
Chapter 13
Numerical Solution of Differential
Equations

We have considered numerical solution procedures for two kinds of equations:
In chapter 10 the unknown was a real number; in chapter 6 the unknown was a
sequence of numbers. In a differential equation the unknown is a function, and
the differential equation relates the function itself to its derivative(s).

In this chapter we start by discussing what differential equations are. Our
discussion emphasises the simplest ones, the so-called first order equations,
which only involve the unknown function and its first derivative. We then con-
sider how first order equations can be solved numerically by the simplest method,
namely Euler’s method. We analyse the error in Euler’s method, and then intro-
duce some more advanced methods with better accuracy. After this we show
that the methods for handling one equation in one unknown generalise nicely
to systems of several equations in several unknowns. In fact, it turns out that
even a system of higher order equations can be rewritten as a system of first or-
der equations.

13.1 What are differential equations?

Differential equations is an essential tool in a wide range of applications. The
reason for this is that many phenomena can be modelled by a relationship be-
tween a function and its derivatives.

13.1.1 An example from physics

Consider an object moving through space. At time t = 0 it is located at a point P
and after a time t its distance to P corresponds to a number f (t ). In other words,
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the distance can be described by a function of time. The divided difference

f (t +∆t )− f (t )

∆t
(13.1)

then measures the average speed during the time interval from t to t +∆t . If we
take the limit in (13.1) as∆t approaches zero, we obtain the speed v(t ) at time t ,

v(t ) = lim
∆t→0

f (t +∆t )− f (t )

∆t
. (13.2)

Similarly, the divided difference of the speed is given by
(
v(t +∆t )− v(t )

)
/∆t .

This is the average acceleration from time t to time t +∆t , and if we take the
limit as ∆t tends to zero we get the acceleration a(t ) at time t ,

a(t ) = lim
∆t→0

v(t +∆t )− v(t )

∆t
. (13.3)

If we compare the above definitions of speed and acceleration with the defini-
tion of the derivative, we notice straightaway that

v(t ) = f ′(t ), a(t ) = v ′(t ) = f ′′(t ). (13.4)

Newton’s second law states that if an object is influenced by a force, its accel-
eration is proportional to the force. More precisely, if the total force is F , New-
ton’s second law can be written

F = ma (13.5)

where the proportionality factor m is the mass of the object.
As a simple example of how Newton’s law is applied, we consider an object

with mass m falling freely towards the earth. It is then influenced by two op-
posite forces, gravity and friction. The gravitational force is Fg = mg , where g
is acceleration due to gravitation alone. Friction is more complicated, but in
many situations it is reasonable to say that it is proportional to the square of the
speed of the object, or F f = cv2 where c is a suitable proportionality factor. The
two forces pull in opposite directions so the total force acting on the object is
F = Fg −F f . From Newton’s law F = ma we then obtain the equation

mg − cv2 = ma.

Gravity g is constant, but both v and a depend on time and are therefore func-
tions of t . In addition we know from (13.4) that a(t ) = v ′(t ) so we have the equa-
tion

mg − cv(t )2 = mv ′(t )

304



which would usually be shortened and rearranged as

mv ′ = mg − cv2. (13.6)

The unknown here is the function v(t ), the speed, but the equation also involves
the derivative (the acceleration) v ′(t ), so this is a differential equation. This
equation is just a mathematical formulation of Newton’s second law, and the
hope is that we can solve the equation and thereby determine the speed v(t ).

13.1.2 General use of differential equations

The simple example above illustrates how differential equations are typically
used in a variety of contexts:

Procedure 13.1 (Modelling with differential equations).

1. A quantity of interest is modelled by a function x.

2. From some known principle, a relation between x and its derivatives is
derived; in other words, a differential equation is obtained.

3. The differential equation is solved by a mathematical or numerical
method.

4. The solution of the equation is interpreted in the context of the original
problem.

There are several reasons for the success of this procedure. The most basic
reason is that many naturally occurring quantities can be represented as math-
ematical functions. This includes physical quantities like position, speed and
temperature, which may vary in both space and time. It also includes quanti-
ties like ’money in the bank’ and even vaguer, but quantifiable concepts like for
instance customer satisfaction, both of which will typically vary with time.

Another reason for the popularity of modelling with differential equations
is that such equations can usually be solved quite effectively. For some equa-
tions it is possible to find an explicit formula for the unknown function, but this
is rare. For a wide range of equations though, it is possible to compute good
approximations to the solution via numerical algorithms, and this is the main
topic of this chapter.
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13.1.3 Different types of differential equations

Before we start discussing numerical methods for solving differential equations,
it will be helpful to classify different types of differential equations. The simplest
equations only involve the unknown function x and its first derivative x ′, as in
(13.6); this is called a first order differential equation. If the equation involves
higher derivatives up to order p it is called a pth order differential equation. An
important subclass are given by linear differential equations. A linear differential
equation of order p is an equation in the form

x(p)(t ) = f (t )+ g0(t )x(t )+ g1(t )x ′(t )+ g2(t )x ′′(t )+·· ·+ gp−1(t )x(p−1)(t ).

For all the equations we study here, the unknown function depends on only
one variable which we usually denote t . Such equations are referred to as ordi-
nary differential equations. This is in contrast to equations where the unknown
function depends on two or more variables, like the three coordinates of a point
in space, these are referred to as partial differential equations.

Exercises

1 Which of the following differential equations are linear?

a) x′′+ t 2x′+x = sin t .

b) x′′′+ (cos t )x′ = x2.

c) x′x = 1.

d) x′ = 1/(1+x2).

e) x′ = x/(1+ t 2).

13.2 First order differential equations

A first order differential equation is an equation in the form

x ′ = f (t , x).

Here x = x(t ) is the unknown function, and t is the free variable. The function
f tells us how x ′ depends on both t and x and is therefore a function of two
variables. Some examples may be helpful.

Example 13.2. Some examples of first order differential equations are

x ′ = 3, x ′ = 2t , x ′ = x, x ′ = t 3 +p
x, x ′ = sin(t x).

The first three equations are very simple. In fact the first two can be solved by
integration and have the solutions x(t ) = 3t +C and x(t ) = t 2 +C , respectively,
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where C is an arbitrary constant in both cases. The third equation cannot be
solved by integration, but it is easy to check that the function x(t ) = Ce t is a
solution for any value of the constant C . It is worth noticing that all the first
three equations are linear.

For the first three equations there are simple procedures that lead to explicit
formulas for the solutions. In contrast to this, the last two equations do not have
solutions given by simple formulas, but we shall see that there are simple nu-
merical methods that allow us to compute good approximations to the solu-
tions.

The situation described in example 13.2 is similar to what we had for non-
linear equations and integrals: There are analytic solution procedures that work
in some special situations, but in general the solutions can only be determined
approximately by numerical methods.

In this chapter our main concern will be to derive numerical methods for
solving differential equations in the form x ′ = f (t , x) where f is a given function
of two variables. The description may seem a bit vague since f is not known
explicitly, but the advantage is that once a method has been derived we may
plug in almost any function f .

13.2.1 Initial conditions

When we solve differential equations numerically we need a bit more informa-
tion than just the differential equation itself. If we look back on example 13.2,
we notice that the solution in the first three cases involved a general constant C ,
just like when we determine indefinite integrals. This ambiguity is present in all
differential equations, and cannot be handled very well by numerical solution
methods. We therefore need to supply an extra condition that will specify the
value of the constant. The standard way of doing this for first order equations is
to specify one point on the solution of the equation. In other words, we demand
that the solution should satisfy the equation x(a) = x0 for some real numbers a
and x0.

Example 13.3. Let us consider the differential equation x ′ = 2x. It is easy to
check that x(t ) =Ce2t is a solution for any value of the constant C . If we add the
initial value x(0) = 1, we are led to the equation 1 = x(0) =Ce0 =C , so C = 1 and
the solution becomes x(t ) = e2t .

If we instead impose the initial condition x(1) = 2, we obtain the equation
2 = x(1) =Ce2 which means that C = 2e−2. In this case the solution is therefore
x(t ) = 2e−2 e2t = 2e2(t−1).

The general initial condition is x(a) = x0. This leads to x0 = x(a) = Ce2a or
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C = x0e−2a . The solution is therefore

x(t ) = x0e2(t−a).

Adding an initial condition to a differential equation is not just a mathemat-
ical trick to pin down the exact solution; it usually has a concrete physical inter-
pretation. Consider for example the differential equation (13.6) which describes
the speed of an object with mass m falling towards earth. The speed at a certain
time is clearly dependent on how the motion started — there is a difference be-
tween just dropping a ball, and throwing it towards the ground. But note that
there is nothing in equation (13.6) to reflect this difference. If we measure time
such that t = 0 when the object starts falling, we would have v(0) = 0 in the situ-
ation where it is simply dropped, we would have v(0) = v0 if it is thrown down-
wards with speed v0, and we would have v(0) = −v0 if it was thrown upwards
with speed v0. Let us sum this up in an observation.

Observation 13.4 (First order differential equation). A first order differential
equation is an equation in the form x ′ = f (t , x), where f (t , x) is a function of
two variables. In general, this kind of equation has many solutions, but a spe-
cific solution is obtained by adding an initial condition x(a) = x0. A complete
formulation of a first order differential equation is therefore

x ′ = f (t , x), x(a) = x0. (13.7)

It is equations of this kind that we will be studying in most of the chapter,
with special emphasis on deriving numerical solution algorithms.

13.2.2 A geometric interpretation of first order differential equations

The differential equation in (13.7) has a natural geometric interpretation: At any
point (t , x), the equation x ′ = f (t , x) prescribes the slope of the solution through
this point. A couple of examples will help illustrate this.

Example 13.5. Consider the differential equation

x ′ = f (t , x) = t .

This equation describes a family of functions whose tangents have slope t at any
point (x, t ). At the point (t , x) = (0,0), for example, the slope is given by

x ′(0) = f (0,0) = 0,
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Figure 13.1. Illustration of the geometric interpretation of differential equations. Figure (a) shows 400 tan-
gents generated by the equation x′ = t , and figure (b) the 11 solution curves corresponding to the initial condi-
tions x(0) = i /10 for i = 0, 1, . . . , 10. Figures (c) and (d) show the same information for the differential equation
x′ = cos6t/

(
1+ t +x2)

.

i.e., the tangent is horizontal. Similarly, at the point (t , x) = (0.5,1), the slope of
the tangent is given by

x ′(0.5) = f (0.5,1) = 0.5

which means that the tangent forms an angle of arctan0.5 ≈ 26.6◦ with the t-
axis.

