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|88 T. OFMERAT. ITENATIVE METIIODRS

intverse defined on il of 1 More geneeally, the method has been considided on
topolegizal Finear spaces (Tlivtsawa | 1954]) Newzon's methed bns been studied
extenively in mmach apaces by sany authors, most notably L, Kantorovich and
hia coll pagpios (ree Ratoravich and Alsilov [1958]), L. Collarx and his stdenty
{ee Ulnliate [1964]), and B Hoflman snd his sssocirres tinder the nome -
linearization {see Dellman angd Kalabe [ 1963]),

NR T7.0-4. Crockern g Cherniff [1955] were apparently the first o consider
the iterstion (21] 0o formul wayy see also Gloyzad [1959]. The ieeation {32)
duted bock st Jeast o Levenborg [1944), Convergence results for these
o dterationy are given n 10.2, 112, and 4.4

NE 7.1-5. Traub [I?M] b scudied the itevatien (24} and ohown that
possesmes the progesty of “oubie corvergence” form = 2aml even higher-order
convergence foe ot 3. We give these resles in 10,2, Samaneki [19674] by
coisirlercd thi same pmcn,'dnm wlth F(x) repluced by the approsimation (16}
with'lly =i =

NR 7.1-6,  Hevennl authom (see, eg., Altmar [19610]; Janlkd [19620]; Lika
[1965]; Mettvoniva [1983); Netopurenko [1954]; Safiev. [1964]; and Trauh
[1964]) have comsidered extensions to o dimensions, unel also infinite dimensions,
ot nther one-dimensiomil methods which posses I11g11- i of ginyerpanee.
Such o typlen] process b toe methed of togest frypeerbidas, which may be for-
mlatied as

W P ) P P G R, (26)

end gun beshown to exhibit cuble convergence. However, methads of this type,
which veguire geeodd- and higher-order degvatives, we eather cunibeldome from
the mmpu’luhrytlﬂ viewpaint, Mote: thay, while mmﬂﬂ" of B (%) anvedves:
anly theu® (irst partial derivatives o,f,  epmputntion afl P rexpuires thi s seeond
devivatives 2y i, in general, an exochitant smount of work. Indeed, much
secent reseaseh hazs been devated Lo finding miethoda needing ferser derivative
computations: than Mewim's methed, One, not very satisfactory approach w
reducing the derivatlve repuirements in methads such as (26) B to consdder
dillereace unulogs smlar to the secant analogs of Newton's method: for wark
slonjs these liney, se Um 1963k, 19650,

EXERCISES

E7.0-1. Assume that @ R* -« B% b Godifferentiable at 5 and that F{z) is
invertible, Bet i = F'{x)~LFr ard show that there exist A = 0 ao that

|Fge — vl = I Fa . (0
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Show, melebver, that of
[ Fofe — o) —Fal = Kyl Wee[d, 1],
then (37} holds fop all Ve [0, | Fx | /(K] 1)

ETd-2 For oI, Bedl{f"), the agenvalue groblim e = A8%, ol |, 18
equivalent with the equation £ = I, whers

Fifwy R i) R (T - {m_mm-

wly — |

Wrirr down Nowton's method for thin mupping £,

7.1, SECANT METHODS

The discretized Newton methods  discussed 10 the Inot  wechon
congtitute m-dimensinnal genershzatione of the one.dimenmonal dis-
eretized . Mewton methods;

YL ae [”i*"lﬂ_’ﬂf‘j} ’ﬂﬂ-u],‘ ke=0,1,.. (1)
Two mmipartant special tiwes of (1) are the regule filid eration

in which &% = & — x* for some fised &, and the secant methoid

[&ET&}] ((+*), S Y &l

;:I_

where i = %=1 — 44

It iz possible to wse similar choied of B in the s-dimdnsional dis-
cretized Newton methods However, in order o discusp the resulting
muthods in suitable gencrality, it (e desivable o begin with 3 somewhat
different approach to the sne-dimensional methads (1) As drawn in
Fig: 7.3, the pext iteeate #* of (1) s the soluton of the hnearized
eiution

gy = [ L8 %) ]t — ) + gt = 0.

