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Abstract Equilibria in mechanics or in transportation models are not always ex-
pressed through a system of equations, but sometimes they are characterized by
means of complementarity conditions involving a convex cone. This work deals with
the analysis of cone-constrained eigenvalue problems. We discuss some theoretical
issues like, for instance, the estimation of the maximal number of eigenvalues in a
cone-constrained problem. Special attention is paid to the Paretian case. As a short
addition to the theoretical part, we introduce and study two algorithms for solving
numerically such type of eigenvalue problems.

Keywords Complementarity conditions · Generalized eigenvalue problems ·
Convex cones

1 Introduction

This paper is concerned with the analysis of a cone-constrained eigenvalue problem
arising in mechanics [13, 14] and in various areas of applied mathematics [8, 10,
15–18]. The notation that we employ is for the most part standard. The Euclidean
space R

n is equipped with the inner product 〈y, x〉 = yT x and the associated norm
‖ · ‖. Orthogonality with respect to 〈·, ·〉 is indicated by means of the symbol ⊥. We
also use the notation

Mn ≡ real matrices of size n × n,

�(Rn) ≡ closed convex cones in R
n.
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Given a pair (A,B) ∈ Mn × Mn and a cone K ∈ �(Rn), we are interested in
solving an abstract eigenvalue problem of the form:

Problem 1

Find λ ∈ R and a nonzero vector x ∈ R
n such that

(1)
K � x ⊥ (Ax − λBx) ∈ K+.

The specific meanings of the matrices A and B depend on the context. The cone
K is interpreted as a constraint set and K+ = {y ∈ R

n : 〈y, x〉 ≥ 0, ∀x ∈ K} refers to
the dual cone of K . Throughout this work one assumes that

K �= −K and 〈x,Bx〉 �= 0 ∀x ∈ K\{0}. (2)

The first hypothesis in (2) says that K is not a linear subspace. Linearly constrained
eigenvalue problems fall within the realm of classical linear algebra and therefore we
leave them out of the present discussion. The second hypothesis is not restrictive in
practice and helps avoiding degenerate situations like unboundedness in the set

σK(A,B) = {λ ∈ R : (x,λ) solves (1) for some x �= 0}.
One refers to σK(A,B) as the K-spectrum (or set of K-eigenvalues) of the pair
(A,B). The first component of a solution (x,λ) is called a K-eigenvector of (A,B).

The orthogonality condition appearing in (1) implies that λ and x are related by the
Rayleigh-Ritz ratio λ = 〈x,Ax〉/〈x,Bx〉 as happens in the classical unconstrained
setting. However, the “residual” vector

y = Ax − λBx (3)

does not need to be zero. That (3) belongs to K+ is less demanding than the usual con-
dition Ax = λBx, but, on the other hand, x is required to be in K . So, no monotonic-
ity property with respect to K is to be expected from the set σK(A,B).

An example of Problem 1 arising in mechanics is presented below. It has to do
with the search for instabilities of mechanical systems in the presence of obstacles
with friction [14].

Example 1 Consider the finite element discretization of an equilibrium configuration
of a solid in the presence of an obstacle (cf. Fig. 1). Labels f or c denote the nodes
that, at the equilibrium state under consideration, are out of contact (free from any
geometrical constraint) or in contact, respectively. A specific type of instability study
leads to a complementarity eigenvalue problem involving two different types of vari-
ables that, together, represent the rate of change of the equilibrium state: vector x

containing the kinematic variables (i.e., the velocities) and vector y containing the
static variables (i.e., the reaction rates). The previous vectors may be decomposed in
subvectors: xf and yf , both with nf components, grouping the “free” variables (that
do not have to satisfy any inequality or complementarity condition), and xc and yc,
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Fig. 1 A finite element
discretization of an elastic body
in the presence of a rigid
obstacle

both with nc components, grouping the “contact” variables (that must satisfy inequal-
ities and complementarity conditions). One has

x =
[
xf

xc

]
∈ R

nf +nc , y =
[

0f

yc

]
∈ R

nf +nc , 0c ≤ xc ⊥ yc ≥ 0c.

The above inequalities are to be understood in a componentwise sense. Notice that yf

is a zero-vector since the free nodes cannot have reactions from the obstacle. A nec-
essary and sufficient condition for the occurrence of a so-called directional instability
is the existence of a nonnegative real number λ and a pair (x, y) ∈ R

nf +nc × R
nf +nc ,

with x �= 0, such that

(λMmass + Mstiff)x = y,

0c ≤ xc ⊥ yc ≥ 0c.

The effective mass matrix Mmass and the effective stiffness matrix Mstiff are non-
symmetric in general. We are led to solve a particular case of Problem 1 with
A = Mstiff, B = −Mmass, K = R

nf × R
nc+ , and the extra condition that λ must be

nonnegative. It is worthwhile mentioning that, in this example, the convex cone K is
not pointed.1

For the reader’s convenience we recall below some general facts concerning the
cardinality of K-spectra. The symbol In indicates the identity matrix of size n × n

and card[S] stands for the cardinality of a set S in R.

Proposition 1 Under (2) the set σK(A,B) is nonempty and compact. Furthermore,

(a) σK(A,B) has finitely many elements in case K is a polyhedral convex cone.
(b) for each n ≥ 3, one can find a nonsymmetric matrix A ∈ Mn and a sequence

{Kν}ν∈N of polyhedral convex cones in R
n such that card[σKν (A, In)] → ∞ as

ν → ∞.
(c) for each n ≥ 3, one can find a nonsymmetric matrix A ∈ Mn and a nonpolyhedral

convex cone K ∈ �(Rn) such that σK(A, In) contains an interval of positive
length (which implies, in particular, that σK(A, In) is uncountable).

1A closed convex cone K is called pointed if K ∩ −K = {0} (see, e.g., [4]).
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Proof Combine [10, Theorem 3.3] and [18, Theorem 2.5] for the existential part. The
compactness result is obvious. See [17, Proposition 6.1] for part (a) and the references
[16, 18] for part (c). Part (b) is explained in [18, Proposition 4.6]. �

Already in a polyhedral context one should worry about the size of K-spectra.
A polyhedral cone-constrained eigenvalue problem in some Euclidean space of small
dimension, say n = 3, may lead to a huge K-spectrum, for instance with more than
1 million elements! This strange phenomenon has to do with the facial structure of
polyhedral convex cones but we will not elaborate here on this issue. In the non-
polyhedral case the situation can be even worse: Iusem and Seeger [7] succeeded in
constructing a symmetric matrix A and a nonpolyhedral convex cone K such that
σK(A, In) behaves like the Cantor ternary set, i.e., it is uncountable and totally dis-
connected.

2 The Pareto eigenvalue problem

The Pareto eigenvalue problem is the prototype of a cone-constrained eigenvalue
problem. Its precise formulation is as follows (cf. [15, 17]):

Problem 2

Find λ ∈ R and a nonzero vector x ∈ R
n such that

(4)
R

n+ � x ⊥ (Ax − λx) ∈ R
n+.

This particular model exhibits already many of the mathematical difficulties aris-
ing in the general context of Problem 1. The first challenge that one has to face is a
possible exponential growth in the cardinality of

σR
n+(A) = {λ ∈ R : (x,λ) solves (4) for some x �= 0}

with respect to the dimension n of the underlying Euclidean space. One refers to
σR

n+(A) as the Pareto spectrum (or set of Pareto eigenvalues) of A.

Proposition 2 Let A ∈ Mn. Then,

(a) σR
n+(P T AP ) = σR

n+(A) for any permutation matrix P of size n × n.
(b) σR

n+(A − γ In) = σR
n+(A) − γ for all γ ∈ R.

(c) σR
n+(βA) = βσR

n+(A) for all β ≥ 0.

Proof The proof is easy and therefore omitted. �

Remark 1 In contrast to classical eigenvalue analysis, a matrix A and its transpose AT

may have different Pareto spectra. For instance, the Pareto spectra of

A =
[

8 −1
3 4

]
and AT =

[
8 3

−1 4

]
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are {5,7,8} and {4}, respectively. As one can see, matrix transposition may change
even the number of Pareto eigenvalues.

In the sequel J (n) denotes the collection of all nonempty subsets of {1, . . . , n},
the symbol |J | stands for the cardinality of a set J in J (n), and AJ refers to the
principal submatrix of A formed with the rows and columns of A indexed by J .

Lemma 1 (Cf. [17]) Let A ∈ Mn. Then, λ ∈ R is a Pareto eigenvalue of A if and only
if there are an index set J ∈ J (n) and a vector ξ ∈ R

|J | such that

AJ ξ = λξ, ξ ∈ int(R|J |
+ ), (5)∑

j∈J

Aij ξj ≥ 0 ∀i /∈ J. (6)

In such a case, the vector x ∈ R
n defined by

xj =
{

ξj if j ∈ J,

0 if j /∈ J,

is a Pareto eigenvector of A and λ is the corresponding Pareto eigenvalue.

