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Abstract—Measuring evocative emotions in affective interac-
tions has become a critical step for effective engagements with
computers. Electrodermal activity is believed to accurately isolate
sympathetic responses, revealing paths to excitement, attention
and arousal, and to differentiate emotional states. However, the
inability to deal with varying amplitude and length of responses
across individuals has led to its use as a simple intensity
barometer. Thus, two questions remain unanswered. To which
extent can electrodermal activity be used to recognize emotions?
How do electrodermal responses vary between human-to-human
and human-to-robot interactions?

To answer these questions, we propose a new method to mine
the signal that surpasses the referred limitations, and conduct an
extensive experiment to study the responses to emotion-evocative
stimuli across different settings. Observations reveal emerging
electrodermal patterns for each emotion and attractive accuracy
levels for emotion recognition that increases when there is a link
to the psychological traits of the subjects.

I. INTRODUCTION

Wrist-worn biometric sensors have been adopted to evaluate
interactions by tracking user’s emotional arousal via skin con-
ductance, a form of electrodermal activity (EDA). Monitoring
EDA is a simple, non-intrusive and able to isolate responses
from the sympathetic nervous system [4].

Although a sympathetic response pattern is part of every
emotion, the difficulty of normalizing the significantly differ-
ent individual sympathetic responses led to its use basically as
an intensity-axis marker. This is commonly accomplished by a
combined analysis of basic features: level, response amplitude,
rate, rise time and recovery time [4]. This analysis has a
clear drawback – it discards flexible elicited behavior that can
improve emotion recognition. For instance, the ability to mine
expressive motifs sensitive to electrodermal sub-peaks holds
the potential to separate anger from fear responses [1].

Thus, the target research question is: what is the impact
of adopting more flexible approaches to mine electrodermal
activity for emotion recognition in affective engagements?
This question leads us to two other critical questions, also
covered in this work. First, to which extent can we isolate
electrodermal patterns for different emotion-evocative stimuli?
Second, how do emotional responses in human-to-robot con-
texts compare with human-to-human contexts? In this work,
we conduct an experimental study to answer these questions.

This paper is structured as follows. In section 2, relevant
work on the use of biometric sensors in emotion-centered

studies is covered. Section 3 describes the target experimental
setting. Section 4 describes the proposed methodology to
analyze the collected data. Finally, Section 5 presents the main
results and synthesizes their main implications.

II. CONTEXT

Monitoring physiological signals is increasingly necessary
to derive accurate analysis from affective interactions. Their
use surpasses social masking, context-sensitivity of image-
audio monitoring, and track cognitive and sensitive emotional
changes that are less obvious to perceive. However, their
subtle, complex, variable and subjective manifestation and
expression within and among individuals pose key challenges.

In the context of human-to-robot interaction, emotion recog-
nition from physiological signals has been driven by responses
to robot motion [8][9]. In virtual scenarios, feature-based
learners were used to recognize emotions (engagement, anx-
iety, boredom, frustration and anger) from signals collected
during parametrized game play-sessions [15]. Additionally,
affective recognition has been largely applied in social and
human-computer interaction [14]. Although the use signals to
monitor interactions is increasingly accomplished [6], there is
still a gap on how to describe and recognize physiological
responses from emotion-evocative stimuli.

Good surveys that combine multiple physiological signals
for emotion recognition include [7][17]. This work targets the
electrodermal signal and exploits the boundaries of how much
affective information can be disclosed by its analysis.

Electrodermal activity (EDA) is an electrical change in the
skin that varies with the activation of the sympathetic nervous
system, which is responsible for activating excitement and
anticipation, and to mobilize the body’s fight-or-flight action
by mediating the neuronal-hormonal response [1]. Electrical
changes in the skin are a result of an increased emotional
arousal or cognitive workload that leads to an intense physical
exertion and to sweating.By monitoring EDA is possible to
detect periods of excitement, stress, interest and attention.
However, heightened skin conductance is also related with
engagement, hurting, intrigue, distress and anticipation [1] –
”the unknown behind the wall” – an inhibition response to
punishment, avoidance or frustrative non-reward, which are
different forms of anxiety [4]. These recent clarifications claim
for more robust experimental settings and mining methods.