The importne point now i thut §ean be viewed in two different ways,

cpither it s regandod e o appreximation of the togene line

e ————
el



1) 7. GENERAL ITIEATIVE METHODE

Lx) = £ — =) - [{x*), or we a lincar imnterp ilation af f beryeen
the points &% and 2% + K. Tn genernlizing (1) 10 » dimeusions, we arfive
at differert methods depending on which view we take. In the case of
the discretized Newton methods, the first interpretation wilss Vined, woad
wee replaced the derivitive F(*) by a matrix Jx®, W) oF difference
guotients approximating it.

Froome 7.3

T tirder to extend thie second point of view ton dimensions, we replace
ich “eomponentsatlace fi ¢ = Loy min Rt by I1ypnTImu which
interpalates f; at a -+ 1 given paints #44, f =0, % na ntighborhioml
of ¥ That is, o vector af and a gealar o, are to be found such thar the
affine wapping Ly — ai + x'a’ satiahies

I‘i“"l'J o .I"i[?""lr .’:= 0, 1

The next fterae x*) is then obtuined ax the intersection of thess w
hyperplanes in R+t with the hyperplane » = O that is, a™'! is. the
salutinn of the linear system Ly =0, § = L...on This :Img;fb_:p_r_ the
penerel secamt method 10w dimensions. Depending on the f:hmu:c of the
interpolation pomts x%J, 7 = 0., thore are mufierous posible
ditfcrent 'ipdu'ﬁ:: methods, but, before giving any of these, we develup
dame reaulis on a-dimensional linear interpolation in order o s how
the next {terate can sctunlly be calonlsted
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711, Definitlon. Any m4- | points 2%, &% in A" are in geweral
pusitin if the veetars 2® — ) = |, # are linearly independent, [

This definition appeses to depend upon the order of enumeration of
the o, but this is not the eae, Iodeed, we have the fellswing equivalens
condilions fur poimts te be in genernl pasition. '
a2 Jat a%.,a" be anyw 4| points in Y Then the fllowing
stuteinents sre equivalent:

fa) oo, ¥ are in general positinn.

{b) Forany f, 0 <57 < m the vectors & — o 3 = D m § 2 .
are Uneirly Independent.

e} The (w4 1) = (o £ 1) mateiz {6, XF), where o7 = {],.., |}
and X = (&, a8, la ooneimlae.

(ly Tor any ye 8% theee cxist sealon & .., 0, with L g &y I
such that 9 = T aeh,

Frogf. By the watriy identity

i i i i il
L R o L e . o x‘]
I —! i
T W T TR )
- {__1] J:ﬂ Wi le +1 ﬂ‘.'!. i x«_l} . !

wi havie
'd'Eﬂf = |"‘I"‘ll""‘l 't'.-\l = -ﬂ!- 4'“'* == -’;’huq a* 'xjnll
ARECLC I T (L
- 'lﬂ'}

1
_'d"'tl‘..gi. gl e gE=l pisl

{—1) dan(e, X7,

for any f = Q. 0, which shows the squivalenee of {a), (b und (o).
Finally, () s equivalent to the stetement that the Hooar wyetem

B s aolution for any v, w0 that, clearly, (€) mphies (d). Conversely, by
..I-ﬂ“H {4) far v macoesnively oot oygual 1o 0 oo 7 we nee that (g XY
ningular. |
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T'he geametricil interpretation of generl position is that the paints
Al do ot He inodo sffine subspeee of dimonsion less than o Thus,
forw = 2, the points x", &, 2% gro in general position i they ure not
colmenr, that ig, if they do not lic on a line in 8% Note, however, that
the vectars a¥,.., #* may span B evenaf they gre not in general poéition
face E 7.2-6).

