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Numerical Solution of Differential Equations 

A differential equation (or "DE") contains derivatives or differentials. In a differential equation 

the unknown is a function, and the differential equation relates the function itself to its 

derivative(s). Our task is to solve the differential equation (i.e. find the unknown function). 

Why numerical solutions? 

For many of the differential equations we need to solve in the real world, there is no "nice" 

algebraic solution. That is, we can't solve it using the techniques we have met before in calcus 

(separation of variables, integrable combinations, or using an integrating factor), or other similar 

means. 

As a result, we need to resort to using numerical methods for solving such DEs. The concept is 

similar to the numerical approaches we saw in an earlier integration chapter (Trapezoidal Rule 

and Simpson's Rule ). 

Ordinary differential equations (Initial Value Problems) 

In this section first order single ordinary differential equations will be considered. 

The General Initial Value Problem 

We are trying to solve problems that are presented in the following way: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

and y(a) (the initial value) is known. (y at x = a is known) 

where 𝑓(𝑥, 𝑦) is some function of the variables  x, and y that are involved in the problem. 

Examples of Initial Value Problems 

1. 
𝑑𝑦

𝑑𝑥
= 6 − 2

𝑦

𝑥
;   𝑦(3) = 1 

2. 
𝑑𝑦

𝑑𝑥
=

𝑦 𝑙𝑛𝑦

𝑥
;   𝑦(2) = 𝑒 

3. 
𝑑𝑦

𝑑𝑥
=

50𝑥2−10𝑦

3
;   𝑦(0) = 0 

http://www.intmath.com/differential-equations/2-separation-variables.php
http://www.intmath.com/differential-equations/3-integrable-combinations.php
http://www.intmath.com/differential-equations/4-linear-des-order-1.php
http://www.intmath.com/integration/5-trapezoidal-rule.php
http://www.intmath.com/integration/6-simpsons-rule.php
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Note that the right hand side is a function of x and y. Let's now see how to solve such problems 

using a numerical approach. 

Euler's Method 

Euler's Method assumes our solution is written in the form of a Taylor's Series. 

That is, we'll have a function of the form: 

𝒚(𝒙 + 𝒉) ≈ 𝒚(𝒙) + 𝒉𝒚′(𝒙) +
𝒉𝟐𝒚′′(𝒙)

𝟐!
+

𝒉𝟑𝒚′′′(𝒙)

𝟑!
+ ⋯ 

This gives us a reasonably good approximation if we take plenty of terms, and if the value of h is 

reasonably small. 

For Euler's Method, we just take the first 2 terms only. 

𝑦(𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ𝑦′(𝑥) 

The last term is just h times 
𝑑𝑦

𝑑𝑥
 expression, so we can write Euler's Method as follows: 

𝑦(𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ 𝑓(𝑥, 𝑦) 

How do we use this formula? 

We start with some known value for y, which we could call 𝑦𝑜. It has this value when 𝑥 = 𝑥𝑜. 

(We make use of the initial value (𝑥𝑜 , 𝑦𝑜)) 

The result of using this formula is the value for y, one h step to the right of the current value. 

Let's call it 𝑦1 . So we have: 

𝑦1 ≈ 𝑦(0) + ℎ 𝑓(𝑥0, 𝑦0) 

Where 

𝑦1 is the next estimated solution value; 

𝑦0 is the current value; 

ℎ is the interval between steps; and 

http://www.intmath.com/series-expansion/1-taylor-series.php
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𝑓(𝑥0, 𝑦0) is the value of the derivative at the starting point (𝑥0, 𝑦0). 

Next value: To get the next value 𝑦2, we would use the value we just found for 𝑦1 as follows: 

𝑦2 ≈ 𝑦(1) + ℎ 𝑓(𝑥1, 𝑦1) 

Where 

𝑥1 =  𝑥𝑜 + ℎ 

𝑓(𝑥1, 𝑦1) is the value of the derivative at the current (𝑥1, 𝑦1) point. 

