Characteristic Polynomial

\& Preleminary Results. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. If $A u=\lambda u$, then λ and u are called the eigenvalue and eigenvector of A, respectively. The eigenvalues of A are the roots of the characteristic polynomial

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)
$$

The eigenvectors are the solutions to the Homogeneous system

$$
\left(\lambda I_{n}-A\right) X=\theta
$$

Note that $K_{A}(\lambda)$ is a monic polynomial (i.e., the leading coefficient is one).
Cayley-Hamilton Theorem. If $K_{A}(\lambda)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}$ is the characteristic polynomial of the $n \times n$ matrix A, then

$$
K_{A}(A)=A^{n}+p_{1} A^{n-1}+\cdots+p_{n-1} A+p_{n} I_{n}=Z_{n}
$$

where Z_{n} is the $n \times n$ zero matrix.
Corollary. Let $K_{A}(\lambda)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}$ be the characteristic polynomial of the $n \times n$ invertible matrix A. Then

$$
A^{-1}=\frac{1}{-p_{n}}\left[A^{n-1}+p_{1} A^{n-2}+\cdots+p_{n-2} A+p_{n-1} I_{n}\right] .
$$

Proof. According to the Cayley Hamilton's theorem we have

$$
A\left[A^{n-1}+p_{1} A^{n-2}+\cdots+p_{n-1} I_{n}\right]=-p_{n} I_{n},
$$

Since A is nonsingular, $p_{n}=(-1)^{n} \operatorname{det}(A) \neq 0$; thus the result follows.
Newton's Identity. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the roots of the polynomial

$$
P(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots \cdots+c_{n-1} \lambda+c_{n} .
$$

If $s_{k}=\lambda_{1}^{k}+\lambda_{2}^{k}+\cdots+\lambda_{n}^{k}$, then

$$
c_{k}=-\frac{1}{k}\left(s_{k}+s_{k-1} c_{1}+s_{k-2} c_{2}+\cdots+s_{2} c_{k-2} c_{1}+s_{1} c_{k-1}\right) .
$$

Proof. From

$$
P(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots \ldots\left(\lambda-\lambda_{n-1}\right)\left(\lambda-\lambda_{n}\right)
$$

and the use of logarithmic differentiation, we obtain

$$
\frac{P^{\prime}(\lambda)}{P(\lambda)}=\frac{n \lambda^{n-1}+(n-1) c_{1} \lambda^{n-2}+\cdots+2 c_{n-2} \lambda+c_{n-1}}{\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}}=\sum_{i=1}^{n} \frac{1}{\left(\lambda-\lambda_{i}\right)} .
$$

By using the geometric series for $\frac{1}{\left(\lambda-\lambda_{i}\right)}$ and choosing $|\lambda|>\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$, we obtain

$$
\sum_{i=1}^{n} \frac{1}{\left(\lambda-\lambda_{i}\right)}=\frac{n}{\lambda}+\frac{s_{1}}{\lambda^{2}}+\frac{s_{2}}{\lambda^{3}}+\cdots \cdots
$$

Hence

$$
n \lambda^{n-1}+(n-1) c_{1} \lambda^{n-2}+\cdots+c_{n-1}=\left(\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n}\right)\left(\frac{n}{\lambda}+\frac{s_{1}}{\lambda^{2}}+\frac{s_{2}}{\lambda^{3}}+\cdots\right) .
$$

By equating both sides of the above equality we may obtain the Newton's identities.
\& The Method of Direct Expansion. The characteristic polynomial of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is defined as:
$K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=\left|\begin{array}{cccc}\lambda-a_{11} & -a_{12} & \cdots & -a_{1 n} \\ -a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n 1} & -a_{n 2} & \cdots & \lambda-a_{n n}\end{array}\right|=\lambda^{n}-\sigma_{1} \lambda^{n-1}+\sigma_{2} \lambda^{n-2}-\cdots+(-1)^{n} \sigma_{n}$,
where

$$
\sigma_{1}=\sum_{i=1}^{n} a_{i i}=\operatorname{trace}(A)
$$

is the sum of all first-order diagonal minors of A,

$$
\sigma_{2}=\sum_{i<j}\left|\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{j i} & a_{j j}
\end{array}\right|
$$

is the sum of all second-order diagonal minors of A,

$$
\sigma_{3}=\sum_{i<j<k}\left|\begin{array}{ccc}
a_{i i} & a_{i j} & a_{i k} \\
a_{j i} & a_{j j} & a_{j k} \\
a_{k i} & a_{k j} & a_{k k}
\end{array}\right|
$$

is the sum of all third-order diagonal minors of A, and so forth. Finally,

$$
\sigma_{n}=\operatorname{det}(A)
$$

There are $\binom{n}{k}$ diagonal minors of order k in A. From this we find that the direct computation of the coefficients of the characteristic polynomial of an $n \times n$ matrix is equivalent to computing

$$
\binom{n}{1}+\binom{n}{2}+\cdots\binom{n}{n}=2^{n}-1
$$

determinants of various orders, which, generally speaking, is a major task. This has given rise to special methods for expanding characteristic polynomial. We shall explain some of these methods.
Example. Compute the characteristic polynomial of $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -4 \\ 1 & 0 & 2\end{array}\right)$.
We have:

$$
\begin{aligned}
& \qquad \sigma_{1}=1+1+2=4,
\end{aligned} \sigma_{2}=\left|\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right|+\left|\begin{array}{cc}
1 & -4 \\
0 & 2
\end{array}\right|+\left|\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right|=(-3)+(2)+(-1)=-2, \text {, } \quad \begin{array}{ll}
\text { and } & \sigma_{3}=\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -4 \\
1 & 0 & 2
\end{array}\right|=-17 .
\end{array}
$$

