Noncommercial Software for Mixed-Integer Linear Programming

J. T. Linderoth* T. K. Ralphsf

December, 2004.
Revised: January, 2005.

Abstract

We present an overview of noncommercial software tools for the solution of mixed-integer
linear programs (MILPs). We first review solution methodologies for MILPs and then present
an overview of the available software, including detailed descriptions of eight software packages
available under open source or other noncommercial licenses. Each package is categorized as
a black box solver, a callable library, a solver framework, or some combination of these. The
distinguishing features of all eight packages are described. The paper concludes with case
studies that illustrate the use of two of the solver frameworks to develop custom solvers for

specific problem classes and with benchmarking of the six black box solvers.

1 Introduction

A mixed-integer linear program (MILP) is a mathematical program with linear constraints in which
a specified subset of the variables are required to take on integer values. Although MILPs are diffi-
cult to solve in general, the past ten years has seen a dramatic increase in the quantity and quality
of software—both commercial and noncommercial—designed to solve MILPs. Generally speak-
ing, noncommercial MILP software tools can’t match the speed or robustness of their commercial
counterparts, but they can provide a viable alternative for users who cannot afford the sometimes
costly commercial offerings. For certain applications, open source software tools can also be more
extensible and easier to customize than their commercial counterparts, whose flexibility may be
limited by the interface that is exposed to the user. Because of the large number of open source
and noncommercial packages available, it can be difficult for the casual user to determine which of
these tools is the best fit for a given task. In this paper, we provide an overview of the features of

the available noncommercial and open source codes, compare selected alternatives, and illustrate

*Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, jt13@lehigh.edu,
http://www.lehigh.edu/"jt13

fDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015,
tkralphs@lehigh.edu, http://www.lehigh.edu/ tkr2

the use of various tools. For an excellent overview of the major algorithmic components of commer-
cial solvers, especially CPLEX, LINDO, and XPRESS, we refer to reader to the paper of Atamtiirk
and Savelsbergh [6].

To formally specify a MILP, let a polyhedron

P ={zeR"| Az = b,z >0} (1)

be represented in standard form by a constraint matrix A € Q™*" and a right-hand side vector
b € Q™. Without loss of generality, we assume that the variables indexed 1 through p < n are
the integer-constrained variables (the integer variables), so that the feasible region of the MILP is
Pl =P NZP x R"P. In contrast, the variables indexed p + 1 through n are called the continuous
variables. A subset of the integer variables, called binary variables, may additionally be constrained
to take on only values in the set {0,1}. We will denote the set of indices of binary variables by
B C{1,2,...,p}. The mixed-integer linear programming problem is then to compute the optimal
value
T

zp = ;Ielgll c'x, (2)
where ¢ € Q" is a vector defining the objective function. The case in which all variables are
continuous (p = 0) is called a linear program (LP). Associated with each MILP is an LP called the
LP relaxation with feasible region P, obtained by relaxing the integer restrictions on the variables.
For the remainder of the paper, we will use this standard notation to refer to the data associated
with a given MILP and its LP relaxation.

In what follows, we review the relevant notions from the theory and practice of integer pro-
gramming, referring to other sources when necessary for the full details of the techniques described.
This paper is largely self-contained, though we do assume that the reader is familiar with concepts
from the theory of linear programming (see [18]). We also assume that the reader has at least a
high-level knowledge of object-oriented programming and functional programming interfaces. For
an in-depth treatment of the theory of integer programming, we direct the reader to the works of
Schrijver [77], Nemhauser and Wolsey [62], and Wolsey [86].

The paper is organized as follows. In Section 2, we sketch the branch-and-cut algorithm, which
is the basic method implemented by the solvers we highlight herein, and we describe in some detail
the advanced bound improvement techniques employed by these solvers. In Section 3, we discuss
the various categories of MILP software systems and describe how they are typically used. In
Section 4, we describe the use and algorithmic features of eight different noncommercial MILP
software systems: ABACUS, BCP, BonsaiG, CBC, GLPK, Ip_solve, MINTO, and SYMPHONY.
Section 5 illustrates the use of two solver frameworks to develop specialized algorithms for solving
specific MILP problems. In Section 6, the six noncommercial solvers that can be used as “black
box” solvers are benchmarked on a suite of over 100 MILP instances. We conclude by assessing

the current state of the art and trends for the future.