We continue this process for as many steps as required. 

What's going on? 

The right hand side of the formula above means, "start at the known y value, then move one step 

h units to the right in the direction of the slope at that point, which is  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

We will arrive at a good approximation to the curve's y-value at that new point." 

We'll do this for each of the sub-points, h apart, from some starting value x = a to some finishing 

value, x=b, as shown in the graph below. 
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Let's see how it works with an example. 

Example: Euler's Method 

Solve the following differential equation: 

𝑑𝑦

𝑑𝑥
=

𝑦 𝑙𝑛𝑦

𝑥
;   𝑦(2) = 𝑒 

Step 1 

We'll start at the point (xo, yo) = (2, e) and use step size of h=0.1 and proceed for 10 steps. That 

is, we'll approximate the solution from t=2 to t=3 for our differential equation. We'll finish with a 

set of points that represent the solution, numerically. 

We already know the first value, when xo = 2, which is yo = e (the initial value). 

We now calculate the value of the derivative at this initial point. (This tells us the direction to 

move.) 

𝑑𝑦

𝑑𝑥
= 𝑓(2, 𝑒) =

𝑒 𝑙𝑛𝑒

2
= 1.3591409 

This means the slope of the line from t =2 to t =2.1 is approximately 1.3591409. 

Step 2 

Now, for the second step, h = 0.1, the next point is x+h = 2+0.1 =2.1), we substitute what we 

know into Euler's Method formula, and we have: 

𝑦 (𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ 𝑓(𝑥, 𝑦) 

𝑦 (1) ≈ 𝑦(2.1) ≈ 𝑒 + 0.1 (
𝑒

2
) = 2.8541959 

This means the approximate value of the solution when x=2.1 is 2.8540959. 

Let's see what we've done on a graph. 
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We'll need the new slope at this point, so we'll know where to head next. 

𝑑𝑦

𝑑𝑥
= 𝑓(2.1,2.8541959) =

2.8541959 ln 2.8541959

2.1
= 1.4254536 

This means the slope of the approximation line from x=2.1 to  x =2.2 is 1.4254536. So it's a little 

bit steeper than the first slope we found. 

Step 3 

Now we are trying to find the solution value when x=2.2. We substitute our known values: 

𝑦 (𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ 𝑓(𝑥, 𝑦) 

𝑦 (2.2) ≈ 2.8541959 + 0.1(1.4254536) = 2.99664126 

With this new value, our graph is now: 
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We'll need the new slope at this point, so we'll know where to head next. 

𝑑𝑦

𝑑𝑥
= 𝑓(2.2,2.99664126) =

2.99664126 ln 2.99664126

2.2
= 1.49490457 

This means the slope of the approximation line from x = 2.3 is 1.49490456. So it's a little steeper 

than the first 2 slopes we found. 

Step 4 

Now we are trying to find the solution value when x=2.3. We substitute our known values: 

𝑦 (𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ 𝑓(𝑥, 𝑦) 

𝑦 (2.3) ≈ 2.99664126 + 0.1(1.49490457) = 3.1461317 

With this new value, our graph is now: 
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Subsequent Steps 

We present all the values up to x=3 in the following table. 

Of course, most of the time we'll use computers to find these approximations. I used a spreadsheet 

to obtain the following values. Don't use your calculator for these problems - it's very tedious and 

prone to error.  

x y dx /dy 

2.0 e = 2.7182818285 (e ln e)/2 = 1.3591409142 

2.1 e+0.1(e/2) = 2.8541959199 (2.8541959199 ln 2.8541959199)/2 = 1.4254536226 

2.2 2.9967412821 1.4949999323 

2.3 3.1462412754 1.5679341197 

2.4 3.3030346873 1.6444180873 

2.5 3.4674764961 1.7246216904 

2.6 3.6399386651 1.8087230858 

2.7 3.8208109737 1.8969091045 

2.8 4.0105018841 1.9893756448 

2.9 4.2094394486 2.08632809 

3.0 4.4180722576   
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(There's no final dy/dx value because we don't need it. We've found all the required y values.) 