Thus

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{3}-A\right)=\lambda^{3}-\sigma_{1} \lambda^{2}+\sigma_{2} \lambda-\sigma_{3}=\lambda^{3}-4 \lambda-2 \lambda+17
$$

\& Leverrier's Algorithm. This method allows us to find the characteristic polynomial of any $n \times n$ matrix A using the trace of the matrix A^{k}, where $k=1,2, \cdots n$. Let

$$
\sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}
$$

be the set of all eigenvalues of A which is also called the spectrum of A. Note that

$$
s_{k}=\operatorname{trace}\left(A^{k}\right)=\sum_{i=1}^{n} \lambda_{i}^{k}, \text { for all } k=1,2, \cdots, n
$$

Let

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}
$$

be the characteristic polynomial of the matrix A, then for $k \leq n$, the Newton's identities hold true:

$$
p_{k}=-\frac{1}{k}\left[s_{k}+p_{1} s_{k-1}+\cdots+p_{k-1} s_{1}\right] \quad(k=1,2, \cdots, n)
$$

Example. Let $A=\left(\begin{array}{cccc}1 & 2 & 1 & -1 \\ 1 & 0 & 2 & 1 \\ 2 & 1 & -1 & 3 \\ 4 & -5 & 0 & 4\end{array}\right)$. Then

$$
A^{2}=\left(\begin{array}{cccc}
1 & 8 & 4 & 0 \\
9 & -1 & -1 & 9 \\
13 & -12 & 5 & 8 \\
15 & -12 & -6 & 7
\end{array}\right) \quad A^{3}=\left(\begin{array}{cccc}
17 & 6 & 13 & 19 \\
42 & -28 & 8 & 23 \\
43 & -9 & -16 & 22 \\
19 & -11 & -3 & -17
\end{array}\right) \quad A^{4}=\left(\begin{array}{cccc}
125 & -48 & 16 & 104 \\
122 & -23 & -22 & 46 \\
90 & -40 & 41 & -12 \\
-66 & 120 & 0 & -107
\end{array}\right)
$$

So $s_{1}=4, s_{2}=12, s_{3}=-44$, and $s_{4}=36$. Hence

$$
\left\{\begin{array}{l}
p_{1}=-s_{1}=-4 \\
p_{2}=-\frac{1}{2}\left(s_{2}+p_{1} s_{1}\right)=-\frac{1}{2}(12+(-4) 4)=2 \\
p_{3}=-\frac{1}{3}\left(s_{3}+p_{1} s_{2}+p_{2} s_{1}\right)=-\frac{1}{3}(-44+(-4) 12+2(4))=28 \\
p_{4}=-\frac{1}{4}\left(s_{4}+p_{1} s_{3}+p_{2} s_{2}+p_{3} s_{1}\right)=-\frac{1}{4}(36+(-4)(-44)+2(12)+28(4))=-87
\end{array}\right.
$$

Therefore

$$
K_{A}(\lambda)=\lambda^{4}-4 \lambda^{3}+2 \lambda^{2}+28 \lambda-87
$$

and

$$
A^{-1}=\frac{1}{87}\left[A^{3}-4 A^{2}+2 A+28 I_{4}\right]=
$$

$$
\frac{1}{87}\left[\left(\begin{array}{cccc}
17 & 6 & 13 & 19 \\
42 & -28 & 8 & 23 \\
43 & -9 & -16 & 22 \\
19 & -11 & -3 & -17
\end{array}\right)-4\left(\begin{array}{cccc}
1 & 8 & 4 & 0 \\
9 & -1 & -1 & 9 \\
13 & -12 & 5 & 8 \\
15 & -12 & -6 & 7
\end{array}\right)+2\left(\begin{array}{cccc}
1 & 2 & 1 & -1 \\
1 & 0 & 2 & 1 \\
2 & 1 & -1 & 3 \\
4 & -5 & 0 & 4
\end{array}\right)+28\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right]
$$

$$
A^{-1}=\frac{1}{87}\left(\begin{array}{cccc}
43 & -22 & -1 & 17 \\
8 & 4 & 16 & -11 \\
-5 & 41 & -10 & -4 \\
-33 & 27 & 21 & -9
\end{array}\right)
$$

\& The Method of Souriau (or Fadeev and Frame). This is an elegant modification of the Leverrier's method.

Let A be an $n \times n$ matrix, then define

$$
\begin{array}{ccc}
A_{1}=A, & q_{1}=-\operatorname{trace}\left(A_{1}\right), & B_{1}=A_{1}+q_{1} I_{n} \\
A_{2}=A B_{1}, & q_{2}=-\frac{1}{2} \operatorname{tracec}\left(A_{2}\right), & B_{2}=A_{2}+q_{2} I_{n} \\
\vdots \vdots \vdots & \vdots \vdots \vdots \vdots & \vdots \vdots \vdots \\
A_{n}=A B_{n-1}, & q_{n}=-\frac{1}{n} \operatorname{trace}\left(A_{n}\right), & B_{n}=A_{n}+q_{n} I_{n}
\end{array}
$$

Theorem. $B_{n}=Z_{n}$, and

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=\lambda^{n}+q_{1} \lambda^{n-1}+\cdots+q_{n-1} \lambda+q_{n} .
$$

If A is nonsingular, then

$$
A^{-1}=-\frac{1}{q_{n}} B_{n-1} .
$$

Proof. Suppose the characteristic polynomial of A is

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}
$$

where $p_{k}^{\prime} s$ are defined in the Leverrier's method.
Clearly $p_{1}=-\operatorname{trace}(A)=-\operatorname{trace}\left(A_{1}\right)=q_{1}$, and now suppose that we have proved that

$$
q_{1}=p_{1}, q_{2}=p_{2}, \ldots, q_{k-1}=p_{k-1}
$$

Then by the hypothesis we have

$$
\begin{aligned}
A_{k}=A B_{k-1}=A\left(A_{k-1}+q_{k-1} I_{n}\right) & =A A_{k-1}+q_{k-1} A \\
& =A\left[A\left(A_{k-2}+q_{k-2} I_{n}\right)\right]+q_{k-1} A \\
& =A^{2} A_{k-1}+q_{k-2} A^{2}+q_{k-1} A \\
& =\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+q_{k-1} A
\end{aligned}
$$