Discrete
stimuli

Experiments with brief and isolated stimuli include the study of:
innocence using the guilty test; familiarity using meaningful and
unfamiliar stimuli ; relevance through non-balanced occurrence of a
category or elicitation of priorities; affective valence (there is not yet
strong discrimination evidence); and planning and decision-making
processes via the ”somatic marker” hypothesis. Backward masking of
conditioning stimulus is often used to prevent its conscious recognition.

Continuous
stimuli

SCL and the frequency of spontaneous responses (nsSCR) are key
measures. Experiments include the study of: strong emotions repro-
ducing, for instance, genuine states of fear (heightened SCL) and
anger (heightened nsSCR); reappraisal through authentic, forbidden
and awarded emotional display; physical and mental performance;
attention (affecting rising and recovery time in vigilance tasks); and
different forms of social interaction involving, for instance, judgment
(nsSCR inversely related to the judged permissiveness of a questioner),
distress invocation, or the contagious effect by relating, for instance,
heightened SCL with interacting with over-involved individuals. En-
ergy mobilization seems to be the driver for tasks that either require
an effortful attention or invoke the concepts of stress and affect.

Longterm
setting
(traits)

High nsSCR rate and slow SCR habituation define a psychophysiolog-
ical trait called lability. Traits have been defined according to: infor-
mation processing and operational performance; brain-side activation
studies with epileptic individuals or recurring to electrical stimulation
(stimulation of limbic right-side structures increases more SCR than the
left); sleeping patterns; age; psychopathology (diagnosable schizophre-
nia, emotional withdrawal and conceptual disorganization); and metrics
as SCR conditioning (revealing paths to emotional detachment as
absence of remorse and antisocial behavior as pathological lying), tonic
arousal, and response to mild innocuous tones.

TABLE I: Implications of emotion-centered EDA studies [6][4][1]

Advantages of measuring EDA include sympathetic-
centered response, trial-by-trial visibility, significance of indi-
vidual differences (reliably associated with psychopathological
states), and its simple discrimination after a stimulus presen-
tation. However, EDA has a relatively slow-moving response
(latency of the elicited response and tonic shifts varying among
individuals [4]), requires lengthy warm-up periods, and has
multiple influences that may be either related with the personal
attention and significance or with stimuli activation.

A. Setting the approach
Evaluation of affective interactions aims to achieve reliable

emotion recognition rates. The key implication is to gain
access to someone’s feelings. For this purpose, according to
the model proposed in [6], 4 questions need to be answered.

First, which approach to follow? User dependency, stimuli
subjectivity and analysis time are the key axes. We target user-
independent, non-subjective and dynamic evaluations.

Second, which models of emotions select? Applied models
include the target discrete model centered on 6-to-8 cate-
gories, the dimensional valence-arousal, among others, such
as Ellsworth’s agency and Weiner’s attributions [6].

Third and fourth questions – Which experimental conditions
to adopt? Which data processing and mining techniques to
adopt? – will be respectively assessed in sections 3 and 4.

B. Related work on EDA and emotions
Electrodermal phenomena can be understood by discovering

tonic changes (SCL) related with general states of arousal and
alertness, and phasic changes (SCR) related with attentional
processes (novelty, intensity, and significance). Historical EDA
studies have been focused on learning efficiency, response
speed and, as target by this paper, emotional appraisal. The
implications of these studies are synthesized in Table I.

Pre-
processing

Goal: remove contaminations (noise, ext. interferences and artefacts).
Methods: segmentation; discard of initial and end signal bands; smooth-
ing filters; low-pass filters such as Adaptive, Elliptic or Butterworth;
baseline subtraction; normalization; and discretization techniques.

Feature
extraction

Goal: extract expressive features – statistical (mean, deviation), tem-
poral (rise and recovery time), frequency- and temporal-frequent (ge-
ometric analysis, multiscale sample entropy, sub-band spectra).
Methods: rectangular tonic-phasic windows; moving and sliding fea-
tures (as mean, median and deviation); transformations (Fourier,
wavelet, empirical, Hilbert, singular-spectrum); principal, independent
and linear component analysis; projection pursuit; auto-associative
networks; multidim. scaling; and self-organizing maps.