Here is the graph of our estimated solution values from x=2 to x=3. 

 

Note: 

The problem with Euler's Method is that you have to use a small interval size to get a reasonably 

accurate result. That is, it's not very efficient. 

Runge-Kutta Methods 

The Runge-Kutta methods are a series of numerical methods for solving differential equations and 

systems of differential equations. 

The error in the Euler’s method is: 

𝐸 =
ℎ2𝑦′′(𝑥)

2!
+

ℎ3𝑦′′′(𝑥)

3!
+

ℎ4𝑦′′′(𝑥)

4!
+ ⋯ 
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If the term 
ℎ2𝑦′′(𝑥)

2!
  is included in the solution the method is second order RK method, if the term 

ℎ3𝑦′′′(𝑥)

3!
   the method is the third order RK method and if the term 

ℎ4𝑦′′′(𝑥)

4!
 the method is fourth 

order RK method. 

Second order RK method  

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary differential 

equation of the form 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦); 𝑦(0) =  𝑦𝑜 

Only first order ordinary differential equations can be solved by using the Runge-Kutta 2nd order 

method. In other sections, we will discuss how the Euler and Runge-Kutta methods are used to 

solve higher order ordinary differential equations or coupled (simultaneous) differential equations. 

Note: Euler’s method can be considered to be the Runge-Kutta 1st order method. 

Runge and Kutta did was write the 2nd order method as: 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) +
1

2
(𝑘1 + 𝑘2) 

𝑘1 = ℎ 𝑓(𝑥, 𝑦) 

𝑘2 = ℎ 𝑓(𝑥 + ℎ, 𝑦 + 𝑘1) 

Runge-Kutta Method of Order 3 

As usual in this work, the more terms we take, the better the solution. In practice, the Order 2 

solution is rarely used because it is not very accurate. 

A better result is given by the Order 3 method: 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) +
1

9
(2𝑘1 + 3𝑘2 + 4𝑘3) 
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𝑘1 = ℎ 𝑓(𝑥, 𝑦) 

𝑘2 = ℎ 𝑓(𝑥 +
ℎ

2
, 𝑦 +

𝑘1

2
) 

𝑘3 = ℎ 𝑓(𝑥 +
3ℎ

4
, 𝑦 +

3𝑘2

4
) 

The most commonly used Runge-Kutta formula in use is the Order 4 formula (RK4), as it gives 

the best trade-off between computational requirements and accuracy. 

Runge-Kutta Method of Order 4 Formula 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑘1 = ℎ 𝑓(𝑥, 𝑦) 

𝑘2 = ℎ 𝑓(𝑥 +
ℎ

2
, 𝑦 +

𝑘1

2
) 

𝑘3 = ℎ 𝑓(𝑥 +
ℎ

2
, 𝑦 +

𝑘2

2
) 

𝑘4 = ℎ 𝑓(𝑥 + ℎ, 𝑦 + 𝑘3) 

Example 

Use Runge-Kutta Method of Order 4 to solve the following, using a step size of h = 0.1 for 0 ≤
𝑥 ≤ 1 

𝑑𝑦

𝑑𝑥
=

5𝑥2 − 𝑦

𝑒𝑥+𝑦
; 𝑦(0) = 1 
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Solving the problem using spread sheet will give the following data: 

x y f(x,y) k1 f(x+h/2,y+k1/2) k2 f(x+h/2,y+k2/2) k3 f(x+h,y+k3) k4 

0 1 -0.36788 -0.03679 -0.345422394 -0.03454 -0.345034753 -0.034503 -0.31544049 -0.03154 

0.1 0.965596 -0.31544 -0.03154 -0.278770003 -0.02788 -0.278259299 -0.027826 -0.236479656 -0.02365 

