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1 Introduction.

The noncentral t–distribution is intimately tied to statistical inference procedures for samples from
normal populations. For simple random samples from a normal population the usage of the non-
central t–distribution includes basic power calculations, variables acceptance sampling plans (MIL–
STD–414) and confidence bounds for percentiles, tail probabilities, statistical process control pa-
rameters CL, CU and Cpk and for coefficients of variation.

The purpose of these notes is to describe these applications in some detail, giving sufficient theo-
retical derivation so that these procedures may easily be extended to more complex normal data
structures, that occur, for example, in multiple regression and analysis of variance settings.

We begin by giving a working definition of the noncentral t–distribution, i.e., a definition that ties
directly into all the applications. This is demonstrated upfront by exhibiting the basic probabilistic
relationship underlying all these applications.

Separate sections deal with each of the applications outlined above. The individual sections contain
no references. However, a short list is provided at the end to give an entry into the literature on
the noncentral t–distribution.

For many of the computations we use the R functions qnct and del.nct. They represent the
quantile function and the inverse δ-function of the noncentral t-distribution. They do not yet exist
in the standard distribution of R. These functions and all other R code used here are provided as
part of an R work space at the class web site

http : //www.stat.washington.edu/fritz/Stat498B.html.

The statistical package R is freely available under the terms of the Free Software Foundation’s GNU
General Public License for various operating systems (Unix, Linux, Windows, MacOS X) at

http : //cran.r− project.org/.
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2 Testing for Normality

Since the noncentral t-distribution arises in applications of normal random samples we discuss here
briefly how to examine or test whether such samples indeed come from a normal distribution. There
are informal ways via QQ-plots and formal goodness-of-fit tests, of which we only discuss the main
tests based on the empirical distribution function (EDF), also referred to as EDF goodness-of-fit
tests.

2.1 QQ-Plots

To construct a QQ-plot we sort the sample X1, . . . , Xn in increasing order X(1) ≤ . . . ≤ X(n),
assigning fractional ranks pi ∈ (0, 1), i = 1, . . . , n, to these order statistics in one of several possible
and popularly used ways:

pi =
i− .5

n
or pi =

i

n + 1
or pi =

i− .375

n + .25
.

Then we plot X(i) against the standard normal pi-quantile zpi
= qnorm(pi) for i = 1, . . . , n. We

would expect the sample pi-quantile X(i) to be somewhat close to the corresponding population
pi-quantile xpi

= µ + σzpi
, at least as the sample size n gets larger. The pattern of the plotted

points (zpi
, X(i)) should look therefore look approximately linear with intercept ≈ µ and slope ≈ σ.

However, judging approximate linearity takes practice.

Daniel and Wood (1971) recognized the importance of practicing this judgment, in particular in
relation to the sample size n, by including several pages with many such normal sample plots in
their book. Nowadays it has become quite easy to gain such experience by generating (standard)
normal random samples of size n in R (or S-Plus) by using x=rnorm(n and following that with the
command qqnorm(x) which produces the corresponding QQ-plot. R uses the third choice for pi,
presented above. To judge the linearity one can follow this up with the command qqline(x) which
superimposes a fitted line on the QQ-plot. The line is fitted to the middle half of the data.

Some such QQ-plots are shown in Figures 1-4 for sample sizes n = 8, 16, 64, 256. While at sample
size n = 8 such QQ-plots can exhibit strong nonlinear patterns, this subsides as n gets large. For
large n one can still expect some fluctuating behavior in the tails. That is not unusual and should
not necessarily be construed as evidence of nonlinearity and thus nonnormality. Intuitively such
sample tail fluctuations can be understood by the fact that near the sample extremes the data are
not hemmed in quite as strongly as they are in the main part of the sample. When QQ-plots are
not clearly linear one should resort to using EDF goodness-of-fit tests to clarify the issue. However,
even such tests may then give an ambiguous verdict. On the other hand, one may want to do both
routinely, the QQ-plot for visual impression of the data and the routine EDF goodness-of-fit test
to avoid sample selection bias, which would invalidate the calculated p-values.
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Figure 1: Standard Normal Samples of Size n = 8
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Figure 2: Standard Normal Samples of Size n = 16
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Figure 3: Standard Normal Samples of Size n = 64
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Figure 4: Standard Normal Samples of Size n = 256
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Figure 5: Normal Sample of Size n = 100, EDF and True CDF Comparison

2.2 EDF Goodness-of-Fit Tests

We can also carry out formal EDF-based tests of fit for normality. Assume that X1, . . . , Xn ∼ F .
We wish to test the composite H0 : F (x) = Φ((x − µ)/σ) for some µ and σ (composite, because
under the hypothesis µ and σ > 0 can take on any values).

The empirical distribution function (EDF) is defined as

Fn(x) =
1

n

n∑
i=1

I(−∞, x](Xi) with I(−∞, x](Xi) = 1 or 0 as Xi ≤ x or Xi > x ,

i.e., Fn(x) is the proportion of sample values ≤ x. By the Law of Large Numbers (LLN) we have
that Fn(x)

n→∞−→ F (x) for all x. In fact, since F (x) is continuous this convergence is uniform in
x. Figure 5 shows such the EDF for a normal sample of size n = 100 in relation to the sampled
distribution function F (x). The fit looks quite good.

Since we do not know the specific distribution F (x) from which the sample was drawn, even under
the hypothesis (µ and σ are unknown), we use its natural estimate F̂ (x) = Φ((x−X̄)/S) to compare
it with Fn(x) via some discrepancy metric D(Fn, F̂ ).
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The following are the three main discrepancy metrics that are in use

• The Kolmogorov-Smirnov metric (measuring maximum local discrepancies)

D = max
x

{∣∣∣∣∣F̂n(x)− Φ

(
x− X̄

S

)∣∣∣∣∣
}

• The Cramer-von-Mises metric (measuring cumulative discrepancies)

W 2 =
∫ ∞

−∞

[
F̂n(x)− Φ

(
x− X̄

S

)]2
1

S
ϕ

(
x− X̄

S

)
dx with ϕ(x) = Φ′(x)

• The Anderson-Darling metric (cumulative discrepancies with sensitivity to tail behavior)

A2 =
∫ ∞

−∞

[
F̂n(x)− Φ

(
x−X̄

S

)]2
Φ
(

x−X̄
S

) [
1− Φ

(
x−X̄

S

)] 1

S
ϕ

(
x− X̄

S

)
dx

The form of these metrics are mainly given to better understand their nature. For computational
purposes one uses the following equivalent expressions, all of which employ simple summations over
i = 1, . . . , n.

• The Kolmogorov-Smirnov metric

D = max

[
max

{
i

n
− Φ

(
X(i) − X̄

S

)}
, max

{
Φ

(
X(i) − X̄

S

)
− i− 1

n

}]

• The Cramer-von-Mises metric

W 2 =
n∑

i=1

{
Φ

(
X(i) − X̄

S

)
− 2i− 1

2n

}2

+
1

12n

• The Anderson-Darling metric

A2 = −n− 1

n

n∑
i=1

[
(2i− 1) log

(
Φ

(
X(i) − X̄

S

))

+(2n + 1− 2i) log

(
1− Φ

(
X(i) − X̄

S

))]
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It turns out that the distributions of the all three discrepancy metrics given above are independent
of µ and σ. However, these distributions depend on n. For each discrepancy metric and each n
there is thus only one such distribution under the composite hypothesis H0. In principle it can be
generated by simulation for any fixed n, by simulating Nsim = 10000 such samples of size n and
computing D(Fn, F̂ ) for each such sample. That way we would get a close approximation to this
null distribution. In fact, the tabled values of this null distribution are based on a combination of
simulations and large sample asymptotic results. Using this null distribution for D(Fn, F̂ ) we reject
H0 at significance value α whenever D(Fn, F̂ ) > d1−α,n. Here dp,n is the p-quantile of the D(Fn, F̂ )
distribution for sample size n. Such p-quantiles are given in D’Agostino and M.A. Stephens (1986).

In R these tests can be enabled by installing the package nortest 1.0.zip from the class web site
to the directory that houses your R work space. Under the R Packages menu item choose “Install
package(s) from local zip files.” and proceed from there. This installation is done only once on your
computer for the installed version of R. After this installation you need to invoke library(nortest)
in any R session during which you wish to use the functions in the package nortest. These functions
are lillie.test, cvm.test and ad.test and you get documentation on them by placing a ? in
front of the respective function names, e.g., ?lillie.test. Here ?lillie.test alludes to the
Lilliefors (Kolmogorov-Smirnov) test with special steps taken for the p-value computation.

> lillie.test(rnorm(7))

Lilliefors (Kolmogorov-Smirnov) normality test

data: rnorm(7)

D = 0.287, p-value = 0.08424

> lillie.test(runif(137))

Lilliefors (Kolmogorov-Smirnov) normality test

data: runif(137)

D = 0.0877, p-value = 0.01169

> ad.test(rnorm(10))

Anderson-Darling normality test

data: rnorm(10)

A = 0.4216, p-value = 0.2572

> ad.test(runif(30))

Anderson-Darling normality test

data: runif(30)

A = 0.8551, p-value = 0.02452
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3 Definition of the Noncentral t–Distribution

If Z and V are (statistically) independent standard normal and chi–square random variables re-
spectively, the latter with f degrees of freedom, then the ratio

Tf, δ =
Z + δ√

V/f

is said to have a noncentral t–distribution with f degrees of freedom and noncentrality parameter
δ. Although f ≥ 1 originally was intended to be an integer closely linked to sample size, it is
occasionally useful to extend its definition to any real f > 0. The noncentrality parameter δ
may also be any real number. The cumulative distribution function (cdf) of Tf, δ is denoted by
Gf, δ(t) = P (Tf, δ ≤ t). If δ = 0, then the noncentral t–distribution reduces to the usual central
or Student t–distribution. Gf, δ(t) increases from 0 to 1 as t increases from −∞ to +∞ and it
decreases from 1 to 0 as δ increases from −∞ to +∞. While the former is a standard property of
any cdf, the latter becomes equally obvious when rewriting Gf, δ(t) as follows

Gf, δ(t) = P

Z + δ√
V/f

≤ t

 = P
(
Z − t

√
V/f ≤ −δ .

)

This monotonicity w.r.t. δ is illustrated in Figure 6 where the cdfs clearly move to the right as δ
increases or they are vertically ordered, which expresses the above monotonicity with respect to δ
at any fixed value t. There appears to be no such simple monotonicity relationship with regard
to the parameter f . This is illustrated in Figure 7, where the cdfs cross each other, although
not at the same point, even though the plot may give that appearance. As f gets very large the
distribution of Tf, δ approximates the normal distribution of Z +δ. This can also be seen in Figure 7
when focussing on the case df = 100. Figures 6 and 7 were produced by density.plot.delta and
density.plot.df, respectively.

In R the cdf Gf, δ(t) is evaluated using the function call pt(t,f,δ) while its density at t is evaluated
by dt(t,f,δ). R gives a corresponding quantile-function only when δ = 0, i.e., for the central t-
distribution. We provide such a function qnct for any δ in the referenced R work space. Similarly,
the inverse of Gf, δ(t) with respect to δ is useful and is given there as del.nct.

