Computes the maximum
perimeters and areas for (regular) polygons inscribed in a circle of
given radius.
The perimeter, P, of a regular polygon with
N vertices inscribed in a circle of radiur R is
P = 2 N R sin(π⁄N)
(→ 2 πR),
and its area, A, with
θ = 2 π ⁄ N, is
A = π R² sin(θ) ⁄ θ
(→ πR²).
Plots the perimeters and areas for the given range of
number of vertices.
Joint work with: Prof. João L. Miranda (IPP) —
IPP, Instituto Politécnico de Portalegre
(Polytechnic Institute of Portalegre), Portalegre, Portugal. |