2 Branch and Bound

Branch and bound is a broad class of algorithms that is the basis for virtually all modern software for
solving MILPs. Here, we focus specifically on LP-based branch and bound, in which LP relaxations
of the original problem are solved to obtain bounds on the objective function value of an optimal
solution. Roughly speaking, branch and bound is a divide and conquer approach that reduces the
original problem to a series of smaller subproblems and then recursively solves each subproblem.
More formally, recall that P is the set of feasible solutions to a given MILP. Our goal is to determine
a least cost member of P! (or prove P! =)). To do so, we first attempt to find a “good” solution
zep! (called the incumbent) by a heuristic procedure or otherwise. If we succeed, then = 'z
serves as an initial upper bound on zzp. If no such solution is found, then we set 5 = co. We
initially consider the entire feasible region P’. In the processing or bounding phase, we solve the
LP relaxation mingep ¢' of the original problem in order to obtain a fractional solution & € R™
and a lower bound ¢'# on the optimal value z;p. We assume this LP relaxation is bounded, or else
the original MILP is itself unbounded.

After solving the LP relaxation, we consider #. If & € P, then & is an optimal solution
to the MILP. Otherwise, we identify k disjoint polyhedral subsets of P, Pi,...,Ps, such that
UF_ P NZP x R P = PL. Each of these subsets defines a new MILP with the same objective
function as the original, called a subproblem. Based on this partitioning of P!, we have

fég? ¢lw= zrenllnk <xepﬁ£§imw CTw) ’ 3)
so we have reduced the original MILP to a family of smaller MILPs. The subproblems associated
with Py, ..., P are called the children of the original MILP, which is itself called the root subprob-
lem. Similarly, a MILP is called the parent of each of its children. It is common to associate the set
of subproblems with a tree, called the search tree, in which each node corresponds to a subproblem
and is connected to both its children and its parent. We therefore use the term search tree node or
simply node interchangeably with the term subproblem and refer to the original MILP as the root
node or root of this tree.

After partitioning, we add the children of the root subproblem to the list of candidate subprob-
lems (those that await processing) and associate with each candidate a lower bound either inherited
from the parent or computed during the partitioning procedure. This process is called branching.
To continue the algorithm, we select one of the candidate subproblems and process it, i.e., solve
the associated LP relaxation to obtain a fractional solution £ € R"”, if one exists. Let the feasible

region of the subproblem be & C P NZP x R"P. There are four possible results.
1. If the subproblem has no solutions, then we discard, or fathom it.

2. If ¢"# > f3, then S cannot contain a solution strictly better than # and we may again fathom

the subproblem.

3. If # € Sand ¢'% < 3, then & € P! and is the best solution found so far. We set & « & and

(3« c¢'z, and again fathom the subproblem.

4. If none of the above three conditions hold, we are forced to branch and add the children of

this subproblem to the list of candidate subproblems.

We continue selecting subproblems in a prescribed order (called the search order) and processing
them until the list of candidate subproblems is empty, at which point the current incumbent must
be the optimal solution. If no incumbent exists, then P! = (.

This procedure can be seen as an iterative scheme for improving the difference between the
current upper bound, which is the objective function value of the current incumbent, and the
current lower bound, which is the minimum of the lower bounds of the candidate subproblems.
The difference between these two bounds is called the optimality gap. We will see later that there
is a tradeoff between improving the upper bound and improving the lower bound during the course
of the algorithm.

The above description highlights the four essential elements of a branch-and-bound algorithm:

e Lower bounding method: A method for determining a lower bound on the objective function

value of an optimal solution to a given subproblem.

e Upper bounding method: A method for determining an upper bound on the optimal solution

value zjp.
e Branching method: A procedure for partitioning a subproblem to obtain two or more children.
e Search strategy: A procedure for determining the search order.

With specific implementations of these elements, many different versions of the basic algorithm
can be obtained. So far, we have described only the most straightforward implementation. In
the sections that follow, we discuss a number of the most common improvements to these basic
techniques. Even further improvements may be possible by exploiting the structure of a particular

problem class.

2.1 Lower Bounding Methods

The effectiveness of the branch and bound algorithm depends critically on the ability to compute
bounds that are close to the optimal solution value. In an LP-based branch-and-bound algorithm,
the lower bound is obtained by solving an LP relaxation, as we have indicated. There are a number
of ways in which this lower bound can be potentially improved using advanced techniques. In the
remainder of this section, we describe those that are implemented in the software packages reviewed

in Section 4.