Since most of the applications to be treated here concern single samples from a normal population,
we will review some of the relevant normal sampling theory. Suppose X1, . . . , Xn is a random
sample from a normal population with mean µ and standard deviation σ. The sample mean X̄ and
sample standard deviation S are respectively defined as:

X̄ =
1

n

n∑
i=1

Xi and S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2 .
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Figure 6: The Effect of δ on the Noncentral t-Distribution
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The following distributional facts are well known:

• X̄ and S are statistically independent;

• X̄ is distributed like a normal random variable with mean µ and standard deviation σ/
√

n, or
equivalently, Z =

√
n(X̄ − µ)/σ has a standard normal distribution (mean = 0 and standard

deviation = 1);

• V = (n − 1)S2/σ2 has a chi-square distribution with f = n − 1 degrees of freedom and is
statistically independent of Z.

All one–sample applications involving the noncentral t–distribution can be reduced to calculating
the following probability

γ = P (X̄ − aS ≤ b) . (1)

To relate this probability to the noncentral t–distribution note the equivalence of the following three
inequalities, which can be established by simple algebraic manipulations:

X̄ − aS ≤ b ⇐⇒
√

n(X̄ − µ)/σ −
√

n(b− µ)/σ

S/σ
≤ a

√
n ⇐⇒ Tf, δ

def
=

Z + δ√
V/f

≤ a
√

n

with f = n− 1, δ = −
√

n(b− µ)/σ, and with Z and V as defined previously in terms of X̄ and S.
Thus

γ = P (Tf, δ ≤ a
√

n) = Gf, δ(a
√

n) . (2)

Depending on the application, three of the four parameters n, a, δ and γ are usually given and the
fourth needs to be determined either by direct computation of Gf, δ(t) or by root solving techniques,
using qnct or del.nct, or by iterative trial and error with n.

The following identity is sometimes useful and is based on the fact that Z and −Z have the same
distribution:

Gf,−δ(−t) = P

Z − δ√
V/f

≤ −t

 = P

−Z + δ√
V/f

≥ t



= P

Z + δ√
V/f

≥ t

 = 1− P

Z + δ√
V/f

≤ t

 = 1−Gf,δ(t) (3)
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4 Power of the t–Test

Assuming the normal sampling situation described above, the following testing problem is often
encountered. A hypothesis H : µ ≤ µ0 is tested against the alternative A : µ > µ0. Here µ0 is some
specified value. For testing H against A on the basis of the given sample, the intuitive and in many
ways optimal procedure is to reject H in favor of A whenever

√
n(X̄ − µ0)

S
≥ tn−1(1− α) or equivalently when X̄ − tn−1(1− α) S√

n
≥ µ0 .

Here tn−1(1− α) is the 1− α percentile of the central t–distribution with n− 1 degrees of freedom.
In this form the test has chance α or less of rejecting H when µ ≤ µ0, i.e., when H is true. As will
become clear below, the chance of rejection is < α when µ < µ0. Thus α is the maximum chance
of rejecting H falsely, i.e., the maximum type I error probability.

An important characteristic of a test is its power function, which is defined as the probability of
rejecting H as a function of (µ, σ), i.e.,

β(µ, σ) = Pµ, σ

(√
n(X̄ − µ0)

S
≥ tn−1(1− α)

)
.

The arguments and subscripts (µ, σ) indicate that the probability is calculated assuming that the
sample X1, . . . , Xn comes from a normal population with mean µ and standard deviation σ.

For µ > µ0 the value of 1 − β(µ, σ) represents the probability of falsely accepting H, i.e., the
probability of type II error. The power function can be expressed directly in terms of Gf, δ(t) by
noting √

n(X̄ − µ0)

S
=

√
n(X̄ − µ)/σ +

√
n(µ− µ0)/σ

S/σ
=

Z + δ√
V/(n− 1)

,

so that

β(µ, σ) = Pµ, σ

(√
n(X̄ − µ0)

S
≥ tn−1(1− α)

)
= 1−Gn−1, δ(tn−1(1− α)) ,

where δ =
√

n(µ− µ0)/σ =
√

n∆ with ∆ = (µ− µ0)/σ.

This power function depends on µ and σ only through the noncentrality parameter δ. It strictly
increases from 0 to 1 as δ increases from −∞ to ∞. Thus the maximum rejection probability under
H occurs at µ = µ0 (δ = 0), as claimed previously.

We point out that with increasing sample size n the noncentrality parameter δ can become arbitrarily
large. Thus we will reject H for any alternative µ > µ0 with probability increasing to 1, no matter
how close µ is to µ0 and no matter how large σ is. Of course one should address the practical
significance issue of any difference µ− µ0 and weigh that against the cost of a large sample size. In
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doing so, the magnitude of µ− µ0 would typically be judged in relation to the inherent population
variability σ.

For the purpose of planning the necessary sample size n to achieve a given power β (or type II error
probability 1− β) for a specific alternative it is not sufficient to specify an alternative µ > µ0 since
that can lead to a continuum of different ∆ values depending on the magnitude of σ. Instead one
should specify the alternative through the parameter ∆, say ∆ = ∆1 > 0. Thus one is interested
in alternatives for which the mean µ exceeds the hypothesized value µ0 by ∆1 units of σ, whatever
σ may be.

A complicating issue is that the power function depends on n not only through δ =
√

n∆1 but also
through tn−1(1−α) and through the degrees of freedom n−1 in the cdf Gn−1, δ. The smallest sample
size n that achieves a given power β at ∆1 can be found through iteration, starting with a crude
initial guess ñ = ((zβ − zα)/∆1)

2 rounded up to the next integer. Here zp denotes the p-quantile
of the standard normal distribution. This crude initial guess is based on treating the noncentral
t-distribution as a N (δ, 1) distribution, which it approaches as n gets large.

The R function min.sample.size (available in the previously mentioned R work space) carries out
this iterative process and reports the initial ñ and resulting initial power, in addition to the final n
and its achieved power ≥ β. This function also produces the plots in Figures 8.

In a similar fashion one can deal with the dual problem of testing the hypothesis H ′ : µ ≥ µ0 against
the alternative A′ : µ < µ0. The modifications, which consist of reversing certain inequalities, e.g.,
rejecting H ′ when

√
n(X̄ − µ0)/S ≤ tn−1(α), are straightforward and are omitted.

For the two–sided problem of testing H? : µ = µ0 against the alternative A? : µ 6= µ0 the relevant
test rejects H? in favor of A? whenever

√
n|X̄ − µ0|

S
≥ tn−1(1− α/2) .

The power function β(µ, σ) of this test is calculated along the same lines as before as

Pµ, σ

(√
n(X̄ − µ0)

S
≤ −tn−1(1− α/2) or

√
n(X̄ − µ0)

S
≥ tn−1(1− α/2)

)

= Gn−1, δ(−tn−1(1− α/2)) + 1−Gn−1, δ(tn−1(1− α/2)) = β?(µ, σ) ,

where δ =
√

n(µ−µ0)/σ. It is easy to see that the power function depends on µ and σ only through
|δ| and is strictly increasing in |δ|.
The function min.sample.size also determines the minimum required sample sizes for these last
two testing scenarios.
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5 Variables Acceptance Sampling Plans

Quality control applications governed by MIL–STD–414 deal with variables acceptance sampling
plans (VASP). In a VASP the quality of items in a given sample is measured on a quantitative scale.
An item is judged defective when its measured quality exceeds a certain threshold.

The samples are drawn randomly from a population of items. The objective is to make inferences
about the proportion of defectives in the population. This leads either to an acceptance or a
rejection of the population quality as a whole.

In various applications the term “population” can have different meanings. It represents that
collective of items from which the sample is drawn. Thus it could be a shipment, a lot or a batch
or any other collective entity. For the purpose of this discussion the term “population” will be
used throughout. Ultimately, any batch, lot or shipment is comprised of items that come from a
certain process. If that process were to run indefinitely it would produce an infinite population
of such items. Thus the sampled items from the batch, lot or shipment could be considered as a
sample from that larger conceptual population. If the sample indicates that something is wrong the
producer would presumably adjust the process appropriately.

A VASP assumes that measurements (variables) X1, . . . , Xn for a random sample of n items from a
population are available and that defectiveness for any given sample item i is equivalent to Xi < L,
where L is some given lower specification limit. In other applications we may call item i defective
when Xi > U , where U is some given upper specification limit.

The methodology of any VASP depends on the assumed underlying distribution for the measured
variables X1, . . . , Xn. Here we assume that we deal with a random sample from a normal popu-
lation with mean µ and standard deviation σ. The following discussion will be in terms of a lower
specification limit L. The corresponding procedure for an upper specification limit U will only be
summarized without derivation.

If L is a lower specification limit, then

p = p(µ, σ, L) = Pµ, σ (X < L) = Pµ, σ

(
X − µ

σ
<

L− µ

σ

)
= Φ

(
L− µ

σ

)
represents the probability that a given individual item in the population will be defective. Here
Φ(x) denotes the standard normal distribution function. p can be interpreted as the proportion
of defective items in the population. It is in the consumer’s interest to keep the probability p or
proportion p of defective items in the population below a tolerable value p1. Keeping the proportion
p low is typically costly for the producer. Hence the producer will try too keep p only so low as
to remain cost effective but sufficiently low as not to trigger too many costly rejections. Hence the
producer will aim for keeping p ≤ p0, where p0 typically is somewhat smaller than p1, in order to
provide a sufficient margin between producer and consumer interest.
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The consumer’s demand that p ≤ p1 does not specify how that has to be accomplished in terms
of µ and σ. The producer can control p ≤ p0 by either increasing µ sufficiently or by reducing σ,
provided µ > L. Reducing σ is usually more difficult since various sources of variation have to be
controlled more tightly. Increasing µ is mainly a matter of biasing the process in some way and is
usually easier to accomplish. Figure 9 illustrates the two options in the two bottom plots in relation
to the population acceptable to the consumer represented in the plot at the top.

For normal data the standard VASP consists in computing X̄ and S from the obtained sample of n
items and in comparing X̄ − kS with L for an appropriately chosen constant k. If X̄ − kS ≥ L, the
consumer accepts the population from which the sample was drawn and otherwise it is rejected.

Note that rejection or acceptance is not based on the sample proportion of items with Xi < L. Such
classification would ignore how far above or below L each measurement Xi is. Basing decisions on
just such attributes Xi < L or Xi ≥ L is much less effective than using the values Xi in their
entirety to estimate the underlying normal population and from that get a better idea about p for
much smaller sample size. Attribute data should only be used when the direct measurements are
not available or not feasible. In that case one needs to employ attribute sampling plans based on
the binomial distribution, requiring typically much higher sample sizes.

Before discussing the choice of k in the acceptance criterion X̄ − kS ≥ L it is appropriate to define
the two notions of risk for such a VASP. Due to the random nature of the sample there is some
chance that the sample misrepresents the population at least to some extent and thus may induce
us to take incorrect action. The consumer’s risk is the probability of accepting the population
when in fact the proportion p of defectives in the population is greater than the acceptable limit
p1. The producer’s risk is the probability of rejecting the population when in fact the proportion p
of defectives in the population is ≤ p0.

