Simulates a random variable
with the selected distribution: Gaussian, Exponential,
(symmetrical) triangular (both μ and, even if superfluous,
σ having to be supplied). For the Exponential,
only μ is considered; and for the triangular,
the second value will be taken as a, the semi-width of the interval.
(The extremes are: for Exp., 0 and xmax; and for triangular,
μ ± a.)
For the Monte Carlo simulation (at least 1000 trials),
a random number generator (RNG) seed of 0 (only) makes the
simulation irrepeatable. If 'classes' is given as 0, Sturges' rule is applied
(⌈log2 N + 1⌉).
Plots the histogram of the simulation (fsim.),
and the theoretical density (ftheo.). |
• Google: Monte Carlo inversion method
• Wikipedia: "histogram" etymology (ἱστός + γράμμα, mast, column, pole + register;
or "history diagram"; or (?) akin to "histology", anatomy of cells).
• W3C Character entity reference chart
• Scott, David W., 1992, "Multivariate density estimation", John Wiley & Sons, New York, NY
(in NIST/SEMATECH e-Handbook of Statistical Methods).
• 1914-10-21: Gardner, Martin (2010-05-22). |