2.1.1 Logical Preprocessing

One method for improving the lower bound that can be applied even before the solution algorithm
is invoked is logical preprocessing. Using simple logical rules, preprocessing methods attempt to
tighten the initial formulation, thereby improving the bound that will be produced when solving
the LP relaxation. Formally, preprocessing techniques attempt to determine a polyhedron R such
that P! € R ¢ P. The bound obtained by minimizing over R is still valid, but may be better than
that obtained over P.

Preprocessing techniques are generally limited to incremental improvements of the existing con-
straint system. Although they are frequently designed to be applied to the original formulation
before the solution algorithm is invoked, they can also be applied to individual subproblems during
the search process if desired. Preprocessing methods include procedures for identifying obviously
infeasible instances, removing redundant constraints, tightening the bounds on variables by ana-
lyzing the constraints, improving matrix coefficients, and improving the right-hand side value of

constraints. For example, a constraint

n
> " aijz; <b;
=1

can be replaced by the improved constraint

n
Z aijr; + (ap —)z < by — 0
J=Lj#k

if £ € B and we can show that Z?:L#k a;jrj < by—0,Vx € PL. This technique is called coefficient
reduction. Another technique, called probing, can be used to determine the logical implications of
constraints involving binary variables. These implications are used in a variety of ways, including
the generation of valid inequalities, as described next in Section 2.1.2. An extended discussion of

advanced preprocessing and probing techniques, can be found in the paper of Savelsbergh [75].

2.1.2 Valid Inequalities

The preprocessing concept can be extended by dynamically generating entirely new constraints
that can be added to the original formulation without excluding members of P!. To introduce this
concept formally, we define an inequality as a pair (a,ap) consisting of a coefficient vector a € R™
and a right-hand side ag € R. Any member of the half-space {z € R" | "z < ag} is said to satisfy
the inequality and all other points are said to violate it. An inequality is valid for P! if all members
of P! satisfy it.

A valid inequality (a, ap) is called improving for a given MILP if

min{c'z | z € P,ax < ag} > min{c'z | z € P}.

A necessary and sufficient condition for an inequality to be improving is that is be violated by all
optimal solutions to the LP relaxation, so violation of the fractional solution & € R” generated by
solving the LP relaxation of a MILP is necessary for a valid inequality to be improving. If a given
valid inequality violated by Z is not improving, adding it to the current LP relaxation will still result
in the generation of a new fractional solution, however, and may in turn result in the generation
of additional candidate inequalities. By repeatedly searching for violated valid inequalities and
using them to augment the LP relaxation, the bound may be improved significantly. If such an
iterative scheme for improving the bound is utilized during the processing of each search tree node,
the overall method is called branch and cut. Generating valid inequalities in the root node only is
called cut and branch. Branch and cut is the method implemented by the vast majority of solvers
today.

Valid inequalities that are necessary to the description of conv(P!) are called facet-defining
inequalities. Because they provide the closest possible approximation of ConV(PI), facet-defining
inequalities are typically very effective at improving the lower bound. They are, however, difficult
to generate in general. For an arbitrary vector £ € R™ and polyhedron R C R”, the problem of
either finding a facet-defining inequality (a,ap) violated by & or proving that & € R is called the
facet identification problem. The facet identification problem for a given polyhedron is polynomi-
ally equivalent to optimizing over the same polyhedron [37], so finding a facet-defining inequality
violated by an arbitrary vector is in general as hard as solving the MILP itself. The problem of
generating a valid inequality violated by a given fractional solution, whether facet-defining or not,
is called the separation problem.

To deal with the difficulty of the facet identification problem, a common approach is to generate
valid inequalities (possibly facet-defining) for the convex hull of solutions to a relaxation of the
instance. In the following paragraphs, we describe relaxations of general MILPs and classes of valid
inequalities arising from them. The relaxations are often created from certain instance-specific
substructures, with the exception of the Gomory and MIR inequalities, which can be generated
for all MILP instances. Generally, the solver determines automatically which substructures exist,
but if it is known a priori that certain substructures do not exist, then it is worthwhile to turn
off generation of the corresponding classes of inequalities. For example, many of the classes of
inequalities discussed below can only be derived in the presence of binary variables. If such variables
are not present, searching for such inequalities is inefficient. On the other hand, if a given class
of problem instances is known to contain a substructure from which one of these classes of valid
inequalities is derived, a solver that has the option of generating that particular class of valid
inequalities should be used, if possible. The classes of valid inequalities covered here are those
employed by at least one of the noncommercial solvers that we describe in Section 4.

