=1,k5=1,k6=1} |I|=10 wlift=1.89 wconf=0.32 ϕ={k0=3,k1=0,k8=3} |I|=14 wlift=3.96 wconf=0.82
ϕ={k2=0,k4=1} |I|=8 wlift=1.88 wconf=0.32 ϕ={k0=3,k5=3,k7=3,k8=3} |I|=11 wlift=3.93 wconf=0.81
ϕ={k0=1,k3=1,k4=1,k7=1,k8=1} |I|=7 wlift=1.88 wconf=0.32 ϕ={k0=3,k8=3} |I|=22 wlift=3.92 wconf=0.81
ϕ={k0=0,k4=1} |I|=11 wlift=1.79 wconf=0.3 ϕ={k0=3,k1=0,k4=2,k8=3} |I|=9 wlift=3.9 wconf=0.81

Table 10: Discriminative patterns of small length for the six classes of the breast tissue dataset (under
constant and additive coherence assumptions). The breast variables are numeric where y0=impedivity
at 0Hz, y1=phase angle at 500KHz, y2=slope of phase angle, y3=distance between spectral ends,
y4=area under spectrum, y5=normalized area, y6=maximum, y7=distance to maximum, y8=length
of spectral curve. To simplify the presentation, the real values within ϕ patterns were mapped into
an ordinal 0-3 scale. Illustrating, the additive pattern {k2=3,k8=1} indicates that phase angles
with accentuated slope (y2 ∈{2,3}) and shorter length of spectral curve (y8 ∈{0,1}) are likely to be
associated with the carcinoma cancer type.

1/|C| (e.g. 1/3 for lung data and 1/6 for breast data). Regarding weighted
lift, 1 is the non-discriminative value reference (pattern-class independence).
Results suggest the relevance of the found patterns. Non-constant patterns
were found for datasets with real-valued variables (e.g. breast dataset), fur-
ther underlining their role to discriminate clinical conditions (Figure 8).

Interestingly, the found patterns per dataset can radically differ regarding
support and length, motivating the importance of being able to flexibly select
subspaces when learning from high-dimensional data. Finally, the discovered
patterns are interpretable and clinically meaningful.

6. Conclusions and Future Work

This work addressed the problem of classifying (high-dimensional) biomed-
ical data. Motivated by the well-recognized relevance of non-constant pat-
terns and limitations of existing associative classifiers, we proposed a new
classifier, FleBiC. Aided by state-of-the-art contributions on pattern-based
biclustering, FleBiC uses discriminative patterns with diverse forms of co-
herence (including constant, additive, multiplicative and order-preserving as-
sumptions) and quality to learn from high-dimensional data.

FleBiC holds singular properties of interest: 1) discover coherent, sta-
tistically significant, and discriminative patterns; 2) place adequate scoring
criteria to tolerate noise, highlight relevant patterns and weight different co-
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statlog: control statlog: heart disease

ϕ={k8=0,k11=0,k12=0} |I|=82 wlift=1.62 wconf=0.9 ϕ={k2=3,k12=3} |I|=68 wlift=1.96 wconf=0.87
ϕ={k5=1,k11=0,k12=0} |I|=85 wlift=1.57 wconf=0.87 ϕ={k10=3,k12=3} |I|=67 wlift=1.83 wconf=0.81
ϕ={k10=0,k12=0} |I|=82 wlift=1.57 wconf=0.87 ϕ={k1=3,k2=3,k5=1} |I|=65 wlift=1.72 wconf=0.76
ϕ={k5=1,k10=0} |I|=82 wlift=1.34 wconf=0.74 ϕ={k8=3} |I|=66 wlift=1.66 wconf=0.74

hungarian: <50% diameter narrowing hungarian: >50% diameter narrowing

ϕ={k6=0,k8=0,k9=1} |I|=124 wlift=1.34 wconf=0.86 ϕ={k1=1,k2=3,k8=1} |I|=56 wlift=2.5 wconf=0.9
ϕ={k5=0,k9=1} |I|=147 wlift=1.31 wconf=0.84 ϕ={k1=1,k10=1} |I|=62 wlift=2.42 wconf=0.87
ϕ={k5=0,k6=0,k9=1} |I|=120 wlift=1.3 wconf=0.83 ϕ={k2=3,k8=1} |I|=61 wlift=2.34 wconf=0.84

mammography: benign mammography: malign

ϕ={k0=4,k1=0,k3=2} |I|=140 wlift=1.7 wconf=0.91 ϕ={k0=5,k1=3,k3=2} |I|=215 wlift=1.97 wconf=0.91
ϕ={k0=4,k2=0} |I|=288 wlift=1.69 wconf=0.91 ϕ={k0=5,k2=3} |I|=134 wlift=1.91 wconf=0.88
ϕ={k1=0,k2=0} |I|=163 wlift=1.64 wconf=0.88 ϕ={k1=3} |I|=315 wlift=1.7 wconf=0.78