Let $s_{i}=\operatorname{trace}\left(A^{i}\right)(i=1,2, \ldots, k)$, then by Newton's identities

$$
\begin{aligned}
-k q_{k}=\operatorname{trace}\left(A_{k}\right) & =\operatorname{trace}\left(A^{k}\right)+q_{1} \operatorname{trace}\left(A^{k-1}\right)+\cdots+q_{k-1} \operatorname{trace}(A) \\
& =s_{k}+q_{1} s_{k-1}+\cdots+q_{k-1} s_{1} \\
& =s_{k}+p_{1} s_{k-1}+\cdots+p_{k-1} s_{1} \\
& =-k p_{k}
\end{aligned}
$$

showing that $p_{k}=q_{k}$. Hence this relation holds for all k.
By the Cayley-Hamilton theorem,

$$
B_{n}=A^{n}+q_{1} A^{n-1}+\cdots+q_{n-1} A+q_{n} I_{n}=Z_{n}
$$

and so

$$
B_{n}=A_{n}+q_{n} I_{n}=Z_{n} ; \quad A_{n}=A B_{n-1}=-q_{n} I_{n}
$$

If A is nonsingular, then $\operatorname{det}(A)=(-1)^{n} K_{A}(0)=(-1)^{n} q_{n} \neq 0$, and thus

$$
A^{-1}=-\frac{1}{q_{n}} B_{n-1} .
$$

Example. Find the characteristic polynomial and if possible the inverse of the matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & -1 \\
1 & 0 & 2 & 1 \\
2 & 1 & -1 & 3 \\
4 & -5 & 0 & 4
\end{array}\right)
$$

For $k=1,2,3,4$, compute

$$
\begin{aligned}
& A_{k}=A B_{k-1} \quad q_{k}=\frac{-1}{k} \operatorname{trace}\left(A_{k}\right), \quad B_{k}=A_{k}+q_{k} I_{4} . \\
& A_{1}=\left(\begin{array}{cccc}
1 & 2 & 1 & -1 \\
1 & 0 & 2 & 1 \\
2 & 1 & -1 & 3 \\
4 & -5 & 0 & 4
\end{array}\right), \quad q_{1}=-4, \quad B_{1}=\left(\begin{array}{cccc}
-3 & 2 & 1 & -1 \\
1 & -4 & 2 & 1 \\
2 & 1 & -5 & 3 \\
4 & -5 & 0 & 0
\end{array}\right) ; \\
& A_{2}=\left(\begin{array}{cccc}
-3 & 0 & 0 & 4 \\
5 & -1 & -9 & 5 \\
5 & -16 & 9 & -4 \\
-1 & 8 & -6 & -9
\end{array}\right), \quad q_{2}=2, \quad B_{2}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 4 \\
5 & 1 & -9 & 5 \\
5 & -16 & 11 & -4 \\
-1 & 8 & -6 & -7
\end{array}\right) ; \\
& A_{3}=\left(\begin{array}{cccc}
15 & -22 & -1 & 17 \\
8 & -24 & 16 & -11 \\
-5 & 41 & -38 & -4 \\
-33 & 27 & 21 & -37
\end{array}\right), \quad q_{3}=28, \quad B_{3}=\left(\begin{array}{cccc}
43 & -22 & -1 & 17 \\
8 & 4 & 16 & -11 \\
-5 & 41 & -10 & -4 \\
-33 & 27 & 21 & -9
\end{array}\right) ; \\
& A_{4}=\left(\begin{array}{cccc}
87 & 0 & 0 & 0 \\
0 & 87 & 0 & 0 \\
0 & 0 & 87 & 0 \\
0 & 0 & 0 & 87
\end{array}\right), \quad q_{4}=-87, \quad B_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Therefore the characteristic polynomial of A is:

$$
K_{A}(\lambda)=\lambda^{4}-4 \lambda^{3}+2 \lambda^{2}+28 \lambda-87
$$

Note that A_{4} is a diagonal matrix, so we only need to multiply the first row of A by the first column of B_{3} to obtain 87 . Since $q_{4}=-87$, the matrix A has an inverse.

$$
A^{-1}=\frac{-1}{q_{4}} B_{3}=\frac{1}{87}\left(\begin{array}{cccc}
43 & -22 & -1 & 17 \\
8 & 4 & 16 & -11 \\
-5 & 41 & -10 & -4 \\
-33 & 27 & 21 & -9
\end{array}\right)
$$

Matlab Program

```
A = input('Enter a square matrix : ')
m=\operatorname{size}(A);n=m(1); q=zeros(1,n); B=A;AB=A; In=eye(n);
for k=1:n-1,q(k)=-(1/k)*\operatorname{trace}(AB)B=AB+q(k)*In; AB=A*B; end
C=B;q(n)=-(1/n)*\operatorname{trace}(AB);Q=[1q];
disp('The Characteristic polynomial looks like : ')
disp( 'K
disp('The coefficients list c(k) is : '), disp(' '),
disp(Q), disp(' ')
if q(n)== 0, disp('The matrix is singular ');
else, disp('The matrix has an inverse. '), disp(' ')
    C=-(1/q(n))*B;
    disp('The inverse of A is : '), disp(' '),
    disp(C)
end
```

\& The Method of Undetermined Coefficients. If one has to expand large numbers of characteristic polynomials of the same order, then the method of undetermined coefficients may be used to produce characteristic polynomials of those matrices.