Although subroutines for generating valid inequalities are generally integrated into the solver
itself, the Cut Generation Library (CGL) is a library of open-source, free-standing subroutines for

generating inequalities valid for generic MILPs. The CGL is available for download as part of the

Computational Infrastructure for Operations Research (COIN-OR) software suite [19] provided
by the COIN-OR Foundation and includes separation routines for most of the classes of valid
inequalities reviewed here. Three of the MILP solvers discussed in Section 4 take advantage of

generic separation routines that are part of the CGL.

Knapsack Cover Inequalities. Often, a MILP has a row 4 of the form

Z CLZ']':E]' S bZ (4)
jeEB
We assume without loss of generality that a;; > 0 for all j € B (if not, we can complement the
variables for which a;; < 0). Considering only (4), we have a relaxation of the MILP, called the
0 — 1 knapsack problem, with the feasible region

pkoap — L g e {0,1}7 | Zaj:cj <b
jEB
Note that in all of the relaxations we consider, the feasible region is implicitly assumed to be
contained in the space ZP x R™ P, and the variables not explicitly present in the relaxation are
treated as free. Many researchers have studied the structure of the knapsack problem and have
derived classes of facet-defining inequalities for it [7, 42, 84].
A set C' C B is called a cover if Ejec

k € C such that C'\ {k} is also a cover. For any cover C, we must have

Y a<iol-1

jec

aj > b. A cover C is minimal if there does not exist a

for all z € PX"%_ This class of valid inequalities are called cover inequalities. In general, these
inequalities are not facet-defining for PP but they can be strengthened through a procedure

called lifting. The interested reader is referred to the paper by Gu, Nemhauser, and Savelsbergh [40].

GUB Cover Inequalities. A generalized upper bound (GUB) inequality is an inequality of the

Z x; <1,

JEQ
where @ C B. When MILP contains a knapsack row i of the form (4) and a set of GUB inequalities
defined by disjoint sets Q. C B for k € K, we obtain a relaxation of MILP with the feasible region

form

POUB =2 e{0,1}P |) ayz;<b, > =z, <1 VkeK
jEB JEQkK
This class of inequalities models a situation in which a subset of items not violating the knapsack

inequality (4) must be selected, and within that subset of items, at most one element from each of

the subsets @); can be selected. A GUB cover C¢ is a cover that obeys the GUB constraints, (i.e.,

no two elements of the cover belong to the same ;). For any GUB cover Cg, the inequality

Y @< |Cal -1

j€Ca
is valid for PSUB. Again, a lifting procedure, in this case taking into account the GUB constraints,
can lead to significant strengthening of these inequalities. For more details of the inequalities and
lifting procedure, the reader is referred to the paper of Wolsey [85] and the paper of Gu, Nemhauser,
and Savelsbergh [38].

Flow Cover Inequalities. Another important type of inequality commonly found in MILP

problems is a variable upper bound. A variable upper bound is an inequality of the form

where z; is a continuous variable (j > p), xj, is a binary variable (k € B), and U is an upper bound
on variable x;. Such inequalities model the implication z;, = 0 = x; = 0. Variable upper bound
inequalities are often used to model a fixed charge associated with assigning a positive value to
variable z;, and they are particularly prevalent in network flow models. In such models, we can

often identify a relaxation with the following feasible region:

fl ! / .
PV = (avl,JICQ)G]R’}r x {0,1}" | Z ZL‘]1~— z wjl <d, :c]l Sijg, jEN
jENT jEN—
where N and N~ are appropriate sets of indices, N = Nt UN~, and n’ = |N|.
Aset C = CTUCT is called a flow coverif C* C N+, C™ C N~ and 3" ;e mj — 3 - mj >

d. For any flow cover C, the inequality

Dowit Y (my =N —y) <d+ Y omi+ Yy Ayt Y @,

ject jeCct++ jeC— jeL~ jEL—~
where A = > v mj — Y ico-mj—d, CTT ={j € CT:m; > A}, L7 C (N~ \C7) and m; > A
for j€ L7, and L= = N~ \ (L~ UC7), is called a simple generalized flow cover inequality and
is valid for Po%. Just as with knapsack cover inequalities, these inequalities can be strengthened
through lifting to obtain an inequality called the lifted simple generalized flow cover inequality. The

full details of obtaining such inequalities are given by Gu, Nemhauser, and Savelsbergh [39].

