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On the strength of relations (9), the coeflicients fpy, pa, - -+ s £y
are non-homogeneous linear forms in gy, . . ., ¢,-1 and consequently
may be calculated simultaneously by the method of elimination (see
§12). Of the two possible modifications of the method of elimina-
tion, one should take that in which the components of the vectors
R, M'R',..., M'-1R', are arrayed in the rows of the scheme. Then
these rows, conceived as matrices, are R, RM, ..., RM»1. The
coefficients of the relations (9) will thereupon turn out to be arranged
so as to accord exactly with the Samuelson scheme. Given the
grounds for the method that have been presented above, the region
of its application is easily discerned. Indeed, it coincides with the
region of application of the A. N. Krylov method for the matrix
M, proceeding from the vector R'.

As an example we shall again take the Leverrier matrix. We
carry through the computation of the coefficients of the character-
istic polynomial in accordance with the scheme described (see
Table II). At the outset we compute matrix (1), arranging its
elements in the first four rows. We next perform the elimination as
was shown in §12. The last row gives the sought values of the
coefficients, which as regards accuracy almost coincide with the
values computed by the method of A. N. Krylov. The last column,
as usual, is the check column.

The number of operations necessary to determine the coefficients
of the characteristic polynomial by the Samuelson method is some-
what less than by the A. N. Krylov method, for the formation of
matrix (1) requires n(n—1)2 multiplications, and the process of
elimination in the Samuelson scheme requires just as many opera-
tions as does the solution of the system in the A. N. Krylov method.
In connection with this we comment that in Wayland’s article [1]
the reckoning of the number of operations for the Samuelson method
is incorrectly done.

§ 24, THE METHOD OF A. M. DANILEVSKY

An elegant and very efficient method of computing the coeffi-
cients of the characteristic polynomial has been proposed by A. M.
Danilevsky [1]. The gist of his method consists in an initial reduc-
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tion of the secular determi
il eterminant to the form known as the Frobenius
pl =4 ﬁZ pS ity .pn
1 2l 00 w0
Dy =|o 1 -2 0|
0 0 0o ... =1
the expansion of which in powers of 1 demands no labor, since
DA) = (=1l —prdn-1— ... _pn),
C})ln the s.trc.:ngth of the fact that similar matrices have identical
- characteristic polynomials, in order to attain the aim set it 1
sufficient to reduce the given matrix ’ ;
a1 412 ... ay,
TPy Aoy
to the form L
pr Py © b1 by
) 0L ® i)
iR= 0 1 0 0
A R

by means of a similarity transformation.

W o
e shall show that we can find (n—1) similarity transformations,

the successive performance of which will realize the desired transi-

tion from matrix 4 to matrix P, if this is possible.

‘%Vet us examine the beginning of the process.
e
» mu;‘.t (():arrE :he TOW @y ayg ... a, , 1 a, into the row
i m ' - et us assume thata, , 1#0. Divide all elements
W by a,, ,_1; then subtract the (n—1)th column multiplied
o]

by a,, @,y a, res i

R T pectively, from all the rest of th
The desired trangform t i ks columns.
b e cted. ation will thereby obviously have been
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The operations we have indicated will thus be elementary trans-
formations on columns, and, as has been shown in § 1 Paragraph 10,
will reduce to a postmultiplication of the matrix A by a matrix M, 4
which is not hard to jot down, to wit:

( 1 0 N 0 0 A
0 1 ks 0 0
M.
: 2y o dy2 1 _ Ay
Ay, n—1 dn, n—1 an, n—1 an, n—1
- 0L ke 1 10 A

The constructed matrix AM, ; will not be similar to the
matrix 4. However from it one can easily pass to a matrix that is
similar to 4. To accomplish this it is enough to premultiply the
matrix AM,_, by the matrix M, !, which is easily computed; indeed
one can directly verify that

(1 0 0 0 )
0 1 0 0
M =
S Y O
o 0 0 LS|

|
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An explanation of how one is to proceed in those exceptional
cases when the necessary elements vanish will be given below.

At the moment we shall show how the elements of the matrix C,
the result of one similarity transformation, are computed.

We have

The multiplication of the matrix AM, ; on the left by the matrix
M1, obviously does not change the transformed row.

Thus the matrix

3

G €12 €1, n-1 Cln
€21 €29 €2, n-1 Copy
M;—-IIAMn—l - =
6a—1,1 €31, 2 €u—1, -1 Ca—1,n
. 0 0 I Oyl

has one satisfactory row, and we can continue the process another

step further if ¢, , o#0.