Computing a Pareto spectrum is a much harder problem than computing a usual
spectrum. In the first case one has to take into consideration all the possible ways of
selecting the index set J .

Example 2 The Pareto eigenvalues of the matrix

A =
[
a b

c d

]
(7)

are necessarily in the set {a, d, λ−, λ+}. Here λ± are the usual eigenvalues of A,
i.e.,

λ± = a + d

2
±

√
	

2
with 	 = (a − d)2 + 4bc.

Different cases are possible depending on the sign of the terms b, c, a − d, 	. We
refer to these four terms as the “discriminating factors” of the matrix (7). For instance,
when the sign of 	 is negative, the eigenvalues λ± are complex numbers and there-
fore they cannot apply for membership in the Pareto spectrum. Table 1 is constructed
by working out all the possible combinations with bc ≥ 0 and Table 2 summarizes
the situation when bc < 0. The last column in each table indicates the cardinality of
the Pareto spectrum.

A preliminary lesson that can be drawn from Example 2 is this:
{

if the number of Pareto eigenvalues of the matrix (7) is even, then

at least one of the discriminating factors {b, c, a − d, 	} is equal to zero.
(8)



A. Pinto da Costa, A. Seeger

Table 1 The Pareto spectrum
of the matrix (7) when bc ≥ 0 b c a − d Pareto spectrum of A Cardinality

− − Any λ− 1

0 0 0 a 1

± a, d 2

+ + ± a, d,λ+ 3

0 a,λ+ 2

− 0 − or 0 a 1

+ a, d 2

0 − + or 0 d 1

− a, d 2

+ 0 + or 0 a 1

− a, d 2

0 + − or 0 d 1

+ a, d 2

Table 2 The Pareto spectrum
of the matrix (7) when bc < 0 b c a − d 	 Pareto spectrum of A Cardinality

− + − or 0 Any a 1

+ − a 1

+ 0 a,λ+ 2

+ + a,λ−, λ+ 3

+ − + or 0 Any d 1

− − d 1

− 0 d,λ+ 2

− + d,λ−, λ+ 3

Roughly speaking, this principle says that a 2 × 2 matrix is more likely to have an
odd number of Pareto eigenvalues. A probabilistic formulation of this statement will
be given in Proposition 10. Based on extensive numerical experimentation it is very
tempting to conjecture that a principle similar to (8) could be stated for higher di-
mensional matrices as well. We shall not indulge however on this matter because the
task of identifying the appropriate discriminating factors and examining all the sign
combinations is simply awful.

2.1 The exponential growth phenomenon

Observe that (5) is a classical eigenvalue problem for the matrix AJ except that now
the eigenvectors must satisfy a certain interiority condition. There are

rn = 2n − 1
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ways of selecting the index set J and therefore we are led to solve the same number of
classical eigenvalue problems. As indicated in [17, Proposition 5.3], the upper bound

card[σR
n+(A)] ≤ rn (9)

applies to

any symmetric matrix A of size n × n,

any matrix A ∈ Mn whose off-diagonal entries are nonnegative, (10)

any matrix A ∈ Mn whose off-diagonal entries are nonpositive,

and, more generally, to any A ∈ Mn such that each principal submatrix AJ has at
most one eigenvalue associated to an eigenvector in the interior of R

|J |
+ . The next

proposition shows that the bound (9) is sharp within the first two classes mentioned
in (10). This is what we call the exponential growth phenomenon.

Proposition 3 For each n ≥ 2, there is an n × n symmetric matrix A with positive
entries such that card[σR

n+(A)] = rn.

Proof Take n ≥ 2 and consider the n × n symmetric matrix A whose general entry
is given by Aij = ai+j . Here a denotes a real number greater than or equal to

√
2.

This is a rare example of a nontrivial matrix whose Pareto spectrum σR
n+(A) can be

computed explicitly.2 Given an arbitrary index set J = {i1, . . . , i
}, with 1 ≤ i1 <

· · · < i
 ≤ n, the principal submatrix

AJ = (Mj,k)1≤j,k≤


has Mj,k = aij +ik as entry in the {j, k}-position. The vector ξ = (ai1, . . . , ai
)T be-

longs to the interior of R
|J |
+ and

(AJ ξ)j =

∑

k=1

Mj,ka
ik =


∑
k=1

aij +ik aik = λJ aij = λJ ξj ∀j ∈ {1, . . . , 
}

with

λJ =

∑

k=1

a2ik =
∑
i∈J

a2i .

Since A has positive entries, one does not have to worry about the condition (6).
Lemma 1 tells us that λJ is a Pareto eigenvalue of A. For completing the proof of the
proposition we need to check that

λI �= λJ whenever I �= J. (11)

2We are indebted to Dr. Charki Amara (Avignon) for building this example.
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Take I, J ∈ J (n) with I �= J . Since I	J = (I\J ) ∪ (J\I ) is nonempty, one can
define

m = max{k ∈ {1, . . . , n} : k ∈ I	J }.
Suppose, for instance, that m ∈ I . In such a case, m /∈ J and

λI − λJ =
∑
i∈I

a2i −
∑
i∈J

a2i =
∑

i∈I, i≤m

a2i −
∑

i∈J, i≤m−1

a2i .

This implies that λI − λJ ≥ bm −∑m−1
i=1 bi with b = a2. But

bm −
m−1∑
i=1

bi = bm −
(

bm − 1

b − 1
− 1

)
= bm+1 − 2bm + b

b − 1
.

If a ≥ √
2, then b ≥ 2 and bm+1 ≥ 2bm. Hence,

bm+1 − 2bm + b

b − 1
≥ b

b − 1
≥ 2

b − 1
> 0,

showing in this way that λI �= λJ . Since there are 2n − 1 ways of choosing the index
set J , there are as many elements in the Pareto spectrum of this special matrix A. �

Remark 2 If a <
√

2, then one cannot guarantee the injectivity condition (11). Con-
sider for instance a = √

b with b = (1 + √
5)/2 ≈ 1.618. Notice that I = {1,2} and

J = {3} yield the same Pareto eigenvalue because λI = b + b2 = b3 = λJ .

The particular choice Ai,j = (
√

2)i+j yields the Pareto spectrum σR
n+(A) =

{2,4,6, . . . ,2n+1 − 2} whose cardinality is rn. Proposition 3 does not mean that
one should expect getting systematically such a large number of Pareto eigenval-
ues. However, “almost all” matrices with positive entries, be them symmetric or not,
have a Pareto spectrum with such large cardinality. A measure theoretic justification
supporting this statement is given in Sect. 2.2 (cf. Proposition 6).

2.2 Introducing the Perron map

The Perron map is a useful tool for analyzing the Pareto spectrum of a matrix belong-
ing to the class

Pn = {A ∈ Mn : A is positive}. (12)

Positivity in (12) is understood in the componentwise sense. The famous Perron the-
orem asserts that a matrix A in Pn admits the real number

ρ(A) = spectral radius of A

as an algebraically simple eigenvalue. Moreover, ρ(A) is positive and there exists a
vector x ∈ int(Rn+) such that Ax = ρ(A)x. Perron’s theorem can be applied of course
to any principal submatrix AJ .
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For computational purposes it is useful to label the index sets J1, J2, . . . , Jrn by
using the binary decomposition ordering: one defines

Jk = {j ∈ {1,2, . . . , n} : bj (k) = 1},
where the {0,1}-coefficients b1(k), b2(k), . . . , bn(k) are uniquely determined by the
binary expansion

k = b1(k)20 + b2(k)21 + · · · + bn(k)2n−1

of the integer k ∈ {1,2, . . . , rn}.

Definition 1 The Perron map on Pn refers to the vector-valued function
χ : Pn → R

rn whose k-th component χk : Pn → R is given by

χk(A) = spectral radius of the principal submatrix AJk .

The upward Perron map χ↑ : Pn → R
rn is defined by χ↑(A) = (χ

↑
1 (A),χ

↑
2 (A),

. . . , χ
↑
rn(A)), where the numbers

χ
↑
1 (A) ≤ χ

↑
2 (A) ≤ · · · ≤ χ↑

rn
(A) (13)

are obtained by rearranging in nondecreasing order the components of the vec-
tor χ(A).

Example 3 Consider the matrix A ∈ P3 whose general entry is Ai,j = (
√

3)i+j . As
explained in the proof of Proposition 3, for this particular matrix one gets χk(A) =∑

j∈Jk
3j .

As seen in Table 3, the values of χ1(A), . . . , χ7(A) are already arranged in increas-
ing order. This is not necessarily the case for an arbitrary A ∈ Pn. The usefulness of
the upward Perron map is obvious. Among other things, one can write

χ
↑
1 (A) = smallest Pareto eigenvalue of A, (14)

χ↑
rn

(A) = largest Pareto eigenvalue of A, (15)

Table 3 The Perron map χ

evaluated at the matrix A of
Example 3. Here χ has r3 = 7
components

k Binary expansion of k χk(A)

1 001 3

2 010 9

3 011 12

4 100 27

5 101 30

6 110 36

7 111 39
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the full Pareto spectrum of A ∈ Pn being given by

σR
n+(A) = {χ1(A),χ2(A), . . . , χrn(A)} (16)

= {χ↑
1 (A),χ

↑
2 (A), . . . , χ↑

rn
(A)}. (17)

We mention below a useful characterization of the extremal terms (14) and (15).