Feature
selection

Goal: remove features without significant correlation with the emotion
under assessment (to improve the space exploitation).
Methods: sequential forward/backward selection, sequential floating
search, branch-and-bound search, principal component analysis, Fisher
projection, classifiers (e.g. decision tress, bayesian networks), Davies-
Bouldin index, and analysis of variance methods.

Recognition

Goal: classify emotions using the selected features.
Methods: wide-variety of deterministic and probabilistic learners
including: k-nearest neighbours, regression trees, random forests,
Bayesian networks, support vector machines, canonical correlation
and linear discriminant analysis, neural networks, and Marquardt-back
propagation.

TABLE II: Methods to mine physiological signals [10][7]

C. Related work on mining EDA

Common approaches rely on the features extracted from the
signal, neglecting its motifs. For discrete stimuli, the response
amplitude is a key feature. Response latency, rise time and half
recovery time are sporadically adopted, although their relation
to psychophysiological processes remains yet unclear [4].
For prolonged stimulation, SCL and both specific responses
(SCR) and spontaneous responses (nsSCR) are considered and
computed using different minimum amplitudes. The analysis
of traits commonly recurs to nsSCR, SCL, response amplitude
and habituation. The challenge is on deciding whether to use
or not a range correction, by capturing extreme EDA values
during a session [4]. Psychometric principles and surveys are
additionally adopted to view EDA response as a trait [4].

More advanced techniques to pre-process and mine generic
signals have also been applied [10][7]. These techniques can
be divided in four steps and are synthesized in Table II.

Recent work shows that the use of sequential data mining
techniques, when preceded by a symbolic approximation, can
reveal additional expressive behavior of the signal [6].

III. DATA COLLECTION

To study electrodermal response to discrete emotion-
evocative stimuli, we conducted a tightly-controlled lab-
experiment. The stimuli were carefully chosen with the support
of experts to evoke similar emotional responses across human-
to-human and human-to-robot settings. Eight different stimuli,
5 emotion-centered stimuli and 3 others (captured during
periods of strong physical effort, concentration and resting),
were presented to each subject. The target discrete emotions1

are empathy (following common practices in speech tone and
body approach [16]), expectation (possibility of gaining an
additional reward), positive-surprise (unexpected attribution of
a significant incremental reward), stress (impossible riddle to

1scripts available in http://web.ist.utl.pt/rmch/research/software/eda



Fig. 1: Experimental setting (human-to-robot scenario)

solve in a short time to maintain the incremental reward) and
frustration (self-responsible loss of the initial and incremental
rewards). Emotional responses are averagely framed within 10-
30 seconds window for the selected stimuli. A time window of
6-8 minutes was provided between two stimulus to minimize
influence, neutralize the subject emotional state, stabilize the
signal, and remove the stress related with the experimental
expectations.

30 participants, with ages between 19 and 24 (average of
21 years old), were randomly divided in two groups, H and
R. Signal collections from both groups were intertwined to
reduce bias from external factors. Participants from group H
interacted with an human agent, an actor with a structured
and flexible script. Subjects from group R interacted with a
robot. From the subjects that participated in the experiment,
26 subject’s collections were considered valid2: 13 from group
H (5 women and 8 men) and 13 from group R (5 women and
8 men). The resulting dataset contains above 200 collected
EDA signals3, which satisfies the statistical requirements for
the mining methods proposed in the next section.

The robot used for this experience was NAO4. The behavior
of NAO was expressively implemented and affective synthe-
sized speeches recorded according to a flexible script similar
to the one given to the human agent. The human-to-robot
scenario was conducted as a wizard-of-Oz, with conditions
carefully obeying to the requirements of this setting.

A 30-minutes warm-up period was included where subjects
solved tests requiring a medium-to-high level of attention.

The adopted reward for all subjects was a pair of cin-
ema tickets-offer and the potential additional reward was a
Nintendo-Wii. The stimulus was conceived to evoke similar
emotional reactions across individuals and it was presented in
the same order in every experience.