Let A be an $n \times n$ matrix and

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}
$$

be its characteristic polynomial. In order to find the coefficients $p_{i}^{\prime} \mathrm{s}$ of $K_{A}(\lambda)$ we evaluate

$$
D_{j}=K_{A}(j)=\operatorname{det}\left(j I_{n}-A\right) \quad j=0,1,2, \ldots, n-1
$$

and obtain the following system of linear equations:

$$
\left\{\begin{aligned}
& p_{n}=D_{0} \\
& 1^{n}+p_{1} \cdot 1^{n-1}+\cdots \cdots \cdots \cdots \cdots \cdots+p_{n}=D_{1} \\
& 2^{n}+p_{1} \cdot 2^{n-1}+\cdots \cdots \cdots \cdots \cdots \cdots+p_{n}=D_{2} \\
& \cdots \\
&(n-1)^{n}+p_{1} \cdot(n-1)^{n-1}+\cdots+p_{n}=D_{n-1}
\end{aligned}\right.
$$

Which can be changed into:

$$
S_{n-1} P=\left[\begin{array}{cccc}
1^{n-1} & 1^{n-2} & \cdots & 1 \\
2^{n-1} & 2^{n-2} & \cdots & 2 \\
\vdots & \vdots & \ddots & \vdots \\
(n-1)^{n-1} & (n-1)^{n-2} & \ldots & n-1
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1}
\end{array}\right]=\left[\begin{array}{c}
D_{1}-D_{0}-1^{n} \\
D_{2}-D_{0}-2^{n} \\
\vdots \vdots \vdots \\
D_{n-1}-D_{0}-(n-1)^{n}
\end{array}\right]=D
$$

The system may be solved as follows:

$$
P=S_{n}^{-1} D
$$

Since the $(n-1) \times(n-1)$ matrix S_{n} depends only on the order of A, we may store R_{n}, the inverse of S_{n-1} beforehand and use it to find the coefficients of characteristic polynomial of various $n \times n$ matrices.

Examples. Compute the characteristic polynomials of the 4×4 matrices

$$
A=\left(\begin{array}{cccc}
1 & 3 & 0 & 4 \\
2 & -3 & 1 & 3 \\
1 & 2 & 1 & 2 \\
-1 & 3 & 2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cccc}
1 & 2 & 1 & -1 \\
1 & 0 & 2 & 1 \\
2 & 1 & -1 & 3 \\
4 & -5 & 0 & 4
\end{array}\right)
$$

First we find

$$
S=\left(\begin{array}{ccc}
1 & 1 & 1 \\
8 & 4 & 2 \\
27 & 9 & 3
\end{array}\right) \quad \text { and } \quad R=S^{-1}=-\frac{1}{12}\left(\begin{array}{ccc}
-6 & 6 & -2 \\
30 & -24 & 6 \\
-36 & 18 & -4
\end{array}\right)
$$

Then for the matrix A we obtain

$$
\begin{gathered}
D_{0}=\operatorname{det}(-A)=-48, \quad D_{1}=\operatorname{det}\left(I_{4}-A\right)=-72 \\
D_{2}=\operatorname{det}\left(2 I_{4}-A\right)=-128 \quad \text { and } \quad D_{3}=\operatorname{det}\left(3 I_{4}-A\right)=-180 \\
D=\left(\begin{array}{c}
D_{1}-D_{0}-1^{4} \\
D_{2}-D_{0}-2^{4} \\
D_{3}-D_{0}-3^{4}
\end{array}\right)=\left(\begin{array}{c}
-25 \\
-96 \\
-213
\end{array}\right) .
\end{gathered}
$$

Hence

$$
P=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)=-\frac{1}{12}\left(\begin{array}{ccc}
-6 & 6 & -2 \\
30 & -24 & 6 \\
-36 & 18 & -4
\end{array}\right)\left(\begin{array}{c}
-25 \\
-96 \\
-213
\end{array}\right)=\left(\begin{array}{c}
0 \\
-23 \\
-2
\end{array}\right) .
$$

Thus

$$
K_{A}(\lambda)=\lambda^{4}-23 \lambda^{2}-2 \lambda-48
$$

For the matrix B we have

$$
\begin{aligned}
& D_{0}=\operatorname{det}(-B)=-87, \quad D_{1}=\operatorname{det}\left(I_{4}-B\right)=-60, \\
& D_{2}=\operatorname{det}\left(2 I_{4}-B\right)=-39 \quad \text { and } \quad D_{3}=\operatorname{det}\left(3 I_{4}-B\right)=-12 \\
& D=\left(\begin{array}{c}
D_{1}-D_{0}-1^{4} \\
D_{2}-D_{0}-2^{4} \\
D_{3}-D_{0}-3^{4}
\end{array}\right)=\left(\begin{array}{c}
26 \\
32 \\
-6
\end{array}\right) .
\end{aligned}
$$

Hence

$$
P=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)=-\frac{1}{12}\left(\begin{array}{ccc}
-6 & 6 & -2 \\
30 & -24 & 6 \\
-36 & 18 & -4
\end{array}\right)\left(\begin{array}{c}
26 \\
32 \\
-6
\end{array}\right)=\left(\begin{array}{c}
-4 \\
2 \\
28
\end{array}\right) .
$$