Proposition 4 Let A ∈ Pn. The smallest and the largest Pareto eigenvalues of A are

χ
↑
1 (A) = min{A1,1, . . . ,An,n} and χ↑

rn
(A) = ρ(A), (18)

respectively. Furthermore,

χ
↑
k1

(A) < χ
↑
k2

(A) < · · · < χ
↑
kp

(A) (19)

for any subset {k1, k2, . . . , kp} of {1,2, . . . , rn} such that Jk1 � Jk2 � · · · � Jkp . In

particular, χ
↑
1 (A) < χ

↑
3 (A) < χ

↑
7 (A) < · · · < χ

↑
rn(A) and A has at least n distinct

Pareto eigenvalues.

Proof According to [6, Corollary 8.1.20], the spectral radii of the principal subma-
trices of A ∈ Pn obey to the monotonicity principle

I, J ∈ J (n) and I ⊂ J =⇒ ρ(AI ) ≤ ρ(AJ ). (20)

This implication yields immediately the formulas announced in (18). As noticed by
Frobenius as early as 1912, the inequality in (20) is strict if I is strictly contained
in J . This observation leads directly to the chain of inequalities in (19). In particular,
the spectral radii of the leading principal submatrices

⎡
⎢⎣

A1,1 · · · A1,q

...
...

Aq,1 · · · Aq,q

⎤
⎥⎦ , q = 1, . . . , n

are arranged in (strictly) increasing order. This takes care of the last part of the propo-
sition. �

The monotonicity principle (20) serves also to estimate the second smallest com-
ponent and the second largest component of the vector χ↑(A). Clearly, χ

↑
2 (A) and

χ
↑
rn−1(A) are to be found in the sets

{A1,1, . . . ,An,n}︸ ︷︷ ︸
n terms

∪{ρ(AJ ) : |J | = 2}︸ ︷︷ ︸
n(n−1)/2 terms

and {ρ(AJ ) : |J | = n − 1}︸ ︷︷ ︸
n terms

,

respectively.
Some of the inequalities in (13) could occur as an equality, and therefore the

set (17) could have less that rn elements. In practice, however, this situation is rare.
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A topological justification of this statement is given in Proposition 5. We recall first a
couple of continuity results. As one can see from the well known variational formulas

ρ(A) = max
x∈int(Rn+)

min
1≤i≤n

1

xi

n∑
j=1

Ai,j xj (21)

= min
x∈int(Rn+)

max
1≤i≤n

1

xi

n∑
j=1

Ai,j xj , (22)

the spectral radius function ρ : Pn → R is both upper-semicontinuous and lower-
semicontinuous. This yields the continuity of each function

A ∈ Pn �→ χk(A) = ρ(V T
k AVk)

with Vk denoting a matrix of size n × |Jk| which does not depend on A. More pre-
cisely, in the columns of Vk we stack the canonical vectors {ej }j∈Jk

⊂ R
n so that

V T
k AVk = AJk for all A ∈ Pn. The continuity of the Perron map χ yields in turn the

continuity of each χ
↑
k .

We need to recall also the following two lemmas. By a Perron eigenvector of
A ∈ Pn one understands a vector x ∈ int(Rn+) such that Ax = ρ(A)x. Such vector x

is unique up to normalization.

Lemma 2 Let A ∈ Pn. For any E ∈ Mn, one has

lim
t→0

ρ(A + tE) − ρ(A)

t
= 〈y,Ex〉

〈y, x〉 ,

where x and y are Perron eigenvectors of A and AT , respectively. In particular, the
partial derivatives of ρ at A are given by

∂ρ

∂Ai,j

(A) = yixj

〈y, x〉 . (23)

Proof This lemma is a particular formulation of [6, Theorem 6.3.12]. �

Formula (23) shows that ρ(A) depends on each entry of the matrix A. More pre-
cisely, if an arbitrary entry of A increases, then so does the spectral radius of A.

Lemma 3 If the index sets I, J ∈ J (n) are distinct, then there is no open set in Pn

over which the function

A ∈ Pn �→ ρ(AI ) − ρ(AJ ) (24)

is constant.

Proof One of the index sets contains an element which is not in the other. Suppose,
for instance, that 
 ∈ I\J . Let us examine the behavior of (24) around a reference
matrix, say A∗ ∈ Pn. By Lemma 2, a slight perturbation in the (
, 
)-th entry of A∗
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modifies the value of ρ(AI∗). However, the term ρ(AJ∗ ) remains unchanged because

 /∈ J . This argument proves that, in any neighborhood of A∗, the difference (24) is
subject to changes. �

Lemma 3 is equivalent to saying that, for any pair of distinct integers k, 
 ∈
{1,2, . . . , rn}, there is no open set in Pn over which the function χk − χ
 is constant.
We now are ready to state:

Proposition 5 For each k ∈ {1,2, . . . , rn}, let �(Pn, k) = {A ∈ Pn :
card[σR

n+(A)] = k}. Then,

(a) �(Pn, rn) is an open set in Mn.
(b) �(Pn, k) has empty interior in Mn when k < rn.

Proof That A belongs to �(Pn, rn) amounts to saying that

A ∈ Pn and χ
↑
1 (A) < χ

↑
2 (A) < · · · < χ↑

rn
(A). (25)

Since Pn is an open set in the space Mn, a slight perturbation of A is still in Pn.
On the other hand, the inequalities in (25) remain strict after perturbation because
the functions χ

↑
k : Pn → R are continuous. This takes care of (a). Now, consider

any k < rn. There is no loss of generality in assuming that k ≥ n because otherwise
�(Pn, k) is empty by Proposition 4. Let A ∈ Pn be a matrix in �(Pn, k), i.e.,

χψ(j)(A) = χψ(j+1)(A) ∀j ∈ Jeq,
(26)

χψ(j)(A) < χψ(j+1)(A) ∀j ∈ Jstr

for a suitable permutation ψ and a suitable partition Jeq ∪Jstr = {1,2, . . . , rn−1} with
|Jstr| = k − 1. Consider any 
 ∈ Jeq. In view of Lemma 3, the equality χψ(
)(A) =
χψ(
+1)(A) can be broken by perturbing A. The perturbed matrix, say A′, can be
taken as near from A as one wishes. Notice that (26) remains in force after pertur-
bation and that σR

n+(A′) has at least k + 1 elements. Summarizing, outside of the set
�(Pn, k), one can find a positive matrix which is arbitrarily close to A. This takes
care of (b). �

Remark 3 We mention in passing that the variational formulas (21)–(22) have other
uses besides guaranteeing the continuity of ρ. By applying them to any principal
submatrix AJ of A ∈ Pn, one gets

min
i∈J

∑
j∈J

Ai,j ≤ ρ(AJ ) ≤ max
i∈J

∑
j∈J

Ai,j .

The above sandwich yields easily computable lower and upper bounds for the compo-
nents χk(A) of the Perron map. A tighter sandwich is obtained by applying Brauer’s
theorem (cf. [11, Sect. 2.1]).
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For each dimension n ∈ {2,3, . . . ,6}, we performed the numerical experiment
which consists in generating randomly a collection of 2000 matrices of size n × n.
Each matrix A was generated according to a uniform distribution on the hypercube
[0,1]n×n, i.e., the components Ai,j , with i, j ∈ {1, . . . n}, were independent random
variables following a uniform distribution on the interval [0,1]. We computed the cor-
responding Pareto-spectra by using the enumerative method suggested by Lemma 1.
It turned out that in all cases the maximal cardinality rn was attained! If one takes into
account the following proposition, the outcome of this experiment is not surprising
altogether.

Proposition 6 Let Mn be equipped with a probability measure P that is absolutely
continuous with respect to the n × n-dimensional Lebesgue measure. If P is concen-
trated on

cl(Pn) = {A ∈ Mn : A is nonnegative}, (27)

then

P(�(Pn, k)) =
{

1 if k = rn,

0 if k < rn.

In particular, if X ∈ Mn is a random matrix with uniform distribution on the hyper-
cube [0,1]n×n, then Prob[card[σR

n+(X)] = rn] = 1.

Proof The boundary of Pn has zero Lebesgue measure in Mn. So, that P is absolutely
continuous and concentrated on (27) amounts to saying that P is expressible in the
form

P(�) =
∫

�∩Pn

f (A)dμn×n(A).