It turns out that the probability of acceptance for a given VASP (with its choice of k) depends on
µ, σ, L only through p = Φ((L−µ)/σ), the proportion of defectives in the population. This function
will thus be denoted by γ(p). It is also known as operating characteristic or OC–curve of the VASP.

γ(p) can be expressed in terms of Gn−1, δ(t) as follows:

γ(p) = Pµ, σ

(
X̄ − kS ≥ L

)
= Pµ, σ

(√
n(X̄ − µ)

σ
+

√
n(µ− L)

σ
≥ k

√
n

S

σ

)

= Pµ, σ

 Z + δ√
V/(n− 1)

≥ k
√

n

 = P (Tn−1, δ ≥ k
√

n)

where the noncentrality parameter

δ = δ(p) =

√
n (µ− L)

σ
= −

√
n

L− µ

σ
= −

√
n Φ−1(p) = −

√
n zp
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is a decreasing function of p. Hence

γ(p) = 1−Gn−1, δ(p)(k
√

n)

is decreasing in p.

The consumer’s risk consists of the chance of accepting the population when in fact p ≥ p1. In
order to control the consumer’s risk γ(p) has to be kept at some sufficiently small level β for p ≥ p1.
Since γ(p) is decreasing in p we need only insure γ(p1) = β by proper choice of k. The factor k is
then found by solving the equation

β = 1−Gn−1, δ(p1)(k
√

n) for k, i.e., k = G−1
n−1, δ(p1)(1− β)/

√
n . (4)

This is accomplished in R by the command

k=qnct(1-beta,n-1,-sqrt(n)*qnorm(p1))/sqrt(n) ,

where beta = β and p1 = p1. It is customary but not necessarily compelling to choose β = .10.

Figure 10, produced by the R function OC.curve.n1, shows the resulting k and the OC-curve when
the sample size is n = 20. This solves the problem as far as the consumer is concerned. It does not
address the producer’s risk requirements. The producer’s risk consists of the chance of rejecting the
population when in fact p ≤ p0. In Figure 10 that risk of rejecting the population is seen to be as
high as .3575 when p0 ≤ .01.

The probability of rejecting the population is 1− γ(p), which is maximal over p ≤ p0 at p0. Hence
the producer would want to limit this maximal risk 1− γ(p0) by some value α, customarily chosen
to be .05. Note that α and β must satisfy the constraint α+β < 1. Thus the producer is interested
in ensuring that

α = 1− γ(p0) = Gn−1, δ(p0)(k
√

n) (5)

Solving this for k, i.e., using beta = β and p0 = p0

k = qnct(alpha, n− 1,−sqrt(n) ∗ qnorm(p0))/sqrt(n) ,

will typically lead to a different choice from that obtained in (4) leaving us with a conflict. This is
illustrated in Figure 11, produced by the R function OC.curve.n0, which shows the resulting k and
the OC-curve when the sample size is again n = 20.

Note that in Figure 10 we accept when X̄ − 2.208× S ≥ L (keeping the consumer risk at β = .10)
while in Figure 11 we accept more readily when X̄ − 1.749× S ≥ L and thus keeping the producer
risk at α = .05.

This conflict of having two different values of k, depending on whose interest is being served, can
be resolved by leaving the sample size n flexible so that there are two control parameters, n and k,
which can be used to satisfy the two conflicting goals. One slight problem is that n is an integer
and so it may not be possible to satisfy both equations (4) and (5) exactly.
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What one can do instead is the following: For a given value n find k = k(n) to solve (4). If that
k(n) also yields

α ≥ Gn−1, δ(p0)(k(n)
√

n) , (6)

then this sample size n was possibly chosen too high and a lower value of n should be tried. If we
have

α < Gn−1, δ(p0)(k(n)
√

n) ,

then n was definitely chosen too small and a larger value of n should be tried next. Through
iteration one can arrive at the smallest sample size n such that k(n) and n satisfy both (4) and (6).
This iteration process will lead to a solution provided p0 < p1. If p0 and p1 are too close to each
other, very large sample sizes will be required. Note that the search for the minimal sample size n
does not involve L, µ and σ. Only p0, p1, α and β are required. Such a process is carried out by the
R function OC.curve which also produces the plot in Figure 12, indicating the appropriate choice
for n and k.

In the case of an upper specification limit U we accept the lot or population whenever

X̄ + kS ≤ U .

By rewriting X > U as X ′ = −X < −U = L this reduces to the previous case. Then S ′ = S and

X̄ + kS ≤ U ⇐⇒ −X̄ − kS ≥ −U ⇐⇒ X̄ ′ − kS ′ ≥ L

and p = P (X > U) = P (X ′ < L). The same k and n as before suffice as solution as long as we
identify p = P (X > U) with p = P (X ′ < L), i.e., specify only this risk p of a population item being
defective. Recall that the values of L, µ and σ did not enter explicitly in our derivation.

We point out that the VASP does not say how the producer accomplishes the value p ≤ p0. This is
usually based on extensive testing or the producer’s broad experience. This may lead to calculating
upper confidence bounds for P (X < L) based on sufficient data. This is addressed in a later section.

Also, the consumer cannot set p1 arbitrarily low since there may not be a producer that will deliver
that quality or will deliver it only at exorbitant costs.

We compare the previously discussed Variables Acceptance Sampling Plan (VASP) with the corre-
sponding Attributes Acceptance Sampling Plan (AASP) in order to understand the effect on the
required sample size n when all requirements are kept at the same levels. Figure 13, produced by
the R function OC.binom, shows the OC-curve of the AASP.

In an AASP the number X of defective items is counted and the population is accepted when
X ≤ k, where k and the smallest sample size n are determined such that for given p0 < p1 and
α > 0, β > 0 with α + β < 1 we have

Pp1(X ≤ k) ≤ β and Pp0(X ≤ k) ≥ 1− α . (7)
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For Figure 13 we chose the same requirements p1 = .05, p0 = .01, β = .1 and α = .05 as were
used in Figure 12 to enable a clear comparison of the involved sample sizes. For the VASP we had
n = 55 while for the attributes sampling plan we have n = 132, which is considerably higher.

In finding n we start out with an n suggested by the normal approximation to X (with continuity
correction)

Pp (X ≤ k) ≈ Φ

k + .5− np√
np(1− p)

 = γ(p) .

The requirements
γ(p0) = 1− α and γ(p1) = β

translate to
k + .5− np0√
np0(1− p0)

= z1−α = −zα and
k + .5− np1√
np1(1− p1)

= zβ

or
k + .5− np0 = −zα

√
np0(1− p0) and k + .5− np1 = zβ

√
np1(1− p1)

and by subtracting the first equation from the second we cancel out k and get a single equation
involving n

np0 − np1 = zβ

√
np1(1− p1) + zα

√
np0(1− p0)

or √
n (p0 − p1) = zβ

√
p1(1− p1) + zα

√
p0(1− p0)

which yields

n =

zβ

√
p1(1− p1) + zα

√
p0(1− p0)

p1 − p0

2

rounded up to the next integer.

For this n we find k=qbinom(beta,n,p1) which is the smallest k such that Pp1(X ≤ k) ≥ β,
where beta=β and p1=p1. If this k gives Pp1(X ≤ k) > β we reduce k by 1 and leave it alone
otherwise. For given n this k is then the largest value for which Pp1(X ≤ k) ≤ β. We then evaluate
Pp0(X ≤ k). If it is larger than 1 − α we have n possibly too large and we reduce n by 1. If
Pp0(X ≤ k) is smaller than 1− α we have n too small and we increase n by 1. Recalculating k for
each new n and rechecking Pp0(X ≤ k) against 1 − α we iteratively find the smallest n for which
we satisfy both constraints (7). Although the original algorithm implemented the above starting
value in the R function OC.binom it was later modified to start at n = 1, which is cruder but gets
the right answer for sure. The reason for this is that for an OC-curve corresponding to a largest
k choice with OC(p1 ≤ β the achieved OC(p0) is not monotone in n, due to the discrete nature of
X. OC(p0) shows a pronounced zigzag behavior with respect to n, see Figure 14 as an illustration.
This complicates the straightforward search for the smallest n satisfying the above requirements.
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6 Tolerance Bounds or Tolerance Limits

Tolerance bounds or tolerance limits are lower or upper confidence bounds on percentiles or quantiles
of a population, here again assumed to be normal. The discussion will mainly focus on lower
confidence bounds. The upper bounds fall out immediately from the lower bounds by a simple
switch to the complementary confidence level as explained below.

The p-percentile or p-quantile xp of a normal population with mean µ and standard deviation σ,
denoted by N (µ, σ2), can be expressed as

xp = µ + zp σ ,

where zp = Φ−1(p) is the p-quantile of the standard normal distribution.

Using a sample X1, . . . , Xn taken from this population we estimate µ and σ again by using X̄ and
S. The lower confidence bound for xp is then computed as x̂p,L(γ) = X̄−kS where k is determined
to achieve the desired confidence level γ, namely so that for all (µ, σ) we have

Pµ, σ(X̄ − kS ≤ xp) = γ ,

which has the same form as equation (1).

By complementation this yields immediately that for all (µ, σ)

Pµ, σ(X̄ − kS ≥ xp) = 1− γ ,

i.e., X̄ − kS also serves as an upper bound for xp with confidence level 1 − γ. Of course, to get a
confidence level of .95 for such an upper bound one would choose γ = .05 in the above interpretation
of X̄ − kS as upper bound.

Invoking equation (2) we have

Pµ, σ(X̄ − kS ≤ xp) = P (Tn−1, δ ≤
√

nk) = Gn−1, δ(
√

nk) ,

where δ = −
√

n(xp − µ)/σ = −
√

nzp. Hence k is determined by solving the following equation for
k:

Gn−1, δ(
√

nk) = γ .

In R this is done by invoking the command

k = qnct(gam, n− 1,−sqrt(n) ∗ qnorm(p))/sqrt(n) ,

where gam=γ. Avoid the variable name gamma in R since it is the intrinsic Γ-function.

In structural engineering the 95% lower bounds for x.01 and x.10 are called A- and B-Allowables,
respectively, and are mainly used to limit material strength properties from below. In the lumber
industry the interest is in 75% lower bounds for x.05, see page 4 of
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https://www.aitc-glulam.org/shopcart/Pdf/aitc_402-2005.pdf

402.4.8. Beam Performance. The beam strength 5% tolerance limit

with 75% confidence determined in accordance with ASTM D2915

shall be a minimum of 2.1 times the design value for the beam.

....

As an illustration we will use some data from MIL-HDBK-5J1, see
http://www.weibull.com/mil std/mil hdbk 5j.pdf.

In particular, we will use the TUS (tensile ultimate strength) data set, designated as Group 5 on
page 9-165. It consists of n = 100 values, measured in KSI (1000 pounds per square inch) and is
contained in the referenced R work space as m5dat5.

The normal QQ-plot of this data set is shown in Figure 15 (produced by m5dat5.qqnorm) and
exhibits no significant deviation from normality. Formal tests for normality, Lilliefors (Kolmogorov-
Smirnov), Cramér-von Mises, and Anderson-Darling, confirm this with p-values above .63 for all
three discrepancy metrics. These tests are available as part of the nortest package. Download
nortest 1.0.zip from the class web site to the directory that houses your R work space. Under
the R Packages menu item install this package. This installation needs to be done only once on your
computer for the installed version of R. After this installation you need to invoke library(nortest)
in any R session that wants to use the functions in the package nortest. These functions are
lillie.test, cvm.test and ad.test and you get documentation on them by placing a ? in front
of the respective function names, e.g., ?lillie.test.