An additional set of key practices was undertaken [13][3]:
the states of very high and very low arousal were captured
to normalize the features; the experiment was conducted in an
appealing context to not desensitize the subject; the experience
was recorded and documented to be audited and reproduced.

The collected EDA signals were obtained using wrist-worn
Affectiva-QSensors5and closely-controlled procedures.

Additionally, the following signals were collected using
Affectiva technology: facial expression (for post-experimental
validation and interpretation), skin temperature (to correct in-
dividual reactions to room temperature), and three-directional
body-motion (to smooth correlated EDA variations).

2a baseline level of skin-conductivity above 0.5µs
3raw signals available in http://web.ist.utl.pt/rmch/research/software/eda
4http://www.aldebaran-robotics.com
5http://www.affectiva.com/q-sensor/

Fig. 2: Proposed FineAlly methodology to mine EDA responses

Finally, a survey was undertaken to categorize individuals
according to the Myers-Briggs type indicator6. The results
were used with the aim of studying meaningful correlations
between the user’s profile and emotional EDA responses.

IV. COMPUTATIONAL METHODOLOGY

This section describes a novel method, ”FineAlly”, for emo-
tion recognition and description from EDA7. Fig.2 illustrates
its main steps. Emotion recognition combines the traditional
feature-based classification with the results provided from
sequence learners and is centered on two expressive represen-
tations. The adopted representations either rely on: i) SAX to
normalize individual differences while still preserving overall
response pattern, or on ii) local angles to enhance the local
sub-peaks of a response. Additionally, emotion characteriza-
tion is accomplished using both feature-based descriptors and
the transition lattices generated by sequence learners.

A. Processing the signal using SAX

We propose the use of Symbolic ApproXimation (SAX)
[11] to normalize the differences of EDA responses across in-
dividuals. SAX supports a reduced and normalized cardinality
(range of values) and dimensionality (number of time points),
and a lower-bounding guarantee by transforming real-valued
time series into a symbolic representation. SAX allows a time
series of arbitrary length n to be mapped into a string of w-
length (w<n, typically w�n) with an alphabet size d>2 ∈ N.
Different criteria may be adopted to fix the signal cardinality
and dimensionality: with respect to all stimulus, to a target
stimuli, to all subjects and to a scenario (either human-to-
human or human-to-robot). SAX behavior can be synthesized
in two steps. First, the signal is transformed into a Piecewise
Aggregate Approximated (PAA) representation. Second, the
PAA signal is symbolized into a discrete string allowing lower
bounding. A Gaussian distribution is used to produce symbols
with equiprobability from statistical breakpoints [11].

B. Processing the signal based on local angles

Although normalization of cardinality is needed, it may
smooth relevant sub-peaks. Additionally, the traditional criteria
to find sub-peaks using amplitude-thresholds is not sensitive
to individual differences [7]. For this, we propose a represen-
tation to enhance local variations. Relying on parametrized
time-windows, the angle for the electrodermal variation is
computed, and it is translated into a symbol based on the
target number of symbols. Similarly to SAX, the angle

6tests available in http://web.ist.utl.pt/rmch/research/software/eda
7software available in http://web.ist.utl.pt/rmch/research/software/eda



break points are also defined assuming a Gaussian distri-
bution. The following SAX representation for EDA over a
short time interval: <17,13,15,14,18,19,16,14,13,12,16,16>,
would be translated into the following angle representation:
<0,4,1,5,5,0,1,1,1,5,4> when adopting an 6-dim alphabet.

C. Mining the signal using feature-based classifiers

The features are extracted recurring to two methods: i)
computation of basic metrics over raw and SAX represen-
tations (SCL, nsSCR, amplitude, rising and recovery time),
and ii) statistical and geometric features retrieved from all
representations (including dispersion metrics as deviation and
distortion; centroid metrics; among others metrics as the
Pearson product-moment, the kurtosis or the gradient).

The feature selection is performed recurring to two tech-
niques: i) statistical analysis of variance (ANOVA) to under-
stand the impact of the feature on predicting an emotion (using
SPSS software), and ii) combined influence from multiple
attribute selection techniques (using WEKA [5]).

