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Much of the traditional literature on Truncation, Censoring, and Selection relies heavily

on properties of the Normal distribution.

1 Normal Distribution

If X has a Standard Normal distribution its density is
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¢(z). The associated (cumulative) distribution

function is

Pr[X <z| = /I o(t)dt = ®(x).

Note that ®'(z) = ¢(z) and &(—z) =1 — &(z). Letting Y = p + 0 X, we get

Pr[Y < y] =Prlu+0X <y = Pr[X < L] =/ " gydt = (L,
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Applying Leibnitz’ rule to the second to the integral above, the density of YV is
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2 Truncated Normal Distribution

Now suppose we condition on Y € A = [ay, as|, where —0co < a1 < ay < co. The probability

of Y falling into this interval is ®(*+#) — ®(*=£). Thus the conditional density of Y is

fylA) = (k) — p(UE)’ ap <y < ap

We want to derive the mean and variance of this distribution.



2.1 Moment Generating Function

The MGF is
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The last equality follows from
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where p' = ot + p.

2.2 Expected Value

Putting the MGF to work:

P(aa) — ()

BIYIY € A] = M(t)lizo = p = o 85002,

where a = “—£. Letting ay tend to infinity,
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where A(a) > 0 is the hazard function. The hazard function of the Normal distribution is
often called the inverse Mills ratio in the micro-econometrics literature.
Letting a; tend to minus infinity,

P(a2)
P(az)

EYY <a)=p—o =p—oX—as).

Letting as tend to infinity as well, of course, we get E[Y| = pu. Relative to this non-truncated
case, truncation from below raises the mean E[Y'|Y > a;] > E[Y]. Truncation from above

lowers the mean E[Y|Y < ao] < E[Y].



2.3 Variance

Putting the MGF to work again:

EIY2|Y € Al = M"(t)|4—o = 02 + pi® + 0
Therefore,

Var[Y|Y € Al=E[Y?|Y € A]—- E[Y]Y € A?

o231 — ard(az) — ard(a) _ {éb(%) — $(a1) } ’
@(042) — (13(041) @(ag) — @(al)

Letting as tend to infinity,

VarlY|y > a1]=o—2{1+ i) —{ Hloa) r}
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where §(a) = A(a)[A(a) — a]. Notice that §(a) = X' (). It can be shown that 0 < §(a) < 1.
[Derivative is 8 = N'[A —a] + [N = 1]A = A[(A — @)®* + A(A — @) — 1]. Thus §'(a*) = 0 implies
1>1-—(A—a*)? =X A—a*) = 8(a*). Since lim,_._ M(a)a = 0 we have lim,_,_, §(a) = 0.
To be completed.]

Letting a; tend to minus infinity,
2
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Letting ay tend to infinity as well, of course, we get Var[Y] = 2. Relative to the non-
truncated case, note how the variance shrinks toward zero with truncation either from above

or from below.

3 Bivariate Normal

Suppose U; and U, are independent random variables, each drawn from the Standard Normal

density ¢(u).



