©
Mixed Integer Linear Programming
  Solves a MILP (Mixed Integer Linear Programming) problem.
2024.Nov.25 05:23:37
m, n No. of explicit constraints and no. of structural variables.
MaxMin For maximization, 'Max' comes from min(−z).
itmax, msglvl Maximum iterations (0, no limit); message level (0, 1, 5, 10). •
toliv, tolfes Feasibility tolerances: integer feas. tol., constraint feas. tol.. •
intvar 1 for each integer variable, 0 otherwise •
cvec Coefficients in the objective function •
A Constraint coefficients   ("<" means "≤").  Use "−i", "+i" for minus or plus infinity.
  At least, one variable must be declared integer (through 'intvar').     Solution tree for the example problem…
References:

• Wagner, Harvey M., 1972+, "Principles of Operations Research, with applications to managerial decisions", John Wiley, New York, NY (USA).

• H02BBF.pdf, NAG Fortran Library Manual, Mark 21.

 
 
Valid HTML 4.01! IST http://web.ist.utl.pt/~mcasquilho/compute/or/F-milp-nag.php
Created: 2003-02-16 — Last modified: 2007-10-13