I'he following result now gives o complete answer to the linear
mterpolation problem in £%

723, Let o, " and 3% 0" be gven points in RV Then there
exists o unigue offine funcoon Ly = g Ax. whore p = R4 and
A e LR, such that dax! = 31, f = O, iF pru] coly %, 8., a% are
in geucml pn:.:l:mn Maorvover, A 38 nonpingular if and only i 2 @
wre i general position.

Proaf. The gonditions: Fxd = ), f = 0, Lo, can be written in
matrix form ds

(oo X () = L, 5

where again o7 = {1, 1., 1) and X = (e%..., 5%). Hence, the first part
it an lmmediste consequeriee of 7,22, Now, Lol =30 = O,
ii‘np]i:s thmnt

Al %) i, Fe L (6)

and, gineead — ¥ 0 < L, myare linearly independent, it follows thit 4
in nonsingular i and only if the veetore 3¢ — % j = .onare Imearly
independent, and, benee, if and oaly i 37,5 3 are in general pration. |

In fane withy thuese resalis, one step of any geneml secant method can
now be phirased bn followe.

7.2.4. Definitlon. Lerd B C R — R* and assume that the twosets of
points &% ., 4% = D and K., Fe® are in generul posinon. Then the
palmt

¥ = =y, (1

whiere g amd A eatialy
a-b A= F =00, 5]

in n beide gecamt approvtmatfon with respict toa®, . o ]
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MNote that 7.2.3 ensures that & is well defined. Note alun that in ane
dimension the conditiona reduce to 2% = 2t and 6% == Flaf), whick
are just the conditions which ensure that the unigue jecant ling inters
nects the wenxis,

The ca mputation of a basic sedant approximation mmy be carded out
by finding a and 4 to satisfy (B)y—which, in wro, requires sslving the
linear systemn (3) with ' = Fxl—and thon by molying o — dx (3
Huwever, it turns out that There 15 no aeed o compte the interpolating
functlon a4 Ax  esplicitly. We  cobsider  next two  allernutive
formulations, both of which show thit o can be obomed by solving only
one linear system,

7.2.5. Waolle Secant Forrmnulation. T.eta®, ., o, as well ga Fa, L Fan,
be in general position, Then the basic sccant approximation satisfies

=Nz = E' =, (2)
i=0
where £ = (2 00, 5,)7 i2 the unique selutien of the (n £+ 1) < (n 4 1)
linidar syltom
[ 1 |

reo ) 8= Al O, B (10)

Proaf.  Bince the Fel are in general ]:N:mltml:Lr T.2BY erwaren l'hsll i1y
haz o g solutton which satmfies E._,” H = | and }_._," 2, = [
Hence, by (8),

0= 'E' aFst = "E == ..-I.:.:'} =& = (E :.,n"} '
J=t

LRl

and, since 4 e the unique zolution of dx + ¢ =0, (%) holds. ||

Mete that (9Y and (10) unigquely determine o veetor « provided only
that Py, F%" are in gencral position; therefore, the Walle formalation
can be carcied out even if 2%, 2" are not in general position. Tn
case, however, 4 will lie in the lower-dimensinnal affine subspace
[¥ %= T aeal, Tige, = 1} and no linear interpolator o + A
ciull exist such thata + As! = Fxl, f = 0,00 (bee B 1.2-7)

For the next formulation, it is convemont to mtroduce the operiton

J2 D C R LR = LLRY)
iledined by
Tow, 1) e (% 4 Y F,, Bl b He) < By {11y
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where, if 718 the domain of defintion of F,
de=Alx H) |5~ Ho =D, &= eyt Hnonsingular),

7.2.6. Mewton Formulation. Assumi that a%.. & ood £, ., Fx*
arc s general postion, and sct

Ho= () — b i — ), 12

Then J(#, H) 8 nonemgnlar and the baeie secant approsimeation o is
given by
= P, (13

