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Newton-Raphson
• When the derivative of f(x) is known, and when f(x) is 

well behaved, the celebrated (and ancient) Newton-
Raphson method gives the fastest convergence of all 
(“quadratic”, i.e. m = 2, such that  εn = εn–1

2)

• Relies on the Taylor expansion
f(x + δ) = f(x) + δ f′(x) + ½ δ2 f′′(x) + …..

If ith iteration, xi, is close to the root, then for the next 
iteration, try xi+1 = xi + δ with δ =  − f (xi) / f ′(xi) 

2008 Lecture 7 starts here
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Geometric representation
• Newton-Raphson method: 

picture from Recipes

• Convergence is quadratic, 
with m=2

Extrapolate the local derivative to
find the next estimate of the root
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Newton-Raphson
• Convergence is rapid, and the method is very 

useful for “polishing” a root (i.e. refining an 
estimate that is nearly correct)

Clearly, a few iterations usually yields an accurate result 
in the limit of small δ, because terms of order ½ δ2 f′′(x) 
or higher are much smaller than δ f(x) 

f(x + δ) = f(x) + δ f′(x) + ½ δ2 f′′(x) + …..

Exception: when f′(x) is very small (or zero)
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Newton-Raphson
• Cases where f′(x) is small 

(i.e. where there is a local 
extremum) can send the 
solution shooting off into 
outer space

…. unless the method is 
modified to keep the 
solution within a known 
bracket

(as in routine “RTSAFE”)  
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Summary of 1-D root finding

• Preferred methods:
– If f′ is known analytically, “safe Newton-Raphson” is 

the preferred method
– If f′ is not known analytically, Brent’s method is the 

method of choice
• Could use “safe Newton-Raphson” with the derivative 

computed numerically, but the latter takes up as much time 
as is saved by the use of   N-R

– Newton-Raphson is also useful for rapid “polishing” 
(very close to the solution) and for multidimensional 
root finding.
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Roots of polynomial functions

• General polynomial equation

0 = P(x) ≡ Σ ak xk

has an analytic solution for cases up to and 
including the quartic

No general analytic solution for quintics and 
higher (“the equation that couldn’t be solved”)



137

Roots of polynomial functions

• General features:
Polynomial of order N will have N roots, which  can be 
real or complex and may or may not be distinct

If the ak are all real, the roots may be real or complex, 
but any complex roots will occur in pairs of complex 
conjugates,  a ± bi

Polynomials can be ill-conditioned: a small change in the 
coefficients can cause a large change in the roots
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Roots of polynomial functions

• General features:
Degenerate roots, or nearly equal roots, present 
the biggest numerical problems

Example: P(x) ≡ (x – c)2 = 0 
– Brackets don’t exist since P(x) is never negative
– Derivative f′(x) = 0 at the solution x = c 

Î Newton-Raphson is potentially unstable
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Deflation
• Every time a root, xk, is found, the order of the 

polynomial can be decreased by one, and the equation 
becomes
0 = P(x) = (x – xk) Q(x)
where Q(x) can be obtained by “synthetic division” (see 
§5.3 in Recipes)

• This procedure, known as “deflation”, allows the roots to 
be obtained one-by-one
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Laguerre’s method for 
obtaining a single root

• Mathematical background
P(x) = (x–x1) (x–x2) … (x–xn)

ln |P(x)| = ln |x–x1| + ln |x–x2| +  …. +  ln |x–xn|

G ≡ d ln |P(x)| /dx = (x–x1)–1 + (x–x2)–1 + ...  + (x–xn)–1

H ≡ – d ln |P(x)| /dx2 = (x–x1)–2 + (x–x2)–2 + ... + (x–xn)–2
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Laguerre’s method for 
obtaining a single root

• Now make a “drastic set of assumptions”
We suppose x1 is located at distance a from 
our current guess, x, and that all the other 
roots lie at a distance b

G = (x–x1)–1 + (x–x2)–1 + ... + (x–xn)–1  = a–1 + (n–1) b–1

H  = (x–x1)–2 + (x–x2)–2 + ... + (x–xn)–2  = a–2 + (n–1) b–2

We can then eliminate b from the above equations to 
obtain a quadratic equation for a–1 …..
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Laguerre’s method for 
obtaining a single root

We then obtain

a =                n
G ± √ (n–1)(nH – G2)

This, of course, is not the exact value of (x – x1), 
because of the approximation made in obtaining it, but it 
is useful for obtaining the next estimate of x1, which we 
take as (x – a)
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Overview

• Find roots one at a time, using Laguerre’s
method iteratively until a is sufficiently 
small