The sample mean and standard deviation are X̄ = 145 and S = 4.469965, respectively. The
k-factors for A- and B-allowables are respectively

kA = qnct(.95, 99,−sqrt(100) ∗ qnorm(.01))/sqrt(100) = 2.683957

and
kB = qnct(.95, 99,−sqrt(100) ∗ qnorm(.1))/sqrt(100) = 1.526749

so that the A-and B-allowables are

A = x̂.01,L(.95) = X̄ − kA × S = 145− 2.683957× 4.469965 = 133.0028

and
B = x̂.10,L(.95) = X̄ − kB × S = 145− 1.526749× 4.469965 = 138.1755 .

Figure 16 shows these allowables in relation to the data and their histogram.

1Note that this file is about 68.5MB and consists of 1733 pages
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7 Tail Probability Confidence Bounds

Of interest here are the tail probabilities of a normal population with mean µ and standard deviation
σ. For a given threshold value x0 one is interested in the tail probability

p = p(x0) = p(x0, µ, σ) = Pµ, σ(X ≤ x0) = Φ
(

x0 − µ

σ

)
.

In the context of variables acceptance sampling plans this came up as the probability p = P (X < L)
of an item being defective. Upper bounds for such probabilities p could give a producer the needed
assurance of having a proportion of defectives ≤ p0, the value used in setting up the VASP.

Although p̂ = Φ((x0 − X̄)/S) is a natural but biased estimate of p the construction of confidence
bounds is not so obvious. It seems that there should be a link between quantile bounds and tail
probability bounds, and there is. However, in constructing such tail probability bounds we will take
a more direct approach and revisit the link later.

First we will discuss the generic relationships between upper and lower bounds for left and right
tail probabilities p and q = 1− p.

If p̂U(γ) denotes an upper bound for p with confidence level γ, i.e., for all (µ, σ)

Pµ, σ(p̂U(γ) ≥ p) = γ ,

then we also have for all (µ, σ)
Pµ, σ(p̂U(γ) ≤ p) = 1− γ ,

so that p̂U(γ) can also serve as a lower bound p̂L(1− γ) = p̂U(γ) for p with confidence level 1− γ.

If the upper tail probability q = 1− p of the normal distribution is of interest, then 1− p̂U(γ) will
serve as lower bound for q with confidence level γ and thus as an upper bound for q with confidence
level 1− γ. Thus it suffices to limit any further discussion to upper confidence bounds for p.

In deriving these upper bounds we will use the following result known as the Probability Integral
Transformation. We state and prove it here in simplified form, using the convenient additional but
unnecessary assumption of strict monotonicity, see Lehmann & Romano (2005), p. 97.

Lemma: If X is a random variable with continuous and strictly increasing distribution function
F (t) = P (X ≤ t), then the random variable U = F (X) is uniformly distributed over [0, 1], i.e.,
P (U ≤ u) = u for 0 ≤ u ≤ 1.

Proof:

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u q.e.d.
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As a start for constructing upper bounds for p consider
√

n(x0 − X̄)

S
=

√
n(x0 − µ)/σ +

√
n(µ− X̄)/σ

S/σ
= Tn−1, δ ,

and note that Z ′ =
√

n(µ − X̄)/σ and Z =
√

n(X̄ − µ)/σ = −Z ′ have the same standard normal
distribution. Here δ =

√
n(x0 − µ)/σ =

√
nΦ−1(p) is an increasing function of p. By the above

Lemma the random variable

U = Gn−1, δ

(√
n(x0 − X̄)

S

)
= Gn−1, δ (Tn−1, δ)

has a uniform distribution over the interval (0, 1). Such a function U of the sample data and the
unknown parameters is called a pivot when its distribution is completely known, as it is the case
here. The concept of pivots is often employed in constructing confidence sets.

We have
γ = P (U ≥ 1− γ) . (8)

and since Gn−1, δ(t) is decreasing in δ we have

U = Gn−1, δ

(√
n(x0 − X̄)/S

)
≥ 1− γ ⇐⇒ δ ≤ δ̂ ,

where δ̂ solves
Gn−1, δ̂

(√
n(x0 − X̄)/S

)
= 1− γ . (9)

Hence δ̂ is an upper confidence bound for δ =
√

nΦ−1(p) with confidence level γ. Since

δ̂ ≥ δ =
√

nΦ−1(p) ⇐⇒ p̂U = p̂U(γ) = p̂U(x0, γ)
def
= Φ(δ̂/

√
n) ≥ Φ(δ/

√
n) = p ,

p̂U is the desired upper confidence bound for p with confidence level γ.

This upper confidence bound is found by invoking the following R command

p̂U(x0, γ) = pnorm(del.nct(sqrt(n) ∗ (x0− Xbar)/S, 1− gam, n− 1)/sqrt(n))

where gam= γ, Xbar= X̄, S= S, and x0= x0. Again avoid gamma as a variable name.

We point out that the coverage probability statement in (8) holds for any (µ, σ), which enter through
U in two-fold form, namely through δ in Gn−1, δ and through the joint distribution of X̄ and S in√

n(x0 − X̄)/S. This means that the coverage probability is constant in µ and σ and thus equals
the confidence coefficient or the minimum coverage probability γ̄. The same comment applies to
tolerance bounds. Compare this behavior with the more complex behavior seen earlier in the context
of confidence bounds for discrete distributions, such as the Poisson, Binomial and Hypergeometric
distributions.
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It turns out that the upper bounds for left tail probabilities p(x) = P (X ≤ x) are just the inverse to
the lower bounds for the xp(x)-quantile and vice versa. This is illustrated in the normal probability
plot of Figure 17 which was produced by the function normal.paper. Note that this function
illustrates the use of the function set.seed which makes sure that the same seed is used in each
simulation. The seed iseed is an argument to normal.paper, with default iseed=25.

Using a random sample of size n = 30 from N (µ, σ2) with µ = 100 and σ = 10, Figure 17 shows a
QQ-plot or normal probability plot of the sample. In such a plot the ith smallest sample value X(i)

is plotted against the standard normal pi-quantile zpi
, with pi = (i− .5)/n, i = 1, 2, . . . , n, i.e., we

plot the sample quantiles against the corresponding standard normal quantiles from which derives
the term “QQ-plot.” However, here the markings on the abscissa are given in terms of p, which
explains the parallel term “normal probability plot.” One expects that the ith sample quantile X(i)

is a reasonable estimate of the corresponding population quantile xpi
= µ + σzpi

, i.e., X(i) ≈ xpi
,

and since the latter is a linear function of zpi
one would expect to see a roughly linear pattern when

plotting X(i) vs zpi
. This is the basic idea behind the normal QQ-plot and its informal diagnostic

appeal for judging data normality.

The line through the data is just X̄ + zpS. The curve below that line represents either the 95%
lower bound for xp when read sideways from the curve at the vertical p intercept, or it represents
the 95% upper bound p̂U(x) for the left tail probability p(x) when read vertically down from the
curve at the horizontal x intercept. It would have been possible to introduce these upper bounds
p̂U(x) using this inverse relationship but we preferred the direct approach given above. It leads
directly to the solution path via del.nct, rather than inverting the above curve relationship. The
function del.nct involves a single root solving step. Inverting the curve involves two root solving
steps, one for computing the curve via qnct and one for inverting it. The proof for the equivalence
of the pivot based approach and that using the curve inversion it relegated to Appendix A.

We note that the binomial upper bound for P (X ≤ 80) = Φ((80−100)/2) = 0.02275 would be based
on the zero count of observations ≤ 80, i.e., it comes out to be qbeta(.95,1,30)=0.09503385. This
is lower than p̂U(80) = 0.1109 as obtained from X̄ and S, presumably because the lowest sample
value is somewhat high compared to what is suggested by the line X̄ + zpS. If it had been ≤ 80 we
would get an upper bound ≥ qbeta(.95, 2, 29) = 0.1485961.

This should serve as an example for two comments. Confidence bounds based on the same data but
using different methods are typically different. Furthermore, even if method A (based on X̄ and S)
is generally superior to method B (binomial method), it can happen (as in this instance) that the
bound produced by B is “better” than the bound produced by A. Both upper bounds are above
the true target 0.02275 but the binomial bound happens to be closer.

Finally, we point out that the 95% confidence curve has to be interpreted point-wise, i.e., the
probability for several such upper (or lower) bounds simultaneously covering their respective targets
is < .95.
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Figure 17: Normal Probability Plot with Confidence Curve for x̂L(p) and p̂U(x)
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8 Bounds for Process Control Capability Indices

The process control capability indices CL, CU and Cpk are relatively new in quality control appli-
cations. They are defined as

CL =
µ− xL

3σ
, CU =

xU − µ

3σ
and Cpk = min(CL, CU) ,

where xL and xU are given lower and upper specification limits. Again it is assumed that the process
output is governed by a normal distribution with mean µ and standard deviation σ. Values CL ≥ 1,
CU ≥ 1 and Cpk ≥ 1 indicate that the process output is at least 3σ units on the safe side from any
specification limit, since

CL ≥ 1 ⇐⇒ µ−3σ ≥ xL , CU ≥ 1 ⇐⇒ µ+3σ ≤ xU , Cpk ≥ 1 ⇐⇒ xL ≤ µ−3σ < µ+3σ ≤ xU .

As Figure 18 shows, there are many combinations of (µ, σ) for which these indices are are 1. As
σ increases the further the mean has to move away from its respective one-sided specification
limit. This does not work when we have a specification interval. In order to have Cpk ≥ 1 we
must have 6σ ≤ xU − xL. This latter aspect is addressed by a different capability index, namely
Cp = (xU −xL)/(6σ). Confidence bounds for it can be obtained from confidence bounds for σ based
on the χ2 distribution. Another index, originating in Japan, is k = 2|(U + L)/2− µ|/(U − L) and
it links Cpk and Cp via Cpk = Cp(1 − k). For an extensive treatment of capability indices we refer
to Kotz and Johnson (1993) and Kotz and Lovelace (1998).

Typically the parameters µ and σ are unknown and only limited sample data, say X1, . . . , Xn, are
available from this population. The next 3 subsections show how to obtain lower confidence bounds
for these indices. Lower bounds are of primary interest here since it is typically desired to show
that the process capability index meets at least a certain threshold, say 1 or 4/3.

8.1 Lower Confidence Bounds for CL

A natural estimate for CL is ĈL = (X̄ − xL)/3S and it is the basis for constructing 100γ% lower
confidence limits for CL. We have

P
(
ĈL ≤ k

)
= P

(
X̄ − xL

3S
≤ k

)

= P

(√
n(X̄ − µ)/σ +

√
n(µ− xL)/σ

S/σ
≤ 3

√
nk

)
= P

(
Tn−1,3

√
nCL

≤ 3
√

nk
)
.