Proof. Sinee Bl — B+ Hel), it follows fram (6) with y/ — Fx¥ that
I — (Bl HE) B B - M) — )

20 that, slnce M is nonsingular, 4 = (s, #). Thus 7.2.3 vnsures that
S, HY) b nomainguler, and, From 2 = — A=Y nkl ‘@ =Fat— A
wiz nlitsin,

W AN A N W — (6, HY e )

Note that i weset 7= [Fy' —Feto Bar — ", then (13) mpy
be wrltten in the form

K — A TR, 14y

Therefore, aswith the Walfe formulstion, the Newton lht'muln‘;i:m may
be carried out provided only that B B are o peonoral position.
Amain, however, & will then lic in the wifine subspace

'.'|!:. Erf\ Er _IE

(sec'E 7.2-7).

Obsierve also thut o busic setant approximation, by either the Waolfe
ar Newton formulation, requires indecd enly the solation of one linear
wystem of equations—namely, (10} in the first cose, pncd v = F* i
the second—fallowed by the celeulntion of = Tinear eumbination of the

vectors ¥, ¥* by miguns of (9) or (14), respectively,

Tt is of interest to note that the following representation of »* w also
vahd:

B T e T L 8
113
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This is an immediate consequence of the following lenms, which will be
of use in Chapter 11, since (15) follows from (16) i & = & and 7 |s
detined by (12).

122, Let J(= H)be defined by (1 1) with i = (&,..., ), Then
o, 1) = I:.‘"ft O L RS 2 ey | —f"{.!r + J'rl],...,.i-‘;x + A —Bx — !r""]_'lﬂ"l
wwhere )
B (0 B ke — ey,
Proof.  We note that, for any 7 - | voeties 7, o, r* = B, we have
(B (B el
whore Fe LARY is defined by

P -l
| I

Clearly, P s ponsingular, and {15} then follows from
Jir Y = (B ) — B Flx W) by PGP )

The Newton farmulanon allows the genersl sccant method described
At the beginning af this sedtion to be expressed in the compact form

Rt = kN BEYLERE k=0, L i
| My = (250 =45, x6n — b, v

where we have pot o2 = ¥
'Wt consider nexe several pl.ua_uhlc wirys of chaosing the suxilisry points
at ake A first minple chiice is given by

artd = gt -l bl f= L {18
v thin cosae, £ 16 the dingunal matrx

Hy o il ™! — ot 80— K,
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and, if we et AF = =t — b = Lcaon then
Jia¥ B = (LT yhet) — Bl (1S F - Moty - Haf)

Substituting this into the Newton formulation (17), we see that the
resulting method jeexactly the same us the discretised Newton method
{(7.1.19) using the difference approsimation (7.116) with by = &,
£ = |, n Forfoture use, Itk conyenent to redefine [ in this case as
& T ping

Joddy % IRCH o W LARY)
By ox Dyl WeRe o R w bt =), b #0, 5= 1,0 (19)
Joe, by = (AP ety — e BB | ) — Fxy

aid to wrlte the method as
AT E gt — R, =00, L {20}

If we chonse anstend of (18) the points
Ed
o LR L E {lfr-l l‘"v} e _||I = .El"ir Wy E:]:
i

then a simple computation shows that the iteration (17) & exsetly the
gime as the diseretized Newton method wsing the difference ppproxi-
mation (7.1.1 5} with i = a7 —ab In this case, we may define the
jreration by (20), whete [ is now given by

