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Preface

The computation of the tables contained herein was under-
taken to facilitate the construction of variables sampling plans
in industrial acceptance sampling under Office of Naval Re-
search contract N6onr-25126.

Because it is believed that the tables have numerous other
applications to both practical and theoretical statistics, it was
decided to make them generally available by publishing them
in book form.

The authors wish to acknowledge their indebtedness to the
following persons: Albert H. Bowker, for originally suggesting
the computation of the tables and for encouragement and
advice during the course of the work; Joseph Carter, for as-
sistance in much of the programming; Gladys R. Garabedian,
for invaluable assistance in preparing the text material; and
last but not least, Herbert Solomon, without whose inspiration
the work could never have been initiated.

The authors imply no responsibility on the part of these
people for any inacccuracies that may exist in the tables.

January 25, 1957 GEORGE ]. RESNIKOFF
Research Associate, Applied Mathematics and
Statistics Laboratory, Stanford University

» GERALD ). LIEBERMAN
Associate Professor of Statistics and
Industrial Engineering, Stanford University
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TABLES OF THE NON-CENTRAL t-DISTRIBUTION: DENSITY FUNCTION,
CUMULATIVE DISTRIBUTION FUNCTION AND PERCENTAGE POINTS

1. Introduction

Let 2z be a random varisble distributed normally about zero with unit stand-
ard deviation, and let w be a random variable distributed independently of =z as
X2/f with f degrees of freedom. If t is defined by

245

Vv

t =

where © 1is some constant, then t is sald to have the non-central t-distribu-
tion with f degrees of freedom and non-centrality parameter 8.

The probabllity density of t is given by

2
£l £+t £
h(f,S,t) = TF 1 e ( h—g')

22 F(g) NE:3

where

S (v+y)2
Hh(y) = 2
-

The tables contained herein give values of the probability integral, of the
probability density functlion and of the percentage points of the non-central +-
statistic for selected values of the parameters f and 3.

Important tabies related to the non-central t-statistic have been published
previously by Johnson and Welch [4]. Their tebles do not deal directly with the
probability integral, nor is it possible to obtain from them values of the density
function. The Johnson and Welch tebles facilitate the computation of S(f,to,e),
that is, that value of the parameter & for which Prt < tolf,s,] = l-e, for
seventeen values of €. By a more extended computation it is possible to obtain
fhe percentage points corresponding to these seventeen values of . The percent-
age points corresponding to the special values € = .05 and ¢ = .95 may be
obtained with somewhat less labor.. The tables may also be used to compute values
of the probebility integral as a function of 5, for fixed f and t.

Other tables of the probability integral are those of Neyman [9 ] and Neyman



and Tokarska [10], which were computed for the purpose of obtaining the power curve

of the Student t -~ test.

2. Description of the Tables

Three tables of the non-central t-statistic are given: +the probability inte-
gral, the probability density function, and the percentage points of t.

Tabulation of the non-central +t- distribution reguires a table of triple
entry since the distribution depends on the two parameters f and 8, where f
is the number of degrees of freedom and © is the non-centrality parameter.

The argument used throughout the tables is x = t/,/? . The reason for using
t/ﬁ as the argument instead of 1t 1itself is that the range for this argument
is roughly the same whatever the values of the parameters f and 8. This enables
a somewhat more compact form of tabulation than would be possible if the argument
were t itself.

The ranges of the parameters f and ® are as follows: f ranges from 2 to
2k by steps of 1 end from 2% to 49 by steps of 5; and & =/T+L KP where Kp is

the standardized normal random variable exceeded wlth probability p; that is,

2
® e
] £
= &y =op.
K _ /2
D 4

The values of p which were used are p = .2500, .1500, .1000, .0650, .O40O, .00,
L0100, .00LO, .0025 and .0010. A table of /F+l Kp for these values of f and
p is glven on page 3.

These values of the parameters were chosen so as to cover the useful range
adequately. In particular, the choice of f = 2(1)2k and 24(5)49 appears to
£111 the needs for most practical applications. It is felt that for f greater
than k9, a normal approximation [12] is adequate. The values for £ of 2L(5)49
were chosen rather than f of 25(5)50 because most practical applications
require that f = n-1 where n 1is the sample size. Sample sizes which are
multiples of 5 are prevalent in industrial statistics.

The indexing of & = \/m Kp as & function of Kp requires a word of explana-
tion. General examples of the usefulness of these tables appear in the next sec-
tion. However, the development of these tebles was motivated by the necessity of
using the non-central t - statistic for problems involving the fraction of normally

distributed random variables falling sbove and/or below specified values. The
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solution of such problems involves KP. The particular values of p chosen coin-
cide with the Acceptable Quality Levels (AQL's) of Military Standard 105A, Sempling
Procedures and Tables for Inspection by Attributes.i/ It shoﬁld be noted that this
choice does not restrict the usefulness of these tables, but rather gives a method
of adequately representing the useful range of & for the applications.