We define k = k(CL) as that unique number which for given CL solves

P
(
Tn−1,3

√
nCL

≤ 3
√

nk(CL)
)

= γ .
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Figure 18: Process Measurements in Relation to Specification Limits
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From the previously cited monotonicity properties of the noncentral t-distribution we know that
k(CL) is a strictly increasing function of CL. Thus we have

γ = P
(
ĈL ≤ k(CL)

)
= P

(
k−1(ĈL) ≤ CL

)
and we can treat B̂L = k−1

(
ĈL

)
as a 100γ% lower confidence bound for CL.

It remains to show how B̂L is actually computed for each such observed value ĉL of ĈL.

In the defining equation for k(CL) take CL = k−1(ĉL) and rewrite that defining equation as follows:

γ = P
(
Tn−1,3

√
nk−1(ĉL) ≤ 3

√
nk
(
k−1(ĉL)

))
= P

(
Tn−1,3

√
nk−1(ĉL) ≤ 3

√
nĉL

)
= γ .

If, for fixed ĉL, we solve the equation:

P
(
T

n−1,δ̂
≤ 3

√
nĉL

)
= γ

for δ̂, then we get the following expression for the observed value b̂L of B̂L:

b̂L = k−1 (ĉL) =
δ̂

3
√

n
= del.nct(3 ∗ sqrt(n) ∗ cL.hat, gam, n− 1)/(3 ∗ sqrt(n)) ,

where gam= γ and cL.hat= ĉL.

8.2 Lower Confidence Bounds for CU

In a similar fashion we develop lower confidence bounds for

CU =
xU − µ

3σ
, using its natural estimate ĈU =

xU − X̄

3S
.

Note that in similar fashion as before we have

P
(
ĈU ≤ k

)
= P

(
xU − X̄

3S
≤ k

)
= P

(
Tn−1,3

√
nCU

≤ 3
√

nk
)
.

We define k = k(CU) as that unique number which for given CU solves

P
(
ĈU ≤ k(CU)

)
= P

(
Tn−1,3

√
nCU

≤ 3
√

nk(CU)
)

= γ

As before it follows that B̂U = k−1(ĈU) serves as 100γ% lower confidence bound for CU . For an
observed value ĉU of ĈU we compute the observed value b̂U of B̂U as δ̂/(3

√
n), where δ̂ solves

P
(
T

n−1,δ̂
≤ 3

√
n ĉU

)
= γ .

or b̂U = k−1 (ĉU) =
δ̂

3
√

n
= del.nct(3 ∗ sqrt(n) ∗ cU.hat, gam, n− 1)/(3 ∗ sqrt(n)) ,

where gam= γ and cU.hat= ĉU .
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8.3 Lower Confidence Bounds for Cpk

Putting the bounds on CU and CL together, we can obtain (slightly conservative) confidence bounds
for the two-sided statistical process control parameter

Cpk = min (CL, CU)

by simply taking
B̂ = min

(
B̂L, B̂U

)
.

If CL ≤ CU , i.e., Cpk = CL, then

P
(
min

(
B̂L, B̂U

)
≤ min (CL, CU)

)
= P

(
min

(
B̂L, B̂U

)
≤ CL

)
≥ P

(
B̂L ≤ CL

)
= γ

and if CU ≤ CL, i.e., Cpk = CU , then

P
(
min

(
B̂L, B̂U

)
≤ min (CL, CU)

)
= P

(
min

(
B̂L, B̂U

)
≤ CU

)
≥ P

(
B̂U ≤ CU

)
= γ .

Hence B̂ can be taken as lower bound for Cpk with confidence level at least γ. The exact confidence
level of B̂ is somewhat higher than γ for CL = CU , i.e., when µ is the midpoint of the specification
interval. As µ moves away from this midpoint and as σ reduces correspondingly in order to maintain
a constant Cpk then the actual confidence level of B̂ gets arbitrarily close to γ so that the confidence

coefficient of B̂ is indeed γ.

In dealing with suppliers of parts or materials one may opt for the following kind of table to
communicate the issues of sampling variation and sample size. The supplier may well have some
understanding about the meaning of Cpk but it becomes somewhat hazy when Cpk is estimated

from limited data via Ĉpk. Tables 1 and 2 tabulate what Ĉpk would be required in order for the Cpk

lower bound B̂ to come out at the desired value, given in the top row of that table.

For small sample sizes n the margin by which Ĉpk would have to exceed B̂ = 1 would need to be

quite large. For example, when n = 20 we would need to have Ĉpk = 1.298 in order to be 95%

confident that the actual Cpk ≥ 1, i.e., we would need to demonstrate that the estimated Ĉpk is
.298 higher than what is desired. As n gets larger, say n = 60 this margin can be pushed down to
.150, about half of .298.

This should easily bring home the message that it pays to have a larger sample. For large n the
observed Ĉpk would not have to be that much larger than the desired Cpk. Of course, larger sample

sizes do not guarantee better quality. If the quality is poor we are likely to see small values of B̂ or
even Ĉpk, i.e., below 1. This only becomes more apparent when the sample size becomes larger.
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desired Cpk

n 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10 1.499 1.644 1.789 1.934 2.079 2.225 2.370 2.516 2.662 2.808 2.954
12 1.432 1.570 1.708 1.847 1.986 2.125 2.265 2.404 2.544 2.683 2.823
14 1.384 1.518 1.652 1.786 1.921 2.056 2.190 2.325 2.460 2.596 2.731
16 1.349 1.479 1.610 1.741 1.872 2.004 2.135 2.267 2.398 2.530 2.662
18 1.321 1.449 1.577 1.706 1.834 1.963 2.092 2.221 2.350 2.479 2.608
20 1.298 1.424 1.551 1.677 1.804 1.930 2.057 2.184 2.311 2.438 2.565
25 1.257 1.379 1.502 1.625 1.747 1.870 1.993 2.116 2.239 2.363 2.486
30 1.229 1.348 1.468 1.588 1.709 1.829 1.949 2.070 2.190 2.311 2.432
35 1.208 1.325 1.443 1.562 1.680 1.798 1.917 2.035 2.154 2.273 2.391
40 1.191 1.308 1.424 1.541 1.658 1.775 1.892 2.009 2.126 2.243 2.365
45 1.178 1.293 1.409 1.524 1.640 1.756 1.871 1.987 2.103 2.223 2.339
50 1.167 1.281 1.396 1.510 1.625 1.740 1.855 1.969 2.088 2.203 2.318
60 1.150 1.263 1.376 1.489 1.602 1.715 1.828 1.944 2.058 2.171 2.285
70 1.137 1.249 1.361 1.473 1.585 1.698 1.811 1.923 2.035 2.148 2.260
80 1.127 1.238 1.349 1.460 1.571 1.683 1.795 1.906 2.018 2.129 2.240
90 1.119 1.229 1.339 1.449 1.561 1.671 1.782 1.893 2.003 2.114 2.225
100 1.112 1.222 1.331 1.442 1.552 1.661 1.771 1.881 1.991 2.101 2.211
120 1.101 1.210 1.319 1.428 1.537 1.646 1.755 1.864 1.973 2.082 2.191
140 1.093 1.201 1.309 1.417 1.525 1.634 1.742 1.850 1.958 2.067 2.175
160 1.087 1.194 1.301 1.409 1.516 1.624 1.732 1.839 1.947 2.055 2.162
180 1.081 1.188 1.295 1.402 1.509 1.616 1.723 1.831 1.938 2.045 2.152
200 1.077 1.183 1.290 1.396 1.503 1.610 1.716 1.823 1.930 2.037 2.144
250 1.068 1.174 1.280 1.385 1.491 1.597 1.703 1.809 1.915 2.021 2.127
300 1.062 1.167 1.272 1.377 1.483 1.588 1.694 1.799 1.904 2.010 2.115
350 1.057 1.162 1.266 1.371 1.476 1.581 1.686 1.791 1.896 2.001 2.106
400 1.053 1.157 1.262 1.366 1.471 1.576 1.680 1.785 1.890 1.994 2.099
450 1.050 1.154 1.258 1.362 1.467 1.571 1.675 1.780 1.884 1.988 2.093
500 1.047 1.151 1.255 1.359 1.463 1.567 1.671 1.775 1.880 1.984 2.088

Table 1: Tabulated Required Ĉpk to Get as 90% Lower Bound the Desired Value of Cpk

See http://www.boeing.com/companyoffices/doingbiz/supplier/d1-9000-1.pdf on page 196
for a version of this table in Boeing’s AQS D1-9000-1 Advanced Quality Systems Tools document
for suppliers.
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desired Cpk

n 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10 1.686 1.847 2.009 2.171 2.333 2.496 2.659 2.822 2.985 3.148 3.312
12 1.588 1.740 1.892 2.045 2.198 2.351 2.505 2.659 2.812 2.966 3.121
14 1.520 1.665 1.811 1.958 2.105 2.252 2.399 2.546 2.693 2.841 2.989
16 1.469 1.610 1.752 1.894 2.036 2.178 2.320 2.463 2.606 2.748 2.891
18 1.430 1.568 1.706 1.844 1.982 2.121 2.260 2.399 2.538 2.677 2.816
20 1.399 1.534 1.669 1.804 1.939 2.075 2.211 2.347 2.483 2.619 2.756
25 1.342 1.471 1.601 1.731 1.862 1.992 2.123 2.253 2.384 2.515 2.646
30 1.303 1.429 1.555 1.682 1.809 1.935 2.062 2.190 2.317 2.444 2.571
35 1.274 1.398 1.521 1.645 1.770 1.894 2.018 2.143 2.267 2.392 2.517
40 1.252 1.373 1.495 1.617 1.739 1.862 1.984 2.107 2.229 2.352 2.487
45 1.234 1.354 1.474 1.595 1.715 1.836 1.957 2.078 2.198 2.330 2.451
50 1.220 1.338 1.457 1.576 1.695 1.815 1.934 2.054 2.182 2.302 2.422
60 1.197 1.313 1.430 1.547 1.665 1.782 1.899 2.023 2.141 2.259 2.377
70 1.180 1.295 1.410 1.526 1.641 1.762 1.878 1.994 2.110 2.227 2.343
80 1.166 1.280 1.394 1.509 1.623 1.741 1.856 1.971 2.086 2.201 2.317
90 1.155 1.268 1.382 1.495 1.611 1.725 1.839 1.953 2.067 2.181 2.295
100 1.146 1.258 1.371 1.486 1.599 1.712 1.825 1.938 2.051 2.164 2.278
120 1.132 1.243 1.356 1.467 1.579 1.691 1.802 1.914 2.026 2.138 2.250
140 1.121 1.232 1.343 1.453 1.564 1.675 1.785 1.896 2.007 2.118 2.229
160 1.113 1.223 1.332 1.442 1.552 1.662 1.772 1.882 1.992 2.102 2.212
180 1.106 1.215 1.324 1.433 1.542 1.652 1.761 1.870 1.980 2.089 2.199
200 1.100 1.208 1.317 1.426 1.534 1.643 1.752 1.861 1.969 2.078 2.187
250 1.088 1.196 1.303 1.411 1.519 1.626 1.734 1.842 1.950 2.058 2.166
300 1.080 1.187 1.294 1.401 1.507 1.614 1.721 1.829 1.936 2.043 2.150
350 1.074 1.180 1.286 1.393 1.499 1.605 1.712 1.818 1.925 2.031 2.138
400 1.069 1.174 1.280 1.386 1.492 1.598 1.704 1.810 1.916 2.022 2.128
450 1.064 1.170 1.275 1.381 1.486 1.592 1.698 1.803 1.909 2.015 2.120
500 1.061 1.166 1.271 1.376 1.482 1.587 1.692 1.798 1.903 2.008 2.114