In this way, we can compute the tangent direction at any point (x, t ) in the
plane. Figure 13.1a shows 400 of those tangent directions at a regular grid of
points in the rectangle described by t ∈ [0,1.5] and x ∈ [0,1] (the length of each
tangent is not significant). Note that for this equation all tangents corresponding
to the same value of t are parallel. Figure 13.1b shows the actual solutions of the
differential equation for the 11 initial values x(0) = i /10 for i = 0, 1, . . . , 10.

Since f (t , x) = t is independent of x in this case, the equation can be solved
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by integration. We find

x(t ) = 1

2
t 2 +C ,

where the constant C corresponds to the initial condition. In other words, we
recognise the solutions in (b) as parabolas, and the tangents in (a) as the tan-
gents of these parabolas.

Example 13.6. A more complicated example is provided by the differential equa-
tion

x ′ = f (t , x) = cos6t

1+ t +x2 . (13.8)

Figure 13.1c shows tangents of the solutions of this equation at a regular grid
of 400 points, just like in example 13.5. We clearly perceive a family of wave-
like functions, and this becomes clearer in figure 13.1d. The 11 functions in this
figure represent solutions of the (13.8), each corresponding to one of the initial
conditions x(0) = i /10 for i = 0, . . . , 10.

Plots like the ones in figure 13.1a and c are called slope fields, and are a com-
mon way to visualise a differential equation without solving it.

Observation 13.7 (Geometric interpretation of differential equation). The
differential equation x ′ = f (t , x) describes a family of functions whose tangent
at the point (t , x) has slope f (t , x). By adding an initial condition x(a) = x0, a
particular solution, or solution curve, is selected from the family of solutions.

A plot of the tangent directions of the solutions of a differential equation
is called a slope field.

It may be tempting to connect neighbouring arrows in a slope field and use
this as an approximation to a solution of the differential equation. This is the
essence of Euler’s method which we will study in section 13.3.

13.2.3 Conditions that guarantee existence of one solution

The class of differential equations described by (13.7) is quite general since we
have not placed any restrictions on the function f , and this may lead to prob-
lems. Consider for example the equation

x ′ =
√

1−x2. (13.9)

Since we are only interested in solutions that are real functions, we have to be
careful so we do not select initial conditions that lead to square roots of negative
numbers. The initial condition x(0) = 0 would be fine, as would x(1) = 1/2, but
x(0) = 2 would mean that x ′(0) =

√
1−x(0)2 =p−3 which does not make sense.
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For the general equation x ′ = f (t , x) there are many potential pitfalls like
this. As in the example, the function f may involve roots which require the ex-
pressions under the roots to be nonnegative, there may be logarithms which
require the arguments to be positive, inverse sines or cosines which require the
arguments to not exceed 1 in absolute value, fractions which do not make sense
if the denominator becomes zero, and combinations of these and other restric-
tions. On the other hand, there are also many equations that do not require any
restrictions on the values of t and x. This is the case when f (t , x) is a polynomial
in t and x, possibly combined with sines, cosines and exponential functions.

The above discussion suggests that the differential equation x ′ = f (t , x) may
not always have a solution. Or it may have more than one solution if f has cer-
tain kinds of problematic behaviour. The most common problem that may oc-
cur is that there may be one or more points (t , x) for which f (t , x) is not defined,
as was the case with equation (13.9) above. So-called existence and uniqueness
theorems specify conditions on f which guarantee that a unique solutions can
be found. Such theorems may appear rather abstract, and their proofs are often
challenging, so we will not discuss the details of such theorems here, but just
informally note the following fact.

Fact 13.8. The differential equation

x ′ = f (t , x), x(a) = x0

has a solution for t near a provided the function f is nicely behaved near the
starting point (a, x0).

The term ’nice’ in fact 13.8 typically means that f should be well defined, and
both f and its first derivatives should be continuous. When we solve differential
equations numerically, it is easy to come up with examples where the solution
breaks down because of violations of the condition of ’nice-ness’.

13.2.4 What is a numerical solution of a differential equation?

In earlier chapters we have derived numerical methods for solving nonlinear
equations, for differentiating functions, and for computing integrals. A common
feature of all these methods is that the answer is a single number. However, the
solution of a differential equation is a function, and we cannot expect to find a
single number that can approximate general functions well.

All the methods we derive compute the same kind of approximation: They
start at the initial condition x(a) = x0 and then compute successive approxima-
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tions to the solution at a sequence of points t1, t2, t3, . . . , tn in an interval [a,b],
where a = t0 < t1 < t2 < t3 < ·· · < tn = b.

Fact 13.9 (General strategy for numerical solution of differential equations).
Suppose the differential equation and initial condition

x ′ = f (t , x), x(a) = x0

are given together, with an interval [a,b] where a solution is sought. Suppose
also that an increasing sequence of t-values (tk )n

k=0 are given, with a = t0 and
b = tn , which in the following will be equally spaced with step length h, i.e.,

tk = a +kh, for k = 0, . . . , n.

A numerical method for solving the equation is a recipe for computing a se-
quence of numbers x0, x1, . . . , xn such that xk is an approximation to the true
solution x(tk ) at tk . For k > 0, the approximation xk is computed from one
or more of the previous approximations xk−1, xk−2, . . . , x0. A continuous ap-
proximation is obtained by connecting neighbouring points by straight lines.

Exercises

1 Solve the differential equation
x′+x sin t = sin t

and plot the solution on the interval t ∈ [−2π,2π] for the following initial values:

a) x(0) = 1−e.

b) x(4) = 1.

c) x(π/2) = 2.

d) x(−π/2) = 3.

2 What features of the following differential equations could cause problems if you try to
solve them?

a) x′ = t/(1−x).

b) x′ = x/(1− t ).

c) x′ = ln x.

d) x′x = 1.

e) x′ = arcsin x.

f ) x′ =
√

1−x2.
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13.3 Euler’s method

Methods for finding analytical solutions of differential equations often appear
rather tricky and unintuitive. In contrast, many numerical methods are based on
simple, often geometric ideas. The simplest of these methods is Euler’s method
which is based directly on the geometric interpretation in observation 13.7.

13.3.1 Basic idea and algorithm

We assume that the differential equation is

x ′ = f (t , x), x(a) = x0,

and our aim is to compute a sequence of approximations (tk , xk )n
k=0 to the solu-

tion, where tk = a +kh.
The initial condition provides us with a point on the true solution, so (t0, x0)

is also the natural starting point for the approximation. To obtain an approxi-
mation to the solution at t1, we compute the slope of the tangent at (t0, x0) as
x ′

0 = f (t0, x0). This gives us the tangent T0(t ) = x0+(t −t0)x ′
0 to the solution at t0.

As the approximation x1 at t1 we use the value of the tangent T0 which is given
by

x1 = T0(t1) = x0 +hx ′
0 = x0 +h f (t0, x0).

This gives us the next approximate solution point (t1, x1). To advance to the
next point (t2, x2), we move along the tangent to the exact solution that passes
through (t1, x1). The derivative at this point is x ′

1 = f (t1, x1) and so the tangent is

T1(t ) = x1 + (t − t1)x ′
1 = x1 + (t − t1) f (t1, x1).

The approximate solution at t2 is therefore

x2 = x1 +h f (t1, x1).

If we continue in the same way, we can compute an approximation x3 to the
solution at t3, then an approximation x4 at t4, and so on.

From this description we see that the crucial idea is how to advance the ap-
proximate solution from a point (tk , xk ) to a point (tk+1, xk+1).

Idea 13.10. In Euler’s method, an approximate solution (tk , xk ) is advanced to
(tk+1, xk+1) by following the tangent

Tk (t ) = xk + (t − tk )x ′
k = xk + (t − tk ) f (tk , xk )
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Figure 13.2. Solution of the differential equation x′ = t 3 −2x with initial condition x(0) = 0.25 using Euler’s
method with step length h = 0.1. The top function is the exact solution.

at (tk , xk ) from tk to tk+1 = tk +h. This results in the approximation

xk+1 = xk +h f (tk , xk ) (13.10)

to x(tk+1).

Idea 13.10 shows how we can get from one point on the approximation to the
next, while the initial condition x(a) = x0 provides us with a starting point. We
therefore have all we need to compute a sequence of approximate points on the
solution of the differential equation. An example will illustrate how this works
in practice.

Example 13.11. We consider the differential equation

x ′ = t 3 −2x, x(0) = 0.25. (13.11)

Suppose we want to compute an approximation to the solution at the points
t1 = 0.1, t2 = 0.2, . . . , t10 = 1, i.e., the points tk = kh for k = 1, 2, . . . , 10, with
h = 0.1.

We start with the initial point (t0, x0) = (0,0.25) and note that x ′
0 = x ′(0) =

03 −2x(0) =−0.5. The tangent T0(t ) to the solution at t = 0 is therefore given by

T0(t ) = x(0)+ t x ′(0) = 0.25−0.5t .

To advance the approximate solution to t = 0.1, we just follow this tangent,

x(0.1) ≈ x1 = T0(0.1) = 0.25−0.5×0.1 = 0.2.
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At (t1, x1) = (0.1,0.2) the derivative is x ′
1 = f (t1, x1) = t 3

1 − 2x1 = 0.001 − 0.4 =
−0.399, so the tangent at t1 is

T1(t ) = x1 + (t − t1)x ′
1 = x1 + (t − t1) f (t1, x1) = 0.2− (t −0.1)0.399.

The approximation at t2 is therefore

x(0.2) ≈ x2 = T1(0.2) = x1 +h f (t1, x1) = 0.2−0.1×0.399 = 0.1601.

If we continue in the same way, we find (we only print the first 4 decimals)

x3 = 0.1289,

x7 = 0.0899,

x4 = 0.1058,

x8 = 0.1062,

x5 = 0.0910,

x9 = 0.1362,

x6 = 0.0853,

x10 = 0.1818.

This is illustrated in figure 13.2 where the computed points are connected by
straight line segments.

From the description above and example 13.11 it is easy to derive a more
formal algorithm.