In the subsequent sections the pro’bab‘ility integral of t will be denoted by
P(f,&,xj = Pr[t/ﬁ <x {£,5]. The probability density of 1%, tabled with argument
t/\/?, will be denoted by P'(f,t‘),t/‘/?). The percentage p;)ints of t will be
denoted by x(f,5,e), where x is the value such that Pr[tA/f > x|f,8] = e.

For negative values of 5 the following relationships are useful ;

PH(f, -8,x) = P'(£,8, -x),
P(f, -8,x) = 1-P(£,5, -x)
and

x(f, -5,e) = -x(£,5,1-€).

3. Examples of the Uses of the Probability Density Function of the Non-Central t-

Statistic

a. The WAGR Sequential Test

The WAGR test is a sequential procedure for testing the null hypothesis Ho’
that the proportion of a normal population exceeding a given constant U is P,
(glven), against the alternative hypothesis H,, that the proportion is p; (given).
The name WAGR stems from the initlals of several of the individuals who proposed
this test: Wald, Arnold, Goldberg‘ and Rushton. A description of the WAGR test
follows.

Let Y

1o Yoo be a sequence of independent observations on a normally dis-

tributed random verisble with mean p and variance 02.
Let Y be the arithmetic mean of the first n of the observations. Define

u, by

s (v-y))
u = L ( __—_—i:l ) n=2,3, ...
RN Qe o
=1

y These same values of p will be the AQL's of a new mllitary standard for
sampling inspection by variables.



Then tn =y/n-1 u, is a non-central tistatistic with parameters f£ = n-1 and
5 =0 U%u =J/n KP. The ratio of the probsbility density function of + ~ under

Hl to the probability density function of tn under Ho is, in the present

notation, given by

P'(n-1, /u KP R un)

1
A= ————
P'(n-1, ﬁl- Kpo: un)

The test procedure is to observe }"n sequentially for n = 2,3,... . The

first time that the inequality

54 1B
T <M< Fs O<o+p<l, O<a 0<p
is violated, the null hypothesis is either accepted or rejected. If )‘n > l‘;s 3

% , accept Ho.
It has been shown [8] that the WAGR is a true sequential test as defined by

reject H ; if A <
o n

Wald and hence that the probabllity of accepting HO is approximately 1-0 when

P is. the true population proportion, and is approximately £ when Pl is the

<]
true proportion. A proof that this test reaches a decision with probsbility one
has been given [2].

In actually carrying out the test, one initially observes Yl and Y2 and

computes ua. The ratio )\2 is not available from the present taebles since 1t

corresponds to f = n-1 = 1. However %.2 may be expressed as follows:.

oz /uy) 2z 0(z;) + olz;)
Yo = e ) Eowe e, )

where

Ze=—————, =01,

o(z)



and

5

o(z) = j o(v)dv.

- 00

The functions ¢(z) and ¢(z) are conveniently available in a single volume
of tables of the normsl probability function [TIl.

After this first step, if the inequality is not violated, one observes Yn
(and hence un) for n = 3,k,... until the test is terminated. Each time wu,
is computed, the ratio )\ﬂ is obtained directly from the appropriate table of
the non-central t-density fumctiom, if Py and Po are among the ten tabulated
values of p; otherwise, interpolation on the non-centrality parameter is required.

A numericsl example of the application of the tables of the probability
density to the WAGR test follows. Let U = 10, ‘po = .01, Py = .065, a = .05 and
B = .10. .Then 1;5(1 = .1053 and % = 18.0000. Suppose the first observations
are Y, = 8.10 and Y, = 8.70; then

{2(10) - 8.10 - 8.70]

> 18.10 - B.701 =-3333

- (3:2900)(5.3333) _ 5 5337

° 29. L
and
- (2.1413)(5.3333) _ 5 1016,
1

29. 4441

From the tables of the normal probability funetion, we obtain: q)(zo) = ,002139,
®(zy) = .0k356, o(z,) = 999k, #(z;) = .9823, @(z /u,) = 9(.6063) = .3320 end
cp(zl/ua) = p(.3946) = .369L. Hence

.3691] [(2.10%)(.9823) + (.04356)

% = bi33z0) t3zs3nitgoon) + (.ooaizgy) © T

Thus, the inequality is not viclated at the n=2 level and we take another obser-

vation. Let Y3 = 7.20; then




From the tables of the density function of t, we obtain

P2, V3 K ), 3.24kk) = 141k

and

P'(2, \/§K'065, 3.24h4) = .0976.

Hence
-0976
Ny < 6902

and the inequality still holds at the n=3 level. One would then take another
observation and proceed as for n=3 above, obtaining the values of the density
function from the appropriate table. This operation is continued until the
inequality is violated. ‘
b. An Application of the Probability Density Function to the Computation of
Moments of a Function of the Non-Central +t - Statistic

The first two moments of the non-central + - statistic are given by the

expressions
i £-1
\/-;- r(=5=)s
B(t) = ——————
(3
2
and

2
B(t?) = —-—f(%‘:g ) .

The moments of several useful functions of +t are known only approximately,
for large values of the parameter f£. One applicatlon of the tables of the
probability density to the problem of computing the moments of an arbitrary func-
tion g(t) of the non-central t- statistic is by straightforwerd numerical
integration.