Table 2: Tabulated Required Ĉpk to Get as 95% Lower Bound the Desired Value of Cpk
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9 Coefficient of Variation Confidence Bounds

The coefficient of variation is traditionally defined as the ratio of standard deviation to mean, i.e.,
as ν = σ/µ. It expresses the amount of measurement variability relative to what is being measured.
We will instead give confidence bounds for its reciprocal ρ = 1/ν = µ/σ. The reason for this is that
X̄, in the natural estimate S/X̄ for ν, could be near zero, causing certain problems. If the coefficient
of variation is sufficiently small, usually the desired situation, then the distinction between it and
its reciprocal is somewhat immaterial since typical bounds for ν can be inverted to bounds for ρ and
vice versa. This situation is easily recognized by the sign of the upper or lower bound, respectively.
If ρ̂L as lower bound for ρ is positive, then ν̂U = 1/ρ̂L is an upper bound for a positive value of ν.
If ρ̂U as upper bound for ρ is negative, then ν̂L = 1/ρ̂U is a lower bound for a negative value of ν.
In either case ρ is bounded away from zero which implies that the reciprocal ν = 1/ρ is bounded.
On the other hand, if ρ̂L as lower bound for ρ is negative, then ρ is not bounded away from zero
and the reciprocal values could be arbitrarily large. Hence in that case ν̂U = 1/ρ̂L is useless as an
upper bound for ν since no finite upper bound on the values of ν can be derived from ρ̂L.

To construct a lower confidence bound for ρ = µ/σ consider

√
n

X̄

S
=

√
n(X̄ − µ)/σ +

√
nµ/σ

S/σ
= Tn−1, δ

with δ =
√

nµ/σ. Again the random variable

U = Gn−1, δ(
√

n X̄/S) = Gn−1, δ(Tn−1, δ)

is distributed uniformly over (0, 1). Hence P (U ≤ γ) = γ so that

Gn−1, δ(
√

n X̄/S) ≤ γ if and only if δ̂L ≤ δ ,

where δ̂L is the solution of
Gn−1, δ̂L

(
√

n X̄/S) = γ (10)

and ρ̂L
def
= δ̂L/

√
n = del.nct(sqrt(n) ∗ Xbar/S, gam, n− 1)/sqrt(n) is thus a 100γ% lower confi-

dence bound for ρ = δ/
√

n = µ/σ. Here Xbar= X̄ and gam= γ.

To obtain an upper bound for ρ with confidence level γ one finds δ̂U as solution of

Gn−1, δ̂U
(
√

n X̄/S) = 1− γ (11)

and uses ρ̂U
def
= δ̂U/

√
n = del.nct(sqrt(n) ∗ Xbar/S, 1− gam, n− 1)/sqrt(n) as 100γ% upper bound

for ρ = δ/
√

n = µ/σ. Here Xbar= X̄ and gam= γ.
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10 Batch Effects

Eventually these methods for tolerance bounds or confidence bounds for CL, Cu, or Cpk were also
used in the context of composite materials where batch effects can be quite significant. Batch
effects result from changing chemical compositions for each batch of material and a good portion
of the strength variation of tested specimens from that material is due to the variation from batch
to batch. Early in the production only few batches are typically available. Batches are expensive.
Often many specimens from each of the few batches are tested or measured in the hope of making
up for the deficit of having only few batches available.

There are two extreme situations:

1. The variation from batch to batch is insignificant and one can treat all of the specimen
strengths as one big sample of size N = n1 + . . . + nk, where k is the number of batches
involved and ni is the number of strength measurements from the ith batch.

2. The variation from batch to batch is so strong compared to the variation within batches,
that it is a wasted effort to have more than one observation per batch. Having ni > 1 only
serves the purpose of ascertaining that variability mismatch. Taking ni observations from
the ith batch in that case is like writing down the “same” test result ni times. Treating all
N = n1 + . . . + nk as one large random sample greatly inflates the “effective” sample size. To
be more realistic, we should just work with one observation per batch and let the batch to
batch variation speak for itself. In that case the real “effective sample size” should be k.

This problem was addressed by Scholz and Vangel (1998) by interpolating between these two extreme
situations and reducing the problem to that of a simple random sample of some “effective” sample
size N? somewhere between k and N , that reflects the ratio of within to between batch variability.
This reduced a rather messy situation in a simple and intuitive fashion to the previous process for
a pure random sample.

The same process gave solutions for tolerance bounds and confidence bounds for the capability
indices CL, Cu, or Cpk. We will here address only tolerance bounds and refer to the above reference
for the other situation. Presumably the process would also carry over to confidence bounds for tail
probabilities due to the duality with tolerance bounds but we have not checked the details.

We used the following measurement variation model Xij = µ+bi+eij, j = 1, . . . , ni and i = 1, . . . , k,
where bi (between batch variation effect) is normal with mean zero and variance σ2

b and eij (within
batch variation effects) is normal with mean zero and variance σ2

e . The effects bi and {eij} are
assumed to be mutually independent. Hence Xij ∼ N (µ, σ2

b + σ2
e) . The correlation of two different

observations within the same batch is ρ = σ2
b/(σ

2
b + σ2

e) which can range anywhere within [0, 1].

The individual sample sizes ni from each batch can vary. However, in developing the ultimate
solution we were guided strongly by the special case n1 = . . . = nk. Even in that case we invoked
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an interpolation approximation. This was augmented with a further approximation (Satterthwaite)
when allowing the ni to be different. Simulations were then used to check whether these approxi-
mations gave reasonable results.

This solution is an typical example of industrial statistics, where a quick fix to a messy problem
was required. It arose when a supplier was trying to build his case based on one large sample
N = n1+. . .+nk without accounting for the possible batch effects. After confirming the significance
of that effect it was essential to find a middle ground, which was easily captured by the “effective
sample size” concept, since it reduced the calculations in a simple manner to a previously accepted
method.

The main idea is to conceptualize a pure random sample X?
1 , . . . , X

?
N? from N (µ, σ2

b + σ2
e) that

carries the “same kind of information” as the original data. N? then represents the “equivalent
sample size.”

Since X̄ =
∑B

i=1

∑ni
j=1 Xij/N and X̄? =

∑N?

i=1 X?
i /N? both are normally distributed with same mean

µ we implement the notion of “same kind of information” by choosing N? to match the variances
of X̄ and X̄?, i.e., find N? such that

var
(
X̄
)

= var

(
µ +

∑k
i=1 nibi +

∑k
i=1

∑ni
j=1 eij

N

)
= σ2

b

k∑
i=1

(
ni

N

)2

+ σ2
e

1

N
= var

(
X̄?
)

=
σ2

b + σ2
e

N?
.

This leads to the following formula for N? = N?(ρ)

N? =

[
σ2

b

σ2
b + σ2

e

k∑
i=1

(
ni

N

)2

+
1

N

σ2
e

σ2
b + σ2

e

]−1

=

[
ρ

1

f + 1
+ (1− ρ)

1

N

]−1

,

where we write 1/(f + 1) =
∑k

i=1(ni/N)2 for reasons to become clear later. Note that N? is the
weighted harmonic mean of f + 1 and N .

For ρ = 0 this becomes N? = N and for ρ = 1 we get N? = f + 1 which matches k when
n1 = . . . = nk. Thus in the latter case of equal batch sizes this effective sample size formula agrees
with our previous notion of what the effective sample size should be in these two extreme situations.

We will not bother with the fact that N? may not be an integer. An actual conceptual sample
X?

1 , . . . , X
?
N? is never used in our procedure and all calculations are based on the original batch

data {Xij}.
In practice the within batch correlation ρ is unknown but one may find reasonable estimates from
the data as follows. Compute the between batch and error sums of squares

SSb =
k∑

i=1

ni(X̄i· − X̄)2 and SSe =
k∑

i=1

ni∑
j=1

(Xij − X̄i·)
2 .

43



Take σ̂2
e = SSe/(N − k) as unbiased estimate of σ2

e and τ̂ 2 = SSb/(k − 1) as unbiased estimate of

τ 2 = σ2
e + σ2

b

N

k − 1

(
1−

k∑
i=1

(
ni

N

)2
)

= σ2
e + σ2

b

N

k − 1

f

f + 1
.

Combining these two estimates we get σ̂2
b = (τ̂ 2 − σ̂2

e) (k−1)(f +1)/(N f) as unbiased estimate for
σ2

b . Unfortunately, this latter estimate may be negative. If that happens it is suggested to set the
estimate to zero. We denote this modification again by σ̂2

b but it will no longer be unbiased. The
estimate of ρ is then computed as ρ̂ = σ̂2

b/(σ̂
2
b + σ̂2

e). It is this estimate that is used in place of ρ in
estimating N? by N̂? = N?(ρ̂).

We will now focus on tolerance bounds under the two previously discussed extreme scenarios: no
batch to batch variation and no within batch variation.

10.1 No Between Batch Variation

Here we assume σb = 0 and σe > 0, i.e, ρ = 0, and thus all observations Xij are mutually
independent. X̄ ∼ N (µ, σ2/N) and SST = SSb + SSe = (N − 1)S2 ∼ σ2 · χ2

N−1 and both are
independent of each other.

In Section 6 it was shown that 100γ% lower tolerance bounds are of the form X̄ − k S, where k

k = k0(N) =
1√
N

tN−1,−zp

√
N,γ =

√
N − 1

N

1√
N − 1

tN−1,−zp

√
N,γ , (12)

where tN−1,−zp

√
N,γ is the γ-quantile of TN−1,−zp

√
N .

10.2 No Within Batch Variation

Here we assume σb > 0 and σe = 0, i.e, ρ = 1, and thus σ2 = σ2
b and all observations within each

batch are identical. Hence SSe = 0, and thus S2 = SSb/(N − 1). Using Satterthwaite’s method we
will approximate the distribution of SST = SSb by a chi-square multiple with g degrees of freedom,
i.e., SST = SSb ≈ a · χ2

g, where a and g are determined to match the first two moments or mean
and variance on either side. As shown in Appendix B this leads to

g =
(1−∑w2

i )
2∑

w2
i − 2

∑
w3

i + (
∑

w2
i )

2
and a =

N

g
σ2

b

(
1−

k∑
i=1

w2
i

)
=

N

g
σ2

b

f

f + 1
,

where wi = ni/N and summations are over i = 1, . . . , k. In Appendix C it is shown that this
complicated expression for g can be approximated very well by a much simpler expression, namely
by f = (

∑
w2

i )
−1−1, and the Satterthwaite approximation is exact when the ni are all the same. We
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will use this simplification (f replacing g) from now on since it leads to a convenient similarity of the
formulas for the factor k in the two cases studied. With this simplification we have a ≈ N σ2

b/(f +1)
and we can treat

V 2 =
SST

a f
=

SSb

a f
= S2 (N − 1)(f + 1)

f N σ2
b

as an approximate χ2
f/f random variable. Further, X̄ ∼ N (µ, τ 2) with τ 2 = σ2

b ·
∑k

i=1 w2
i =

σ2
b/(f + 1), i.e., Z =

√
f + 1 (X̄ − µ)/σb has a standard normal distribution.