Thus

$$
K_{B}(\lambda)=\lambda^{4}-4 \lambda^{3}+2 \lambda^{2}+28 \lambda-87
$$

Matlab Program

```
\(N=\) input ('Enter the size of your square matrix : ');
\(n=N-1 ; \quad \operatorname{In}=\operatorname{eye}(N) ; S=\operatorname{zeros}(n) ; R=\operatorname{zeros}(n) ; D=\operatorname{zeros}(1, n) ;\)
\(D S P 1=\left[{ }^{\prime}\right.\) For any \({ }^{\prime}\), int \(2 \operatorname{str}(N),{ }^{\prime}\)-square matrix, you need \(\left.S={ }^{\prime}\right]\);
\(D S P 2=\left[{ }^{\prime}\right.\) Do you want to try with another \({ }^{\prime}, \operatorname{int2str}(N),{ }^{\prime}-\) square matrix \(\left.?(Y e s=1 / N o=0)^{\prime}\right] ;\)
\%DEFININGS
for \(i=1: n\), for \(j=1: n, S(i, j)=i \wedge(N-j)\); end; end;
\(\operatorname{disp}\left({ }^{\prime}\right.\) '), \(\operatorname{disp}(D S P 1), \operatorname{disp}\left('^{\prime}\right), \operatorname{disp}(S)\),
\(R=\operatorname{inv}(S)\);
\(o k=1\);
while ok \(==1\);
    \(A=\operatorname{input}\left(\left[{ }^{\prime}\right.\right.\) Enteran \(\left.{ }^{\prime}, \operatorname{int2str}(N),{ }^{\prime} \quad x^{\prime}, \operatorname{int2str}(N),{ }^{\prime} \operatorname{matrix} A:{ }^{\prime}\right) ; \quad \operatorname{disp}\left({ }^{\prime}{ }^{\prime}\right)\)
    \(D 0=\operatorname{det}(A)\);
    for \(k=1: n ; D(k)=\operatorname{det}(k * \operatorname{In}-A) ;\) end;
    for \(i=1: n ; D D(i)=D(i)-D 0-i \wedge N ;\) end;
    \(P=R * D D^{\prime}\);
    disp ('The Characteristic polynomial looks like : ')
    \(\operatorname{disp}\left({ }^{\prime} K_{A}(x)=x \wedge n+p(1) x \wedge(n-1)+\ldots+p(n-1) x+p(n)^{\prime}\right), \operatorname{disp}\left({ }^{\prime}{ }^{\prime}\right)\),
    \(\operatorname{disp}\left({ }^{\prime}\right.\) The coefficients list \(p(k)\) is : '), \(\operatorname{disp}\left({ }^{\prime}{ }^{\prime}\right)\),
    \(\operatorname{disp}\left(\left[\begin{array}{lll}1 & P^{\prime} & D 0\end{array}\right]\right), \operatorname{disp}\left({ }^{\prime}\right.\) '),
    \(\operatorname{disp}(D S P 2), \operatorname{disp}\left({ }^{\prime}{ }^{\prime}\right)\),
    \(o k=\operatorname{input}(D S P 2)\);
end
```

9. The Method of Danilevsky. Consider an $n \times n$ matrix A and let

$$
K_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}
$$

be its characteristic polynomial. Then the companion matrix of $K_{A}(\lambda)$

$$
F[A]=\left(\begin{array}{cccccc}
-p_{1} & -p_{2} & -p_{3} & \ldots & -p_{n-1} & -p_{n} \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

is similar to A and is called the Frobenius form of A.
The method of Danilevsky (1937) applies the Gauss-Jordan method to obtain the Frobenius form of an $n \times n$ matrix. According to this method the transition from the matrix A to $F[A]$ is done by means of $n-1$ similarity transformations which successively transform the rows of A, beginning with the last, into corresponding rows of $F[A]$.

Let us illustrate the beginning of the process. Our purpose is to carry the nth row of

$$
A=\left(\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1, n-1} & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2, n-1} & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3, n-1} & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\ldots & \ldots & \ldots \ldots & \ldots & \ldots \ldots \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n, n-1} & a_{n n}
\end{array}\right)
$$

into the row $\left(\begin{array}{lllll}0 & 0 & \ldots & 1 & 0\end{array}\right)$. Assuming that $a_{n, n-1} \neq 0$, we replace the $(n-1)$ th row of the $n \times n$ identity matrix with the $n t h$ row of A and obtained the matrix

$$
U_{n-1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \ldots & \vdots & \vdots \\
\ldots & \ldots & \ldots & \ldots \ldots & \ldots \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n, n-1} & a_{n n} \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

The inverse of U_{n-1} is

$$
V_{n-1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \ldots & \vdots & \vdots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) \ldots \ldots \ldots \ldots c \ldots c .
$$

where

$$
v_{n-1, i}=-\frac{a_{n i}}{a_{n, n-1}} \quad \text { for } \quad i \neq n-1
$$

and

$$
v_{n-1, n-1}=-\frac{1}{a_{n, n-1}} .
$$

Multiplying the right side of A by V_{n-1}, we obtain

$$
A V_{n-1}=B=\left(\begin{array}{cccccc}
b_{11} & b_{12} & b_{13} & \ldots & b_{1, n-1} & b_{1 n} \\
b_{21} & b_{22} & b_{23} & \ldots & b_{2, n-1} & b_{2 n} \\
\vdots & \vdots & \ddots & \ldots & \vdots & \vdots \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
b_{n-1,1} & b_{n-1,2} & b_{n-1,3} & \ldots & b_{n-1, n-1} & b_{n-1, n-1} \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

However the matrix $B=A M_{n-1}$ is not similar to A. To have a similarity transformation, it is necessary to multiply the left side of B by $U_{n-1}=V_{n-1}^{-1}$. Let $C=U_{n-1} A V_{n-1}$, then C is similar to A and is of the form

$$
C=\left(\begin{array}{cccccc}
c_{11} & c_{12} & c_{13} & \ldots & c_{1, n-1} & c_{1 n} \\
b_{21} & b_{22} & b_{23} & \ldots & b_{2, n-1} & b_{2 n} \\
\vdots & \vdots & \ddots & \ldots & \vdots & \vdots \\
\ldots \ldots \ldots \ldots \ldots \ldots & \ldots & \ldots & \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \\
c_{n-1,1} & c_{n-1,2} & c_{n-1,3} & \ldots & c_{n-1, n-1} & c_{n-1, n-1} \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

Now, if $c_{n-1, n-1} \neq 0$, then similar operations are performed on matrix C by taking its $(n-2) t h$ row as the principal one. We then obtain the matrix

$$
D=U_{n-2} C V_{n-2}=U_{n-2} U_{n-1} A V_{n-1} V_{n-2}
$$

with two reduced rows. We continue the same way until we finally obtain the Frobenius form

$$
F[A]=U_{1} U_{2} \cdots U_{n-2} U_{n-1} A V_{n-1} V_{n-2} \cdots V_{2} V_{1}
$$

if, of course, all the $n-1$ intermediate transformations are possible.