The k% moment of (%) can be written as

[e o]
B (e(t))] = J ((e))® n(e,5,8)at
[s o]

where h(f,S,t) ie the analyticel expression for the non-central ¢ -density

given in the introductory section.



This may be approximated by

t,
s((a(2))1~ 2o (8(t,) P'(2,5, 2)
ey 7

where Z refers to summetion of a grid over the ti, such as the well-known
trapezoidal rule, Simpson's rule, or other more elaborate integration formulas.
Particular examples of useful functions of the non-central t-statistic are

two estimates of the proportion p of a normal population which lies above a

given limit U. ZLet the population mean be p and the population variance be

02; then p is expressed as

] %o

e

Ve

dv.

o
1
qlg (-

An estimate of p which ie often given is the bimsed estimate p(¥,s) which
is obtained by replacing p and o by their sample estimates in the expression

for p. Let Yl’ 2""’Yn be a sample of n observations and let

LYy

n

i
u

and

}:\(1{i - Y)2

n-1

Then

2
X
2

dv.

e
]
8

=
Ven

=]
1
o

m'

Another estimate of p which has appeared recently in the literature [6]

is the uniformly minimum variance unbiased estimate defined by




- for 0<z<1

z 27 2
”
P = o] for z <0
1 for z > 1
where 1z = % - % ——;—- ‘]% and Iz(a,b) is the Incomplete Beta Function ratio

with parameters & and b.

The quantity
Yo (U-Y) 4
8

has the non-central t-distribution with degrees of freedom f = n-1 and
5= \/E Kp, so that both estimates are functions of the non-central t-statistic.

The two estimates 5 and ﬁ are asymptotically equivalent and asymptotically
efficient. The latter estimate, ﬁ, is unbiased and has the smallest variance
among all unbiased estimates of p. The former estimate, i'), is biased so that its
mean sguare error E('ﬁ'—-p)2 is more relevant than its variance. No small sample
comparison of the mean square errors of these estimates is available. It has some-
times been assumed that D is & "best" estimate in the sense of least mesn square
error. Numericel integrations performed by the writers using the present tables
of the probsbility density show that this is not the case, and in fact their
relative merit depends on the value of the parameter p at which the mean square
error is computed.

Suppose we wish to obtain the first moment of the estimate ﬁ of the propor-
tion defective of a normsl population for p = .0250. Let n = 17.. Then we use

the expression

Bla(t)lv 2. elt,) P'(36, JIT K Ei)
ty i ’ .02507 Ji6

where



I0

Note that we use t/ﬁ as argument for computation purposes to avoid inter-
polation in the tables of the non-central t-distribution. But the increment to
be used in applying the numerical integration formula must be the increment in
t itself. 1In the example below, the increment for argument t/ﬁ is .25, but
the increment in t is .25\/f = 1.00. We choose arbitrarily to use every fifth
point given in the probability density tables, but the integration may be done
with as fine an interval as desired. The values for g(ti) were obtained from

tables of the normal probability integral. Applying the trapezoid rule, we obtain

&
.0250° \/—1;2)' = 0294

ﬁéﬁ Z alt,) P1(16, /IT K

where the &i are the appropriate coefficients for the trapezold rule.

t t, t,
l—i Pr(16 , ‘/ﬁK.ozg.o’E) \/1:; a(t,)

.75 .0000 L7276 L2334
1.00 .0016 .970L 1660
1.25 .0240 1.2127 1126
1.50 104k 1.4552 .0728
1.75 .2009 “1.6977 .0448
2.00 2277 1.9403 L0262
2.85 .1837 2.1828 L0145
2.50 L1195 2.k254 .0076
2.75 L0679 2.6679 .0038
3.00 .0356 2.9104 .0018
3.25 .0178 3.1530 .0008
3.50 .0087 3.3955 .0003
3.75 .00k2 3.6380 .000L
4.00 .0020 3.8806 | .000L
k.25 .0010 4.1231 0000
.50 .0005 4.3656 .0000
k.75 .0002 4.6082 0000
5.00 .0001 4.8507 0000
5.25 .000L . 5.0932 0000
5.50 0000 5.3358 | .0000

b, Exemples of the Use of the Probability Integral and Percentage Points of the

Non-Central t-Statistic

a. Sampling Inspection by Variables for Fraction Defective, with One Stand-

ard Given

A class of problems in which the non-central t-statistic plays an important



role is in the computation of operating characteristic (0C) curves for sempling
inspection by variables procédures. Suppose an obJect 1s classifled as defective
or non-defective according to whether the value of a characteristic exceeds or
falls short of a fixed standard U. The percent defective, p, in a lot is defined
as the percentage of the objects falling above U. The general sampling inspec-
tion problem is the formulation of a procedure which will accept the lot if p is
sufficiently small. In particular, sampling inspection by variables can be used
if the measured characteristic, ¥, is a normally distributed random varisble.
(Note that this variable Y is distinet from that random variable which depends
solely on whether the object is defective or non-deféctive.) The acceptance pro-
cedure for the case in which the mean, u, and the standard deviation, o, are

unknown 1s to accept the lot if

T+ks§U

where k . is a constant, and Y and s, the sample mean and sample staendard devia-

tion computed from a sample of size n, are given by:

L(x,-¥

n-1

8 =
The acceptance criterion can be rewritten as
viS gIsI-Y) 2\/3 X

and further as

DEGw G fes

But the expression on the left has a non-central t-distribution with f = n-1 and

5= mg'—“) = \/E Kp. Hence the acceptance criterion can be written as

t> /3 k.

The OC curve for this procedure, that is, the probsbility of accepting the

lot, can be written as

II



I2

Pri{t>/n k| =1-Pr{t </Ak}= l-Pr{\/_t_S le}
n-1 n-

= 1-P(n-1, \/E’KP, % X) .

Ten points on the OC curve corresponding to the ten values of p found in the
table can be obtained immediately.

For example, for n =10 end k = 1.72, Pr{t>va k} = 1-P(9, VI0 Kp,l.8l3).
By interpolation in the Table of the Probability Integral for f = 9, the follow-

ing points are obtained:

p=.2500 = 1-P(9, /I K pso0r 1-8E3) = 0215
D= .1506 1-p(9, VIO K 1500’ 1.813) = .1038
p = .1000 1-P(9, /10 K 1000 1.813) = .22h2

p = .0650 1-P(9, VIO K 06507 1.813) = .3851

p = .04OO 1-P(9, /10 K ohoo’ 1.813) = .5685

p = .0250 1-p(9, /10 K o507 1.813) = 7177
p = .0100 1-B(9, VIO K g 50 1-813) = 8976

p = .0040 1-p(9,\\/1_o K o040’ 1.813) = .9692

p = .0025 -1-p(9, V10 X o005° 1.813) = .9843
p = .0010 1-p(9, V10 K 0010° 1.813) = .9961

These tables can 8lso be used to design sampling inspection plams. If two
points on the OC curve, (pl,l-a) and. (pa,a), are given, the required values of

n and k cen be found. These values are obtained from the relationships:

P(n-1, /o Kpl, /ﬁ X) =

n
P(n-1, Va sz,‘/ﬁ k) = 1-p:

The values of n and Xk are found by trial and error. - Theoretically, the

correct value of f has the property that there exists a velue of x for which



the entry in the By column equals o and simultaneously the entry in the p2

column equals 1-f; that is,

]
Q

P(n-1, \/1’.I K, x)
Py

P(n-1, /o K_, x) = 1-B.
By

However, because of the necessary discreteness in the sample size, an integral
value of f possessing the above property is not usually obtainable. Therefore,
the following procedure for f < 24 is established. Two consecutive values of

f, say f¥ and f% + 1, are found such that
(1) for f* there exists an x' <for which

P(n-1, /o K_, x')>¢
Py =

and simultaneously

P{n-1, yn K_, x') < 1-B
Py -
and
(2) for f£* + 1 there exists an x" Cfor which
P(n-1, /o X , x") <a
By -

and simulteneously

P{n-1, /n Kp , x') > 1-B.
2

The value #£% + 1 is the desired £, and the appropriate value of x 1is
found by interpolating in the pl column with degrees of freedom f¥ + 1 for
the given value «. The value of k 1s obtained by substituting this value of
x in k= \/B? x. Note that this procedure always yields a value of B less
then the desired one. This has the effect of establishing a ssmpling plan that
is 8 little stricter than the one desired in the sense that lots of incoming
quality ?, will be accepted less frequently than prescribed.

For example, suppose an OC curve 1s to be constructed passing through the
points (pl, 1-a) = (.01, .99) and (p2, g) = (.15, .10). Thus, ¢ = .OL and

1-B = .90. f£% =16 and f£* + 1 = 17 have the properties described above, that is,

13
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P(16, V1T K g0 1.55) = .010k > .01
P16, V1T L P 1.55) = .8936 < .90

and

P(17, VI8 K o1’ 1.55) = .0090 < .0L

P(17, VI8 K15 1.55) = .9022 > .90 -

Thus, £ = 17 is chosen. It should be noted that x' and x" need not have the
same numerical velue. Because of the relative coarseness of the interval in the
argument x, the value of X, corresponding to a specified value of o for £,
will often be identieal to the value of x corresponding to o for f£+1. With
this f and by linear interpolation in the Py column, the. value of x = 1.560
provides an @ = .0l. The value of k is found from k -E 1.560 = 1.516.
Thus, for the values of n = 18 and k = 1.516, the OC curve will pass through
(pl, 1-a) = (.01, .99) but will not pass through (p2, B) = (.15, .10) exactly.
Instead, for these values of n and k, the curve will pass through (.15, .09%1).