Note that when all samples sizes ni are the same (= n), then the above complicated expressions for
f and a (and their approximations) reduce to f = k − 1 and a = nσ2

b . In that case SSb actually
is exactly distributed like nσ2

b · χ2
k−1 and then SST = SSb is independent of X̄. When the samples

sizes are not the same, then SST is approximately distributed like the above chi-square multiple and
the strict independence property no longer holds. We will ignore this latter flaw in our derivation
below. The simulations show that this is of no serious consequence.

Again we have

γ = P
(
X̄ − k S ≤ xp

)
= P

(√
f + 1 (X̄ − µ)

σb

−
√

f + 1 (xp − µ)

σb

≤ k
√

f + 1 S

σb

)

= P

Z − zp

√
f + 1

V
≤ k

√
f N

N − 1



= P

T
f,−zp

√
f+1

≤ k

√
f N

N − 1


leading to

k = k1(N) =

√
N − 1

N

1√
f

t
f,−zp

√
f+1,γ

. (13)

We note the strong parallelism between equations (12) and (13) for the k-factor. Aside from the

common factor
√

(N − 1)/N in both expressions, the expressions match in the sense of using the
respective effective sample size N and f + 1. Note that the actual tolerance bound is of the form
X̄ − kS in both these extreme cases.

10.3 The Interpolation Step

We note that the two expressions for k0(N) and k1(N) in equations (12) and (13) share the common

factor
√

(N − 1)/N and the remainder can be matched if we interchange f + 1 and N . The actual

tolerance bound is of the form X̄ − kS in both these extreme cases.
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For batch effect situations that are positioned between these two extreme cases we propose to use
the previously developed estimated effective sample size N̂? as a simple interpolation between f +1
and N and use as k-factor in the general case

k?(N) =

√
N − 1

N

1√
N̂? − 1

t
N̂?−1,−zp

√
N̂?,γ

.

10.4 An Example Calculation

The data in Table 3 represent data on 21 batches of some composite material property data. From
the data in this table we obtain: X̄ = 49.638 and S = 1.320. Ignoring the batch effects and assuming
that we deal with N = 63 independent observations we obtain as k-factor for the A-allowable

kA = qnct(.95, 63− 1,−qnorm(.01) ∗ sqrt(63))/sqrt(63) = 2.793392

and thus A = X̄ − kAS = 49.638− 2.793392 ∗ 1.320 = 45.95072 as A-allowable.

However, the given data show strong batch effects, see Figure 19, and the above allowable may not
be appropriate. When adjusting by the ”effective” sample size we obtain

SSb = 78.921 , SSe = 29.148 , f = 17.123 , σ̂2
e = .6939 , σ̂2

b = 1.093

and thus ρ̂ = .6116 and N? = 25.056. As k-factor for the A allowable we now get

kA = sqrt((63− 1)/63) ∗ qnct(.95, 25.056− 1,−qnorm(.01) ∗ sqrt(25.056))/sqrt(25.056− 1)

= 3.195986

and thus A = X̄ − kAS = 49.638− 3.195986 ∗ 1.320 = 45.4193 as A-allowable.

If the threshold, against which these allowables are compared, had been 45 then the allowables by
either analysis fall on the same side of 45, namely above. However, if the threshold had been 45.5
then the allowables fall on opposite sides of 45.5, the one accounting for the batch effect falling a
little bit short. This may be mainly because of the “effective” sample size being too small.

A closer examination of Figure 19 suggests that the measured values stabilize from batch 14 onward.
Prior to that point the batch to batch variation seems quite strong. Also, there may have been
selective decisions on how many data points to gather, depending on what was seen on the first
and/or second measurement in each batch. Such a selection bias would put in doubt any of the
calculations made so far. There is no realistic way to account for such bias.
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Table 3: Example Batch Data

batch ni sample data X̄i·
1 1 50.5 50.5
2 1 50.2 50.2
3 4 50.7, 50.8, 51.4, 51.3 51.05
4 1 49.3 49.3
5 3 51.0, 51.2, 53.4 51.867
6 3 50.9, 51.6, 51.8 51.433
7 1 49.3 49.3
8 3 48.6, 48.2, 46.6 47.8
9 2 50.4, 49.9 50.15
10 2 48.2, 47.5 47.85
11 3 50.5, 48.2, 49.5 49.4
12 3 49.7, 51.4, 50.6 50.567
13 4 49.6, 51.1, 51.1, 52.5 51.075
14 4 48.4, 50.2, 48.8, 49.1 49.125
15 4 48.8, 49.8, 50.0, 50.5 49.775
16 5 49.3, 50.2, 49.8, 48.9, 48.7 49.38
17 4 49.3, 47.5, 49.4, 48.4 48.65
18 4 47.8, 47.7, 48.8, 49.9 48.55
19 3 50.0, 49.5, 49.3 49.6
20 4 48.5, 49.2, 48.3, 47.8 48.45
21 4 47.9, 49.6, 49.8, 49.0 49.075

If we disregard these first 13 batches and obtain an A-allowable from the remaining 8 batches with
a total of 32 observations we find X̄ = 49.06875 (not much changed) and S = 0.8133711 (quite a
bit smaller) and the k-factor becomes

qnct(.95, 32− 1,−qnorm(.01) ∗ sqrt(32))/sqrt(32) = 3.033847

with resulting A-allowable A =49.06875-3.033847*0.8133711=46.60111.

Using the above interpolation method we find N? = 22.44343, kA = 3.243241 and A = 46.43079,
which is not that much different from 46.60111 and both values are significantly higher than the
previous ones based on the full data set.
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10.5 Validation Simulations

Simulations of the above process were run for the corresponding bounds on Cpk. Since these were
not discussed here we will not reproduce the results. For various magnitudes of batch effects we
observed the coverage rate of these bounds and found that the actual coverage came close to the
nominal one, if not a bit higher. On the other hand, the coverage probability of the method that
ignored the batch effect fell off strongly as the batch variation became more and more dominant.
For details see the reference or the posted preprint.
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11 Tolerance Bounds in Regression

As indicated in the Introduction, the methodology involving applications of the noncentral t-
distribution to single normal random samples can easily be extended to more complex data sit-
uations. We will show here how this is done for tolerance bounds in the context of regression.

The standard linear regression model assumes the following data structure for n observations or
responses Y1, . . . , Yn, observed under respectively varying but known conditions x′1 = (x11, . . . , x1p),
. . ., x′n = (xn1, . . . , xnp)

Yi = xi1β1 + . . . + xipβp + ei = x′iβ + ei , i = 1, . . . , n .

Here β1, . . . , βp are unknown parameters that are to be estimated from the data (Y1, x
′
1), . . . , (Yn, x

′
n).

The terms e1, . . . , en are the error terms that capture to what extent the observed values Yi differ
from the model values x′iβ. It is typically assumed that these error terms are statistically indepen-
dent with common N (0, σ2) distribution, where the variance σ2 is also unknown, to be estimated
from the data as well.

As a concrete example we consider the tensile strength of coupons of composite materials. These
consist of laminates, i.e., are built up from layers of lamina, typically using lamina with varying fiber
ply orientations, such as 90◦, 45◦ and 0◦. Such laminates are usually characterized by the percent
of lamina in each orientation. Since these percentages have to add up to 100% it is only necessary
to specify k − 1 = 2 percentages when k = 3 orientations are involved. Here the response Y is the
tensile strength of the coupon (the force at which it breaks under tension) and x = (x1, x2) gives
the two percentages for lamina at 45◦ and 0◦ orientation. In addition to the simple linear model
in the covariates (x1, x2) one may also want to explore any quadratic effects, i.e., x3 = x2

1, x4 =
x2

2, x5 = x1x2.

Testing such coupons is costly. Since there are many possible lay-up orientation combinations, it
becomes prohibitive to test all these combinations extensively. Thus it makes sense to test coupons
in moderate numbers for several such combinations, carefully chosen to cover the space of lay-
up percentages reasonably well. Upfront it is not known which lay-up combination will give the
best strength results and it is entirely possible that coupons at such an optimal combination have
not been tested at all for the initial experiment. However, such test runs can be added later in
confirmatory testing or in order to tighten up the tolerance bounds.

The full data set would then consist of (Y1, x11, x21), . . . , (Yn, x1n, x2n). If the quadratic model is
entertained this expands to (Y1, x11, . . . , x51), . . . , (Yn, x1n, . . . , x5n). Much of the variation in the
strength measurement Y comes from testing itself. Both the orientation at which the stress is
applied and the orientation of the coupon as it is cut from the manufactured laminate can vary
and thus could have significant strength impact. Of course there are other factors that can cause
response variation, for example chemical batch effects as mentioned previously in Section 10. Here
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we will confine ourselves to the pure regression model. However, it should be possible to blend the
methods of Section 10 with the solution for this pure regression model.

The above equations for the pure regression model can be written more concisely in terms of matrix
notation

Y =


Y1

Y2
...

Yn

 =


x11β1 + . . . + x1pβp

x21β1 + . . . + x2pβp
...

xn1β1 + . . . + xnpβp

+


e1

e2
...
en



=


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp




β1

β2
...

βp

+


e1

e2
...
en

 = Xβ + e .

It is usually assumed that n > p and that the matrix X is of full rank p, i.e., its p columns
x1, . . . ,xp ∈ Rn are linearly independent. This means that the equation a1x1 + . . .+ apxp = 0 only
admits the solution a′ = (a1, . . . , ap) = (0, . . . , 0). This entails that the p× p matrix X ′X has full
rank p as well2 and thus the equation X ′Xa = b has a unique solution a = (X ′X)−1b for each b.
Here (X ′X)−1 is the inverse matrix to X ′X. A p× p matrix A is the inverse to a p× p matrix B
if AB = I = Ip, where Ip is a p× p matrix with 1’s on the diagonal and 0’s off the diagonal.

Multiplying the above matrix version of the data model by X ′ and then by (X ′X)−1 we get

X ′Y = X ′Xβ+X ′e =⇒ (X ′X)−1X ′Y = (X ′X)−1X ′Xβ+(X ′X)−1X ′e = β+(X ′X)−1X ′e

β̂ = β + (X ′X)−1X ′e where β̂ = (X ′X)−1X ′Y

is the least squares estimate of β. The name “least squares estimate” derives from the fact that
this vector β̂ is the vector β that minimizes the following sum of squares

n∑
i=1

(Yi − x′iβ)2 =
n∑

i=1

(Yi − xi1β1 − . . .− xipβp)
2

= (Y −Xβ)′(Y −Xβ) = (Y −Xβ̂ + Xβ̂ −Xβ)′(Y −Xβ̂ + Xβ̂ −Xβ)

= (Y −Xβ̂)′(Y −Xβ̂) + (Y −Xβ̂)′(Xβ̂ −Xβ)

+ (Xβ̂ −Xβ)′(Y −Xβ̂) + (Xβ̂ −Xβ)′(Xβ̂ −Xβ)

= (Y −Xβ̂)′(Y −Xβ̂) + (Xβ̂ −Xβ)′(Xβ̂ −Xβ) (14)

2X ′Xu = 0 =⇒ u′X ′Xu = 0 =⇒ Xu = 0 =⇒ u = 0.