Exceptional case in the Danilevsky method. Suppose that in the transformation of the matrix A into its Frobenius form $F[A]$ we arrived, after a few steps, at a matrix of the form

$$
R=\left(\begin{array}{ccccccc}
r_{11} & r_{12} & \ldots & r_{1 k} & \ldots & r_{1, n-1} & r_{1 n} \\
r_{21} & r_{22} & \ldots & r_{2 k} & \ldots & r_{2, n-1} & r_{2 n} \\
\ldots & \ldots \ldots & \ldots & \ldots \ldots \ldots \ldots & \ldots \ldots \ldots & \ldots \\
r_{k 1} & r_{k 2} & \ldots & r_{k k} & \ldots & r_{k, n-1} & r_{k n} \\
0 & 0 & \ldots & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ddots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right] .
$$

and it was found that $r_{k, k-1}=0$ or $\left|r_{k, k-1}\right|$ is very small. It is then possible to continue the transformation by the Danilevsky method.

Two cases are possible here.
Case 1. Suppose for some $j=1,2, \ldots, k-2, r_{k j} \neq 0$. Then by permuting the $j t h$ row and $(k-1)$ th row and the $j t h$ column and $(k-1) t h$ column of R we obtain a matrix $R^{\prime}=\left(r_{i j}^{\prime}\right)$ similar to R with $r_{k, k-1}^{\prime} \neq 0$.

Case 2. Suppose now that $r_{k j}=0$ for all $j=1,2, \ldots, k-2$. Then R is in the form

In this case the characteristic polynomial of R breaks up into two determinants:

$$
\operatorname{det}\left(\lambda I_{n}-R\right)=\operatorname{det}\left(\lambda I_{k-1}-R_{1}\right) \operatorname{det}\left(\lambda I_{n-k+1}-R_{3}\right) .
$$

Here, the matrix R_{3} is already reduced to the Frobenius form. It remains to apply the Danilevsky's method to the matrix R_{1}.

Note. Since $U_{k} A_{k-1}$ only changes the k th row of A_{k-1}, it is more efficient to multiply first A_{k-1} by its $(k+1)$ th row and then multiply on the right side the resulting matrix by V_{k}.

The next result shows that once we transform A into its Frobenius form ; we may obtain the eigenvectors with the help of the matrices $V_{i}^{\prime} s$.
Theorem. Let A be an $n \times n$ matrix and let $F[A]$ be its Frobenius form. If λ is an eigenvalue of A, then

$$
v=\left(\begin{array}{c}
\lambda^{n-1} \\
\lambda^{n-2} \\
\vdots \\
\lambda \\
1
\end{array}\right) \quad \text { and } \quad w=V_{n-1} V_{n-2} \cdots V_{2} V_{1} v
$$

are the eigenvectors of $F[A]$ and A respectively.
Proof. Since

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=\operatorname{det}\left(\lambda I_{n}-F[A]\right)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}
$$

we have

$$
\left(\lambda I_{n}-F[A]\right) v=\left(\begin{array}{cccccc}
\lambda-p_{1} & -p_{2} & -p_{3} & \ldots & -p_{n-1} & -p_{n} \\
1 & \lambda & 0 & \cdots & 0 & 0 \\
\lambda & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \lambda
\end{array}\right)\left(\begin{array}{c}
\lambda^{n-1} \\
\lambda^{n-2} \\
\lambda^{n-3} \\
\vdots \\
\lambda \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

Since $F[A]=V_{1}^{-1} V_{2}^{-1} \cdots V_{n-2}^{-1} V_{n-1}^{-1} A V_{n-1} V_{n-2} \cdots V_{2} V_{1}$ and $F[A] v=\lambda v$, we conclude that

$$
\lambda w=V_{n-2} \cdots V_{2} V_{1}(\lambda v)=\left(V_{n-2} \cdots V_{2} V_{1}\right) F[A] v=A\left(V_{n-1} V_{n-2} \cdots V_{2} V_{1} v\right)=A w
$$

Note. For expanding characteristic polynomials of matrices of order higher than fifth, the method of Danilevsky requires less multiplications and additions than other methods.

Example. Reduce the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 3 & 4 \\
2 & 0 & 2 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & -1 & -1
\end{array}\right)
$$

to its Frobenius form.
The matrix $B=A_{3}=U_{3} A V_{3}$ is as follows:

$$
B=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 3 & 4 \\
2 & 0 & 2 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & -1 & -1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & -3 & 1 \\
2 & 0 & -2 & -1 \\
-1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Since $b_{32}=0$, we need the permutation matrix $J=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$; thus

$$
C=J B J=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & -3 & 1 \\
2 & 0 & -2 & -1 \\
1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 2 & -2 & -1 \\
1 & 1 & -3 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Next we obtain the matrix $D=A_{2}=U_{2} C V_{2}$