Algorithm 13.12 (Euler’s method). Let the differential equation x ′ = f (t , x) be
given together with the initial condition x(a) = x0, the solution interval [a,b],
and the number of steps n. If the following algorithm is performed

h = (b −a)/n;
t0 = a;
for k = 0, 1, . . . , n −1

xk+1 = xk +h f (tk , xk );
tk+1 = a + (k +1)h;

the value xk will be an approximation to the solution x(tk ) of the differential
equation, for each k = 0, 1, . . . , n.

13.3.2 Geometric interpretation

Recall that a differential equation without an initial condition in general has a
whole family of solutions, with each particular solution corresponding to a spe-
cific initial condition. With this in mind we can give a geometric interpretation
of Euler’s method. This is easiest by referring to a figure like figure 13.3 which
shows the behaviour of Euler’s method for the general equation

x ′ = f (t , x), x(a) = x0,

for which

f (t , x) = cos6t

1+ t +x2 , x(0) = 0.
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Figure 13.3. The plot in (a) shows the approximation produced by Euler’s method to the solution of the differ-
ential equation x′ = cos6t/(1+ t +x2) with initial condition x(0) = 0 (smooth graph). The plot in (b) shows the
same solution augmented with the solution curves that pass through the points produced by Euler’s method.

The plot in figure 13.3a shows both the approximate solution (dots connected by
straight line segments)and the exact solution, but the figure in (b) illustrates bet-
ter how the approximation is obtained. We start off by following the tangent T0

at the initial condition (0,0). This takes us to a point (t1, x1) that is slightly above
the graph of the true solution. There is a solution curve that passes through this
second point which corresponds to the original differential equation, but with a
different initial condition,

x ′ = f (t , x), x(t1) = x1.

The solution curve given by this equation has a tangent at t1, and this is the line
we follow to get from (t1, x1) to (t2, x2). This takes us to another solution curve
given by the equation

x ′ = f (t , x), x(t2) = x2.

Euler’s method continues in this way, by jumping from solution curve to solution
curve.

Observation 13.13. Euler’s method may be interpreted as stepping between
different solution curves of the equation x ′ = f (t , x). At time tk , the tangent
Tk to the solution curve given by

x ′ = f (t , x), x(tk ) = xk

is followed to the point (tk+1, xk+1), which is a point on the solution curve
given by

x ′ = f (t , x), x(tk+1) = xk+1.
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Exercises

1 Use Euler’s method with three steps with h = 0.1 on your calculator to compute approxi-
mate solutions of the following differential equations:

a) x′ = t +x, x(0) = 1.

b) x′ = cos x, x(0) = 0.

c) x′ = t/(1+x2), x(0) = 1.

d) x′ = 1/x, x(1) = 1.

e) x′ =
√

1−x2, x(0) = 0.

2 Write a program that implements Euler’s method for first order differential equations in
the form

x′ = f (t , x), x(a) = x0,

on the interval [a,b], with n time steps. You may assume that the function f and the
numbers a, b, x0, and n are given. Test the program on the equation x′ = x with x(0) = 1
on the interval [0,1]. Plot the exact solution x(t ) = e t alongside the approximation and
experiment with different values of n.

3 Suppose we have the differential equation

x′ = f (t , x), x(b) = x0,

and we seek a solution on the interval [a,b] where a < b. Adjust algorithm 13.12 so that it
works in this alternative setting where the initial value is at the right end of the interval.

4 Recall that a common approximation to the derivative of x is given by

x′(t ) ≈ x(t +h)−x(t )

h
.

Derive Euler’s method by rewriting this and making use of the differential equation x′(t ) =
f
(
t , x(t )

)
.

13.4 Error analysis for Euler’s method

As for any numerical method that computes an approximate solution, it is im-
portant to have an understanding of the limitations of the method, especially its
error. As usual, the main tool is Taylor polynomials with remainders.

We will need one tool in our analysis that may appear unfamiliar, namely a
version of the mean value theorem for functions of two variables. Recall that for
a differentiable function g (t ) of one variable this theorem says that

g (t2)− g (t1) = g ′(ξ)(t2 − t1)

where ξ is a number in the interval (t1, t2). This has a natural generalisation to
functions of two variables.
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Before we state this, we recall that a function g (t , x) of two variables can be
differentiated with respect to t simply by considering x to be a constant; the
resulting derivative is denoted g t (t , x). Similarly, it may be differentiated with
respect to x by considering t to be constant; the resulting derivative is denoted
gx (t , x).

Theorem 13.14 (Mean value theorem). Let g (t , x) be a function of the two
variables t and x, and let gx denote the derivative of g with respect to x. If gx

is continuous in [x1, x2] then

g (t , x2)− g (t , x1) = gx (t ,ξ)(x2 −x1), (13.12)

where ξ is a number in the interval (x1, x2).

Note that theorem 13.14 is really just the same as the mean value theorem for
functions of one variable since the first variable t is constant. A simple example
will illustrate the theorem.

Example 13.15. Suppose g (t , x) = t x+ t 2x2. To find gx , we consider t to be con-
stant, so

gx (t , x) = t +2t 2x.

The mean value theorem (13.12) therefore leads to the relation

t x2 + t 2x2
2 − t x1 − t 2x2

1 = (t +2t 2ξ)(x2 −x1)

where ξ is a number between x1 and x2.

13.4.1 Round-off error

The error analysis in this section does not include round-off errors. Just like for
numerical integration round-off is not usually significant when solving differen-
tial equations, so we will simply ignore such errors in our error estimates.

13.4.2 Local and global error

Figure 13.4 is a magnified version of figure 13.3b and illustrates how the error in
Euler’s method may evolve. At the starting point on the left the error is zero, but
using the tangent at this point as an approximation takes us to another solution
curve and therefore leads to an error at the second point. As we move to the third
point via the tangent at the second point, we jump to yet another solution curve,
and the error increases again. In this way we see that even though the local error
at each step may be quite small, the total (global) error may accumulate and
become much bigger.
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Figure 13.4. The figure illustrates how Euler’s method jumps between different solution curves and therefore
adds to the error for every step. Note though that the error changes sign towards the right of the interval.

In order to analyse the error in detail, we recall that the basic idea in Euler’s
method is to advance the solution from the point (tk , xk ) to (tk+1, xk+1) with the
relation

xk+1 = xk +h f (tk , xk ) (13.13)

which stems from the approximation with the linear Taylor polynomial x(tk+1) ≈
x(tk )+hx ′(tk ). If we include the error term in this simple Taylor approximation,
we obtain the exact identity

x(tk+1) = x(tk )+hx ′(tk )+ h2

2
x ′′(ξk ) = x(tk )+h f

(
tk , x(tk )

)+ h2

2
x ′′(ξk ), (13.14)

where ξk is a number in the interval (tk , tk+1). We subtract (13.13) and end up
with

x(tk+1)−xk+1 = x(tk )−xk +h
(

f
(
tk , x(tk )

)− f (tk , xk )
)+ h2

2
x ′′(ξk ). (13.15)

The number εk+1 = x(tk+1)− xk+1 is the global (signed) error accumulated by
Euler’s method at tk+1. This error has two sources:

1. The global error εk = x(tk )− xk accumulated up to the previous step. The
presence of this error also leads to an error in computing x ′(tk ) since we
use the value f (tk , xk ) instead of the correct value f

(
tk , x(tk )

)
.
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2. The local error we commit when advancing from (tk , xk ) to (tk+1, xk+1
)

and
ignoring the remainder in Taylor’s formula,

h2

2
x ′′(ξk ).

Note that the local error may vary in sign depending on the sign of x ′′(ξk ). This
means that the global error does not necessarily always increase with every step,
it may also become smaller.

The right-hand side of (13.15) can be simplified a little bit by making use of
the mean value theorem 13.14. This yields

f
(
tk , x(tk )

)− f (tk , xk ) = fx (tk ,θk )
(
x(tk )−xk

)= fx (tk ,θk )εk ,

where θk is a number in the interval
(
xk , x(tk )

)
. The result is summarised in the

following lemma.

Lemma 13.16. If the two first derivatives of f exist, the error in using Euler’s
method for solving x ′ = f (t , x) develops according to the relation

εk+1 =
(
1+h fx (tk ,θk )

)
εk +

h2

2
x ′′(ξk ). (13.16)

where ξk is a number in the interval (tk , tk+1) and θk is a number in the inter-
val

(
xk , x(tk )

)
. In other words, the global error at step k +1 has two sources:

1. The advancement of the global error at step k to the next step(
1+h fx (tk ,θk )

)
εk .

2. The local truncation error committed by only including two terms in
the Taylor polynomial,

h2x ′′(ξk )/2.

13.4.3 Untangling the local errors

Lemma 13.16 tells us how the error develops from one stage to the next, but we
would really like to know explicitly what the global error at step k is. For this we
need to simplify (13.16) a bit. The main complication is the presence of the two
numbers θk and ξk which we know very little about. We use a standard trick: We

320



take absolute values in (13.16), use the triangle inequality, and replace the two
terms | fx (tk ,θk )| and |x ′′(ξk )| by their maximum values,

|εk+1| =
∣∣∣(1+h fx (tk ,θk )

)
εk +

h2

2
x ′′(ξk )

∣∣∣
≤

∣∣∣1+h fx (tk ,θk )
∣∣∣|εk |+

h2

2
|x ′′(ξk )|

≤ (1+hC )|εk |+
h2

2
D.

For this to work, we need some restrictions on f and its first derivative fx : We
need the two maximum values used to define the constants D = maxt∈[a,b]|x ′′(t )|
and C = maxt∈[a,b]| fx (t , x(t ))| to exist.

To simplify the notation we write C̃ = 1+hC and D̃ = Dh2/2, so the final
inequality is

|εk+1| ≤ C̃ |εk |+ D̃

which is valid for k = 0, 1, . . . , n −1. This is a ‘difference inequality’which can be
solved quite easily by unwrapping the error terms,

|εk+1| ≤ C̃ |εk |+ D̃

≤ C̃
(
C̃ |εk−1|+ D̃

)+ D̃ = C̃ 2|εk−1|+
(
1+ C̃

)
D̃

≤ C̃ 2(C̃ |εk−2|+ D̃
)+ (

1+ C̃
)
D̃

≤ C̃ 3|εk−2|+
(
1+ C̃ + C̃ 2)D̃

...