0.2 0.93783 -0.23648 -0.02365 -0.189271734 -0.01893 -0.188825458 -0.018883 -0.138593193 -0.01386 

0.3 0.918975 -0.1386 -0.01386 -0.084793628 -0.00848 -0.084565823 -0.008457 -0.029804678 -0.00298 

0.4 0.910523 -0.02981 -0.00298 0.026581644 0.002658 0.026506806 0.0026507 0.081973255 0.008197 

0.5 0.913162 0.081977 0.008198 0.137235953 0.013724 0.136857301 0.0136857 0.189665443 0.018967 

0.6 0.926826 0.189674 0.018967 0.240742061 0.024074 0.240128138 0.0240128 0.287672331 0.028767 

0.7 0.950811 0.287686 0.028769 0.332382988 0.033238 0.331640987 0.0331641 0.372223842 0.037222 

0.8 0.983943 0.372241 0.037224 0.409332877 0.040933 0.408574432 0.0408574 0.441391068 0.044139 

0.9 1.024768 0.441411 0.044141 0.470511684 0.047051 0.469827563 0.0469828 0.494822386 0.049482 

1 1.071716 0.494844 0.049484 0.516223978 0.051622 0.51567242 0.0515672 0.533332307 0.053333 

 

The graph of the solution will be: 
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Solving systems of ODE-IVPS 

The following is a system of ODE-IVPs: 

𝑑𝑦1

𝑑𝑡
= 𝑓1(𝑦1, 𝑦2, … . . , 𝑦𝑛, 𝑡); 𝑦1(0) = 𝑦10

 

𝑑𝑦2

𝑑𝑡
= 𝑓2(𝑦1, 𝑦2, … . . , 𝑦𝑛, 𝑡); 𝑦2(0) = 𝑦20

 

𝑑𝑦𝑛

𝑑𝑡
= 𝑓𝑛(𝑦1, 𝑦2, … . . , 𝑦𝑛, 𝑡);  𝑦𝑛(0) = 𝑦𝑛0

 

The only difference between solving a single ODE-IVP and solving a system of them is that all 

variables and functions become vectors. This is illustrated in the following example. 

Example: Solving a system of ODE-IVPS 

Suppose the following chemical reactions take place in a continuous stirred tank reactor (CSTR): 

𝐴
𝑘1

𝑘2
𝐵

𝑘3

𝑘4
𝐶 

Where the rate constants are as follows: 

𝑘1 = 1𝑚𝑖𝑛−1, 𝑘2 = 0 𝑚𝑖𝑛−1, 𝑘3 = 2 𝑚𝑖𝑛−1, 𝑘4 = 3 𝑚𝑖𝑛−1 

The initial charge to the reactor is all A, so the initial conditions are (in mol/L) 

𝐶𝐴0
= 1, 𝐶𝑩0

= 0, 𝐶𝐶0
= 0 

An unsteady state mole balance on component leads to the following set of ODEs: 

𝑑𝐶𝐴

𝑑𝑡
= −𝑘1𝐶𝐴 + 𝑘2𝐶𝐵 

𝑑𝐶𝐵

𝑑𝑡
= 𝑘1𝐶𝐴 − 𝑘2𝐶𝐵 − 𝑘3𝐶𝐵 + 𝑘4𝐶𝐶 

𝑑𝐶𝐶

𝑑𝑡
= 𝑘3𝐶𝐵 − 𝑘4𝐶𝐶 

Solve the system of ODEs using the Euler’s method for time only up to 0.13 min using h = 0.01 

min. 
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Solution: 

The following spreadsheet displays a solution to this system using the Euler’s method for time 

only up to 0.13 min: 