Here μm denotes the m - dimensional Lebesgue measure and f : Mn → R refers to
the density function of P , i.e., the Radon-Nikodym derivative of P with respect to
μn×n. Let k < rn. We shall prove that �(Pn, k) has zero Lebesgue measure in Mn.
For this we rely not just on the continuity of the spectral radius function ρ, but on
a stronger property, namely, its analyticity on Pn. Recall that a function of several
real variables is called analytic at a point if in a neighborhood of this point it has
a power series expansion. The analyticity of ρ at a given A0 ∈ Pn can be shown,
for instance, by using a general analyticity result of functions involving eigenvalues
(cf. [5]). Alternatively, one can apply the “real” version of Theorem 2 in [1]. It is
important to observe that for all A near A0, the term ρ(A) is a simple eigenvalue
of A. That ρ : Pn → R is analytic implies in turn that each component of the Perron
map is analytic. Note that if A belongs to �(Pn, k), then at least two of the terms
in (16) coincide. Thus,

�(Pn, k) ⊂
⋃

ψ∈Perm(rn)

{A ∈ Pn : χψ(2)(A) − χψ(1)(A) = 0}

with Perm(m) denoting the set of permutations on {1,2, . . . ,m}. Observe that each
set in the above union has zero Lebesgue measure in Mn because each function
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χψ(2) − χψ(1) is nonconstant and analytic on Pn. This proves that �(Pn, k) has zero
Lebesgue measure in Mn and yields the equality P(�(Pn, k)) = 0. For the second
part of the proposition we take f as the uniform density function on [0,1]n×n. �

2.3 The Pareto capacity of Mn

The case of a nonsymmetric matrix A ∈ Mn with possibly negative entries is more in-
volved. According to Lemma 1, there are still rn classical eigenvalue problems to be
solved, but now each problem may yield several solutions, i.e., several Pareto eigen-
values. In fact, for a general A ∈ Mn, the cardinality of σR

n+(A) may go beyond the
bound rn = 2n − 1 considered in (9). Let us illustrate this point with a low dimen-
sional example.

Example 4 Consider a 3 × 3 matrix of the form

A =
⎡
⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤
⎦=

⎡
⎣8 −1 γ

3 4 ε

ν −δ 6

⎤
⎦ (28)

where γ, ε, ν, δ are positive parameters. The particular submatrix

[
A11 A12
A21 A22

]
=
[

8 −1
3 4

]
(29)

has 3 Pareto eigenvalues and this is the most one can get for a 2 × 2 matrix. The
Pareto spectrum of (29) is {5,7,8}. We are allowing A to have exactly 2 negatives
entries, both in the same column. This choice is dictated by the wish of complying
to the sign-constraint (6) for as many index sets J as possible. A particular case of
(28) with 9 Pareto eigenvalues is displayed in Table 4. For ease of visualization, the
Pareto eigenvalues are being arranged in increasing order. Note that the index set J3

produces two Pareto eigenvalues. The same remark applies to J6 and J7. No Pareto
eigenvalue is produced by J2.

Table 4 Pareto spectrum of the matrix (28) when γ = 4, ε = 1/2, ν = 2 and δ = 1/2

λ x1 x2 x3 y1 y2 y3 Index set

4.133975 0 1 0.267949 0.071797 0 0 J6

4.602084 0.185257 1 0.092628 0 0 0 J7

5 0.333333 1 0 0 0 0.166667 J3

5.866025 0 0.267949 1 3.732051 0 0 J6

6 0 0 1 4 0.5 0 J4

7 1 1 0 0 0 1.5 J3

8 1 0 0 0 3 2 J1

9.397916 1 0.602084 0.5 0 0 0 J7

10 1 0 0.5 0 3.25 0 J5
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The next lemma is a slight improvement with respect to [17, Proposition 5.2].
This new upper bound for the cardinality of σR

n+(A) will be further improved in
Proposition 7.

Lemma 4 A matrix of size n × n has at most n2n−1 − (n − 1) Pareto eigenvalues.

Proof Consider an arbitrary A ∈ Mn. We suppose that A has at least one negative
off-diagonal entry, otherwise we are done because 2n − 1 ≤ n2n−1 − (n − 1). As a
preliminary upper estimate for the cardinality of σR

n+(A) one may consider

card[σR
n+(A)] ≤ n2n−1. (30)

The bound (30) was suggested in [17] and follows easily from the fact that each
principal submatrix AJ has at most |J | real eigenvalues. Notice that

n2n−1 =
∑

J∈J (n)

|J | =
n∑

d=1

d Cn
d with Cn

d = n!
d!(n − d)! .

For sharpening the bound (30) we must take into account the nonnegativity condi-
tion (6). Let j1, . . . , jp indicate the columns of A containing a negative off-diagonal
entry, i.e.,

{j1, . . . , jp} = {j ∈ {1, . . . , n} : Ai,j < 0 for some i �= j}.
Two cases must be distinguished:
Case p ∈ {n−1, n}. We take away the p diagonal terms {Aj,j : j ∈ {j1, . . . , jp}} from
the Pareto spectrum of A. These diagonal terms where counted as Pareto eigenvalues,
but in fact they are not because the nonnegativity condition (6) is violated when J =
{jk} with k ∈ {1, . . . , p}. Hence,

card[σR
n+(A)] ≤ n2n−1 − p ≤ n2n−1 − (n − 1).

Case p ∈ {1, . . . , n − 2}. Besides the p diagonal terms considered above, we must
drop a few additional candidates for membership in σR

n+(A). If one considers the

index set J+ = {1, . . . , n}\{j1, . . . , jp}, then one gets a corresponding matrix AJ+

whose off-diagonal entries are nonnegative. The (n − p) × (n − p) matrix AJ+ pro-
duces at most one Pareto eigenvalue and not |J+| = n − p as counted before. So, we
must substract also n − p − 1 candidates from our initial estimate n2n−1. Again, one
ends up with

n2n−1 − (n − p − 1) − p = n2n−1 − (n − 1)

remaining candidates. �

The main merit of the bound derived in Lemma 4 is its simplicity. The bound
proposed in the next proposition is sharper but it requires evaluating a more involved
expression, namely, the discrete Fenchel conjugate

n �→ ϕ∗(n) = sup
p∈N

{np − ϕ(p)}

of a certain function ϕ : N → N of integer variable.
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Proposition 7 A matrix of size n × n has at most

qn = n2n−1 − n(n − 1)

2
+ ϕ∗(n)

Pareto eigenvalues. Here ϕ∗ : N → N stands for the discrete Fenchel conjugate of

p �→ ϕ(p) = p 2p−1 + p(p + 1)

2
. (31)

Given the special form (31) of the function ϕ, the supremum in the definition of ϕ∗
could equally be taken just over {1, . . . , n − 1}.

Proof A matrix A ∈ Mn has Cn
2 principal submatrices of size 2 × 2, i.e., of the form

A{k,l} =
[
Ak,k Ak,


A
,k A
,


]
.

Let m denote the number of matrices A{k,l} satisfying the sign condition

Ak,
A
,k < 0. (32)

Each of the remaining Cn
2 −m matrices A{k,l} produces at most one Pareto eigenvalue

and not two as considered in (30). We must therefore substract the number Cn
2 − m

from the upper bound (30). But this is not all. Each of the m matrices satisfying (32)
contains a negative off-diagonal entry and this fact eliminates additional candidates
for membership in the Pareto spectrum. Let p denote the number of columns contain-
ing at least one of these m negative off-diagonal entries. Let us examine the different
possibilities depending on the size of m:

• 1 ≤ m ≤ n − 1. In order to loose as few candidates as possible we place the m

negative off-diagonal entries in the same column, say, the first one. We have p = 1
and only one additional candidate is lost.

• n ≤ m ≤ (n−1)+ (n−2). The next group of m− (n−1) negative off-diagonal en-
tries are to be placed in another column, say, the second one. They must be placed
below the diagonal entry. This time p = 2 and we lose 4 additional candidates
because the first two columns of A contain a negative element on the same row.

• 1 +∑p−1
s=1 (n − s) ≤ m ≤∑p

s=1(n − s). This corresponds to the general case and
the most conservative configuration looks like in the following matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ + + + + +
− ∗ + + + +
− − ∗ + + ∗
− − − ∗ ∗ ∗
− − − ∗ ∗ ∗
− − ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

.

No Pareto-eigenvalue is produced by the upper-left block of size p × p, neither
by the principal submatrices contained in this block. This time p2p−1 additional
candidates are lost.
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The analysis of the general case leads to minimize the total loss p2p−1 + Cn
2 − m

with respect to all integers m ≥ 1 and p ≥ 1 satisfying

1 +
p−1∑
s=1

(n − s) ≤ m ≤
p∑

s=1

(n − s) ≤ Cn
2 . (33)

The best strategy is taking p as small as possible and m as large as possible. The
second inequality in (33) becomes active at the optimum and therefore

card[σR
n+(A)] ≤ n2n−1 − min

p

{
p2p−1 + Cn

2 −
p∑

s=1

(n − s)

}
,

= n2n−1 − Cn
2 + max

p

{
p∑

s=1

(n − s) − p 2p−1

}

where optimization is carried out with respect to p ≥ 1 such that
∑p

s=1(n − s) ≤ Cn
2 .