For 24 < £ < 49, it is suggested that & first approximation for n = £+l be
obtained by the normal approximation which is given by

2 2
. 2(xa + Ka) + (Ka o KBKPl)

2(k -K )2
P B

where the numerical velue obtained 1s always rounded to the next higher integer

and where Ke 18 a normal deviate exceeded with probability e; that is, Ke is

defined by

n

© I

1 J e ? ayme.
Jen K

€
Call this value 2. Then interpolate in the Tables of the Probability Integral
of ¢t for the x corresponding to pl and «a for the two tabled values of
f adjacent to ‘f\:; then obtain the (1-B) value corresponding to these x's 1in
the Py columm. If ’f\” is already one of the tabulated values of £, the desired
values of x and 1-B are obtained by these interpolations. Finally interpolate

on f for the x corresponding te Py and o end for (1-B).



For example, suppose a sawpling plan is to be constructed which will have an
0C curve passing through (.065, .99) and (.25, .O4). From the normal approxi-
mation to f, the value of %J = 36 is obtained. The two tabled values of f
adjacent to 36 are 3% =and 39. For f = 34, by interpolation it is found
that x = 1.043 corresponds to pl = .065 and o = .0l; and for this value of
X, 1-B = .9507. Similarly for f = 39, x = 1.066 and 1-B = .9698 are found.
Then, by interpolation for ; = 36 on these pairs of x and (1-p) values,

X = 1.052 and 1-B = .9583 are obtained. Then k =/§:§ 1.052 = 1.038. 'Thus
for the values n = 37 and k = l.038, the OC. curve will pass through

(.065, .99) eand (.25, .Okl7) which is close enough for most practical applica-
tions. It must be noted that these results are only as accurate as the method
of interpolation used.

If the value of f required exceeds the range of the table the normel
approximation for both n and k [12] can be used.

The solution to the problem of finding values of n and k corresponding
to two given points on the OC curve can also be cbtained by using the Table of
the Percentage Points of +. This table can be used (and should be used) when-
ever l-o and B are values of ¢ given in this table. Theoretically, the

solution is obtained by finding values of n and x such that
x(n-1, /o K_, L-a) = x(n-1, /R K_ , B)
P P2

However, agsin the discreteness of f does not allow an exact solution and it
is necessary to proceed as above, finding two comsecutive values of £, f* and

f¥ + 1, such that for f£¥%

x(n-1, /o X_, 1-a) < x(n-1, /2 K_ , B)
ksl P

and for f£¥ + 1

x(n-1, Vo X_ , 1-a) > x(n-1, /o K_ , B).
Pl P2

The proper value of £ is f£%¥ + 1 and x is the value x(n-1, /n KP , 1)
1

for this f. This procedure yields a slightly stricter OC curve than the one
specified.

For example, if once again a sampling plan is to be constructed passing

15
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through the points (.01, .99) send (.15, .10). The Tables of the Percentage
Points of t may be used since ¢ = .99 and e = .10 are both tabled values.

For f* =16

x(16, V1T K - .99) = 1.545 < x(16, JIT LI .10) = 1.566
whereas for f¥ + 1 =17

(17, VI8 K g .99) = 1.561 > x(17, V18 Ko .10} = 1.545.

Thus f = 17 is chosen and k = \/g 1.561 = 1.517. The difference between this
solution and the one using the probability integral is due to the fact that the
percentage point teble yields more accurate results than does inverse linear
interpolation in the Tebles of the Probability Integral.

If the values of Py and P, chosen are not those found in the table, a
solution can be obtained by interpolation on p or Kp.

Finally, these tables can also be used to design sampling plans when the
value of n 1is given and a single point (pl, 1-a) is specified. The solution

ylelds the appropriste value of . k¥ and is obtained from the expression

n
P(n-1, /1 Kpl, /ﬁ k) =a

when the Table of the Probability Integral is used. The value of x which

satlisfies the above expression is used to determine k =\/.i— X
If the Table of Percentage Points is used, the value of x corresponding
to x(n-1, /u Kpl, 1l-a) yiel&s the appropriate solution and k =\/n—? X
For example, if P = .0l, ¢ = .05, and n = 15, and the Table of Percentage

Points 1s used, the value of x corresponding to

x(1h, VIS K o5 -95) = 1.736

and

B
X = \/;—1—5: 1.736 = 1.677.

b. Sampling Inspection by Variables for Fraction Defective, with Two Stand-

ards Given

An unsolveq problem is that of constructing tests of significance about the

proportion defective p, with given significance level a, when p is characterized



by two specifications, a lower standard L, and an upper standard U, so that

® v Ly ¥
J E2 a| 2
P=D,+ P = e av + J— av .
U L ot [5e
U-p 2 [}
[

This is sometimes called the two-sided proportion defective. However 1t is
possible to devise such tests of significance for p with significance level
very near a given value « by the use of a procedure based on the uniformly

minimum variance estimate ﬁ, defined by

A A A n-2 n-2 n2 n-2
P=Dy+ P = ZU(Z’ )+I( y
where
aoo i luf a1 1YL /3
U 2 2 s .n-1 L 2 2 s n-1

IZ is the Incomplete Beta Function Ratio.