Time CA dCA/dt CB dCB/dt CC dCC/dt 

0 1 -1 0 1 0 0 

0.01 0.99 -0.99 0.01 0.97 0 0.02 

0.02 0.9801 -0.9801 0.0197 0.9413 0.0002 0.0388 

0.03 0.970299 -0.9703 0.029113 0.913837 0.000588 0.056462 

0.04 0.960596 -0.9606 0.038251 0.887551 0.001153 0.073045 

0.05 0.95099 -0.95099 0.047127 0.862385 0.001883 0.088605 

0.06 0.94148 -0.94148 0.055751 0.838286 0.002769 0.103194 

0.07 0.932065 -0.93207 0.064134 0.815201 0.003801 0.116864 

0.08 0.922745 -0.92274 0.072286 0.793083 0.00497 0.129662 

0.09 0.913517 -0.91352 0.080216 0.771883 0.006266 0.141634 

0.1 0.904382 -0.90438 0.087935 0.75156 0.007683 0.152823 

0.11 0.895338 -0.89534 0.095451 0.732069 0.009211 0.163269 

0.12 0.886385 -0.88638 0.102772 0.713372 0.010844 0.173012 

0.13 0.877521 -0.87752 0.109905 0.695432 0.012574 0.182089 

 

Note: 

We used this formula with A, B and C in each row. 

𝑦(𝑥 + ℎ) ≈ 𝑦(𝑥) + ℎ𝑦′(𝑥) 

Homework: Solve the above example using the second order RK method. 
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Example: Penicillin Fermentation 

A model for a batch reactor in which penicillin is produced by fermentation has been derived as 

follows for cell production and penicillin synthesis, respectively: 

𝑑𝑦

𝑑𝑡
= 13.1 𝑦 − 13.94 𝑦2; 𝑦(0) = 0.03 

𝑑𝑥

𝑑𝑡
= 1.71 𝑦; 𝑥(0) = 0.0 

where: 

y = dimensionless concentration of cell mass 

x = dimensionless concentration of penicillin 

t = dimensionless time, 0 ≤ 𝑡 ≤ 1 

a) Solve this ODE-IVP using the Euler method and Excel. 

b) Solve this ODE-IVP using the second-order RK method and Excel. 

Use h = 0.1. 

Solution: 

a) Euler’s method 

t y x dy/dt dx/dt 

0 0.03 0 0.380454 0.0513 

0.1 0.068045 0.00513 0.82685 0.116358 

0.2 0.15073 0.016766 1.657856 0.257749 

0.3 0.316516 0.042541 2.749817 0.541242 

0.4 0.591498 0.096665 2.871438 1.011461 

0.5 0.878642 0.197811 0.748371 1.502477 

0.6 0.953479 0.348059 -0.18258 1.630449 

0.7 0.93522 0.511104 0.058947 1.599227 

0.8 0.941115 0.671026 -0.01801 1.609307 

0.9 0.939313 0.831957 0.005608 1.606226 

1 0.939874 0.99258 -0.00174 1.607185 
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b) Second order RK method 

t y x dy/dt dx/dt 
y x 

k1 k2 k1 k2 

0 0.03 0 0.380454 0.0513 0.038045 0.084046 0.00513 0.006007 

0.1 0.091046 0.005569 1.077145 0.155688 0.107715 0.20928 0.015569 0.018231 

0.2 0.249543 0.022469 2.400946 0.426719 0.240095 0.317014 0.042672 0.049969 

0.3 0.528097 0.068789 3.030394 0.903046 0.303039 0.142453 0.090305 0.105747 

0.4 0.750843 0.166814 1.977153 1.283942 0.197715 0.007313 0.128394 0.15035 

0.5 0.853357 0.306186 1.027612 1.459241 0.102761 -0.00271 0.145924 0.170877 

0.6 0.903385 0.464587 0.457842 1.544789 0.045784 0.006509 0.154479 0.180895 

0.7 0.929532 0.632274 0.132295 1.5895 0.013229 0.014887 0.15895 0.18613 

0.8 0.94359 0.804814 -0.05062 1.613539 -0.00506 0.020358 0.161354 0.188945 

0.9 0.951238 0.979964 -0.15245 1.626617 -0.01524 0.02361 0.162662 0.190477 

1 0.955421 1.156533 -0.20883 1.63377 -0.02088 0.025469 0.163377 0.191314 

HIGHER-ORDER ODES 

Consider a general second-order ODE-IVP of the form: 