• After each root is found, reduce the order 
of the polynomial by deflation.
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Multidimensional non-linear 
systems of equations

• In general, a horrible problem, for reasons shown 
schematically in Recipes, Fig 9.6.1
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Multidimensional non-linear 
systems of equations

• The only general algorithm is Newton-Raphson

Generalization to multidimensional case
f(x + δ) = f(x) + δ f′(x) + (1/2) δ2 f′′(x) + …..
becomes
f(x + δ) = f(x) + J(x) δ + O(δ2)

where J is the Jacobian matrix, with Jik =  ∂fi / ∂xk
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Multidimensional non-linear 
systems of equations

The next iteration on x is therefore
x' = x + δ = x – J–1 f(x)

where δ = – J–1 f(x) is obtained by the solution of the 
linear set of equations J δ = – f 

(which we know how to do! ☺)

As in 1-D, this only works with a smooth function or a 
good first guess
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Newton-Raphson with a
modified step size

• Can improve the robustness of multidimensional 
N-R by considering the quantity:

Q ≡ ½ | f |2  = ½ Σ fi fi
which tends to zero at the root

Any good step should make Q smaller
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Newton-Raphson with a
modified step size

• Consider now the gradient of Q
∂Q/∂xj = ∂(½ |f|2)/∂xj = Σ fi ∂fi/∂xj

Î ∇Q = fT J

Our step δ = –J–1 f is in the right direction to 
reduce Q, because
∇Q . δ = – fT (J J–1) f = – 2Q < 0
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Newton-Raphson with a
modified step size

So if adding δ to x doesn’t decrease Q, a sufficiently small 
step in the same direction must

Strategy: if the solution starts to overshoot – as indicated 
by monitoring of Q ≡ ½ | f |2 – use a smaller step λδ in the 
same direction (where λ is a positive scalar < 1)

See Recipes §9.7 for the details of how to choose λ

This is implemented in the function NEWT, which will 
successfully find a root for almost any reasonable initial 
guess.
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Example application: 
interstellar chemistry

• More than one hundred different molecules have 
been detected in the interstellar gas

• They are formed and destroyed by a complex 
network of reactions involving bimolecular 
reactions and unimolecular processes such as 
photodissociation
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Example application: 
interstellar chemistry

• Consider the reaction A + B Æ C + D:
This destroys A and B (and creates C and D) at a rate kr n(A)n(B) per 
unit volume, where n(X) is the density of species X (number per unit 
volume) and kr is the rate coefficient (units: cm3 s–1) for the reaction in 
question

• Molecule A might also be destroyed by photodissociation, 
A + hνÆ E + F
This destroys A (and creates E and F) at a rate ζp n(A) per unit 
volume, where n(X) is the density of species X (number per unit 
volume) and ζp is the photodissociation rate (units: s–1) for this 
process
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Rate equations for 
interstellar chemistry

• The density of the ith molecule therefore obeys the rate 
equation:

∂ni / ∂t  =  Σ Σ kijk nj nk + Σ ζik nk – ni Σ Σ kmik nk – ni Σ ζmi

Processes that create ith molecule Reactions that destroy ith molecule

Sum of rate coefficients for all
reactions of j and k that produce i 

Total rate at which k undergoes 
unimolecular processes to produce i 

j k m mk k
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Equilibrium solution
• In equilibrium, the molecular densities will obey f(n) = 0

where ni is the density of molecule number i , and fi ≡ ∂ni /∂t is a quadratic 
function of the ni

A multidimensional root-finding problem!  
…and one for which the Jacobian is easily computed (quadratic function)

∂fi /∂nk =   Σ kijk nj + ζik – ni Σ kmik (i ≠ k)

∂fi /∂ni = – Σ kmik nk – Σ ζmi (diagonal elements)

Newton’s method generally works well

mj

mm
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Complication
• The equilbrium equations, as written, are singular, since 

they don’t uniquely specify the total density of molecules
We need to apply some constraints of the form 

 Σ ni Nic = n(Ec)

 Nic = number of atoms of element C contained in molecule i
 n(Ec) = (fixed) density of C nuclei
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Non-equilibrium solution

• In astrochemistry, the timescale for reaching equilibrium 
can sometimes be long compared to the ages of molecular 
clouds
Therefore, it is also interesting to integrate the equations
∂ni / ∂t  =  Σ Σ kijk nj nk + Σ ζik nk – ni Σ Σ kmik nk – ni Σ ζmi

(a coupled set of ODE’s, to be considered later)

In the limit of large t, this tends to the equilibrium solution
Î an alternative method even if we are uninterested in the 
time evolution

j k m mk k