The latter constraint on p amount to saying that p ≤ n−1. It is not difficult to see that
such constraint on p is superfluous. In fact, the optimal integer p is very small while
compared to n. A matter of simplification completes the proof of the proposition. �

Computing ϕ∗(n) is not so difficult after all. Given the special structure of ϕ,
everything boils down to finding the largest element in a collection of n − 1 integers.
If the dimension n is big, then the simplest way of computing ϕ∗(n) is by finding the
unique root of the nonlinear equation

[
1 + p ln(2)

]
2p−1 + p = n. (34)

The term on the left-hand side of (34) corresponds to the derivative of (31) when
viewed as a function of a real variable. If pn denotes such root, then the supremum
in the definition of ϕ∗(n) is attained at the lower integer part of pn or at the upper
integer part of pn. On the other hand, one can check that

n(n − 1)

2
− ϕ∗(n) ≥ n − 1, (35)

so Proposition 7 is stronger than Lemma 4. The difference between both sides on (35)
is negligible for small values of n but it becomes more relevant as n increases.

We mention in passing that the sign condition (32) alone does not guarantee that
A{k,
} produces two Pareto eigenvalues. This minor technical point is clarified next.

Proposition 8 Let A ∈ Mn. The 2 × 2 submatrix A{k,
} produces exactly two Pareto
eigenvalues of A if and only if the following conditions are in force:

(i) Ak,
A
,k < 0.
(ii) (Ak,k − A
,
)

2 + 4Ak,
A
,k > 0.
(iii) (A
,
 − Ak,k ±√(Ak,k − A
,
)2 + 4Ak,
A
,k)/Ak,
 > 0.
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(iv) For all i /∈ {k, 
}, one has

Ai,k + Ai,


2Ak,


(
A
,
 − Ak,k ±

√
(Ak,k − A
,
)2 + 4Ak,
A
,k

)≥ 0.

Proof This is a matter of working out Lemma 1 for the index set J = {k, 
}. Condi-
tion (ii) expresses the fact that A{k,
} has two distinct real eigenvalues. The inequali-
ties in (i) and (iii) say that the corresponding eigenvectors can be taken with positive
components. Finally, the inequalities in (iv) take care of (6). �

As one sees from Proposition 8, a matrix A{k,
} must comply to plenty of sign
restrictions in order to produce two Pareto eigenvalues of A. The analysis of the
higher dimensional principal submatrices of A is too complicated to be treated by
hand.

Definition 2 The Pareto capacity of the space Mn is understood as the maximal
number

πn = max
A∈Mn

card[σR
n+(A)] (36)

of Pareto eigenvalues that a matrix in Mn can achieve.

In a similar way one can define the Pareto capacity of any subset of Mn. Evalu-
ating πn and finding a matrix A ∈ Mn that achieves the supremum in (36) is not an
easy matter.

Proposition 9 The first two Pareto capacities are π1 = 1 and π2 = 3. For all inte-
gers k, 
 ≥ 1, one can write πk + π
 ≤ πk+
. In particular, {πn}n≥1 is an increasing
sequence.

Proof That π1 = 1 and π2 = 3 is clear. Suppose that C ∈ Mk achieves the Pareto ca-
pacity of the space Mk and that D ∈ M
 achieves the Pareto capacity of the space M
.
The Pareto spectrum of the partitioned matrix

[
C 0
0 D

]
∈ Mk+


contains the πk Pareto eigenvalues of C as well as the π
 Pareto eigenvalues of D.
There is no loss of generality in assuming that σ

R
k+(C) ∩ σ

R

+(D) = ∅, otherwise we

pick up a constant γ large enough and change D by the matrix D + γ I
. We have
proven in this way that πk+
 is greater than or equal to πk + π
. �

The sequence {πn}n≥1 increases with respect to n in an exponential way. Indeed,
in view of Propositions 3 and 7, the term πn is sandwiched as follows:

rn ≤ πn ≤ qn. (37)
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Table 5 Bounds (37) for the
Pareto capacity of spaces Mn

for n ∈ {2, . . . ,6}
n rn πn qn n2n−1 − (n − 1)

2 3 Exactly 3 3 3

3 7 9 or 10 10 10

4 15 At least 17, at most 27 28 29

5 31 At most 71 73 76

6 63 Not examined 182 187

Table 5 gives the numerical values of these bounds when n ranges from 2 to 6. The
upper bound qn is sharp when n = 2. For larger values of n there is room for improve-
ment, but obtaining a sharper and still easily computable upper bound is a tough job.
In fact, it is difficult to see which is the sign pattern that produces a matrix achieving
the Pareto capacity of the space Mn.

The Pareto capacity of M3 is either 9 or 10. We have not found yet a 3 × 3 matrix
with 10 Pareto eigenvalues. Although we seriously doubt that such a matrix exists, at
this point in time we cannot discard such a possibility. An example of 4 × 4 matrix
with 17 Pareto eigenvalues is

A =

⎡
⎢⎢⎣

34 −61 58 58
30 −63 10 9
98 −83 45 74
99 −84 46 44

⎤
⎥⎥⎦ .

A 4 × 4 matrix with more than 17 Pareto eigenvalues is likely to exist but we do not
have yet experimental evidence of this fact. That more than 27 Pareto eigenvalues is
impossible follows by examining carefully all the possible sign patterns.

2.4 Expected number of Pareto eigenvalues

Encountering a matrix A ∈ Mn that possesses as much as πn Pareto eigenvalues is
a sort of worst scenario situation. Extensive computational testing suggests that the
expected (or average) value of card[σR

n+(A)] grows at most linearly with respect to n.
The information provided by Table 6 has been obtained as follows. For each dimen-
sion n ∈ {2,3, . . . ,10}, one generates randomly a sample of 10000 matrices of size
n × n, each matrix following a uniform probability distribution over the hypercube
[−1,1]n×n. For each randomly generated matrix A one solves Problem 2 by using
Lemma 1 and one counts the number of elements in σR

n+(A).
Observe that only odd numbers of Pareto eigenvalues are showing up in Table 6.

The following proposition gives a probabilistic justification of the obtained results
for the dimension n = 2.

Proposition 10 Let X ∈ M2 be a random matrix uniformly distributed over the hy-
percube [−1,1]2×2. Then, Z = card[σ

R
2+(X)] is a discrete random variable with
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Table 6 Cardinality counting for the Pareto spectra of 10000 randomly generated matrices with possibly
negative entries. The last row shows the expected cardinality for each n ∈ {2,3, . . . ,10}

� sols. Dimension n

2 3 4 5 6 7 8 9 10

1 6592 5786 5456 5259 5336 5460 5311 5395 5354

3 3408 2981 2686 2492 2322 2149 2220 2098 2074

5 – 875 1003 1049 958 912 881 908 923

7 – 358 526 542 546 532 515 468 511

9 – – 210 268 302 296 291 302 287

11 – – 79 176 182 175 184 195 181

13 – – 33 90 119 115 144 121 150

15 – – 7 51 57 88 93 90 105

17 – – – 29 52 62 68 76 65

19 – – – 26 45 50 54 66 59

21 – – – 14 20 36 44 44 44

23 – – – 4 24 30 38 33 35

25 – – – – 13 19 24 30 20

27 – – – – 7 11 23 23 36

29 – – – – 6 12 15 16 11

31 – – – – 3 16 13 12 14

33 or more – – – – 8 37 82 123 131

Average 1.682 2.161 2.550 2.943 3.183 3.408 3.751 3.966 4.105

weight coefficients

pk = Prob[Z = k] =

⎧⎪⎨
⎪⎩

95/144 if k = 1,

0 if k = 2,

49/144 if k = 3.

The expected number of Pareto eigenvalues of X is E[Z] =∑3
k=1 kpk = 121/72 ≈

1.68.

Proof If X ∈ M2 is a random matrix distributed according to a density function f :
M2 → R, then

pk =
∫

�k

f (A)dμ2×2(A) (38)

with �k = {A ∈ M2 : card[σ
R

2+(A)] = k}. If f is the uniform density on the hyper-

cube [−1,1]2×2, then the integral (38) becomes

pk = 2−4 μ2×2(�k ∩ [−1,1]2×2).

We now recall the information provided by Tables 1 and 2. The region �2 ∩
[−1,1]2×2 is negligible with respect to the measure μ2×2 as a consequence of the
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principle stated in (8). This shows that p2 = 0. For evaluating p3 we must compute
the 2 × 2-dimensional volume of the region �3 ∩ [−1,1]2×2. This amounts to eval-
uating the 4-dimensional volume of the set �̂3 of all vectors (a, b, c, d) ∈ [−1,1]4

satisfying one of the following mutually exclusive conditions:

b > 0, c > 0, (39)

b < 0, c > 0, a − d > 0, (a − d)2 + 4bc > 0, (40)

b > 0, c < 0, a − d < 0, (a − d)2 + 4bc > 0. (41)

A matter of iterated integration shows that the portion (39) contributes with 4 units
to the volume of �3 ∩ [−1,1]2×2. Integration over (40) produces

∫ 0

−1

[∫ 1

0

[∫
a−d>

√−4bc
−1≤a,d≤1

dμ2(a, d)

]
dμ1(c)

]
dμ1(b)

=
∫ 0

−1

[∫ 1

0
2(1 − √−bc)2dμ1(c)

]
dμ1(b) = 13

18

additional units. The contribution of the portion (41) is also 13/18 as one can see by
exchanging the roles of b and c, as well as the roles of a and d . In short,

p3 = 1

16

[
4 + 13

18
+ 13

18

]
= 49

144
≈ 0.34 and p1 = 1 − 49

144
= 95

144
≈ 0.66.