≤ C̃ k+1|ε0|+
(
1+ C̃ + C̃ 2 +·· ·+ C̃ k)

D̃ .

(13.17)

We note that ε0 = x(a)− x0 = 0 because of the initial condition, and the sum we
recognise as a geometric series. This means that

|εk+1| ≤ D̃
k∑

i=0
C̃ i = D̃

C̃ k+1 −1

C̃ −1
.

We insert the values for C̃ and D̃ and obtain

|εk+1| ≤ hD
(1+hC )k+1 −1

2C
. (13.18)

Let us sum up our findings and add some further refinements.
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Theorem 13.17 (Error in Euler’s method). Suppose that f , ft and fx are con-
tinuous and bounded functions for t ∈ [a,b] and x ∈ R. Let εk = x(tk )− xk

denote the error at step k in applying Euler’s method with n steps of length h
to the differential equation x ′ = f (t , x) on the interval [a,b], with initial con-
dition x(a) = x0. Then

|εk | ≤ h
D

2C

(
e(tk−a)C −1

)
≤ h

D

2C

(
e(b−a)C −1

)
(13.19)

for k = 0, 1, . . . , n. Here the constants C and D are given by

C = max
t∈[a,b],x∈R

| fx (t , x)|,

D = max
t∈[a,b]

|x ′′(t )|.

Proof. From Taylor’s formula with remainder we know that e t = 1+t+t 2eη/2 for
any positive, real number t , with η some real number in the interval (0, t ) (the
interval (t ,0) if t < 0). This means that 1+ t ≤ e t and therefore (1+ t )k ≤ ekt . If
we apply this to (13.18), with k +1 replaced by k, we obtain

|εk | ≤
hD

2C
ekhC ,

and from this the first inequality in (13.19) follows since kh = tk − a. The last
inequality is then immediate since tk −a ≤ b −a.

If we differentiate the differential equation, using the chain rule, we find x ′′ =
ft + fx f . By assuming that f , ft and fx are continuous and bounded it follows
that x ′′ is also continuous, and therefore that the constant D exists.

The error estimate (13.19) depends on the quantities h, D , C , a and b. Of
these, all except h are given by the differential equation itself, and are therefore
beyond our control. The step length h, however, can be varied as we wish, and
the most interesting feature of the error estimate is therefore how the error de-
pends on h. This is often expressed as

|εk | ≤O(h)

which simply means that |εk | is bounded by a constant times the step length h,
just like in (13.19), without any specification of what the constant is. The error in
numerical methods for solving differential equations typically behave like this.
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Definition 13.18 (Accuracy of a numerical method). A numerical method for
solving differential equations with step length h is said to be of order p if the
error εk at step k satisfies

|εk | ≤O(hp ),

i.e., if
|εk | ≤C hp ,

for some constant C that is independent of h.

The significance of the concept of order is that it tells us how quickly the
error goes to zero with h. If we first try to run the numerical method with step
length h and then reduce the step length to h/2 we see that the error will roughly
be reduced by a factor 1/2p . So the larger the value of p, the better the method,
at least from the point of view of accuracy.

The accuracy of Euler’s method can now be summed up quite concisely.

Corollary 13.19. Euler’s method is of order 1.

In other words, if we halve the step length, we can expect the error in Euler’s
method to also be halved. This may be a bit surprising in view of the fact that the
local error in Euler’s method is O(h2), see lemma 13.16. The explanation is that
although the error committed in replacing x(tk+1) by xk +h f (tk , xk ) is bounded
by K h2 for a suitable constant K , the error accumulates so that the global order
becomes 1 even though the local order is 2.

Exercises

1 Suppose we perform one step of Euler’s method for the differential equation

x′ = sin x, x(0) = 1.

Find an upper bound for the absolute error.

13.5 Differentiating the differential equation

Our next aim is to develop a whole family of numerical methods that can attain
any order of accuracy, namely the Taylor methods. For these methods however,
we need to know how to determine higher order derivatives of the solution of a
differential equation at a point, and this is the topic of the current section.
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We consider the standard equation

x ′ = f (t , x), x(a) = x0. (13.20)

The initial condition explicitly determines a point on the solution, namely the
point given by x(a) = x0, and we want to compute the derivatives x ′(a), x ′′(a),
x ′′′(a) and so on. It is easy to determine the derivative of the solution at x = a
since

x ′(a) = f
(
a, x(a)

)= f (a, x0).

To determine higher derivatives, we simply differentiate the differential equa-
tion. This is best illustrated by an example.

Example 13.20. Suppose the equation is x ′ = t +x2, or more explicitly,

x ′(t ) = t +x(t )2, x(a) = x0. (13.21)

At x = a we know that x(a) = x0, while the derivative may be determined from
the differential equation,

x ′(a) = a +x2
0 .

If we differentiate the differential equation, the chain rule yields

x ′′(t ) = 1+2x(t )x ′(t ) = 1+2x(t )
(
t +x(t )2) (13.22)

where we have inserted the expression for x ′(t ) given by the differential equation
(13.21). This means that at any point t where x(t ) (the solution) and x ′(t ) (the
derivative of the solution) is known, we can also determine the second derivative
of the solution. In particular, at x = a, we have

x ′′(a) = 1+2x(a)x ′(a) = 1+2x0(a +x2
0).

Note that the relation (13.22) is valid for any value of t , but since the right-
hand side involves x(t ) and x ′(t ) these quantities must be known. The derivative
in turn only involves x(t ), so at a point where x(t ) is known, we can determine
both x ′(t ) and x ′′(t ).

What about higher derivatives? If we differentiate (13.22) once more, we find

x ′′′(t ) = 2x ′(t )x ′(t )+2x(t )x ′′(t ) = 2
(
x ′(t )2 +x(t )x ′′(t )

)
. (13.23)

The previous formulas express x ′(t ) and x ′′(t ) in terms of x(t ) and if we insert
this at x = a we obtain

x ′′′(a) = 2
(
x ′(a)2 +x(a)x ′′(a)

)= 2
((

a +x2
0

)2 +x0
(
1+2x0(a +x2

0)
))

.
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In other words, at any point t where the solution x(t ) is known, we can also de-
termine x ′(t ), x ′′(t ) and x ′′′(t ). And by differentiating (13.23) the required num-
ber of times, we see that we can in fact determine any derivative x(n)(t ) at a point
where x(t ) is known.

It is important to realise the significance of example 13.20. Even though we
do not have a general formula for the solution x(t ) of the differential equation,
we can easily find explicit formulas for the derivatives of x at a single point where
the solution is known. One particular such point is the point where the initial
condition is given. The feasibility of doing this is of course that the derivatives
of the differential equation actually exist.

Lemma 13.21 (Determining derivatives). Let x ′ = f (t , x) be a differential
equation with initial condition x(a) = x0, and suppose that the derivatives of
f (t , x) of order p −1 exist at the point

(
a, x0). Then the pth derivative of the

solution x(t ) at x = a can be expressed in terms of a and x0, i.e.,

x(p)(a) = Fp (a, x0), (13.24)

where Fp is a function defined by f and its derivatives of order less than p.

Example 13.22. The function Fp that appears in Lemma 13.21 may seem a bit
mysterious, but if we go back to example 13.20, we see that it is in fact quite
straightforward. In this specific case we have

x ′ = F1(t , x) = f (t , x) = t +x2, (13.25)

x ′′ = F2(t , x) = 1+2xx ′ = 1+2t x +2x3, (13.26)

x ′′′ = F3(t , x) = 2(x ′2 +xx ′′) = 2
(
(t +x2)2 +x(1+2t x +2x3)

)
. (13.27)

This shows the explicit expressions for F1, F2 and F3. The expressions can usu-
ally be simplified by expressing x ′′ in terms of t , x and x ′, and by expressing x ′′′

in terms of t , x, x ′ and x ′′, as shown in the intermediate formulas in (13.25)–
(13.27).

It is quite straightforward to differentiate an explicit differential equation,
but it is also possible to differentiate the general equation x ′ = f (t , x). Using the
chain rule we find that

x ′′ = ft + fx f , (13.28)

and any derivative of x my be expressed in this general form.
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Lemma 13.21 tells us that at some point t where we know the solution x(t ),
we can also determine all derivatives of the solution, just as we did in exam-
ple 13.20. The obvious place where this can be exploited is at the initial condi-
tion. But this property also means that if in some way we have determined an
approximation x̂ to x(t ), we can compute approximations to all derivatives at t
as well.

Example 13.23. Consider again example 13.20 and let us imagine that we have
an approximation x̂ to the solution x(t ) at t . We can then successively compute
the approximations

x ′(t ) ≈ x̂ ′ = F1(t , x̂) = f (t , x̂) = x + x̂2,

x ′′(t ) ≈ x̂ ′′ = F2(t , x̂) = 1+2x̂ x̂ ′,

x ′′′(t ) ≈ x̂ ′′′ = F3(t , x̂) = 2(x̂ ′2 + x̂ x̂ ′′).

This corresponds to finding the exact derivatives of the solution curve that has
the value x̂ ′ at t . The same is of course be done for a general equation.

Exercises

1 Compute x′′(a) and x′′′(a) of the following differential equations at the given initial value.

a) x′ = x, x(0) = 1.

b) x′ = t , x(0) = 1.

c) x′ = t x − sin x, x(1) = 0.

d) x′ = t/x, x(1) = 1.

13.6 Taylor methods

In this section we are going to derive the family of numerical methods that is
usually referred to as Taylor methods. An important ingredient in these meth-
ods is the computation of derivatives of the solution at a single point which we
discussed in section 13.5. We give the idea behind the methods and derive the
resulting algorithms, but just state what the error is. We focus on the quadratic
case as this is the simplest, but the general principle is not much more difficult.

13.6.1 The quadratic Taylor method

The idea behind Taylor methods is to approximate the solution by a Taylor poly-
nomial of a suitable degree. In Euler’s method, which is the simplest Taylor
method, we used the approximation

x(t +h) ≈ x(t )+hx ′(t ).
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The quadratic Taylor method is based on the more accurate approximation

x(t +h) ≈ x(t )+hx ′(t )+ h2

2
x ′′(t ). (13.29)

To describe the algorithm, we need to specify how the numerical solution can
be advanced from a point (tk , xk ) to a new point (tk+1, xk+1) with tk+1 = tk +h.
The basic idea is to use (13.29) and compute xk+1 as

xk+1 = xk +hx ′
k +

h2

2
x ′′

k . (13.30)

The numbers xk , x ′
k and x ′′

k are approximations to the function value and deriva-
tives of the solution at t and are obtained via the recipe in lemma 13.21. An
example should make this clear.