If all the (n—1) transformations are

possible, we shall have brought the matrix 4 into form P.

dyy a1z a1, p-1 a1y
AM,_, =
Ay 1,1 an—l, 2 an—l, n—1 4"71’ n
Ay a,s 0 idarie an, n—1 [
1 0 0 0
X
My_1,1 My_1, 2 Mp1, n—1 Mp_1 4
0 0 0 1
.
b1y byo il CITO
by bss bz, n—1 bo,
= —4 BJ
bn71 1 bn-—], 2 bn*l, n—1 bn—l, n
. 0O 0 1 0 )
where
Byy Sidgpeay it foralli< n—1, k#n—1,
bi, n—-1 = ai, n*lmn—vl, n—1*
Here
a,; .
My1,; = — fori # n—1
arf, n—1
and
1
mn—l, -1 =
G an, n—1

We see that all the elements of the matrix B=AM, ,, with the
exception of the elements of the (n — 1)th column, are to be computed
by formulas involving two terms.

The elements of the (n —1)th column, if we recall the value of the
coeflicients m,_; , ;, are obtained as the quotients of the division of
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Let us pass on to the description of the computational process.
In rows 1, 2, 3, 4 are arrayed the elements of the given matrix and
the check sums. We begin the computation with the computation
of the elements defining the matrices My and My !, viz.: in row 4/
we enter the elements of the third row of the matrix My:

@41, Ayg, L Qg
A Rt e e R L RS e

ays ayy’ e 43

The elements of the third row of the matrix M !, equal to the
elements ay,(k=1, 2, 3, 4) we enter, for computational convenience,
in a column: rows 5, 6, 7, 8 of the head-column I. The result of
the multiplication by My we write in the four rows 3, 6, 7, 8. The
transformation M brings the fourth row of the matrix into canonical
form (the 8th row). The elements of the third column are now

obtained by multiplying the elements of the third column of the

matrix A by mgy = %43- The rest of the elements are computed by
the two-term formulas:
(1) bip = ay+ aigms;.

For the check we form the column of sums, as usual. The ele-
ment of the check column located in row 4" must coincide with the
sum of the elements of this row after replacing the element myy by —1.
The results of the application of formulas (1) to the elements > are
entered in the column »’; adding the elements of the 3rd column to
them, we obtain the check sums for the rows 5 to 8.

The transformation M, ! changes only the 7th row; we enter the
result in the 9th row. Its elements are obtained as the sum of the
products, by pairs, of the elements situated in column I by the cor-
responding elements of each column of the matrix AM;.  With this
we have concluded the transformation My 14AM;. The process is
continued analogously. We remark that the elements of the 9th row
are also the elements of the 2nd row of the matrix M, '; we copy
them columnwise in column I.  The elements of the second row of
the matrix M, are entered in row 9'.

The process is easily learned and is afterwards executed without
difficulty.

As the result of the computation we obtain all the coefficients at
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once, since the coincidence—the check—of 1 with the trace of the
matrix is in addition an index to the accuracy of the computation of
the rest of the coeflicients; the results obtained are closer to the
Leverrier data than are the results found by A. N. Krylov’s method
or those by the Samuelson method.

The number of operations necessary for computation by the A. M.
Danilevsky method is substantially less than by the two other
rrTf:thods referred to above. The number of multiplications and
divisions is equal to (n— Ly(n2+n—1).

. We remark that A. M. Danilevsky’s method admits of a modifica-
tion similar to the pivotal condensation scheme in connection with
the Gauss method; it somewhat increases the accuracy of the results
obtained.

Knowledge of the matrices My, My, ..., M, which successively
effect the similarity transformations, permits us to determine the
proper vectors of the matrix A.

Indeed, let A be some proper number of matrix 4 and
X=(x,...,x) the proper vector corresponding to it. Let

Y=(y1, 42 ...,4,) be a proper vector of the matrix P. Then, as
was shown in § 3 Paragraph 10,

X = Mn___]_Mﬂ72 e MleY‘

I\.Iow, the proper vector of the matrix P is found without trouble,
sice 1ts components will be the solutions of the recurrence system:

(br—=ANyr+payo+ - - - +£4, =0

1= Ays =0
Yn-1— zyr: = 0.
This gives y,=1,3, 1=2,..., Yy =An-1,
The transformation M, performed upon Y, gives
My Mg ... my, ¥ Zz MYk
£=1
MY - 0 Iy 0 ye \ _ Yo
0] o ... 1 Y Y
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The transformation M; thus alters only the first component of the
vector Y. Analogously, the transformation M, alters the second

component, etc.
Thus the components of the vector X are determined by the

formulas
k'f.l n

(2) Xp = 24 n"’.ﬁ:.\'x.\'—f_ 2 MY (kziz ??.“'1)
s=1 s=k

As an example let us consider, for the Leverrier matrix, the com-
putation of the proper vector belonging to the proper number A,.
From the equation

At 4+47.8884313 4-797.278942 + 5349.4554 + 12296.55 = 0
we obtain Ay= —5.29872. The computation of the proper vector

belonging to A, is performed in conformity with the subjoined table.