50



where the simplification to the two terms in the last equation derives from the fact that the two
middle terms in the previous equation vanish, as is shown here only for the first of these terms since
the other is just its transpose:

(Y −Xβ̂)′(Xβ̂ −Xβ) = (Y −X(X ′X)−1X ′Y )′X(β̂ − β)

= Y ′(X −X(X ′X)−1X ′X)(β̂ − β)

= Y ′(X −X)(β̂ − β) = 0 .

The second term in (14) is minimized by taking β = β̂ as is seen from

(Xβ̂ −Xβ)′(Xβ̂ −Xβ) = (β̂ − β)′X ′X(β̂ − β) ≥ 0 ,

with equality if and only if X(β̂−β) = 0, i.e., if β̂−β = 0. This proves the least squares property
of β̂ since the other term in (14) does not depend on β.

Suppose we want to understand the response Y (x0) under the experimental conditions x′0 =
(x01. . . . , x0p), then Y (x0) ∼ N (x′0β, σ2). The natural estimate of x′0β is

Ŷ (x0) = x′0β̂ = x′0β + x′0(X
′X)−1X ′e ∼ N (x′0β, σ2x′0(X

′X)−1x0) = N (µ(x0), τ
2(x0)) ,

where the mean µ(x0) = x′0β derives from the fact that E(ei) = 0 for i = 1, . . . , n and the variance
expression τ 2(x0) = σ2x′0(X

′X)−1x0 comes from

var(x′0(X
′X)−1X ′e) = var(u′e) = σ2

n∑
i=1

u2
i = σ2u′u

= σ2x′0(X
′X)−1X ′X(X ′X)−1x0 = σ2x′0(X

′X)−1x0 .

The unknown parameter σ2 can be estimated by the unbiased estimator

S2 =
1

n− p

n∑
i=1

(Yi − x′iβ̂)2 =
1

n− p

n∑
i=1

(Yi − Ŷi)
2 =

1

n− p

n∑
i=1

ê2
i ,

where the Ŷi = x′iβ̂ and êi = Yi − Ŷi, i = 1, . . . , n, are also known as fitted values and residuals,
respectively. It is known that (n − p)S2/σ2 has a χ2

n−p distribution and is independent of β̂ and

thus also independent of Ŷ (x0) = x′0β̂.

The p-quantile of the response Y (x0) is yp(x0) = µ(x0)+σzp and its natural estimate is Ŷ (x0)+Szp.
As in the case of a single random sample, where we considered tolerance bounds of the form X̄−kS,
we will now consider similarly constructed tolerance bounds in the regression situation, namely
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Ŷ (x0)− k(x0)S. Note that the k-factor here depends on x0, the reason for which becomes clear in
the derivation. From the above we have

Z =
Ŷ (x0)− µ(x0)

τ(x0)
=

Ŷ (x0)− µ(x0)

σ
√

x′0(X
′X)−1x0

∼ N (0, 1) and V =
S2(n− p)

σ2
∼ χ2

n−p

are independent. Abbreviating κ(x0) =
√

x′0(X
′X)−1x0 we continue with

γ = P (Ŷ (x0)− kS ≤ yp(x0)) = P (Ŷ (x0)− kS ≤ µ(x0) + σzp)

= P

(
Ŷ (x0)− µ(x0)− σzp

σκ(x0)
≤ kS

σκ(x0)

)

= P

Z − zp/κ(x0)√
V/(n− p)

≤ k

κ(x0)



= P
(
Tn−p,δ(x0) ≤ k/κ(x0)

)
= Gn−p,δ(x0)(k/κ(x0)) ,

where δ(x0) = −zp/κ(x0). Thus k = κ(x0)G
−1
n−p,δ(x0)(γ)= kappa ∗ qnct(gam, n− p, delta), where

delta =δ(x0), kappa =κ(x0) and gam =γ. The two-fold dependence of k on x0 should now be quite
obvious.

The R workspace contains a function reg.tolbd that calculates such 100γ% lower confidence bounds
for yp(x0) for any specified (γ, p, x0). Note that the intercept covariate is assumed and is not input
into this function, it is created internally. Since a 100(1−γ)% lower bound is a 100γ% upper bound,
the same procedure can be used for getting upper bounds. The documentation to reg.tolbd is
given in the function body.

In addition we provided a corresponding function, called poly.tolbd, that is tailored to polynomial
fits with respect to a univariate explanatory variable. These polynomial models are special cases of
the general linear regression model, as is seen from the following response model:

Yi = xi0β0 + xi1β1 + . . . + xikβk + ei ,

where the explanatory variables xij have the form xij = xj
i , j = 0, 1, . . . , k and the x1, . . . , xn are n

observations on a univariate covariate observed in conjunction with the responses Y1, . . . , Yn. The
special treatment of creating a separate function in poly.tolbd is motivated by the possibility
of showing the fit and the tolerance bounds graphically. Such output illustrations are shown in
Figure 20 for k = 1 and k = 2 for some example data taken from Graybill (1976), pp. 274-276.
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Figure 20: Linear and Quadratic Regression Tolerance Bounds

95% Upper Confidence Bounds for .8-Quantile.
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Appendix A: Equivalence of Tail Probability and Quantile Bounds

We will start with a given x which defines p = p(x) = P (X ≤ x). The 100γ% lower confidence
bound for xp = xp(x) = x is given by X̄ − kpS where kp solves Gn−1,−

√
n zp

(
√

nk) = γ for k. Since
−
√

nzp is strictly decreasing in p we have that Gn−1,−
√

n zp
(y) is strictly increasing in p for any

fixed y and k = kp as solution to Gn−1,−
√

n zp
(
√

nk) = γ is a strictly decreasing function of p. Thus
h(p) = −kp is strictly increasing in p. For p = p(x) we have

γ = P (X̄ − kpS ≤ xp) = P (X̄ + h(p)S ≤ x) = P

(
h(p) ≤ x− X̄

S

)
= P

(
p ≤ h−1

(
x− X̄

S

))
.

Thus p̃U(x) = h−1((x− X̄)/S) is a 100γ% upper confidence bound for p = p(x). We now show that
it coincides with the upper bound p̂U = p̂U(x) defined in the main text.

Rather than using the cumbersome p̃U(x) as subscript in several of the following steps we write
q = p̃U(x) for short. This q satisfies h(q) = (x − X̄)/S. Since h(q) = −kq, with k = kq being the
solution to

γ = Gn−1,−
√

n zq
(
√

n k) = Gn−1,−
√

n zq
(−
√

n h(q)) = 1−Gn−1,
√

n zq
(
√

n h(q))

where the last equality comes from identity (3), this rewrites as

1− γ = Gn−1,
√

n zq
(
√

n h(q)) = Gn−1,
√

n zq

(
√

n
x− X̄

S

)

and solving this for q yields q = p̂U(x) according to the definition of p̂U(x). Thus p̃U(x) = p̂U(x).

It should now be quite clear from the above gyrations (which may appear to be a slight of hand)
why the direct approach was taken in defining p̂U(x) rather than using the above form p̃U(x), which
leads to a double root solving process, namely solving h(p) = (x − X̄)/S for p and then finding
kp = −h(p) (by root solving from Gn−1,−

√
n zp

(
√

nk) = γ) for each evaluation of h(p).
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Appendix B: Mean and Variance of SST = SSb when σe = 0

When σe = 0 then SST = SSb =
∑

i ni(X̄i· − X̄)2 = N
∑

i wi(X̄i· − X̄)2 with wi = ni/N . Note that
X̄i· = µ + bi and X̄ =

∑
i wiX̄i· = µ +

∑
i wibi. Then we can write

SSb = N
∑

i

wi(bi −
∑
j

wjbj)
2 = N

∑
i

wib
2
i − 2

∑
i

wibi

∑
j

wjbj +
∑

i

wi(
∑
j

wjbj)
2


= N

∑
i

wib
2
i − 2(

∑
j

wjbj)
2 + (

∑
j

wjbj)
2

 = N

∑
i

wib
2
i − (

∑
j

wjbj)
2


Since

∑
j wjbj ∼ N (0, σ2

b

∑
i w

2
i ) we have

E(SSb) = N

∑
i

wiE(b2
i )− E

(
∑
j

wjbj)
2

 = N

[∑
i

wiσ
2
b − σ2

b

∑
i

w2
i

]
= Nσ2

b

(
1−

∑
i

w2
i

)
.

Next note that var(b2
i ) = 2σ4

b . Exploiting independence of the bi and E(bi) = 0 we get

cov(b2
i , (
∑
j

wjbj)
2) =

∑
j

∑
j′

wjwj′cov(b2
i , bjbj′) = w2

i var(b2
i ) = 2w2

i σ
4
b

Thus

var(SSb) = N2

var

(∑
i

wib
2
i

)
− 2cov

∑
i

wib
2
i , (
∑
j

wjbj)
2

+ var

(
∑
j

wjbj)
2


= N2

∑
i

w2
i var(b2

i )− 2
∑

i

wicov(b2
i , (
∑
j

wjbj)
2) + 2σ4

b (
∑

i

w2
i )

2


= N2

[∑
i

w2
i 2σ

4
b − 2

∑
i

wi2w
2
i σ

4
b + 2σ4

b (
∑

i

w2
i )

2

]
= 2N2σ4

b

[∑
i

w2
i − 2

∑
i

w3
i + (

∑
i

w2
i )

2

]

Matching mean and variance of an approximating aχ2
g random variable with E(SSb) and var(SSb),

respectively gives

E(SSb) = Nσ2
b

(
1−

∑
i

w2
i

)
= E(aχ2

g) = ag

and

var(SSb) = 2N2σ4
b

[∑
i

w2
i − 2

∑
i

w3
i + (

∑
i

w2
i )

2

]
= var(aχ2

g) = 2a2g
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we get
var(SSb)

[E(SSb)]2
=

2N2σ4
b [
∑

i w
2
i − 2

∑
i w

3
i + (

∑
i w

2
i )

2]

N2σ4
b (1−∑i w

2
i )

2 =
2a2g

a2g2
=

2

g

=⇒ g =
(1−∑i w

2
i )

2∑
i w

2
i − 2

∑
i w

3
i + (

∑
i w

2
i )

2
and a =

Nσ2
b (1−

∑
i w

2
i )

g

for the Satterthwaite approximation aχ2
g for SSb.

Appendix C

Here we present the rationale for the approximation g ≈ f . Let wi = ni/N and observe
∑k

i=1 wi = 1.
Further let

A =
k∑

i=1

w2
i and U =

k∑
i=1

wi (wi − A)2 =
k∑

i=1

w3
i − A2 .

Then

g =
(1−∑w2

i )
2∑

w2
i − 2

∑
w3

i + (
∑

w2
i )

2
=

1− A

A

1− A

1− A− 2U/A
≈ 1− A

A
= f ,

where in the approximation step we assume that

U

A
=

k∑
i=1

wi

(
wi

A
− 1

)2

A � 1 , since wi ≈
1

k
, A ≈ 1

k
,

wi

A
≈ 1 .

Note that U/A = 0, when the ni are all the same. In that case the above approximation is exact.
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