Example 13.24. Let us consider the differential equation

x ′ = f (t , x) = F1(t , x) = t − 1

1+x
, x(0) = 1, (13.31)

which we want to solve on the interval [0,1]. To illustrate the method, we choose
a large step length h = 0.5 and attempt to find an approximate numerical solu-
tion at x = 0.5 and x = 1 using a quadratic Taylor method.

From (13.31) we obtain

x ′′(t ) = F2(t , x) = 1+ x ′(t )(
1+x(t )

)2 . (13.32)

To compute an approximation to x(h) we use the quadratic Taylor polynomial

x(h) ≈ x1 = x(0)+hx ′(0)+ h2

2
x ′′(0).

The differential equation (13.31) and (13.32) give us the values

x(0) = x0 = 1,

x ′(0) = x ′
0 = 0−1/2 =−1/2,

x ′′(0) = x ′′
0 = 1−1/8 = 7/8,

which leads to the approximation

x(h) ≈ x1 = x0 +hx ′
0 +

h2

2
x ′′

0 = 1− h

2
+ 7h2

16
= 0.859375.
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Figure 13.5. The plots show the result of solving a differential equation numerically with the quadratic Taylor
method. The plot in (a) show the first two steps for the equation x′ = t −1/(1+ x) with x(0) = 1 and h = 0.5,
while the plot in (b) show the first two steps for the equation x′ = cos(3t/2) − 1/(1 + x) with x(0) = 1 and
h = 0.5. The dots show the computed approximations, while the solid curves show the parabolas that are used
to compute the approximations. The exact solution is shown by the dashed curve in both cases.

To prepare for the next step we need to determine approximations to x ′(h)
and x ′′(h) as well. From the differential equation (13.31) and (13.32) we find

x ′(h) ≈ x ′
1 = F1(t1, x1) = t1 −1/(1+x1) =−0.037815126,

x ′′(h) ≈ x ′′
1 = F2(t1, x1) = 1+x ′

1/(1+x1)2 = 0.98906216,

rounded to eight digits. From this we can compute the approximation

x(1) = x(2h) ≈ x2 = x1 +hx ′
1 +

h2

2
x ′′

1 = 0.96410021.

The result is shown in figure 13.5a.

Figure 13.5 illustrates the first two steps of the quadratic Talor method for
two equations. The solid curve shows the two parabolas used to compute the
approximate solution points in both cases. In figure (a) it seems like the two
parabolas join together smoothly, but this is just a feature of the underlying dif-
ferential equation. The behaviour in (b), where the two parabolas meet at a
slight corner is more representative, although in this case, the first parabola is
almost a straight line. In practice, the solution between two approximate solu-
tion points will usually be approximated by a straight line, not a parabola.

Let us record the idea behind the quadratic Taylor method.
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Idea 13.25 (Quadratic Taylor method). The quadratic Taylor method ad-
vances the solution from a point (tk , xk ) to a point (tk+1, xk+1) by evaluating
the approximate Taylor polynomial

x(t ) ≈ xk + (t − tk )x ′
k +

(t − tk )2

2
x ′′

k

at x = tk+1. In other words, the new value xk+1 is given by

xk+1 = xk +hx ′
k +

h2

2
x ′′

k

where the values xk , x ′
k and x ′′

k are obtained as described in lemma 13.21 and
h = tk+1 − tk .

This idea is easily translated into a simple algorithm. At the beginning of
a new step, we know the previous approximation xk , but need to compute the
approximations to x ′

k and x ′′
k . Once these are known we can compute x ′

k+1 and
tk+1 before we proceed with the next step. Note that in addition to the func-
tion f (t , x) which defines the differential equation we also need the function F2

which defines the second derivative, as in lemma 13.21. This is usually deter-
mined by manual differentiation as in the example 13.24 above.

Algorithm 13.26 (Quadratic Taylor method). Let the differential equation
x ′ = f (t , x) be given together with the initial condition x(a) = x0, the solu-
tion interval [a,b] and the number of steps n, and let the function F2 be such
that x ′′(t ) = F2

(
t , x(t )

)
. The quadratic Taylor method is given by the algorithm

h = (b −a)/n;
t0 = a;
for k = 0, 1, . . . , n −1

x ′
k = f (tk , xk );

x ′′
k = F2(tk , xk );

xk+1 = xk +hx ′
k +h2x ′′

k /2;
tk+1 = a + (k +1)h;

After these steps the value xk will be an approximation to the solution x(tk ) of
the differential equation, for each k = 0, 1, . . . , n.

13.6.2 Taylor methods of higher degree

The quadratic Taylor method is easily generalised to higher degrees by including
more terms in the Taylor polynomial. The Taylor method of degree p uses the
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formula

xk+1 = xk +hx ′
k +

h2

2
x ′′

k +·· ·+ hp−1

(p −1)!
x(p−1)

k + hp

p !
x(p)

k (13.33)

to advance the solution from the point (tk , xk ) to (tk+1, xk+1). Just like for the
quadratic method, the main challenge is the determination of the derivatives,
whose complexity may increase quickly with the degree. It is possible to make
use of software for symbolic computation to produce the derivatives, but it is
much more common to use a numerical method that mimics the behaviour of
the Taylor methods by evaluating f (t , x) at intermediate steps instead of com-
puting higher order derivatives, like the Runge-Kutta methods in section 13.7.3.

13.6.3 Error in Taylor methods

Euler’s method is the simplest of the Taylor methods, and the error analysis for
Euler’s method can be generalised to Taylor methods of general degree. The
principle is the same, but the details become more elaborate, so we do not give
these details here. However, it is easy to describe the general results.

Our main concern when it comes to the error is its order, i.e., what is the
power of h in the error estimate. A Taylor method of degree p advances the
solution from one step to the next with (13.33). The error in this approximation
is clearly proportional to hp+1 so the local error must be O(hp+1). But when the
local error terms are accumulated into the global error, the exponent is reduced
from p +1 to p, so the global error turns out to be proportional to hp .

Theorem 13.27. The Taylor method of degree p is of order p, i.e., the global
error is proportional to hp .

Exercises

1 Compute numerical solutions to x(1) for the equations below using two steps with Euler’s
method, the quadratic Taylor method and the quartic Taylor method. For comparison the
correct solution to 14 decimal digits is given in each case.

a) x′ = t 5 +4, x(0) = 1,
x(1) = 31/6 ≈ 5.166666666667.

b) x′ = x + t , x(0) = 1,
x(1) ≈ 3.4365636569181.

c) x′ = x + t 3 −3(t 2 +1)− sin t +cos t , x(0) = 7,
x(1) ≈ 13.714598298644.
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2 We are given the differential equation

x′ = e−t 2
, x(0) = 0.

Compute an estimate of x(0.5) by taking one step with each of the methods below, and
find an upper bound on the absolute error in each case.

a) Euler’s method.

b) The quadratic Taylor method.

c) The cubic Taylor method.

3 In this exercise we are going to derive the quartic (degree four) Taylor method and use it
to solve the equation for radioactive decay in exercise 4.

a) Derive the quartic Taylor method.

b) Use the quartic Taylor method to find the concentration of RN-222 in the 300 atoms
per mL sample after 6 days using 3 time steps and compare your results with those
produced by the quadratic Taylor method in exercise 5. How much has the solution
improved (in terms of absolute and relative errors)?

c) How many time steps would you have to use in the two Taylor methods to achive a
relative error smaller than 10−5?

d) What order would the Taylor order have to be to make sure that the relative error is
smaller than 10−5 with only 3 steps?

4 In this exercise we are going to solve the differential equation

x′ = f (t , x) = t 2 +x3 −x, x(0) = 1 (13.34)

numerically with the quadratic Taylor method.

a) Find a formula for x′′(t ) by differentiating equation 13.34.

b) Use the quadratic Taylor method and your result from a) to find an approximation
to x(1) using 1, 2 and, 5 steps. .

c) Write a computer program that implements the quadratic Taylor method and uses
it to find an approximation of x(1) with 10, 100 and 1000 steps.

5 In this exercise we are going to derive the cubic Taylor method and use it for solving equa-
tion (13.34) in exercise 4.

a) Derive a general algorithm for the cubic Taylor method.

b) Find a formula for x′′′(t ) by differentiating equation 13.34, and find an approxima-
tion to x(1) using 1 time step with the cubic Taylor method. Repeat using 2 time
steps.

c) How do the results from the cubic Taylor method compare with the results from the
quadratic Taylor method obtained in exercise 4?

d) Implement the cubic Taylor method in a program and compute an approximation
to x(2) with 10, 100 and 1000 steps.
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13.7 Midpoint Euler and other Runge-Kutta methods

The big advantage of the Taylor methods is that they can attain any approxi-
mation order, see theorem 13.27. Their disadvantage is that they require sym-
bolic differentiation of the differential equation (except for Euler’s method). In
this section we are going to develop some methods of higher order than Euler’s
method that do not require differentiation of the differential equation. Instead
they advance from (tk , xk ) to (tk+1, xk+1) by evaluating f (t , x) at intermediate
points in the interval [tk , tk+1].

13.7.1 Euler’s midpoint method

The first method we consider is a simple improvement of Euler’s method. If we
look at the plots in figure 13.3, we notice how the tangent is a good approxima-
tion to a solution curve at the initial condition, but the quality of the approxima-
tion deteriorates as we move to the right. One way to improve on Euler’s method
is therefore to estimate the slope of each line segment better. In Euler’s midpoint
method this is done via a two-step procedure which aims to estimate the slope
at the midpoint between the two solution points. In proceeding from (tk , xk ) to
(tk+1, xk+1) we would like to use the tangent to the solution curve at the mid-
point tk +h/2. But since we do not know the value of the solution curve at this
point, we first compute an approximation xk+1/2 to the solution at tk +h/2 using
the traditional Euler’s method. Once we have this approximation, we can deter-
mine the slope of the solution curve that passes through the point and use this
as the slope for a straight line that we follow from tk to tk+1 to determine the
new approximation xk+1. This idea is illustrated in figure 13.6.