Tasre IV, Computation of a Proper Vector by the
A. M. Danilevsky Method

|
| I l 11 111 v v | VI

U] 0.33869¢| —0.030750 |~0.004462 |— 148.769 102655 | 1.000000
2| 14.33410 | 0.165394 |—0.193114 | 28.0764 | 10.1446 | 0.098822
_5.20872 | 6.38334 | 0.062182

1 1 0.009741

3| 190.5349 4.872825 | 0.715631

4| 760.1836 | 34.47731 | 12.59238

Here columns I, II, 11T contain the elements my;, mgy, may, which
we transcribe from rows 14/, 9’ and 4’ of Table I11, setting them up
in columns. Column IV contains powers of 1, from the third to
the zero-th. Column V contains the components of the proper
vector, which are computed one after another by formula (2), which
is reminiscent of the formula of the Seidel method. Column VI
contains the components of the vector Xy, normalized so that the
first of its components is equal to unity.

In concluding this section we shall dwell on exceptional cases.
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cht us assume that after several steps of the process we have
arrived at a matrix of the form '

€11 €1z ... €y by B0 e
Ca1 g ... (g s Cy,
C = k1 G2 Crk Cin
0 0 1 0 0
0 o0 0 1 0
OEEEOERIIRE () A O

and together with this it turns out that p, 4o1=0.

Here two cases are conceivable. :
‘ If any one of the elements ¢ (i <k—1) is different from zero, we
interchange the ith and (f— Ilth columns and simultaneo,usly
cha?ge the rows with the same numbers. Such a transformation is
equivalent to a multiplication left and right by a matrix § (see Para-
graph 10, § 1) of the form

1

This matrix has the property that $2=7 and, accordingly
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S§=.5-1, so that a multiplication on left and right by § is a similarity
transformation. After these transformations one must proceed as
usual.

If, however, all ¢;;,=0 for i<k —1, then the matter becomes even
simpler.

To wit, in this case the matrix C has the form

~

c11 Cig: woeiedC], el L e C1n
Cro1, 161, 2 Cp-1, k=1 Cx—1, & Cr—1, n
C= 0 (R 0 gl o 5 b Cn — 002,
0 0 0 1 0
. 0 0 0 0 I 0
where
€11 - C]! | Chp e Crn
1 0
C, = , Cy =
Cp—1,1 oo Cpo1, k=1 0 1 0

and consequently

[C=2L| = |Gy=*T]-|{Co~21].

The matrix C, already has the Frobenius canonical form and
therefore |Cy—AI] is computed instantly. In order to expand
|Cy — AI], one must apply the general process leading to the matrix Py,

Thus the case where the process is broken introduces only
simplifications into the problem of computing the characteristic
polynomial: an easily computable factor is separated [rom the
characteristic polynomial, and the remaining factor is the charac-
teristic polynomial of a matrix of lower order.
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§ 25. LEVERRIER’S METHOD IN D. K.
FADDEEV’S MODIFICATION

In this section we shall expound a method known as Leverrier’s
method [2], requiring a greater number of operations than any of
the methods presented above, but utterly insensitive to the individual
peculiarities of the matrix, in particular to “gaps” in the inter-
mediate determinants.

Let

(1) D) = (== pudet—polite e —p]

be the characteristic polynomial of the matrix and A5, Ay, . . ., 4, its
roots, among which some may be equal.  Let us employ the symhol

— ok
(2) ‘ > M=y,
=1
Then a relation is valid that is known as the Newton formula:

(3) M = Sp—p18a— - —persy, k=1,...,n

If the numbers 5, are known, then by solving the recurrence
system (3) we can find the coeflicients p, which we need.
We shall show how the numbers s, are determined. We have

51 = 2]4‘22"’ g +}Ln — trA.

Moreover, on the strength of Paragraph 11, § 3, the characteristic
numbers of the matrix A% will be 25, 25, ..., 2% Accordingly

(4) sp= My Ar o 2= 4

Thus the process of computation reduces to the successive com-
putation of the powers of the matrix 4, then to the calculation of
their traces and, finally, to the solution of the recurrence system (3).
The computation of the n powers of the matrix 4 {of the last matrix
Ar it is necessary to compute only the diagonal elements) requires a
and Leverrier’s

great number of operations—uniform, granted
method is inordinately more laborious than the methods expounded
above. Its value consists, as has already been mentioned, in its