. 41

S, by = (h'I'J{F{n By, Y[R (e D) —F (e T a,a}]).
T ™l

(22}
Muote generally, we can consider the chaice of auxilisry points

i "'-" -+ pi..l.'!-'l'&_l e H:I- .f- - II""I i, '23:'

whrr: FL‘_EL{RIL? are g‘p,':n Engnr nppfﬂtﬂﬂ, Elﬂll}l’. [lgl Lﬁ 'I‘J'h! ’-Flﬂiﬂl
case of (23) inwhich Py y = (0., 0; &5 00y O) f == Lo 1, de = D, Lo
while (23) reduces o (21)if By = (ehen € Do O 7 = Lo iy
ko O]

The Il:h-ui.cc (23) of thy auxiliney paints depends only on xF and 2L
In general, if the wuxiliury points %9 depend on precisely p ol the
previous frerates b, - 2% we say that the eration (UTY b i p-proamd
seearntt methad, white it the ¥4 depend upon % 2V #10Jt in called o
seqpuititial pepolnt secnnt mithod,
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The iterations (17) with =% given by (18) or {21) are exsmples of
gequentil two-point methodn, while the iterasion

= '1"'* o -HE' H”".I Fat, "H" - {‘1"*_. B '-"Irl-"-'r LanBs Ih]r b= U. ll"'!l
(24}

i o sequential (4 1 1)-point method. As an example of & nonmsequentinl
(m -+ |)-pmnt method, the suxilisry points may be chosen from the et
of provious iterates by the ooiterion (har o523, 2% gre those n vectors
dtnong = . a¥! for which the | F' || ave smallest,

General (p -+ 1)- point methods miy be generated in o variety of
ways, For example, in analogy with £23), we may choose

A = LB ), = e, (25)
o

where again the P, ;o are given linear operitors,

In genernl, the secant method requires o -+ 1 evaluations of the
function F ut each smpe—namely wt the points o, &80 . ws In
particular, thin 18 true for the two-point method defined by (18, This:
amount of computation is comparahle to that of Newton's mothod if the
evaluation of fi(x) takes about as much work as that of e fil=).

In cortain cases, however, the particulae choice of the % pérmim
fewer function cwvalustinoe. For example, if (21) # wused, then
ol = w1, ainee Favel g available froem the previows stage, only
new functivn cvaluations sre reqguired, The moat speetacolar saving,
bowever, iu available through the (n + 1-point method (24). Here,
since Fat=l, | Fef=n gre already available (excepr ar the first stage,
when Fat e muost all be L'Jll:ulull}il}, arly vne pew function
evaluation & required —namely, Fr Morcover, another posailile
computational savings is available in the selotion of the lincar system
of {24}. T'o see this, recall from 7.2.7 that (24) can be written in the
alternative form

A=A — IR, (26)
where now
Hy =[xt — &b, gF 2 a0 | peasl . ghenl
Ny = [k — = Fybrmel _ k-,

Then we find:

127}

T8, Assume that the matrices I, and [, defined by (27) for
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k=g p 4 1, are both norsingular, and dendte the rows of Tyt by

it Then Blgs — qh-=) g
=B o

where gf = Fatt! — Fxfand I 0 the matis with the rows el 070

Proaf.  Let P bea permutation motrex such that

;‘"P Iqr " g ke r—|1+l.]
then
Py = (fec = ™7) = P+ (g7 — =Kt

Asg g permuration matriy, £ 18 nonsinguler ond, henee, tho same s frue
for F,P. Tt then follows, by the Sherman—Morrigon formula (2.3.14),
that

P, = PAPSE — (L) P73 — ey al)t Py, (29)

where a = 1 + (') P g — "% = 0, ainee, by hj"pﬂ-ﬂm-i:i!.
T3ty exiats. But the effect of multiplication on the left by P s to plice
T.hr last row in the position of the first row and move all other rowe
down one place, |

Although the {n — 1)-point sequentisl secant method requices the
least ymeunt of computation per step, it will be shown-an Chapter 11 tha
the method s prone 1o unstable hehivdor wnid that oo satisfienory
ponvergepee rusulte ean be piven, In contemst, the two-pomt methods
defined by (18} and (21) will be shown to retein the essentin] properties
of Mewton's method and, i partienlar, satisfactory ol eonverpence
theorems will bis obtmed for them in Section 11,2,