Idea 13.28 (Euler’s midpoint method). In Euler’s midpoint method the solu-
tion is advanced from (tk , xk ) to (tk +h, xk+1) in two steps: First an approxi-
mation to the solution is computed at the midpoint tk +h/2 by using Euler’s
method with step length h/2,

xk+1/2 = xk +
h

2
f (tk , xk ).

Then the solution is advanced to tk+1 by following the straight line from
(tk , xk ) with slope given by f (tk +h/2, xk+1/2),

xk+1 = xk +h f (tk +h/2, xk+1/2). (13.35)

Once the basic idea is clear it is straightforward to translate this into a com-
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Figure 13.6. The figure illustrates the first step of the midpoint Euler method, starting at x = 0.2 and with
step length h = 0.2. We start by following the tangent at the starting point (x = 0.2) to the midpoint (x =
0.3). Here we determine the slope of the solution curve that passes through this point and use this as the
slope for a line through the starting point. We then follow this line to the next t-value (x = 0.4) to determine
the first approximate solution point. The solid curve is the correct solution and the open circle shows the
approximation produced by Euler’s method.

plete algorithm for computing an approximate solution to the differential equa-
tion.

Algorithm 13.29 (Euler’s midpoint method). Let the differential equation x ′ =
f (t , x) be given together with the initial condition x(a) = x0, the solution in-
terval [a,b] and the number of steps n. Euler’s midpoint method is given by

h = (b −a)/n;
t0 = a;
for k = 0, 1, . . . , n −1

xk+1/2 = xk +h f (tk , xk )/2;
xk+1 = xk +h f (tk +h/2, xk+1/2);
tk+1 = a + (k +1)h;

After these steps the value xk will be an approximation to the solution x(tk ) of
the differential equation at tk , for each k = 0, 1, . . . , n.

As an alternative viewpoint, let us recall the two approximations for numer-
ical differentiation given by

x ′(t ) ≈ x(t +h)−x(t )

h
,

x ′(t +h/2) ≈ x(t +h)−x(t )

h
.

As we saw above, the first one is the basis for Euler’s method, but we know from
our study of numerical differentiation that the second one is more accurate. If
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Figure 13.7. Comparison of Euler’s method and Euler’s midpoint method for the differential equation x′ =
cos(6t )/(1+ t +x2) with initial condition x(0) = 1 with step length h = 0.1. The solid curve is the exact solution
and the two approximate solutions are dashed. The dotted curve in the middle is the approximation pro-
duced by Euler’s method with step length h = 0.05. The approximation produced by Euler’s midpoint method
appears almost identical to the exact solution.

we solve for x(t +h) we find

x(t +h) ≈ x(t )+hx ′(t +h/2)

and this relation is the basis for Euler’s midpoint method.
In general Euler’s midpoint method is more accurate than Euler’s method

since it is based on a better approximation of the first derivative, see figure 13.7
for an example. However, this extra accuracy comes at a cost: the midpoint
method requires two evaluations of f (t , x) per iteration instead of just one for
the regular method. In many cases this is insignificant, although there may be
situations where f is extremely complicated and expensive to evaluate, or the
added evaluation may just not be feasible. But even then it is generally better to
use Euler’s midpoint method with a double step length, see figure 13.7.

13.7.2 The error

The error in Euler’s midpoint method can be analysed with the help of Taylor
expansions. In this case, we first do a Taylor expansion with respect to t , and
then another Taylor expansion with respect to x. The analysis shows that the
extra evaluation of f at the midpoint improves the error estimate from O(h2)
(for Euler’s method) to O(h3), i.e., the same as the error for the quadratic Taylor
method. As for the Taylor methods, the global error is one order lower.

Theorem 13.30. Euler’s midpoint method is of order 2, i.e., the global error is
proportional to h2.
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13.7.3 Runge-Kutta methods

Runge-Kutta methods are generalisations of the midpoint Euler method. The
methods use several evaluations of f between each step in a clever way which
leads to higher accuracy.

In the simplest Runge-Kutta methods, the new value xk+1 is computed from
xk with the formula

xk+1 = xk +h
(
λ1 f (tk , xk )+λ2 f (tk + r1h, xk + r2h f (tk , xk )

)
, (13.36)

where λ1, λ2, r1, and r2 are constants to be determined. The idea is to choose
the constants in such a way that the relation (13.36) mimics a Taylor method of
the highest possible order. It turns out that the first three terms in the Taylor
expansion can be matched. This leaves one parameter free (we choose this to
be λ=λ2), and determines the other three in terms of λ,

λ1 = 1−λ, λ2 =λ, r1 = r2 = 1

2λ
.

This determines a whole family of second order accurate methods.

Theorem 13.31 (Second order Runge-Kutta methods). Let the differential
equation x ′ = f (t , x) with initial condition x(a) = x0 be given. Then the nu-
merical method which advances from (tk , xk ) to (tk+1, xk+1 according to the
formula

xk+1 = xk +h

(
(1−λ) f (tk , xk )+λ f

(
tk +

h

2λ
, xk +

h f (tk , xk )

2λ

))
, (13.37)

is 2nd order accurate for any nonzero value of the parameter λ, provided f
and its derivatives up to order two are continuous and bounded for t ∈ [a,b]
and x ∈R.

The strategy of the proof of theorem 13.31 is similar to the error analysis for
Euler’s method, but quite technical.

Note that Euler’s midpoint method corresponds to the particular second or-
der Runge-Kutta method with λ = 1. Another commonly used special case is
λ= 1/2. This results in the iteration formula

xk+1 = xk +
h

2

(
f (tk , xk )+ f

(
(tk , xk +h(tk , xk )

))
,

which is often referred to as Heun’s method or the improved Euler’s method.
Note also that the original Euler’s method may be considered as the special case
λ= 0, but then the accuracy drops to first order.
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It is possible to devise methods that reproduce higher degree polynomials
at the cost of more intermediate evaluations of f . The derivation is analogous
to the procedure used for the second order Runge-Kutta method, but more in-
volved because the degree of the Taylor polynomials are higher. One member of
the family of fourth order methods is particularly popular.

Theorem 13.32 (Fourth order Runge-Kutta method). Suppose the differential
equation x ′ = f (t , x) with initial condition x(a) = x0 is given. The numerical
method given by the formulas

k0 = f (tk , xk ),

k1 = f (tk +h/2, xk +hk0/2),

k2 = f (tk +h/2, xk +hk1/2),

k3 = f (tk +h, xk +hk2),

xk+1 = xk +
h

6
(k0 +2k1 +2k2 +k3),


k = 0, 1, . . . , n

is 4th order accurate provided the derivatives of f up to order four are contin-
uous and bounded for t ∈ [a,b] and x ∈R.

It can be shown that Runge-Kutta methods which use p evaluations pr. step
are pth order accurate for p = 1, 2, 3, and 4. However, it turns out that 6 evalua-
tions per step are necessary to get a method of order 5. This is one of the reasons
for the popularity of the fourth order Runge-Kutta methods — they give the most
orders of accuracy per evaluation.

Exercises

1 Consider the first order differential equation

x′ = x, x(0) = 1.

a) Estimate x(1) by using one step with Euler’s method.

b) Estimate x(1) by using one step with the quadratic Taylor method.

c) Estimate x(1) by using one step with Euler’s midpoint method.

d) Estimate x(1) by using one step with the Runge Kutta fourth order method.

e) Estimate x(1) by using two steps with the Runge Kutta fourth order method.

f ) Optional: Write a computer program that implements one of the above mentioned
methods and use it to estimate the value of y(1) with 10, 100, 1000 and 10000 steps?

g) Do the estimates seem to converge?

336



h) Solve the equation analytically and explain your numerical results.

2 In this problem we are going to solve the equation

x′ = f (t , x) =−x sin t + sin t , x(0) = 2+e,

numerically on the interval [0,2π].

a) Use Euler’s method with 1, 2, 5, and 10 steps and plot the results. How does the
solution evolve with the number of steps?

b) Use Euler’s mid-point method with 1 and 5 steps and plot the results.

c) Compare the results from Euler’s mid-point method with those form Euler’s method
including the number of evaluations of f in each case. Which method seems to be
best?

3 When investigating the stability of a numerical method it is common to apply the method
to the model equation

x′ =−λx, x(0) = 1

and check for which values of the step length h the solution blows up.

a) Apply Euler’s method to the model equation and determine the range of h-values
that for which the solution remains bounded.

b) Repeat (a) for Euler’s midpoint method.

c) Repeat (a) for the second order Taylor method.

d) Repeat (a) for the fourth order Runge-Kutte method.

4 Rn-222 is a common radioactive isotope. It decays to 218-Po through α-decay with a half-
life of 3.82 days. The average concentration is about 150 atoms per mL of air. Radon em-
anates naturally from the ground, and so is typically more abundant in cellars than in a
sixth floor apartment. Certain rocks like granite emanates much more radon than other
substances.

In this exercise we assume that we have collected air samples from different places, and
these samples have been placed in special containers so that no new Rn-222 (or any other
element) may enter the sample after the sampling has been completed. We now want to
measure the Rn-222 abundance as a function of time, f (t ).

a) The abundance x(t ) of Rn-222 is governed the differential equation x′ = λx. Solve
the differential equation analytically and determineλ from the half-life given above.

b) Make a plot of the solution for the first 10 days for the initial conditions x(0) = 100,
150, 200 and 300 atoms per mL.

c) The different initial conditions give rise to a family of functions. Do any of the func-
tions cross each other? Can you find a reason why they do/do not?

d) The four initial conditions correspond to four different air samples. Two of them
were taken from two different cellars, one was taken from an upstairs bedroom,
and the fourth is an average control sample. Which is which?

5 In this problem we are going to use Euler’s method to solve the differential equation you
found in exercise 4 with the inital condition x(0) = 300 atoms per mL sample over a time
period from 0 to 6 days.
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a) Use 3 time steps and make a plot where the points (ti , xi ) for each time step are
marked. What is the relative error at each point? (Compare with the exact solution.)

b) For each point computed by Euler’s method, there is an exact solution curve that
passes through the point. Determine these solutions and draw them in the plot you
made in (a).

c) Use Euler’s midpoint method with 3 time steps to find the concentration of Rn-222
in the 300 atoms per mL sample after 6 days. Compare with the exact result, and
your result from exercise 5. What are the relative errors at the computed points?

d) Repeat (a), but use the quadratic Taylor method instead.