Finally, feature-based classifiers (from WEKA) are applied.

D. Mining the signal using hidden Markov models

Sequence classifiers are applied to consider more flexible
electrodermal behavior. Popular sequence learners include
recurrent neural networks and dynamic Bayesian networks
[2]. This paper adopts hidden Markov models (HMM) due to
their stability, simplicity and flexible parameter-control [12].
Given a set of signals labeled with a specific emotion, the
core task is to learn the generation and transition probabilities
of a hidden automaton (that follows a Markov constraint) per
emotion. This is done by maximizing a likelihood function us-
ing an efficient forward-backward algorithm until convergence
[12][2]. Finally, given a non-labeled signal, emotions can be
naively selected by evaluating their generation probability over
the learned automaton. For this purpose, the Viterbi learning
setting is applied. An additional exploitation of the lattices for
each emotion can be used to retrieve emerging patterns.

We propose a parameterization of HMMs based on the sig-
nal properties (e.g. high dimensionality leads to an increased
number of hidden states). Additionally, we adapted the HMMs
to deal with multiple EDA representations by computing the
joint probability of the paths learned for each representation.

V. RESULTS

A. Observations from Feature Analysis8

1) EDA features and affective responses: To understand
how can the extracted features differentiate the emotions under
assessment, the one-way ANOVA test was applied with the
Tukey post-hoc analysis. A significance level of 5% was con-
sider for the Levene’s test of variance homogeneity, ANOVA
and Tukey tests. Both EDA metrics and statistical features
derived from the raw and processed signals were considered.

Results, synthesized in Table III, show a representative set
of features able to differentiate emotions8. Dispersion metrics
to discriminate positive emotions and gradient plus centroid

8statistical sheets available in http://web.ist.utl.pt/rmch/research/software/eda

Features (with strongest statistical signif-
icance to differentiate emotions’ sets) Separated emotions Interaction

Accentuated dispersion metrics (as the
mean root square error) from the SAX
and local-angle representations

Positive (empathy, ex-
pectation, surprise) Human-robot

Recovery time, median (relevant to quan-
tify the sustenance of peaks) and distor-
tion from SAX signals

Positive from negative
from neutral emotions Human-robot

Gradient (revealing long-term sympa-
thetic activation by measuring the EDA
baseline changed) and centroid metrics

Fear from frustration Overall

Rise time Empathy from others Human-robot

Response amplitude Surprise from others Human-robot

TABLE III: EDA features with potential to discriminate emotions

Origin Correlations with higher statistical significance

Local-angle
features

Dispersion metrics positively corr. with the felt intensity, the understand-
ing of the agent’s intention, and his level of influence on felt emotions.

SAX-based
features

Dispersion metrics positively corr. with the felt stimulation, and the
perceived empathy, trust and confidence of the agent.

Computed
metrics

Amplitude posit. corr. with the perceived agent’s influence on emotions;
Amplitude negatively corr. with the felt pleasure;
Rise time neg. corr. with the perceived positivism on the agent’s attitude.

TABLE IV: Illustrative EDA features that may complement surveys

metrics to discriminate negative emotions. Additionally, fea-
tures can be used to isolate specific emotions (as rise time
and response amplitude) or to predict the affective valence
(as recovery time, median and distortion). Other metrics as
kurtosis (revealing the flatness of the response’s major peak)
and metrics derived from the temperature signal were also able
to differentiate with significance some of the target emotions.

2) EDA features and the experimental conditions: EDA can
be additionally adopted to complement survey assessments.
For this purpose, bivariate Pearson correlation (between scale
variables assessed in the final survey and EDA metrics) was
performed using a 5% significance level. Table IV synthesizes
the most significant correlations found. They include positive
correlation of local-angle dispersion (revealing changes in
the EDA’s gradient) with intensity, perceived intention and
felt influence; positive correlation of SAX-based dispersion
(revealing heightened variations from the baseline) with the
perceived empathy, trust and confidence; higher amplitude of
responses for heightened felt influence and lower pleasure; and
quicker rise time for heightened perceived optimism.

