From a given set of data
(points, observations), calculates the straight line,
y = a0 + a1 x,
that best fits the data.
If "switch", the X and Y
are switched just after being printed.
For xT and yT,
the estimated yˆT and xˆT,
respectively, are calculated, with their confidence intervals.
[The Pr above F (its p-value) tests
a null slope (no influence): Pr(a1 ≠ 0).
I.e., if small p-value, a1 ≠ 0.]
Other suggested data:
n = 10 |
X = 75 80 93 65 87 71 98 68 84 77
Y = 82 78 86 72 91 80 95 72 89 74 |
→ a0, 1 = 29.13, 0.661;
(switch) −14.39, 1.15 | [Spiegel, 1975, 300,
Pr. 8.67] |
n = 20 |
X = 5.5 4.8 4.7 3.9 4.5 6.2 6.0 5.2 4.7 4.3 4.9 5.4 5.0 6.3
4.6 4.3 5.0 5.9 4.1 4.7
Y = 3.1 2.3 3.0 1.9 2.5 3.7 3.4 2.6 2.8 1.6 2.0 2.9 2.3 3.2
1.8 1.4 2.0 3.8 2.2 1.5 |
→ a0, 1 = −1.700, 0.840 |
[Marshall, 2005, 5] |
|
|
• Hester,
Jerry D.: Linear
Regression & Excel (Excel Tutorials),
Clemson Univ..
• Resnick,
Paul: Chap. 11.pps
[McClave & Sincich, 2003?] (SI 644--Introductory Statistics
& Data Analysis,
Univ. of Michigan).
• Lacey,
Michelle: ANOVA for
regression (Dept. Stat., Yale Univ.), Tulane Univ..
• Shine, Annette D.: Fitting data.pdf
(=),
Univ. Delaware
(S. I. Sandler).
• Morrell,
Christopher H.: Regression
through the origin.pdf (accessed 2008-08-19)
(=),
Loyola Coll..
• Weisstein, Eric W.,
"Least
squares fitting". From MathWorld — a Wolfram Web Resource
(accessed 2008-08-19).
• Taylor, John R.,
1997,
"An introduction to error analysis", 2.nd ed., Univ. Sci. Books
(USB), Sausalito, CA (USA)
(intro IE).
• McClave, James T. and
Terry Sincich,
2003?,
"Statistics", 9.th ed. (now 11.th), Pearson Intn'l Ed. (Pr.-Hall).
• Spiegel, Murray R.,
1975, Schaum's Outline Series, "Theory and problems of Probability and
Statistics", McGraw-Hill Book Co., New York, NY (USA), ISBN 0-07-060220-4;
1980,
ISBN 0-07-084356-2;
2000, ISBN 0-07-135004-7.
• Marshall,
J. Brooke: Simple
Linear Regression.pdf Examples (Virginia Tech).
• 1584-08-19: Vernier, Pierre, birthday. [Compare with Clavius (1538–1612) and Pedro Nunes (1502–1578) about the vernier or
—generally absent from the dictionaries— nonius.]
|