If z < 0, then IZ is taken to be zero; if z> 1, Iz is taken to be one.

If L=- ® so that pL=O

2
-
e 2
Pxpy= —_— av.
yen

i
Q‘F;’8

Then /I\’L = 0 and the uniformly minimum variance unbiased estimate of the

one-sided proportion defective pU is

n-2 n-2
Iz(e’T) for 0<z <1
U
Py = 0 for ZU <0
1 for Zy 2 1

If U=+ c so0 that pU = 0, then fJU = 0 and the uniformly minimum vari-

ance unbiased estimate of pL is

17
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To test Py < 2, against PU > 0 the procedure is as follows:

1. Choose & significance level « and sample size n.

2. Using the Tables of the Percentage Points, solve the equation

x(n-1, VA K , 1-0) = /oI (1-28,)
T, D

for ﬁp*'

(n—2 n-2

3. Bp* is defined by I 5 T) = p¥. By interpolastion in the tables

BP*
of the Incomplete Beta Function determine p*.

4. Draw a sample of n and compute

9. From the Table of the Incomplete Beta Function, using ZU as argument

N
determine p.

6. If ﬁ > p*, the hypothesis pU < P, is rejected with probability exactly

If in step 3 the critical region ’;\:U > p* 1is such that p* = 0, then for
this combination of po and n, the significance level ¢ is unobtainable with
the test statistic i\)U. This situation occurs only for the combination of very
small 2, and very smsll n, so that x(n-1, ﬁ KP » 1-0) >/u1 .

The extension of this procedure to the case ofotesting PL < po involves

only replacing ZU by

z. -1 _—-L Ln .
L 2 2 8 n-l

The operating characteristic function (probability of acceptance) for these
one-sided procedures is obtained from the Table of the Probability Integral and

is given by



1-P[n-1, /n Kp, x(n-1, /n Kp , 1-a)l.
o

Thus it is seen to be equivalent to the one-sided acceptance procedure given
in the preceding section where the criterion is Y+ ks <.

The relation between k and p¥ for given « is

n-1
k= — (1-28_,.).
n P*

Unless one is interested in simultaneously testing an hypothesis sbout pro-
portion defective p and obtaining an unbiased estimete of p, the foregoing

procedure affords no advantages over the criterion
T+ ks <U.

However in the two-sided case the uniformly minimum varience unbiased estimate
provides a procedure for testing p = pU + Pr, < Py Computations in [11] show
that the probability distribution of /f) = i\)U + i)L is essentially dependent only

on p and only very slightly on the partition of p into its components PU

and pL. To this extent the following statement holds:
Pr{ B < p*\p} ~ 1-P{n-1, \/H,Kp) /n-1 (1-2ap*)].

The two-sided test procedure is as follows:
1. Choose a significance level « and sample size n.

2. Using the Table of the Percentage Points, solve the equation

x(n-1, /o K_ , 1-q) =/n-T (1-28_,)
Py P

for BP*'
3. By interpolation in the Table of the Incomplete Beta Function determine
p*.

4. Draw a sample of size n and compute both

2 oLl _1 UT /n
u 2 2 s n-1
o <1 1 Y%L y/n
L 2 2 8 n-1

5. From the Table of the Incomplete Beta Function, using Zy and ZL as
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arguments, determine pU and PL and hence P = pU + pL.

6. 1If ga > p¥* the hypothesis »p < 2, is rejected with probability very

nearly equal to «.

If the critical region '1\': > p¥* is such that p*¥ = O +the significance level
o is unachievable for this combination of po and n.

The operating characteristic function is obtained from the Table of the
Probability Integral and is éiven approximately by

1-P[n-1, /n K x(n-1, /o Kpo, 1-a)].

For the two-silded test proceduré steps 1, 2 and 3 and the OC curve are
identical with those of the one-sided case. Therefore sny test criterlon p¥*
and OC curve for a one-sided test may be used as approximations for the two-
sided test. » ‘

An example of this proced_ure foliows. It is assumed that the hypothesis
to be tested is that the proportion defective P, is legs than or equal to .OL.
A sample size of 10 1s to be used with significance levei a = .10, To find

the test criterion the equation
x(9, VIO K 15 -90) =9 (1-28,)

is solved for BP*' From the Tables of the Pércentage Points x(9, /10 K o1’ .90)
= 1.807 so that sp* = .1988, By entering the Tebleés of the Incomplete Beta
Function Ratlo the value p* = .0327 is found.

As a result of sampling 10 items the following statistics are observed

U-3 ; 3 Y-L
- =203 & == =1.925.