Finally, features derived from the overall signal collected
by each subject (without stimuli-partitions) were found to be
correlated with the adopted experimental condition (human-to-
human vs. human-to-robot). To assess the influence of the ex-
perimental setting in the signal we performed a t-test. Results
from the use of SAX-based signals show that human-to-human
interactions (in comparison to human-to-robot interactions)
have significantly: i) higher values of dispersion and kurtosis
(revealing heightened emotional response), and ii) a higher
median (revealing an increased ability to sustain peaks).

3) EDA features and the subject profile: Pearson correla-
tions were also used to relate EDA with the subjects profile.



Myers-Briggs type Correlated features ([+] positive corr.; [–] negative corr.)

Extrovert-introvert
[+] Dispersion metrics of SAX-based signal
[–] Centroid metrics of SAX-based signal
[–] Response amplitude

Sensing-intuition
[–] Dispersion metrics of raw and SAX-based signal
[–] Dispersion metrics of local-angles
[–] Rise time

Feeling-thinking
[+] Median and dispersion metrics of SAX-based signal
[–] Declive and centroid metrics of local-angles
[–] Rise time

Judging-perceiving
[–] Centroid metrics of raw signal
[–] Dispersion metrics of SAX-based signal
[+] Response amplitude

TABLE V: Influence of subjects’ profile on EDA responses

This analysis is key to turn emotion-driven learning sensitive to
psychophysiological traits of the subject under assessment. A
positive/negative correlation means that a polarization towards
either the extrovert, sensing, feeling or perceiving type is
related with higher/lower values for the target feature.

We can see, for instance, that extroverts have a more
instable signal (higher dispersion) although less intense (lower
amplitude), while sensers and feelers’ responses are quicker.
Table V synthesizes the significant correlations.

B. Emotion Recognition

The recognition score is accuracy, the ability to correctly
label an unlabeled signal (i.e. to identify the underline emotion
from 5 emotions). Accuracy was computed using a 10 cross-
fold validation over the collected 234 signals.

1) Feature-based recognition: Previously, we found that
some statistical features and basic metrics are significantly
able to differentiate groups of emotions. Now, we evaluate
to which extent can a set of classifiers using the extracted
features correctly label the emotion of an unlabeled EDA
response. Despite the observed accuracy is lower than the 80%
threshold achieved in state-of-the-art studies [7][17], our study
does neither combine a wide-variety of signals nor rely on
strong imagery and audio suggestions.

Fig.3 synthesizes the results from feature-driven classifi-
cation. The isolated use of EDA metrics and of features
from SAX or local angles leads to an accuracy near 50%.
However, their integration leads to levels near 60%. Addition-
ally, accuracy increases when skin temperature is included.
The best classifiers are the logistic-based learners, followed
by random forests. Logistic-based learners use regressions
on the real-valued features to affect the probability score of
each emotion. However, when no feature selection method is
applied, Bayesian nets are the best alternative.

Despite the difference between human-to-human and
human-to-robot scenarios, classifiers are still able to recognize
emotions when mixing the cases. For instance, C4.5 trees have
dedicated branches for each scenario, while IBk usually selects
the features from a sole scenario when k<4.

2) Sequential-based recognition: Table VI shows that when
considering sequential behavior, the accuracy levels can rise
nearly 10pp. An intricate observation from these results was

Fig. 3: Feature-driven recognition accuracy of 5 emotions
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HMM (fully
connected
architecture)

Recognition
accuracy

All 0.40 0.42 0.46 0.67
Robot 0.39 0.41 0.44 0.66
Human 0.39 0.42 0.45 0.67

Discrimination
accuracy

All 0.86 0.88 0.89 –
Robot 0.87 0.88 0.91 –
Human 0.86 0.88 0.90 –

HMM
(left-to-right
architecture)
[12]

Recognition
accuracy

All 0.43 0.44 0.48 0.71
Robot 0.42 0.43 0.47 0.71
Human 0.41 0.44 0.47 0.69

Discrimination
accuracy

All 0.87 0.88 0.90 –
Robot 0.87 0.89 0.90 –
Human 0.87 0.88 0.89 –

TABLE VI: Accuracy of sequence learners to recognize an emotion
(out of 5) and to correctly discard the 3 least probable emotions

the high sensitivity of the learned HMMs to accurately neglect
3 emotion labels that do not fit in the learned behavior. The
challenge is to generalize the multiple subject behavior per
emotion. One solution is either to select representative signals
through a cluster analysis or to embrace the error and use
HMMs as a discriminator to discard non-fitting responses.

