emblem
Weight of truck with sacks
Simulates the weight of a truck* load of random no. of sacks with random weights.
2024.Nov.25 05:21:44
Sacks No. of sacks: n and p of binomial. •
Weight t (Br. 'tonne', Am. 'metric ton') Weight of sack: μ, σ, of Gaussian. •
Trials, repeatability  10^; No. of trucks simulated, repeatability. •
wleft, wright t   (automatic if 0, 0) Limits for the graph abscissae. •
Show values Shows the graph coordinates.
  Simulates the weight of a truck loaded with n sacks weighing w each, both these numbers being random variables, here n binomial and w Gaussian. (For n, a better distribution than binomial should be used.) The total weight, W = ∑i wi, i = 1..n, depends on the number of summands and the individual values. A reasonable interval is, thus, sought for W. (The basis problem addresses a nominal 10 t load. Binomial.xls)
  If the limits for the graph abscissae are given equal, say, x, the range will be ≅ ±|xσW.
  [Gut, 2005, p 83] With finite means, E(SN) = E(N) E(X); and with finite variances, Var(SN) = E(N) Var(X) + Var(N) E(X)². (Notice the dimensional coherence.)
* "Lorry" may be the Br. Eng. word for "truck".

 Example: Nixe (Conservas Garavilla, S. A.), 'mejillones en escabeche' (bar code 2005-5486): can with "13 to 18" units, capacidad 120 mL, peso neto 111 g, p. escurrido, 69 g (172 kcal / 100-g).

References: Plate: TruckWithSacks

• Search "random number of random variables".

• [Gut, 2005, p 83], [Thompson], [Ross, 1988], [Ross, 2006].

• Robbins, Herbert, "The asymptotic distribution of the sum of a random number of random variables", Bull. Amer. Math. Soc., 1948 (54), 1151–1161 .pdf (=).

• Virtual laboratories in Prob & Stat, Univ. Alabama in Huntsville.

• Weisstein, Eric W., "Binomial Distribution". From MathWorld—A Wolfram Web Resource.

• 1495-04-16: Apianus, Petrus, birthday.

 
 
Valid HTML 4.01! IST http://web.ist.utl.pt/~mcasquilho/compute/qc/Fx-truck.php
Created: 2005-05-30 — Last modified: 2017-05-05