We end thin seition by deseribing o clogely related clasy of iterative
processes known as Kteffensen methads,

Congider again the lsusic sne-dimensional secant method (1), 1 we z6t
= fx®y, we obiwin Steffenser's method iwone dimension:

i L Y fo, k=Dlee  (30)
Jleb -+ F(a®) — =)

This itcration i= of interest, smoo—ondor suitable conditiens it
extubita the same quadratic convergence as Newton's mothad while not
requiring any dertvatives of f, (See Chapter 11},

The concepts alresdy developed for the secant method now perrmit
immodiate and matersd extensonn of (30 to 7 dimensions, In corre-
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spomdence with the twa-point seeant methods defined by the choice of
poanty (23}, we can define the analogous Steffensen nethed Ly (17) with
the choice of auxibinry points

P = PP, = s

For example, il Py = (O, Ooef, 0,000, we obtoin thie partionlar
Steffenacn method

o P .":‘I' FIJ"] ~1 F-'l“’, {-3 l',f

where [ is defined by (193 this s the divect analag of the rwo-point
secant method (193-{20). Bimilarly, corresponding to the secomt method
(200, {22}, the choice £y = (ohn &, 0,0, 0) gives a Steffensen method
of the torm (31 0 which | is defined by (22),

Mpre penevally, corresponding to [25), we en ehoose

i .
S T T N W S L (32

=
sw nprctal e AFEAD), Atk
el —h L Jrad-bih, =l
which leads to the method
A Bl = (B Pt (33)

eorresponding to the (| | Fpointsecent method {24), Here, of coursg,
f{.r, H] 1 dlefined I::qf (11

Niote thar in the Steffensen method (31), (1930t s pecessury o evaliae
Fot the points ¥ | £ e, § = L n, seowell od ot ¥, 5o that precisely
the same number of function evaluations are needed wa for the corre=
aponding seeant method defimed by (19)-420), On the other land e the
anie of {33); it is nocessary t obtain Flx® 4+ Feiofy d—=1,.,m, 0 tha,
again, n -~ | function evalustions ere reguired, Ty, the ndeantige
ol (24}, in which anly one new evaluation of & e neecled ot oach stage,
docs not carry over to (330

Apother form of Breffensen’s methed arises in conmection with the
sl ~poirit ciustion ¥ = (v, Here, the auxiliary points gt may be
taken as the fternten a5 = Ga®, 0 = L., 1, generated by the upetatar
€, "This then Jeads to the iteration

W R T [ Gah), T, = (Gt G — ) (34)
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by getting Fx = v — G in (17}, Mote that the evalustion of f{a, )
imvolves the computation of the » vectors

Fixt 4 Hhat) —Fe = Flithet) —Fyt = Olad — Etrled — b L G,
= i sy 15

g that o —+ 1 evaluptiona of & are required, The feration (34) i85, of
eourae, nol restricted W cquetiong i Bxed-pomt form, since the con-
version ey = x — Fx muy always be made. Note also that, in contrast
to the multistep method (334 (3d4) is o one-step method,

MNOTES AMD REMARKS

NR 7.2-1. For o thorough discossion of the one-dimensbonal seeant method
and of related higher-order methods, such os chat of Muoller, the resdir
riferred to Oatrowsk [T966] and Tradb [1964].