Constrained HMMs, as left-to-right architectures, can im-
prove accuracy. This is done by controlling the state transitions
through the values of the initial lattice.

Although the local-angle representation is not as critical as
SAX representations, its weighted use also impacts accuracy.

Finally, when combining the sequential classifiers with the
output of probabilistic feature-based classifiers (logistic-based
learners were the choice), the accuracy increases.

The why behind these scores resides on the ability of HMMs
to: i) detect expressive behavior as peak-sustaining values
and fluctuations (hardly measured by features); ii) to cope
with SCL differences (with the SAX scaling strategy being



done with respect to all stimulus, to the target stimuli, to
all subjects or to subject-specific responses); iii) to cope with
dimensionality differences; iii) to cope with SCR differences
using the local-angle representation; and iv) to deal with
lengthy responses (by increasing the number of hidden states).
Additionally, by controlling cardinality using SAX: HMMs
can capture either a smoothed behavior (alphabet size less than
8) or a more delineated behavior (alphabet size above 10).

3) Profile inclusion: The insertion of the relative score
for the four Myers-Briggs types was found to increase the
accuracy of IBk, who tend to select responses from subjects
with related profile. Motivated by this observation, we adopt
a strategy for the non-lazy probabilistic learners by creating
four partitions of the data, with the first separating extroverts
from introverts and so on, and by learning one model for
each profile. Recognition for a test instance now relies on the
equally weighted combined output of each model, which result
in an increased accuracy of 1-3pp. Although the improvement
seems to be subtle, it is in fact promising when taking into
consideration the significant lower size of the training datasets
used to learn the models for each personality type.

C. Emotion Response Description
Along with emotion recognition, the characterization of

EDA responses to emotion-evocative stimuli is of key value
to understand psycho-physiological drivers of the sympathetic
system and to develop rule-based systems to access emotional
states. A simple way to describe emotion patterns is to use
plots with the most discriminative features (see Table III). We
additionally propose the use of HMM lattices as a pattern
descriptor. Distance metrics over the learned lattices revealed
statistically significant differences across the emotions and
the interaction settings. This evidence is supported by the
recognition scores disclosed in the previous section.

D. Implications
Previous observations reveal that features extracted from the

(pre-processed) signals can be adopted to isolate emotions
across different interaction settings (Table III). Classifiers
that combine feature-based and sequential learning achieve
optimum accuracy rates. Their underlying learned models can
be used to characterize emotional responses. Finally, EDA was
observed to be correlated with psychological traits (Table V),
which can be used to guide emotion recognition.

VI. CONCLUSION

This work provides two major contributions. First, we
propose a new methodology, FineAlly, to mine electrodermal
activity in emotion-centered interactions. This methodology
is centered on expressive pre-processing steps followed by the
joint application of feature-driven and sequential-based mining
techniques. FineAlly overcomes the limitations of traditional
methods to deal with expressive behavior and with individual
response differences.

Second, this work reveals emerging properties from electro-
dermal responses related with different emotions and experi-
mental settings. In particular, the recognition accuracy using

solely the electrodermal signal is competitive with state-of-
the-art studies that combine multiple physiological signals.

Additionally, we showed that psychological traits can guide
this task by correcting profile-driven differences, opening a
new direction on how to measure affective interactions.

The quantitative assessment shows that emotion recognition
significantly improves when adopting more flexible methods to
mine the electrodermal signal. Additionally, feature correlation
analysis and discriminative mining of generative models show
meaningful differences among emotional stimuli and experi-
mental settings. These answers to the target research questions
trigger new implications not only for psychophysiology and
neuroscience, but especially to human-robot and social inter-
action research.
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