This completes the proof of the proposition. �

It is worth mentioning that the integral (38) serves to compute the weight coeffi-
cients pk even if the random matrix X does not follow a uniform distribution. One
can consider, in fact, any absolutely continuous law, i.e., any probability law admit-
ting a density function with respect to the Lebesgue measure. Although the weight
coefficients p1 and p3 depend on f , the coefficient p2 does not. In other words, no
matter which is the density function that is being employed, a 2 × 2 random matrix
has 2 Pareto eigenvalues with probability zero.

The values announced by Proposition 10 are consistent with those appearing in
the second column of Table 6. A probabilistic justification of the experimental data
for higher dimensional matrices could be developed along the same lines, but such a
task would necessarily be cumbersome and tedious.

2.4.1 Asymptotic behavior

Table 6 is a statistical sample giving a hint on how card[σR
n+(A)] behaves when

A ∈ Mn is generated according to a uniform probability distribution as explained
before. Allowing negatives entries in A has as consequence the violation of the con-
dition (6) on a large number of occasions. The later fact partially explains why the
expected value of card[σR

n+(A)] does not grow exponentially. The lack of symmetry
in the random matrices A ∈ Mn, and in their corresponding principal submatrices, is
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another reason explaining the slow growth of the expected value of card[σR
n+(A)]. In-

deed, nonsymmetric matrices usually have a big proportion of complex eigenvalues,
which, of course, do not count as Pareto eigenvalues.

In an interesting paper of 1994, Edelman et al. [3] prove that if Enormal
n denotes the

expected number of real eigenvalues of an n×n matrix whose entries are independent
random variables with standard normal distributions, then

lim
n→∞

Enormal
n√

n
=
√

2

π
,

i.e., Enormal
n behaves like

√
2n/π for large n. Numerical experiments with matrices

whose entries are independent random variables uniformly distributed on [−1,1] are
also reported in [3]. The asymptotic behavior of Euniform

n does not differ significantly
with respect to the normally distributed case. Additional information on this topic can
be found in [2].

Let Euniform
n denotes the expected number of Pareto eigenvalues of an n×n matrix

whose entries are independent random variables with uniform distribution on [−1,1].
The last row in Table 6 suggests the existence of a constant c such that

Euniform
n ≈ c

√
n for large n.

Additional numerical testing reported in Table 7 confirms this asymptotic behavior,
but we do not have yet a formal proof. Table 7 contains also information on the
behavior of Enormal

n , the expected number of Pareto eigenvalues of an n × n matrix
whose entries are independent random variables with standard normal distributions.3

2.5 Spectral histograms

Among a large set of randomly generated matrices of size 3 × 3, one case with 9
Pareto eigenvalues was detected:

A =
⎡
⎣0.347338 −0.612421 0.583729

0.308260 −0.629640 0.073888
0.985363 −0.832666 0.453387

⎤
⎦ . (42)

Up to a scalar multiplication by 100, the matrix

A =
⎡
⎣34 −61 58

30 −63 10
98 −83 45

⎤
⎦ (43)

is not far from (42) and admits 9 Pareto eigenvalues as well. The details are displayed
in Table 8. There are some similarities with the case mentioned in Example 4, but
there are also some differences. For instance, the index set J7 produces now 3 Pareto
eigenvalues. This is a very productive index set indeed.

3IST cluster took 8 hours to produce the entry of Table 7 relative to n = 20 (normal distribution) by using
40 processors in parallel.
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Table 7 Expected cardinality of the Pareto spectrum of a random matrix with possibly negative entries,
computed from a sample of 10000 randomly generated matrices. Uniform distributions and standard nor-
mal distributions are considered

Expected Dimension n

cardinality 2 3 4 5 6 7 8 9 10

Eunif
n 1.682 2.161 2.550 2.943 3.183 3.408 3.751 3.966 4.105

Eunif
n√
n

1.189 1.248 1.275 1.316 1.299 1.288 1.326 1.322 1.298

Enormal
n 1.707 2.217 2.641 3.031 3.349 3.465 3.736 4.090 4.283

Enormal
n√

n
1.207 1.280 1.320 1.356 1.367 1.310 1.321 1.363 1.354

Expected Dimension n

cardinality 11 12 13 14 15 16 17 18 19 20

Eunif
n 4.389 4.716 4.756 4.607 4.788 4.978 5.142 5.652 5.808 5.745

Eunif
n√
n

1.323 1.362 1.319 1.231 1.236 1.245 1.247 1.332 1.332 1.285

Enormal
n 4.484 4.481 4.597 4.624 4.901 5.178 5.469 5.306 5.553 5.712

Enormal
n√

n
1.352 1.294 1.275 1.236 1.266 1.295 1.327 1.251 1.274 1.277

Table 8 Pareto spectrum of the matrix (43)

λ x1 x2 x3 y1 y2 y3 Index set

−44.590788 0.479759 1 0.401644 0 0 0 J7

−38.166419 0.815397 1 0.037168 0 0 0 J7

−37.352790 0.854907 1 0 0 0 0.780887 J3

8.352790 1 0.420446 0 0 0 63.102976 J3

34 1 0 0 0 30 98 J1

36.672749 0 0.100328 1 51.879972 0 0 J6

45 0 0 1 58 10 0 J4

98.757208 0.712877 0.194034 1 0 0 0 J7

115.092658 0.715231 0 1 0 31.456936 0 J5

Two matrices may possess the same number of Pareto eigenvalues, but not for the
same reasons. For instance, in one case the Pareto eigenvalues could be produced by
the low dimensional principal submatrices, and in the other case the production of
Pareto eigenvalues could be mainly due to the high dimensional principal submatri-
ces.

Definition 3 The spectral histogram of A ∈ Mn is the vector h(A) = (h1(A),h2(A),

. . . , hrn(A)) whose k-th component indicates the number of Pareto eigenvalues of
A produced by Jk . The aggregated spectral histogram of A is the vector H(A) =
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(H1(A),H2(A), . . . ,Hn(A)) defined by

Hd(A) =
∑

k s.t. |Jk |=d

hk(A) ∀d ∈ {1, . . . , n},

that is, Hd(A) indicates the number of Pareto eigenvalues produced by all the d × d

principal submatrices of A.

For instance, the spectral histograms of the matrices associated with Tables 4 and 8
are

(1,0,2,1,1,2,2),

(1,0,2,1,1,1,3),

respectively. Their aggregated versions are (2,5,2) and (2,4,3), respectively. In gen-
eral, one has

card[σR
n+(A)] =

rn∑
k=1

hk(A) =
n∑

d=1

Hd(A) ∀A ∈ Mn.

The function H : Mn → N
n obeys to a number of interesting rules among which one

can mention:

Proposition 11 Let A ∈ Mn. Then,

(a) H(P T AP) = H(A) for any permutation matrix P of size n × n.
(b) H(A − γ In) = H(A) − γ for all γ ∈ R.
(c) H(βA) = βH(A) for all β ≥ 0.
(d) Hd(A) ≤ d Cn

d for all d ∈ {1, . . . , n}. Simultaneous attainment of these bounds is
impossible.

(e) H1(A) = n if and only if Ai,j ≥ 0 for all i, j ∈ {1, . . . , n}, i �= j .
(f) Hn(A) = n if and only if A is spectrally saturated in the sense that it admits n

distinct real eigenvalues with corresponding eigenvectors in the interior of R
n+.

This is yet equivalent to saying that

A = [λ1u
1, . . . , λnu

n]U−1 (44)

for some vector λ ∈ R
n with distinct entries and some positive matrix U =

[u1, . . . , un] with det(U) = 1.

Proof For proving (a) we identify the index set Jk with the k-th face of the Pareto
cone R

n+, i.e., with the subcone

Fk = {x ∈ R
n+ : xj = 0, ∀j /∈ Jk}.