From these sample values

7y = 14266  end 7 = 16181

are computed. The estimates f’U = .0101 and II;L = .0159 are found by entering
the Tables of the Incomplete Beta Function Ratio. Thus S = .0101 + .0L59

= .0260 < p* = .0327 so that the hypothesis is not rejected on the basis of
this sample. The OC curve for this procedure is given by 1-P(9, /10 Kp;l.807).

Ten points on this curve obtained from the Tables of the Probability Integral are



given below.

P OC function
.0010 .9963
.0025 .98k9
0040 .9702
.0100 .9000
.0250 7217
.0koo 5728
0650 .3890
L1000 .2270
1500 L1054
2500 0219

¢, Confidence Intervals for Proportions from & Normal Population

Denote by .p the proportion of a normal population with unknown mean p
and unknown standard deviation o which lies sbove a fixed standard U. In
varisbles acceptance sampling p 1s termed the proportion defective.

The limits Pl and p2 of a confldence interval for p, with confidence
coefficient 7y, may be found by estimating /o Kp =/n U_;_u by the non-central

t-statistic based on s sample of n observations, Yl’ Y,

p7et .,Yn. This non-

central t-statistic is

n (U-Y
8
where
Z Y
Y= i
n
and
8 = .

Confidence limits for Kp = U%p are determined by solving the equations

n_ U-Y

x(n-1, /n Kpl, l—yl) =J5T =

) n  U-Y
Kol K 0 n) = T T .
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for Kpl and sz using the Tables of the Percentage Points of the non-central

t-statistic. Here 7 + 7y = 1-7. Tt is usually necessary to interpolate on

Kp in these tables for this purpose. One then converts KP and Kp into

P, and Py» the upper and lower limits, respectively, of the confidence interval

for p with coefficient y. The most convenient table for converting KP to

p is [5]. However, any table of the cumulative normal distribution will serve.
A numericel example of the use of the Tables of the Percentage Points to

obtaln confidence limits for proportion defective p follows: Suppose a sample

of size n = 20 is drawn and on the basis of the sample mean' Y and sample

standard deviation s, the statistic UT-T is found to be 1.83%. A confidence

interval for p is to be constructed with confidence coefficient ¥ = .90.

Let 7 = .05 and 7y = .05. Then

n  U-Y _ [20
[ uX =/1_§ 1.83% = 1.882.

Solve the equations

1.882

x(19, V20 K_ , .95)
Py

x(19, /20 K, .05) = 1.882
2

for pl and p2. Interpolation should be performed on KP, not on p. Values
of Kp can be found in the table on page 3 . For this example, the following
results are obtained:

K = 2.429021; p, = .0076
Py 1

K= 1.209322; = .1133.

P,
> 2

Thus the confidence intervel for p with confidence coefficient y = .90 based

on this sample of 20 items is

[.0076, .1:133].

If a lower specification L is given so that

N

A
2

8,
P = f = av
@



the equations which yield confidencée limits for Kp and hence for p are
-2 G
%(n-1, Vo Kpll 1'71) =Ja-1 s

x(n-1, /o KPQ’ 72) = \/u—_l-l_l—. (_Y;L_) .

d. The Power of Student's t-Test

In testing the hypothesis H6 that the mean of a normal distribution is
b=y against the alternative that u > Hy? Student's t-test consists of
calculating

. Ve (Tn,)
s

- L (x,-T)
where Y = ZYi/n and s = —i and rejecting the hypotheses if

t>‘t;o.

If the level of significance is @, the following probability statement

holds,

P(n-1, O, to//u-'l) = l-a.

The velue of to is obtained from a Teble of the Percentsge Points of Student's
t-distribution.

Ten other points on the power curve (probability of rejection) can be
obtained as follows:

When the true mean is p, the quentity t has a non-central t-distribution

v ()
with degrees of freedom n-1, and non-centrality parameter ——U—° s that is,

g

The power of the test is therefore given by

1-P(n-1,

‘/-ifglo),to/\/ﬁ).

e

The values (the abscissa of the power curve) which correspond to a given
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B-p
power are found by equating —69- = KP. Thus, for the ten values of p given in

Wi
the probability integral table, ten values of —32 are obtained, and one minus

the power associated with these points are read out of the table. These values

i
! appear in the entry corresponding to x = to /n-1 .
As an example, the power of the t-test at ten points will be obtained from

the Table of the Probability Integral for f = k(n =5). A level of significance

t
equal to five percent is chosen. For this case, t = 2.132 and —— = 1.066.
/n-1

To = Kp * 1 - Power Power
0.6745 6512 .3488
1.036% .3948 .6052
1.2816 .2k09 «T591
1.5141 .1329 8671
1.7507 0636 .936h
1.9600 .0296 L9704
2.3263 .0060 L9940
2.6521 .0012 .9988
2.8070 .0005 .9995
3.0902 .000L -9999

e. The Coefficient of Variation
This example of the use of the Tables of the Probability Integral of the non-

centrel t-statistic deals with the coefficient of variation,
V=oh,

where ¢ 1s the stendard deviation of a normal distribution and p is the mean

of a ndrmal distribution. An estimate of V is provided by the sample coefficient

w2
s 3 [ L(¥,-¥)
, where Y = Yi/n and 8=y g

The following statistic

of variation v = g
Y

v T s o

ELET (/5 G ) e

has a non-central t-distribution with n-1 degrees of freedom and non-centrality

i parameter 8 = nu” . Thus

24




Pr{v> v} =Pr{ o< \@:}

v
o]