13.8 Systems of differential equations

So far we have focused on how to solve a single first order differential equa-
tion. In practice two or more such equations, coupled together, are necessary
to model a problem, and sometimes even equations of higher order. In this sec-
tion we are going to see how the methods we have developed above can easily be
adapted to deal with both systems of equations and equations of higher order.

13.8.1 Vector notation and existence of solution

Many practical problems involve not one, but two or more differential equa-
tions. For example many processes evolve in three dimensional space, with sep-
arate differential equations in each space dimension.

Example 13.33. At the beginning of this chapter we saw that a vertically falling
object subject to gravitation and friction can be modelled by the differential
equation

v ′ = g − c

m
v2, (13.38)

where v = v(t ) is the speed at time t . How can an object that also has a hori-
zontal speed be modelled? A classical example is that of throwing a ball. In the
vertical direction, equation (13.38) is still valid, but since the y-axis points up-
wards, we change signs on the right-hand side and label the speed by a subscript
2 to indicate that this is movement along the y- (the second) axis,

v ′
2 =

c

m
v2

2 − g .

In the x-direction a similar relation holds, except there is no gravity. If we as-
sume that the positive x-axis is in the direction of the movement we therefore
have

v ′
1 =− c

m
v2

1 .
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In total we have

v ′
1 =− c

m
v2

1 , v1(0) = v0x , (13.39)

v ′
2 =

c

m
v2

2 − g , v2(0) = v0y , (13.40)

where v0x is the initial speed of the object in the x-direction and v0y is the initial
speed of the object in the y-direction. If we introduce the vectors v = (v1, v2)
and f = ( f1, f2) where

f1(t , v ) = f1(t , v1, v2) =− c

m
v2

1 ,

f2(t , v ) = f2(t , v1, v2) = c

m
v2

2 − g ,

and the initial vector v 0 = (v0x , v0y ), the equations (13.39)–(13.40) may be rewrit-
ten more compactly as

v ′ = f (t , v ), v (0) = v 0.

Apart from the vector symbols, this is exactly the same equation as we have stud-
ied throughout this chapter.

The equations in example 13.33 are quite specialised in that the time vari-
able does not appear on the right, and the two equations are independent of
each other. The next example is more general.

Example 13.34. Consider the three equations with initial conditions

x ′ = x y +cos z, x(0) = x0, (13.41)

y ′ = 2− t 2 + z2 y, y(0) = y0, (13.42)

z ′ = sin t −x + y, z(0) = z0. (13.43)

If we introduce the vectors x = (x, y, z), x0 = (x0, y0, z0), and the vector of func-
tions f (t , x) = (

f1(t , x), f2(t , x), f3(t , x)
)

defined by

x ′ = f1(t , x) = f1(t , x, y, z) = x y +cos z,

y ′ = f2(t , x) = f2(t , x, y, z) = 2− t 2 + z2 y,

z ′ = f3(t , x) = f3(t , x, y, z) = sin t −x + y,

we can write (13.41)–(13.43) simply as

x ′ = f (t , x), x(0) = x0.
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Examples 13.33–13.34 illustrate how vector notation may camouflage a sys-
tem of differential equations as a single equation. This is helpful since it makes
it quite obvious how the theory for scalar equations can be applied to systems of
equations. Let us first be precise about what we mean with a system of differen-
tial equations.

Definition 13.35. A system of M first order differential equations in M un-
knowns with corresponding initial conditions is given by a vector relation in
the form

x ′ = f (t , x), x(a) = x0. (13.44)

Here x = x(t ) = (
x1(t ), . . . , x M (t )

)
is a vector of M unknown scalar functions,

and f (t , x) : RM+1 → RM is a vector function of the M +1 variables t and x =
(x1, . . . , xM ), i.e.,

f (t , x) = (
f1(t , x), . . . , fM (t , x)

)
,

while x0 = (x1,0, . . . , xM ,0) is a vector in RM of initial values. The notation x ′

denotes the vector of derivatives of the components of x with respect to t ,

x ′ = x ′(t ) = (
x ′

1(t ), . . . , x ′
M (t )

)
.

It may be helpful to write out the vector equation (13.44) in detail,

x ′
1 = f1(t , x) = f1(t , x1, . . . , xM ), x1(0) = x1,0

...

x ′
M = fM (t , x) = fM (t , x1, . . . , xM ), xM (0) = xM ,0.

We see that both the examples above fit into this setting, with M = 2 for exam-
ple 13.33 and M = 3 for example 13.34.

Before we start considering numerical solutions of systems of differential
equations, we need to know that solutions exist.

Theorem 13.36. The system of equations

x ′ = f (t , x), x(a) = x0

has a solution near the initial value (a, x0) provided all the component func-
tions are reasonably well-behaved near this point.
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13.8.2 Numerical methods for systems of first order equations

There are very few analytic methods for solving systems of differential equa-
tions, so numerical methods are essential. It turns out that most of the meth-
ods for a single equation generalise to systems. A simple example illustrates the
general principle.

Example 13.37 (Euler’s method for a system). We consider the equations in ex-
ample 13.34,

x ′ = f (t , x), x(a) = x0,

where

f (t , x) = (
f1(t , x1, x2, x3), f2(t , x1, x2, x3), f3(t , x1, x2, x3)

)
= (x1x2 +cos x3,2− t 2 +x2

3 x2, sin t −x1 +x2).

Euler’s method is easily generalised to vector equations as

xk+1 = xk +h f (tk , xk ), k = 0, 1, . . . , n −1. (13.45)

If we write out the three components explicitly, this becomes

xk+1
1 = xk

1 +h f1(tk , xk
1 , xk

2 , xk
3 ) = xk

1 +h
(
xk

1 xk
2 +cos xk

3

)
,

xk+1
2 = xk

2 +h f2(tk , xk
1 , xk

2 , xk
3 ) = xk

2 +h
(
2− t 2

k + (xk
3 )2xk

2

)
,

xk+1
3 = xk

3 +h f3(tk , xk
1 , xk

2 , xk
3 ) = xk

3 +h
(
sin tk −xk

1 +xk
2

)
,

 (13.46)

for k = 0, 1, . . . , n − 1, with the starting values (a, x0
1 , x0

2 , x0
3) given by the initial

condition. Although they look rather complicated, these formulas can be pro-
grammed quite easily. The trick is to make use of the vector notation in (13.45),
since it nicely hides the details in (13.46).

Example 13.37 illustrates Euler’s method for a system of equations, and the
other methods we have discussed earlier in the chapter also generalise to sys-
tems of equations in a straightforward way.

Observation 13.38 (Generalisation to systems). Euler’s method, Euler’s mid-
point method, and the Runge-Kutta methods all generalise naturally to sys-
tems of differential equations.

For example the formula for advancing one time step with Euler’s midpoint
method becomes

xk+1 = xk +h f
(
tk +h/2, xk +h f (tk , xk )/2

)
,
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while the fourth order Runge-Kutta method becomes

k0 = f (tk , xk ),

k1 = f (tk +h/2, xk +hk0/2),

k2 = f (tk +h/2, xk +hk1/2),

k3 = f (tk +h, xk +hk2),

xk+1 = xk +
h

6
(k0 +2k1 +2k2 +k3).

Systems of differential equations is an example where the general mathe-
matical formulation is simpler than most concrete examples. In fact, if each
component of these formulas are written out explicitly, the details quickly be-
come overwhelming, so it is important to stick with the vector notation. This
also applies to implementation in a program: It is wise to use the vector formal-
ism and mimic the mathematical formulation as closely as possible.

In principle the Taylor methods also generalise to systems of equations, but
because of the need for manual differentiation of each component equation, the
details swell up even more than for the other methods.

13.8.3 Higher order equations as systems of first order equations

Many practical modelling problems lead to systems of differential equations,
and sometimes higher order equations are necessary. It turns out that these can
be reduced to systems of first order equations as well.

Example 13.39. Consider the second order equation

x ′′ = t 2 + sin(x +x ′), x(0) = 1, x ′(0) = 0. (13.47)

This equation is nonlinear and cannot be solved with any of the standard ana-
lytical methods. If we introduce the new function x2 = x ′, we notice that x ′

2 = x ′′,
so the differential equation can be written

x ′
2 = t 2 + sin(x +x2), x(0) = 1, x2(0) = 0.

If we also rename x as x1 = x, we see that the second order equation in (13.47) can
be written as the system

x ′
1 = x2, x1(0) = 1, (13.48)

x ′
2 = t 2 + sin(x1 +x2), x2(0) = 0. (13.49)

In other words, equation (13.47) can be written as the system (13.48)–(13.49).
We also see that this system can be expressed as the single equation in (13.47),
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so the two equations (13.48)–(13.49) and the single equation (13.47) are in fact
equivalent in the sense that a solution of one automatically gives a solution of
the other.

The technique used in example 13.39 works in general—a pth order equa-
tion can be rewritten as a system of p first order equations.

Theorem 13.40. The pth order differential equation

x(p) = g
(
t , x, x ′, . . . , x(p−1)) (13.50)

with initial conditions

x(a) = d0, x ′(a) = d1, . . . , x(p−2)(0) = dp−2, x(p−1)(0) = dp−1 (13.51)

is equivalent to the system of p equations in the p unknown functions x1, x2,
. . . , xp ,

x ′
1 = x2, x1(a) = d0,

x ′
2 = x3, x2(a) = d1,

...

x ′
p−1 = xp , xp−1(a) = dp−2,

x ′
p = g (t , x1, x2, . . . , xp−1), xp (a) = dp−1,

(13.52)

in the sense that the component solution x1(t ) of (13.52) agrees with the so-
lution x(t ) of (13.50)–(13.51).

Proof. The idea of the proof is just like in example 13.39. From the first p − 1
relations in (13.52) we see that

x2 = x ′
1, x3 = x ′

2 = x ′′
1 , . . . , xp = x ′

p−1 = x ′′
p−2 = ·· · = x(p−1)

1 .

If we insert this in the last equation in (13.52) we obtain a pth order equation for
x1 that is equivalent to (13.50). In addition, the initial values in (13.52) translate
into initial values for x1 that are equivalent to (13.51), so x1 must solve (13.50)–
(13.51). Conversely, if x is a solution of (13.50)–(13.51), it is easy to see that the
functions

x1 = x, x2 = x ′, x3 = x ′′, . . . , xp−1 = x(p−2), xp = x(p−1)

solve the system (13.52).
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Theorem 13.40 shows that if we can solve systems of differential equations
we can also solve single equations of order higher than one. It turns out that we
even handle systems of higher order equations in this way.