The image of a face under a permutation matrix is another face of the same dimension.
This key observation leads easily to the invariance property stated in (a). The other
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statements of the proposition are more or less straightforward, except possibly for the
last part of (f). Saying that A is spectrally saturated means that one can find nonzero
vectors u1, . . . , un in the interior of R

n+ and distinct real numbers λ1, . . . , λn such
that Aui = λiu

i for all i ∈ {1, . . . , n}. Written in full extent, these equations are

n∑
j=1

Ai,ju
i
j = λiu

i
j ∀i, j ∈ {1, . . . , n}. (45)

We look at (45) as a linear system of n2 equations in which the unknown variables
are the entries of A. Notice that U = [u1, . . . , un] is a nonsingular matrix with pos-
itive entries. By renumbering the vectors ui if necessary, one may suppose that the
determinant of U is positive. In such case, one can take det(U) = 1 by invoking a
simple homogeneity argument. The system (45) admits then as unique solution the
matrix A given by (44). �

3 Numerical methods

3.1 Scaling-and-projection algorithm

Recall that a normalizing function for a closed convex cone K is any continuous
function φ : K → R such that

• φ(x) > 0 for all nonzero vector x ∈ K,

• φ(tx) = tφ(x) for all t > 0 and x ∈ K, (46)

• Kφ = {x ∈ K : φ(x) = 1} is compact.

One says that x ∈ K is a φ-normalized vector if φ(x) = 1. A closed convex cone in a
finite dimensional space admits always a normalizing function, think for instance of

φ(x) = ‖x‖, (47)

φ(x) =√±〈x,Bx〉, (48)

where the sign in (48) depends on whether the quadratic form x �→ 〈x,Bx〉 is positive
or negative on K . Another interesting normalizing function is

φ(x) = 〈e, x〉 with e ∈ int(K+), (49)

but this choice makes sense only if K is pointed.
Below we introduce and discuss the Scaling-and-Projection Algorithm (SPA)

whose aim is finding a solution to

Problem 3

Find λ ∈ R and vectors x, y ∈ R
n such that

(A − λB)x = y,
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K � x ⊥ y ∈ K+, (50)

φ(x) = 1. (51)

This is just another way of writing Problem 1 except that now one has added the
normalization condition (51). The complementarity system (50) simply means that
x ∈ K , y ∈ K+, and 〈x, y〉 = 0. This system remains obviously unchanged if y is
multiplied by a positive scalar:

x ∈ K, sy ∈ K+, 〈x, sy〉 = 0. (52)

The parameter s > 0 is interpreted as a scaling factor that puts the primal vector x

and the dual (or residual) vector y in a right balance. This is the “scaling” part of
the algorithm. As we shall see latter, the choice of the scaling parameter does have
an importance when it comes to convergence issues. In view of Moreau’s orthogonal
decomposition theorem [12], one can write (52) in the equivalent form

x = �K [x − sy]

with �K(z) denoting the element from K at smallest distance from z. This is the
“projection” part of the algorithm. The following lemma will be used in the sequel.

Lemma 5 Let K ∈ �(Rn). If y is orthogonal to x ∈ K\{0}, then the function s ∈
R �→ �K [x − sy] never vanishes.

Proof Suppose, on the contrary, that �K [x − ŝy] = 0 for some ŝ ∈ R. In such a case
the vector ŝy − x is in the dual cone K+ and therefore

0 ≤ 〈x, ŝy − x〉 = −‖x‖2,

contradicting that x is a nonzero vector. �

3.1.1 Description of the SPA

The SPA generates a sequence {xt }t≥0 lying in the compact set Kφ and a bounded
sequence {λt }t≥0 in R. It generates also a bounded sequence {yt }t≥0 of residual vec-
tors.

• Initialization: Take any nonzero vector u in K and define

x0 = u

φ(u)
.

• Iteration: One has a current point xt in Kφ . Compute

λt = 〈xt ,Axt 〉
〈xt ,Bxt 〉 and yt = Axt − λtBxt .
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By construction, yt is orthogonal to xt . Select any step-size or scaling factor st > 0
and compute the projection

vt = �K [xt − sty
t ]. (53)

By Lemma 5 one knows that vt �= 0. The projection vt belongs to K but it is not
necessarily a φ-normalized vector. Proceed then to a φ-normalization

xt+1 = 1

φ(vt )
vt . (54)

Remark 4 If at the t-th iteration one has yt = 0, then one should stop. There is no
need to continue because xt+1 = xt and a solution has been found. Indeed, (xt , λt )

is a classical solution (i.e. the residual term yt vanishes) for the pair (A,B) with xt

being a nonzero vector in K .

Computing vt is a matter of projecting onto the cone K and this could be hard
if K has a complicated structure. There are however plenty of interesting cones for
which the projection map admits an explicit and easily computable formula. This
is true, for instance, for the Pareto cone or positive orthant, for the Loewner cone
of positive semidefinite symmetric matrices, for the Lorentz or ice-cream cone and,
more generally, for any revolution cone.

Selecting the scaling factor is perhaps the most delicate part concerning the use of
the SPA. Is there an “optimal” way of selecting the scaling factor st ? This question is
too complex to be settled properly at this point in time. Anyway, it seems natural ask-
ing the sequence {st }t≥0 to be bounded. Not only that, it would be convenient to have
convergence toward some positive number. Some possible options for consideration
are:

I. The Constant Rule. One chooses st = s for all t ≥ 0, with s denoting a positive
constant.

II. The Blind Rule. One considers a sequence {st }t≥0 converging to some positive
scalar s.

III. The Feedback Rule. One uses a scaling factor st = �(xt , λt , y
t ) that depends on

the current information at stage t .

3.1.2 A convergence result

As mentioned before, the sequence {xt }t≥0 generated by the SPA remains in the com-
pact set Kφ .

Theorem 1 Suppose that the SPA is implemented with the Blind Rule (or with any
other rule that guarantees convergence of scaling factors toward a positive scalar).
Assume convergence of {xt }t≥0 toward some limit that one denotes by x̄. Then,

{λt }t≥0 → λ̄ = 〈x̄,Ax̄〉
〈x̄,Bx̄〉 , (55)
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{yt }t≥0 → ȳ = Ax̄ − λ̄Bx̄, (56)

and (x̄, λ̄, ȳ) is a solution to Problem 3.

Proof The limit x̄ is necessarily in Kφ . The conclusions (55) and (56) are immediate.
Observe, incidentally, that ȳ is orthogonal to x̄. Plugging (53) into (54) one gets

xt+1 = 1

φ(�K [xt − styt ]) �K [xt − sty
t ]. (57)

The projection mapping �K and the normalizing function φ being continuous, one
can pass to the limit in (57). One obtains in this way

r̄ x̄ = �K [x̄ − sȳ] (58)

with s denoting the limit of {st }t≥0 and r̄ = φ(�K [x̄ − sȳ]) being a positive scalar
in view of Lemma 5 and the property (46) of the normalizing function φ. In order to
complete the proof one must check that r̄ = 1. To do this one rewrites (58) as

r̄ x̄ = �K [r̄ x̄ − (sȳ − x̄ + r̄ x̄)].
Moreau’s orthogonal decomposition theorem yields

sȳ − x̄ + r̄ x̄ ∈ K+,

〈r̄ x̄, sȳ − x̄ + r̄ x̄〉 = 0.

Since x̄ ⊥ ȳ, the last equality reduces to r̄ (r̄ − 1)〈x̄, x̄〉 = 0. So, r̄ = 1 as needed. �

The convergence assumption on {xt }t≥0 is essential to make sure that one can pass
to the limit in (57). Suppose, on the contrary, that x̄ is just a cluster point and not a
limit point of {xt }t≥0. This means that x̄ = limt→∞ xϕ(t) for some strictly increasing
function ϕ : N → N. It is very tempting trying to pass to the limit on both sides of

xϕ(t)+1 = 1

φ(�K [xϕ(t) − sϕ(t)yϕ(t)]) �K [xϕ(t) − sϕ(t)y
ϕ(t)] (59)

but the term on the left-hand side may not converge. Taking a new subsequence if
necessary, one may assume that xϕ(t)+1 does converge. The problem now is that
x̂ = limt→∞ xϕ(t)+1 may be different from x̄. After passing to the limit in (59) one
arrives at r̄ x̂ = �K [x̄ − sȳ]. This time one gets

sȳ − x̄ + r̄ x̂ ∈ K+,

〈r̄ x̂, sȳ − x̄ + r̄ x̂〉 = 0,

but there is no way of guaranteeing that r̄ x̂ − x̄ = 0. In short, what we are saying
is that a cluster point (x̄, λ̄, ȳ) produced by the SPA is not necessarily a solution to
Problem 3. In view of this observation, it is crucial to choose {st }t≥0 so as to guarantee
the convergence of {xt }t≥0.
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3.1.3 The SPA as fixed point algorithm

The SPA implemented with a constant scaling factor s > 0 corresponds in fact to a
fixed point algorithm

xt+1 = Fs(x
t ) (60)

for the nonlinear operator Fs : Kφ → Kφ given by

Fs(x) = 1

φ(�K [x − sy])�K [x − sy],

y = Ax − 〈x,Ax〉
〈x,Bx〉Bx.

Proposition 12 Suppose that K is pointed. If φ is any of the normalizing func-
tions (47), (48), (49), then the nonlinear operator Fs : Kφ → Kφ satisfies the relation

‖Fs(x
′) − Fs(x)‖ ≤ Ls‖x′ − x‖ ∀x′, x ∈ Kφ

for a suitable Lipschitz constant Ls .