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 2 & -2 & -1 \\
1 & 1 & -3 & 1 \\
0 & -1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & -2 & -2 & -3 \\
-1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Finally the Frobenius form $F[A]=A_{1}=U_{1} D V_{1}$,

$$
F[A]=\left(\begin{array}{cccc}
-1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & -2 & -2 & -3 \\
-1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccc}
-1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 4 & 2 & 3 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Thus the Characteristic polynomial of A is :

$$
K_{A}(\lambda)=x^{4}-x^{3}-4 x^{2}-2 x-3
$$

Matlab Program

```
\(A=\operatorname{input}\left({ }^{\prime}\right.\) Enter the square matrix \(\left.A:{ }^{\prime}\right)\);
\(m=\operatorname{size}(A) ; \quad N=m(1) ; b=[1] ; B=\operatorname{zeros}(N) ; i=1\);
while \(i<N\),
    \(J=\operatorname{eye}(N) ; h=A(N-i+1, N-i)\)
    while \(h==0\);
        \(c=A(N-i+1,1: N-i) ; z=\operatorname{norm}(c, i n f) ;\)
        if \(z=0\);
            \(k=1 ; r=0 ;\)
            while \(r==0 \& k<N-i\);
                \(r=r+c(N-i-k) ; k=k+1 ;\)
\(J(N-i, N-i)=0 ; J(N-i, N-i-k+1)=1 ;\)
\(J(N-i-k+1, N-i-k+1)=0 ; \quad J(N-i-k+1, N-i)=1\),
```

```
            \(A=J * A * J ; k=k+1 ;\)
            end
        else
            \(b=\operatorname{conv}(b,[1-A(N-i+1, N-i+1: N)])\);
            \(B=A(1: N-i, 1: N-i) ; A=B, N=N-i ;\)
        end
        \(h=A(N-i+1, N-i) ;\)
end
\(U=\operatorname{eye}(N) ; V=\operatorname{eye}(N) ;\)
\(U(N-i,:)=A(N-i+1,:) ;\)
\(V(N-i,:)=-A(N-i+1,:) / A(N-i+1, N-i) ; V(N-i, N-i)=1 / A(N-i+1, N-i) ;\)
\(A=U * A * V\);
\(i=i+1\);
end;
\(b=\operatorname{conv}(b,[1-A(N-i+1, N-i+1: N)]) ; \operatorname{disp}\left({ }^{( }{ }^{\prime}\right)\),
disp \(\left({ }^{\prime}\right.\) The Characteristic polynomial looks like : '), disp( \({ }^{\prime}\) '),
\(\operatorname{disp}\left(\left[{ }^{\prime} K_{A}(x)=x \wedge n+c(1) x \wedge(n-1),+\ldots+c(n-1) x+c(n)^{\prime}\right]\right), \operatorname{disp}\left({ }^{\prime}{ }^{\prime}\right)\),
disp \(\left(^{\prime}\right.\) The coefficients list \(c(k)\) is : ' \()\), disp \(\left({ }^{\prime}{ }^{\prime}\right)\),
\(\operatorname{disp}(b), \operatorname{disp}\left({ }^{\prime}{ }^{\prime}\right)\)
```

\& The Method of Krylov. Let A be an $n \times n$ matrix. For any n-dimensional nonzero column vector v we associate its successive transforms

$$
v_{k}=A^{k} v \quad(k=0,1,2, \ldots)
$$

this sequence of vectors is called the Krylov sequence associated to the matrix A and the vector v.

At most n vectors of the sequence $v_{0}, v_{1}, v_{2}, \ldots$ will be linearly independent. Suppose for some $r=r(v) \leq n$, the vectors $v_{0}, v_{1}, v_{2}, \ldots, v_{r}$ are linearly independent and the vector v_{r+1} is a linear combination of the preceding ones. Hence there exists a monic polynomial

$$
\phi(\lambda)=c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+\cdots+c_{r-1} \lambda^{r-1}+\lambda^{r}
$$

such that

$$
\phi(A) v=\left(c_{0} I_{n}+c_{1} A+\cdots+c_{r-1} A^{r-1}+A^{r}\right) v=c_{0} v_{0}+c_{1} v_{1}+\cdots+c_{r-1} v_{r}+c_{r} v_{r+1}=\theta
$$

The polynomial $\phi(\lambda)$ is said to annihilate v and to be minimal for v. If $\omega(\lambda)$ is another monic polynomial which annihilates v,

$$
\omega(A) v=0
$$

then $\phi(\lambda)$ divides $\omega(\lambda)$. To show that; suppose

$$
\omega(\lambda)=\gamma(\lambda) \phi(\lambda)+\rho(\lambda)
$$

where $\rho(\lambda)$ is the remainder after dividing ω by ϕ, hence of degree strictly less than r, it follows that

$$
\rho(A) v=0 .
$$

But $\phi(\lambda)$ is minimal for v, hence $\rho(\lambda)=0$.
Now of all vectors v there is at least one vector for which the degree v is maximal, since for any vector $v, r(v) \leq n$. We call such vector a maximal vector.

A monic polynomial $\mu_{A}(\lambda)$ is said to be the minimal polynomial for A, if $\mu_{A}(\lambda)$ is monic and of minimum degree satisfying

$$
\phi(A)=Z_{n} .
$$

Theorem 1. Let A be an $n \times n$ matrix and let $\phi(\lambda)$ be a minimal polynomial for a maximal vector v. Then $\phi(\lambda)$ is the minimal polynomial for A.

Proof. Consider any vector u such that u and v are linearly independent. Let $\psi(\lambda)$ be its minimal polynomial. If ω is the lowest common multiple of ϕ and ψ, then ω annihilates every vector in the plane of u and v, since

$$
\omega(A)(\alpha u+\beta v)=\alpha \omega(A) u+\beta \omega(A) v=\theta .
$$

Hence ω contains as a divisor the minimal polynomial of every vector in the plane. But ω is of degree $2 n$ at most, hence has only finitely many divisors. Since there are infinitely many pairs of linearly independent vectors in the plane and finitely many divisors of ω, there is a pair of linearly independent vectors x and y in this plane with the same minimal polynomial. This polynomial also annihilates v since v is on this plane. Therefore ϕ is minimal for every vectors in the plane of u and v, and since u was any vector whatever, other than v, ϕ annihilates every n-dimensional vector.

