©
Gamma distribution
  Draws (analytically) the curve of a gamma distribution.
2024.Nov.25 05:43:16
Parameters: Parameters of the distribution. (Avoid α < 1.)
xmax, m Graph goes from 0 to xmax (μ+4σ if 0), with m points.
Show values Shows the coordinates of the graph.
  A gamma [Gamma(α, θ)] variable has pdf  f(x; α, θ) = (xθ) α−1 exθ ⁄ [Γ(α) θ], where μ = α.θ and σ² = α.θ². Also, θ = σ² ⁄ μ and α = (μσ)². Some properties:
 • If X ~ Gamma(αθ), then X ⁄θ ~ Gamma(α, 1)  • Gamma(1, θ) = Exponential(θ)  • c X ~ Gamma(α, c θ) for c>0
 • For (independent) Xi ~ Exponential(θ), Y = Σi=1, N Xi :  Y ~ Gamma(N, θ)
 • Gamma(ν⁄2, 2) = χ²(ν)  • For integer α = k, Gamma(k, θ) = Erlang(k, θ)  • For large α, Gamma(α, θ) → Gauss(μ=α θ, σ=√α θ)
Reference:
• Eric W. Weisstein, "Gamma Distribution." From MathWorld--A Wolfram Web Resource.
 
 
Valid HTML 4.01! IST http://web.ist.utl.pt/~mcasquilho/compute/qc/F-gammadis.php
Created: 2006-06-18 — Last modified:2007-10-13