Proof The compactness of Kφ is essential at several stages. First of all, it ensures the
Lipschitzness of the map

x ∈ Kφ �→ Ax − 〈x,Ax〉
〈x,Bx〉 Bx.

The projection map �K : R
n → R

n being nonexpansive, it follows that

x ∈ Kφ �→ Gs(x) = �K

[
x − s

(
Ax − 〈x,Ax〉

〈x,Bx〉 Bx

)]

is Lipschitz as well. The Lipschitz constant of Gs depends of course on s. The map
Gs transforms the compact set Kφ into another compact set, namely Gs(Kφ) =
{Gs(x) : x ∈ Kφ}. By Lemma 5 one knows that Gs(Kφ) does not contain the ori-
gin of R

n. For completing the proof one just needs to observe that

v ∈ Gs(Kφ) �→ v

φ(v)

is a Lipschitz map because φ(v) remains away from 0 when v ranges over Gs(Kφ). �

The pointedness assumption in Proposition 12 has been introduced just to make
sure that one can use the linear form x �→ φ(x) = 〈e, x〉 as normalizing function.
The advantage of this choice is that Kφ is not just compact, but also convex. Since
Fs : Kφ → Kφ is continuous, the Schauder fixed point theorem (cf. [19, Theo-
rem 1.26]) tells us that Fs has at least one fixed point on Kφ . By the way, this proves
that Problem 1 is solvable when K is pointed.
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3.2 The convexified scaling-and-projection algorithm (CSPA)

Applying the SPA is a matter of performing fixed point iterations of the Picard type
(60) on the nonlinear operator Fs . In view of Proposition 12, it is natural to look for
a scaling factor s that renders the Lipschitz constant

Ls = sup
x′,x∈Kφ

x′ �=x

‖Fs(x
′) − Fs(x)‖

‖x′ − x‖

as small as possible. Obtaining Ls < 1 is out of the question because the Banach
Contraction Principle would imply a unique fixed point. Recall that we are dealing
with eigenvalue problems that have several solutions in general.

If the operator Fs were nonexpansive, i.e., Ls = 1, then the Krasnoselskii iteration
scheme

xt+1 = (1 − α)xt + αFs(x
t ) (61)

would converge to a fixed point of Fs provided the parameter α is taken in the open
interval ]0,1[. Historically speaking, Krasnoselskii [9] suggested the midpoint α =
1/2 for his iteration scheme, but this is not always the best choice. Note that xt+1

is obtained as convex combination of xt and Fs(x
t ). If φ is the linear normalizing

function (49), then Kφ is convex and xt+1 remains in Kφ .
By writing (61) in a more explicit form, one gets the iteration model

λt = 〈xt ,Axt 〉
〈xt ,Bxt 〉 ,

yt = Axt − λtBxt ,

vt = �K [xt − syt ],
xt+1 = (1 − α)xt + α

1

φ(vt )
vt .

This is what we call the CSPA. Besides the choice of the initial point u, the CSPA
leaves open the possibility of playing with two parameters: the scaling factor s and
the convexity coefficient α.

Proposition 13 Let K be pointed and φ be the linear normalizing function (49). In
case of convergence, the CSPA produces a solution to Problem 3.

Proof The CSPA is similar to the SPA, except that (60) has been changed by (61).
Observe that the new operator (1 − α)In + αFs has the same fixed points as Fs . �
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Table 9 Solution set of the Pareto eigenproblem associated with matrix (62)

Sol. name λ x1 x2 x3 y1 y2 y3

S1 4.133975 0 1 0.267949 0.071797 0 0

S2 4.602084 0.185257 1 0.092628 0 0 0

S3 5 0.333333 1 0 0 0 0.166667

S4 5.866025 0 0.267949 1 3.732051 0 0

S5 6 0 0 1 4 0.5 0

S6 7 1 1 0 0 0 1.5

S7 8 1 0 0 0 3 2

S8 9.397916 1 0.602084 0.5 0 0 0

S9 10 1 0 0.5 0 3.25 0

3.2.1 Numerical experience with the CSPA

By way of illustration, we apply the CSPA to the Pareto eigenproblem associated
with the matrix

A =
⎡
⎣8 −1 4

3 4 1/2
2 −1/2 6

⎤
⎦ (62)

whose Pareto spectrum is shown in Table 9. This matrix has 9 Pareto eigenvalues in
all.

Table 10 displays the outcome of the CSPA when implemented with the linear nor-
malizing function φ(x) = x1 + x2 + x3 and initialized4 at u = (0,1,0). The notation
Sj/m indicates that the solution Sj was found within m iterations and the symbol ∞
indicates that convergence did not occur within 2000 iterations.

Table 10 suggests somehow that the CSPA has better chances of convergence if
either the scaling factor or the Krasnoselskii parameter is small. In fact, it is very
tempting to conjecture that the convergence of the CSPA depends on the product sα.
In Table 10 one sees that convergence occurs if the product sα ranges between 0.04
and 0.3.

4 By way of conclusion

In this work we have studied some theoretical aspects concerning the so-called cone-
constrained eigenvalue problem. Special attention was paid to the Paretian case. It has
been observed that the number of solutions to Problem 2 can grow exponentially with
respect to the dimension n of the underlying Euclidean space. The Pareto spectrum
of an n × n matrix can be computed explicitly by solving 2n − 1 classical eigenvalue

4We initialized the CSPA also at u = (0,1,1) and got an array more or less similar to that of Table 10. The
detected Pareto eigenvalues depend of course on the initial point.
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Table 10 Influence of the scaling parameter s and the Krasnoselskii parameter α on the detected so-
lution and on the number of iterations required by the CSPA to achieve convergence. The matrix under
consideration is (62) and the initial vector is u = (0,1,0)

s Krasnoselskii parameter α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 ∞ S2/158 S2/106 S2/79 S2/62 S2/51 S2/43 S2/37 S2/32

0.2 S2/160 S2/80 S2/52 S2/37 S2/28 S2/22 S2/17 S2/14 S2/10

0.3 S2/107 S2/52 S2/33 S2/22 S2/16 S2/11 S2/5 S2/11 S2/17

0.4 S2/81 S2/38 S2/23 S2/14 S2/8 S2/11 S2/18 S2/31 S2/59

0.5 S2/64 S2/29 S2/16 S2/8 S2/11 S2/23 S2/49 S3/184 S3/169

0.6 S2/53 S2/23 S2/11 S2/11 S2/22 S2/58 S1/192 ∞ ∞
0.7 S2/45 S2/19 S2/6 S2/17 S2/47 S3/193 ∞ ∞ ∞
0.8 S2/39 S2/15 S2/11 S2/24 S1/198 ∞ ∞ ∞ ∞
0.9 S2/34 S2/12 S2/16 S2/53 ∞ ∞ ∞ ∞ ∞
1.0 S2/30 S2/9 S2/23 S1/209 ∞ ∞ ∞ ∞ ∞
2.0 S2/11 S1/246 ∞ ∞ ∞ ∞ ∞ ∞ ∞
3.0 S2/23 ∞ ∞ ∞ ∞ ∞ ∞ ∞ S5/24

4.0 S2/315 ∞ ∞ ∞ ∞ ∞ ∞ ∞ S7/23

5.0 S3/1205 ∞ ∞ ∞ ∞ ∞ ∞ S7/91 S7/23

8.1 S1/445 ∞ ∞ ∞ ∞ ∞ ∞ S5/25 S7/21

8.2 S3/466 ∞ ∞ ∞ ∞ ∞ ∞ S7/24 S9/10

8.3 S3/429 ∞ ∞ ∞ ∞ ∞ ∞ S7/24 S5/21

problems of different sizes (cf. [17]). For n ≥ 10, such an explicit method is too time
consuming and alternative search techniques are to be sought.

In Sect. 3 we introduced and studied the SPA. In case of convergence, this al-
gorithm generates a sequence {(xt , λt , y

t )}t ≥ 0 leading to a solution (x,λ, y) to
Problem 3. A variant of the SPA called CSPA was also studied. The latter algorithm
behaves similarly to the former one except that it offers the possibility of choosing an
additional adjustment parameter.

The SPA and the CSPA can be applied to cone-constrained eigenvalue problems
involving an arbitrary closed convex cone K , and not just the Pareto cone as in the
explicit method of [17].

The SPA and the CSPA are useful methods only if we are not aiming at finding all
the solutions to Problem 3. This is not just because the number of solutions could be
very large, but also because some solutions could be extremely hard to be detected.
It happens in practice that some solutions are hard to be found even if these algo-
rithms are initialized at nearby initial points. The existence of such “rare” solutions
is somewhat intrinsic to the nature of the cone-constrained eigenvalue problem. An
interesting open question is understanding why some solutions are so hard to detect
and others are not. An appropriate theoretical analysis remains to be done.
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