- fn 1 [ 1t Jap fm 1
—Pri -l vy VO]‘ = B(n-1, o’ Vn-l vo)'

Suppose a test of the hypothesis that V = Vo at the ¢ level of signifi-
cance is to be made against the alternative that V > Vo. The procedure used
will be to reject the hypothesis if v > vo. The eritical value of the test vo
can be obtained from the identity

x(n-1, \g s l-g) =
o

The solution will usually require an interpolation on the non-centrality parameter.
Similarly, the power of the test can be obtalned from the relationship

Power = P(n-1, @ 5 };lt_l—l vi) Ten points on the power curve can be obtained by
]

choosing the abscissa values corresponding to % = Kp.
As an example let VO =1, n=9, and ¢ = .05. Using the Table of the
Percentage Points the value Vo =0.495 for £ =8 and e = .05 is obtained

from the expression
x(8, 3, .95) = 2.141 =Jg‘ L.

v
o

The ten points on the power curve are as follows:

V= % Power
1.4826 .9880
L9649 9428
.7803 .8719
.6605 . T661
5712 .6256
5102 4873
4299 2635
.377L 1245
.3563 .08LY4
.3236 .0332

5. Computational Methods

The tables were computed on the IBM Card Programmed Computer, Model II. This
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machine does not readily lend itself to table look-up, so that it was declded to
generate the probability density function on the machine directly, without using

existing tables of the th function [1]. In any case the range of the latter

tables would not have sufficed for the purpose at hand.

The th function in the non~central t-density obeys the recurrence relation

thf(x) = th_z(x) - x.th_l(x).

In particuler

L
3

(O]

VBr H (x) = S

- 00

Rl

Repeated application of the recurrence formuls shows that th may be

expressed as

}Ihf(x) = Pf(x) Hho(x) + Qf(x) Eh_l(x)

where P, and Qf are polynomials. It can easily be demonstrated that P

bid

Qf obey the same recurrence laws, that is, that

Po(x) = B, o(x) - xP, _,(x)
with

Po(x) =1 and P_l(x) =0
and that

£q,(x) = Qp_p(x) - xQ,_,(x)
with

Qo(x) =0 and Q_l(x) = 1.

A table of the polynomials P, and Qf was prepared for f =1 to f = 20.

£
The first few are given below:
f Pf(x)
1 1
1
2 57 (%)
1 2
3 =7 (24x%)

w

Qp(x)

dt  and /2x Hh_l(x) =

e

2
WE
2

/o=



The polynomials and exponential functions in the non-central t-density were
generated on the machine by standard programs. In order to compute the normal
probability integral Hho, & rational function approximation due to Cecil
Hastings [ 3] was used. This approximation yields an order of accuracy conslstent
with the number of significant figures -available on the machine.

For f greater than 20, the polynomials P and Qf became too cumbersome,

£
causing the running time on tllqe machine to be excessive. It was decided to use
an asymptotic expamsion for the th function. The following expression was

derived using the method of Steepest Descent:

1 2 :
A -3(x)7 o2 R 5£2
Hro(x) =gy ¢ e 5 v 73]
£+t S h(£HET) 6(£4+t°)
where
. Xt Vit + he
e

This approximation was tested in the following ways. The H}120 funetions
were computed both by the methed described previously and by the asymptotic
expansion, and the two methods were compared. Both methods were then compared
with Airey's tables of the H1120 function.

The final results for the density function were adjudged to be accurate to
at least five decimal places. (Se_ven places were retained in all functions during

the computations.) In order to limit the size of the printed tables the final

- tabulation was rounded down to the four places shown.

The probability integral was computed by summing the pro‘babilit»y density
function by numerical iﬁtegr&_tion. The results were spot-checked in scores of
places against the tables of Johnson and Welch. The results usually agreed to
four decimal places. In rare cases they differed by no more than one or two
units in the third decimal place.

The discrepancies between the values obtained from the Johnson and Welch
tables and the present Table of the Probability Integral msy be due to inter-
polation in the former tables. Johnson and Welch indicate that results obtainable
from their tables may be in error to this extent.

The Tables of the Percentage Points were obtained by inverse interpolation on
the probebility integral using six-point 'Lagre.ugia.n interpolation polynomials.

The percentage points were checked in numerous instances by comparison with results
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obtained from the Johnson and Welch tables. The percentage points are believed
to be correct in the second decimal place throughout, and to differ occasionally

from the true values by no more than one or two units in the third decimal place.
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