NR 7.2-2.  The hlew of replacing & by a loear (oterpolating funetlon in order
tn expend the secant methind Lo higher dimensions dates back o Guuss m the
twp-dimensional case (2ee Ostrowskl [1966, Appendix T]) Tie modeen revival
aned _generalization to om  direenelony B oapparently  due o B Heinwvich
i wnepbilished leetuees (elren 1955), wnd ks fral rigorods apalyses due to- Bitnee
[t959], However, Walle [1959] independently suzrested the (w0 -+ 1)-point
meethinl, described m the text, mowhich the vector with lorgest function value s
dropped, 2wy recent warks an the (¢ & |point er related methiode dnclude
Tornhelm [1964], ‘Andérson [1¥63] fsee NR 7.2-10), and Burnes [|G65] {ues
NR 7.3-2

NR 7.2-3. TheSipffenien Leration (39) was frst conslilered by Ludwly [1952],
aond, ngre recently, by Henricd [1%64), bat from an encrely. different point of
view, Uhne wuy of deiving the Stefensen iteratom in one dimension i by means
of the Altken #pmcess, which mad be exteided tn dimensions &8s follows:
Given 1 -+ 2 paints o v, define the motroes

H'= IJII —_'I-“". I_'I'“ —_1'11...,__\'" '__,,",_1.'
amid
- l'_'.l" = 1}.1 UYL EJu'I - I}.

povd then inerodi o sn Pesrrpalated " vector § by o=y — HESRE — 94 For
the Tsed-point eyuition & = Gyt 0 = 38 gf = 603 0 = T i [ and
=1 = 5 Althongh shghtly different in form, i w essy: fo see; by T.27, that the
a¥H thus produced in precissly Chap ol (34)

T3 BECANT METHORS 201

NR 7.2-4. The twipoint seaant and reluted Steffensen methods have been
considered by o variety of wuthers, Koiginof [1961] handlés the particalar
method in which the wdilisry points #*0 are given by (18], while Marigniz
[1967] and Wegge [1966] treat the corresponding SteTansen meiod (31), (19).
Otlier auchars have congidesed the metlod (22}, (31) in the context of divided
differences (NR 7.2-4).

NE 7.2-5. Tlure i o fundamental diffeuley in exrending. the interpalition
appraach 0 infinite dimensions, siave, presumably, we would roquiee thar the
linenr mterpolator £ agree with F ot infinitel v mamy paints Cne posthility (s o
ety thit &'} span the spoce in yoome senze snd that Lal — B, § — ﬂ: [
Then the le seeant approximation s defined o= the solution of Ly = 01, This

type of extension (o nfioite diniengions dies ot sren vty pretmmising, and has
oot been exploced in e fterntare,

However, extemsinna of the two-point scoant methods o Infinite dimensions
buve haesi mide by ewo celated appeoaches. Forone suel spprvich, see NR 7.2-6;
the nther might be called “pointwise extension,” snd Bas been treated, [uir
expmple, by Ualluve [1964] Consider the two-point boundary problem

e =7, w0 ==u{l) =0, r=q I,

“Newtan's method" spplied diréctly to this equation gives the sequence of
Enenr boundary value praliems

Wi = Flmd+ P T T T e (01 =" allf = W
Mow levd, be u function on [0, 1] and define the corresponding discrete Newton
methed By
":14 = Fig) - EI'-.-| — Mg} L{!‘—Lh = t.;} = {ﬁﬂ.
Henee, fior by = 0;_y — wy , we have 1he twr-point semng methsd:
.I.E:-r] = f(Tl-i.-} -+ {"':-1 = Wz 'ﬂl;_:.l_ J—‘: Fi I'} f
iy T M

Ttednred Et‘-"ﬁl’.'nﬂm-t}'pr procedures, trented us urtrapuluti-.-.-n formulas, have been
given by Helimen, Kogiwadz, and Kalaba [1965], and Nale [ 964, p, 28],

MR 7.2-6, A nore axiormate appisach th the sstesston of the secant method
wan taken by Schmids [1961, 1963a] by means of the enncept of a divided-
difference apeeator, Briefly, Schmide defimes a firg divided differeice of Foon o
Waruich apace X s o muappingg [ 1) « DCN % X — LX) whith satisfies

T b= B L ) —Fe,  dvr— hel (35)