𝑑2𝑦

𝑑𝑡2
= 𝑓(𝑦, 𝑦′, 𝑡); 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦0

′  

Since all of the methods discussed apply only to first-order equations, one way to solve those of 

the form of the above equation is to convert them into two simultaneous first-order equations. This 

is easily accomplished by defining a new variable z as follows: 

𝑑𝑦

𝑑𝑡
= 𝑧;  𝑦(0) = 𝑦0 

The above equation is a first-order ODE-IVP involving both y and z. If this equation is 

differentiated with respect to t and substituted into the equation [
𝑑2𝑦

𝑑𝑡2 = 𝑓(𝑦, 𝑦′, 𝑡)] , there results: 

𝑑𝑧

𝑑𝑡
= 𝑓(𝑦, 𝑧, 𝑡);  𝑧(0) = 𝑦′(0) 

The two equations: 

𝑑𝑦

𝑑𝑡
= 𝑧;  𝑦(0) = 𝑦0 

𝑑𝑧

𝑑𝑡
= 𝑓(𝑦, 𝑧, 𝑡);  𝑧(0) = 𝑦′(0) 
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constitute a system of coupled ODE-IVPs. This system can be solved numerically by any of the 

methods previously discussed. 

Example: 

Solve the following differential equation using Euler’s method 

𝑑2𝑦

𝑑𝑡2
+

𝑑𝑦

𝑑𝑡
+ 𝑦 = 1; 𝑦(0) = 𝑦′(0) = 0  

Use h = 0.1 for t up to 2.  

Solution: 

In order to solve this model equation numerically with, for example, the Euler method, it must be 

converted into two first-order equations as follows: 

Define a new variable z such that: 

𝑑𝑦

𝑑𝑡
= 𝑧; 𝑦(0) = 𝑦0 

Differentiating this expression with respect to t  

𝑑2𝑦

𝑑𝑡2
=

𝑑𝑧

𝑑𝑡
 

and substituting into the original model equation, there results 

𝑑𝑧

𝑑𝑡
+ 𝑧 + 𝑦 = 1  

𝑑𝑧

𝑑𝑡
= 1 − 𝑧 − 𝑦 = 1; 𝑧(0) = 𝑦′(0) 

The two equations: 

𝑑𝑦

𝑑𝑡
= 𝑧; 𝑦(0) = 𝑦0 = 0 

𝑑𝑧

𝑑𝑡
= 1 − 𝑧 − 𝑦 = 1; 𝑧(0) = 𝑦′(0) 
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are two first-order ODE-IVPs that can be solved by any of the methods previously described. 

The solution by Euler’s method will be as shown in the following table (using Excel spread sheet). 

t y  z=dy/dt dz/dt 

0 0 0 1 

0.1 0 0.1 0.9 

0.2 0.01 0.19 0.8 

0.3 0.029 0.27 0.701 

0.4 0.056 0.3401 0.6039 

0.5 0.09001 0.40049 0.5095 

0.6 0.130059 0.45144 0.418501 

0.7 0.175203 0.49329 0.331507 

0.8 0.224532 0.526441 0.249027 

0.9 0.277176 0.551344 0.17148 

1 0.33231 0.568492 0.099198 

1.1 0.38916 0.578411 0.032429 

1.2 0.447001 0.581654 -0.02865 

1.3 0.505166 0.578789 -0.08395 

1.4 0.563045 0.570393 -0.13344 

1.5 0.620084 0.557049 -0.17713 

1.6 0.675789 0.539336 -0.21513 

1.7 0.729723 0.517824 -0.24755 

1.8 0.781505 0.493069 -0.27457 

1.9 0.830812 0.465611 -0.29642 

2 0.877373 0.435969 -0.31334 

 


