 |
Mixed Integer
Linear Programming
Solves a MILP (Mixed Integer Linear Programming) problem.
|
|
|
| m, n |
|
No. of explicit constraints and no. of
structural variables. |
| MaxMin |
|
For maximization, 'Max' comes
from min(−z). |
| itmax, msglvl |
|
Maximum iterations (0, no limit); message level (0, 1, 5, 10).
• |
| toliv, tolfes |
|
Feasibility tolerances: integer feas. tol.,
constraint feas. tol.. • |
| intvar |
1 for each integer variable, 0 otherwise •
|
| cvec |
Coefficients in the objective function •
|
| A |
Constraint coefficients ("<" means "≤"). Use
"−i", "+i" for minus or plus infinity.
|
|
At least, one variable must be declared integer
(through 'intvar').
Solution tree for the
example problem… |
|
References:
• Wagner, Harvey M., 1972+,
"Principles of Operations
Research, with applications to managerial decisions",
John Wiley, New York, NY (USA).
• H02BBF.pdf, NAG Fortran Library
Manual, Mark 21. |