hepatitis: live (outcome) postoperative: home care

ϕ={k1=0,k10=0} |I|=22 wlift=2.36 wconf=0.48 ϕ={k1=2,k3=2,k4=0} |I|=7 wlift=1.45 wconf=0.38
ϕ={k1=0,k4=0,k5=0,k18=1} |I|=23 wlift=2.13 wconf=0.44 ϕ={k1=2,k4=0,k7=3} |I|=6 wlift=1.4 wconf=0.37
ϕ={k1=0,k7=1,k18=1} |I|=20 wlift=1.97 wconf=0.4 ϕ={k2=1,k6=1} |I|=9 wlift=1.35 wconf=0.36
ϕ={k1=0,k3=1,k4=0,k10=0} |I|=22 wlift=1.85 wconf=0.38 ϕ={k3=2,k6=1} |I|=11 wlift=1.33 wconf=0.35
ϕ={k1=0,k2=0,k4=0} |I|=19 wlift=1.84 wconf=0.38 ϕ={k3=2,k4=1,k5=1} |I|=9 wlift=1.29 wconf=0.34
ϕ={k1=0,k4=0,k6=1} |I|=20 wlift=1.64 wconf=0.33 ϕ={k1=2,k3=2,k6=1,k7=3} |I|=7 wlift=1.27 wconf=0.34

Table 11: Discriminative patterns of small length in the statlog, hungarian, mammography, hepati-
tis and postoperative datasets. Illustrating, the constant pattern {k1=1,k7=1,k9=1,k11=1,k12=1,
k13=1} from hepatitis dataset indicates that women (y1) with normal liver (y7), absence of ascites
(y11) and varices (y12) and low levels of bilirubin (y13) are likely to survive. Order-preserving patterns
from real-valued variables can be also found. Illustrating, {k1=0,k2=1,k6=2} (k1 ≤ k2 < k6) from
postoperative data indicates that individuals with high external temperature (low y1), mid-to-scarce
oxygen levels (y2) and unstable blood pressure (higher y6) are likely to require intensive care. The
discriminative pattern ϕ={k2=3,k6=3,k11=3,k12=3} in statlog and hungarian data indicates that
individuals with chest pain (y2), electrocardiac complications (y6), signaled vessels (y11), and high
thal (y12) are likely to suffer from heart disease. FleBiC can thus properly diagnosis patients having
a subset of all possible symptoms by properly weighting the matched patterns per class.
Attributes of hepatitis dataset are: y0=age (0-7), y1=sex, y2=steroid, y3=antivirals, y4=fatigue,
y5=malaise, y6=anorexia, y7=liver big, y8=liver firm, y9=spleen palpable, y10=spiders, y11=ascites,
y12=varices, y13=bilirubin (0-5 level), y14=alk phosphate (0-5), y15=sgot (0-5), y16=albumin (0-5),
y17=protime (0-8), y18=histology (where y2 to y12 and y18 are binary). The postoperative variables
are y0=IT internal temperature (0-3 where 0 is high), y1=ST surface temperature (0-3), y2=oxygen
saturation (0-3 where 0 is excellent), y3=BP blood pressure (0-2 where 0 is high), y4=ST stability
(0-2 where 0 is stable), y5=IT stability (0-2), y6=BP stability (0-2) and y7=perceived comfort (0-3).
statlog and hungarian variables are y0=age (0-3 where 0 is young), y1=sex, y2=chest pain type (0-3),
y3=resting blood pressure (0-3 where 0 is low), y4=serum cholesterol (0-3), y5=fasting blood sugar
(1:high, 0:low), y6=electrocardiogram (0:normal, 1:abnormal, 2:definite), y7=maximum heart rate,
y8=induced angina (0-3), y9=ST depression (yes/no), y10=slope of ST peak (0-3), y11=number of
vessels colored by flourosopy (0-3), y12=thal (0-2).

herencies that prevent some patterns from jeopardizing the learning; and 3)
apply robust matching criteria that verify shift, scaling and order-preserving
factors, and accommodate noise penalizations. FleBiC can efficiently gener-
ate (and score) association rules with disjunctions of labels in the consequent
to further learn from patterns able to discriminate more than a single class.
Finally, FleBiC is able to combine the output of global learning functions for
datasets meaningfully described by both local and global regularities.

Results on biological, clinical and synthetic data confirm the underly-
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ing hypothesis of our work: combining discriminative patterns with varying
coherence and quality improves associative classification. Comparison with
state-of-the-art classifiers show the relevance of learning from non-constant
patterns. In addition to these observations, the inherent interpretability of
the learned associative classification models turn them state-of-the-art can-
didates to describe phenotypes and support medical decisions.

This work opens a critical door to understand how subspaces with varying
coherence and quality impact descriptive and predictive tasks across biomed-
ical domains. The possibility to parameterize the desirable properties of the
targeted patterns can be further considered to systematically study the in-
tricacies of complex regulatory behavior in omic data and physiological re-
sponses in clinical data. Furthermore, the gathered observations can be used
to extend state-of-the-art (non-associative) classifiers, revising their behavior
to model non-constant relationships between data observations.
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