Since ϕ annihilates every vector, it annihilates in particular every vector e_{i}, hence

$$
\phi(A) I=\phi(A)=Z_{n} .
$$

Thus $\phi(\lambda)=\mu_{A}(\lambda)$ is the minimal polynomial for A.
If the minimal polynomial and the characteristic polynomial of a matrix are equal, then they may be found by the use of Krylov's sequence. To produce the characteristic polynomial of A by Krylov method, first choose an arbitrary n-dimensional nonzero column vector v such as e_{1}, then use the Krylov sequence to define the matrix

$$
V=\left[v, A v, A^{2} v, \ldots, A n-2 v, A^{n-1} v\right]=\left[v_{0}, v_{1}, v-2, \ldots v_{n-2}, v_{n-1}\right] .
$$

If the matrix V has rank n, then the system $V c=-v_{n}$ has a unique solution

$$
c^{t}=\left(c_{0}, c_{1}, c_{2}, \cdots, c_{n-1}\right) .
$$

The monic polynomial

$$
\phi(\lambda)=c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+\cdots+c_{n-1} \lambda^{n-1}+\lambda^{n}
$$

which annihilates v is the characteristic polynomial of A. If the system $V c=-v_{n}$ does not have a unique solution, then change the initial vector and try for example with e_{2}.

Examples. Compute the characteristic polynomials of the following matrices:

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & -1 \\
1 & 0 & 2 & 1 \\
2 & 1 & -1 & 3 \\
4 & -5 & 0 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
1 & 2 & -3 & 1 \\
1 & 0 & -2 & 1 \\
1 & -3 & -1 & 3 \\
1 & 0 & 1 & -2
\end{array}\right)
$$

Choosing the initial vector $v=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ for both matrices, we obtain
$V_{A}=\left[v, A v, A^{2} v, A^{3} v\right]=\left(\begin{array}{cccc}1 & 1 & 1 & 17 \\ 0 & 1 & 9 & 42 \\ 0 & 2 & 13 & 43 \\ 0 & 4 & 15 & 19\end{array}\right) \quad$ and $\quad V_{B}=\left[v, B v, B^{2} v, B^{3} v\right]=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1\end{array}\right)$.

The matrix V_{A} is nonsingular, hence $c_{A}=-V_{A}^{-1} A^{4} v=\left(\begin{array}{c}-87 \\ 28 \\ 2 \\ -4\end{array}\right)$. From c_{A} we obtain the characteristic polynomial of A which is

$$
K_{A}(\lambda)=-87+28 \lambda+2 \lambda^{2}-4 \lambda^{3}+\lambda^{4}
$$

The matrix V_{B} is singular, so we need another initial vector such as $v=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$. The new matrix $V_{B}=\left(\begin{array}{cccc}0 & 2 & 11 & 11 \\ 1 & 0 & 8 & 0 \\ 0 & -3 & 5 & -21 \\ 0 & 0 & -1 & 18\end{array}\right)$ is invertible, so $c_{B}=-V_{B}^{-1} A^{4} v=\left(\begin{array}{c}9 \\ -2 \\ -10 \\ 2\end{array}\right)$. From the solution c_{B} we obtain the characteristic polynomial of B which is

$$
K_{B}(\lambda)=9-2 \lambda-10 \lambda^{2}+2 \lambda^{3}+\lambda^{4}
$$

Remark. The minimal polynomial and the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

are

$$
m_{A}(\lambda)=\lambda^{3}-3 \lambda^{2}-7 \lambda \quad \text { and } \quad K_{A}(\lambda)=\lambda^{4}-3 \lambda^{3}-7 \lambda^{2}
$$

respectively. Therefore by choosing any initial vector v, the matrix $V_{A}=\left[v, A v, A^{2} v, A^{3} v\right]$ will always be singular. This means that the Krylov sequence will never produce the characteristic polynomial $K_{A}(\lambda)$.

Matlab Program

```
\(A=\operatorname{input}(\) 'Enter a square matrix \(A\) : ');
\(m=\operatorname{size}(A) ; n=m(1) ; V=\operatorname{zeros}(n, n)\);
\(D L 1=[' E n t e r\) an initial ', int2str( \(n\) ), ' - dimensional row vector \(v 0=\) ' \(]\);
\(v 0=\operatorname{input}(D L 1)\);
\(z=0 ; k=1\);
while \(z==0 \quad \& \quad k<5\)
        \(w=v 0 ; V(:, 1)=w ;\)
        for \(i=2: n, \quad w=A * w ; \quad V(:, i)=w ; \quad\) end,
        if \(\operatorname{det}(V) \sim=0 ; \quad k=8 ; \quad c=-\operatorname{inv}(V) * A * w\);
        else
            while \(k<5\)
                \(v 0=\operatorname{input}(\) 'The matrix \(V\) is singular, please enter another initial row vector \(v 0\) : ');
                \(k=k+1 ;\)
            end;
        end;
        \(z=\operatorname{det}(V) ;\)
end;
if \(k==5\);
    disp('Sorry, the Krylov method is not suited for this matrix. '), disp(' '),
else;
    disp('The Characteristic polynomial looks like : '), disp( ' '),
    \(\left.\operatorname{disp}\left({ }^{\prime} K_{A}(x)=c(0)+C(1) x+c(2) x \wedge 2+\cdots+c(n-1) x \wedge(n-1)+x \wedge n^{\prime}\right]\right), \operatorname{disp}\left({ }^{\prime} \quad\right)\),
    disp('The coefficients list \(c(k)\) is : '), disp(' '),
    \(\operatorname{disp}\left(\left[c^{\prime}, 1\right]\right)\)
end;
```