Example 13.41 (System of higher order equations). Consider the system of dif-
ferential equations given by

x ′′ = t +x ′+ y ′, x(0) = 1, x ′(0) = 2,

y ′′′ = x ′y ′′+x, y(0) =−1, y ′(0) = 1, y ′′(0) = 2.

We introduce the new functions x1 = x, x2 = x ′, y1 = y , y2 = y ′, and y3 = y ′′. Then
the above system can be written as

x ′
1 = x2, x1(0) = 1,

x ′
2 = t +x2 + y2, x2(0) = 2,

y ′
1 = y2, y1(0) =−1,

y ′
2 = y3, y2(0) = 1,

y ′
3 = x2 y3 +x1, y3(0) = 2.

Example 13.41 illustrates how a system of higher order equations may be
expressed as a system of first order equations. Perhaps not surprisingly, a gen-
eral system of higher order equations can be converted to a system of first order
equations. The main complication is in fact notation. We assume that we have
r equations involving r unknown functions x1, . . . , xr . Equation no. i expresses
some derivative of xi on the left in terms of derivatives of itself and the other
functions,

x(pi )
i = gi

(
t , x1, x ′

1, . . . , x(p1−1)
1 , . . . , xr , x ′

r , . . . , x(pr −1)
r

)
, i = 1, . . . , r . (13.53)

In other words, the integer pi denotes the derivative of xi on the left in equation
no. i , and it is assumed that in the other equations the highest derivative of xi is
pi −1 (this is not an essential restriction, see exercise 2).

To write the system (13.53) as a system of first order equations, we just follow
the same strategy as in example 13.41: For each variable xi , we introduce the pi

variables

xi ,1 = xi , xi ,2 = x ′
i , xi ,3 = x ′′

i , . . . , xi ,pi = x(pi−1)
i .
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Equation no. i in (13.53) can then be replaced by the pi first order equations

x ′
i ,1 = xi ,2,

x ′
i ,2 = xi ,3,

...

x ′
i ,pi−1 = xi ,pi ,

x ′
i ,pi

= gi
(
t , x1,1, . . . , x1,p1 , . . . , xr,1, . . . , xr,pr

)
for i = 1, . . . , r . We emphasise that the general procedure is exactly the same as
the one used in example 13.41, it is just that the notation becomes rather heavy
in the general case.

We record the conclusion in a non-technical theorem.

Theorem 13.42. A system of differential equations can always be written as a
system of first order equations.

13.9 Final comments

Our emphasis in this chapter has been to derive some of the best-known meth-
ods for numerical solution of first order ordinary differential equations, includ-
ing a basic error analysis, and treatment of systems of equations. There are a
number of additional issues we have not touched upon.

There are numerous other numerical methods in addition to the ones we
have discussed here. The universal method that is optimal for all kinds of appli-
cations does not exist; you should choose the method that works best for your
particular kind of application.

We have assumed that the step size h remains fixed during the solution pro-
cess. This is convenient for introducing the methods, but usually too simple
for solving realistic problems. A good method will use a small step size in areas
where the solution changes quickly and longer step sizes in areas where the so-
lution varies more slowly. A major challenge is therefore to detect, during the
computations, how quickly the solution varies, or equivalently, how large the
error is locally. If the error is large in an area, it means that the local step size
needs to be reduced; it may even mean that another numerical method should
be used in the area in question. This kind of monitoring of the error, coupled
with local control of the step size and choice of method, is an important and
challenging characteristic of modern software for solving differential equations.
Methods like these are called adaptive methods.
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We have provided a basic error analysis of the Euler’s method, and this kind
of analysis can be extended to the other methods without much change. The
analysis accounts for the error committed by making use of certain mathemat-
ical approximations. In most cases this kind of error analysis is adequate, but
in certain situations it may also be necessary to pay attention to the round-off
error.

Exercises

1 Write the following systems of differential equations as systems of first order equations.
The unknowns x, y , and z are assumed to be functions of t .

a)
y ′′ = y2 −x +e t ,

x′′ = y −x2 −e t .

b)
x′′ = 2y −4t 2x,

y ′′ =−2x −2t x′.

c)
x′′ = y ′′x + (y ′)2x,

y ′′ =−y.

d)

x′′′ = y ′′x2 −3(y ′)2x,

y ′′ = t +x′.

2 Write the system

x′′ = t +x + y ′,
y ′′′ = x′′′+ y ′′,

as a system of 5 first order equations. Note that this system is not on the form (13.53) since
x′′′ appears on the right in the second equation. Hint: You may need to differentiate one
of the equations.

3 Write the following differential equations as systems of first order equations. The un-
knowns x, y , and z are assumed to be functions of t .

a) x′′+ t 2x′+3x = 0.

b) mx′′ =−ks x −kd x′.

c) y ′′(t ) = 2(e2t − y2)1/2.

d) 2x′′−5x′+x = 0 with initial condi-
tions x(3) = 6, x′(3) =−1.

4 Solve the system

x′′ = 2y − sin
(
4t 2x), x(0) = 1, x′(0) = 2,

y ′′ =−2x − 1

2t 2(x′)2 +3
, y(0) = 1, y ′(0) = 0,

numerically on the interval [0,2]. Try both Euler’s method and Euler’s mid-point method
with two time steps and plot the results.
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5 This exercise is based on example 13.33 in which we modelled the movement of a ball
thrown through air with the equations

v ′
1 =− c

m
v2

1 , v1(0) = v0x ,

v ′
2 = c

m
v2

2 − g , v2(0) = v0y ,

We now consider the launch of a rocket. In this case, the constants g and c will become
complicated functions of the height y , and possibly also of x. We make the (rather unreal-
istic) assumption that

c

m
= c0 −ay

where c0 is the air resistance constant at the surface of the earth and y is the height above
the earth given in kilometers. We will also use the fact that gravity varies with the height
according to the formula

g = g0

(y + r )2
,

where g0 is the gravitational constant times the mass of the earth, and r is the radius of the
earth. Finally, we use the facts that x′ = v1 and y ′ = v2.

a) Find the second order differential equation for the vertical motion (make sure that
the positive direction is upwards).

b) Rewrite the differential equation for the horisontal motion as a second order differ-
ential equation that depends on x, x′, y and y ′.

c) Rewrite the coupled second order equations from (a) and (b) as a system of four first
order differential equations.

d) Optional: Use a numerical method to find a solution at t = 1 hour for the ini-
tial conditions x(0) = y(0) = 0, x′(0) = 200 km/h and y ′(0) = 300 km/h. Use a =
1.9∗10−4 Nh2

km3kg
, g0 = 3.98∗108 (km)2m

s2 and c0 = 0.19 Nh2

km2kg
. These units are not so

important, but mean that distances can be measured in km and speeds in km/h.

6 Radon-222 is actually an intermediate decay product of a decay chain from Uranium-238.
In this chain there are 16 subsequent decays which takes 238-U into a stable lead isotope
(206-Pb). In one part of this chain 214-Pb decays through β-decay to 214-Bi which then
decays through another β-decay to 214-Po. The two decays have the respective halflifes of
26.8 minutes and 19.7 minutes.

Suppose that we start with a certain amount of 214-Pb atoms and 214-Bi atoms, we want
to determine the amounts of 214-Pb and 214-Bi as functions of time.

a) Phrase the problem as a system of two coupled differential equations.

b) Solve the equations from (a) analytically.

c) Suppose that the inital amounts of lead and bismuth are 600 atoms and 10 atoms re-
spectively. Find the solutions for these initial conditions and plot the two functions
for the first 1.5 hours.

d) When is the amount of bismuth at its maximum?

e) Compute the number of lead and bismuth atoms after 1 hour with Euler’s method.
Choose the number of steps to use yourself.
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f ) Repeat (e), but use the fourth order Runge-Kutta method instead and the same
number of steps as in (e).

7 A block of mass m is attached to a horizontal spring. As long as the displacement x (mea-
sured in centimeters) from the equilibrium position of the spring is small, we can model
the force as a constant times this displacement, i.e. F =−kx, where k = 0.114 N/cm is the
spring constant. (This is Hooke’s law). We assume the motion of the spring to be along
the x-axis and the position of the centre of mass of the block at time t to be x(t ). We then
know that the acceleration is given by a(t ) = x′′(t ). Newton’s second law applied to the
spring now yields

mx′′(t ) =−kx(t ). (13.54)

Suppose that the block has mass m = 0.25kg and that the spring starts from rest in a posi-
tion 5.0cm from its equilibrium so x(0) = 5.0 cm and x′(0) = 0.0cm/s.

a) Rewrite this second order differential equation (13.54) as a system of two coupled
differential equations and solve the system analytically.

b) Use the second order Runge-Kutta method to solve the set of differential equations
in the domain t ∈ [0,1.5] seconds with 3 time steps, and plot the analytical and ap-
proximate numerical solutions together.

c) Did your numerical method and the number of steps suffice to give a good approx-
imation?

8 This is a continuation of exercise 7, and all the constants given in that problem will be
reused here. We now consider the case of a vertical spring and denote the position of the
block at time t by y(t ). This means that in addition to the spring force, gravity will also
influence the problem. If we take the positive y-direction to be up, the force of gravity will
be given by

Fg =−mg . (13.55)

Applying Newton’s second law we now obtain the differential equation

my ′′(t ) =−k y(t )−mg . (13.56)

The equilibrium position of the spring will now be slightly altered, but we assume that
y = 0 corresponds to the horizontal spring equilibrium position.

a) What is the new equilibrium position y0?

b) We let the spring start from rest 5.0cm above the new equilibrium, which means
that we have x(0) = 5.0cm+ y0, x′(0) = 0.0cm/s. Rewrite the second order differen-
tial equation as a system of two first order ones and solve the new set of equations
analytically.

c) Choose a numerical method for solving the equations in the interval t ∈ [0,1.5] sec-
onds. Choose a method and the number of time steps that you think should make
the results good enough.

d) Plot your new analytical and numerical solutions and compare with the graph from
exercise 7. What are the differences? Did your choice of numerical method work
better than the second order Runge-Kutta method in exercise 7?
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