Clique Inequalities. Many MILPs contain logical restrictions on pairs of binary variables such
as r; = 1 = z; = 0. In such cases, an auxiliary data structure, called a conflict graph, can be used
to capture these logical conditions and further exploit them [4]. The conflict graph is a graph with

vertex set B, and an edge between the nodes corresponding to each pair of variables that cannot

simultaneously have the value one in any optimal solution. The logical restrictions from which
the conflict graph is derived may be present explicitly in the original model (for example, note
that GUB inequalities lead directly to edges in the conflict graph), or may be discovered during
preprocessing (see [5, 75]).

Since any feasible solution z € P! must induce a vertex packing in the conflict graph, valid
inequalities for the vertex packing polytope of the conflict graph are also valid for the MILP
instance from which the conflict graph was derived. Classes of inequalities valid for the vertex
packing polytope have been studied by a number of authors [17, 43, 63, 65]. As an example, if C is

the set of indices of nodes forming a clique in a conflict graph for a MILP instance, then the clique

Zﬂ?jgl

jeC

mequality

is satisfied by all z € P!. If O is a cycle in a conflict graph for a MILP instance, and |O| is odd,

O]—-1
Z$j§|2

jeO

then the odd-hole inequality

is also satisfied by all z € P!. Again, these inequalities can be strengthened by lifting [63, 64].

Implication Inequalities. In some case, the logical implications discovered during preprocessing
are not between pairs of binary variables (in which case clique and odd-hole inequalities can be
derived), but between a binary variable and a continuous variable. These logical implications can
be enforced using inequalities known as implication inequalities. If x; is a binary variable and x; is

a continuous variable with upper bound U, the implication
7, =0=x; <«

yields the implication inequality
zj <a+ (U —a)x;.

Other implication inequalities can also be derived. For more details, the reader is referred to the

paper of Savelsbergh [75].

Gomory Inequalities. In contrast to the classes of inequalities we have reviewed so far, Gomory
inequalities are generic, in the sense that they do not require the presence of any particular sub-
structure other than integrality and non-negativity, so they can be derived for any MILP. Gomory
inequalities are easy to generate in LP-based branch and bound. After solving the current LP re-
laxation, we obtain an optimal basis matrix Ag € R™*™. The vector Aélb yields the values of the

basic variables in the current fractional solution #. Assuming & ¢ P!, we must have (A5'0); € Z

for some i between 1 and m. Taking u above to be the it" row of A;,
x; + Z uAjzj + Z uwAgT) = ub, (5)
jENBI ke NBC

for all z € P!, where NB' is the set of nonbasic integer variables, NB® is the set of nonbasic
continuous variables, and A; is the j'' column of A. Let f; = uA; — |uA;| for j € NB! U NBY,
and let fo = ub— |ub]; then the inequality

fo(1—f;) fo
E fjﬂfj + E 71 — f J T+ E Ua; T — E P f Ua; T 5 > fg, (6)
jenBl: jenBl: 0 jeNBC: jeNBC: 0
ijfo fj>f0 uaj>0 uaj<0

is called the Gomory mized-integer inequality and is satisfied by all € P!, but not satisfied by the
current fractional solution . The inequality is first derived by Gomory [36], and also be derived

by a simple disjunctive argument, as in Balas et al. [8].

Mixed-Integer Rounding Inequalities. Gomory mixed-integer inequalities can be viewed as
a special case of a more general class of inequalities known as mized-integer rounding inequalities.
Mixed-integer rounding inequalities are obtained as valid inequalities for the relaxed feasible region
'
PMIR (xl,xz,x?’)eRixRixZﬁr/ | Zaj:r?+x1§b—|—x2 . (7)
j=1
The mixed-integer rounding inequality

n/

o, max{f; — f,0} 3 72
Z(@ﬁl_f)Jstbﬁl_f,

=1

where f = b— |b], f; = aj — |a;j] for j = 1,2,...7/, is valid for PMI® [55 61]. Marchand [54]
established that many class of valid inequalities for structured problem instances are mixed-integer
rounding inequalities, including certain subclasses of the lifted flow cover inequalities described
above.

The process of generating a mixed-integer rounding inequality is a three-step procedure. First,
rows of the constraint matrix are aggregated. Second, bound substitution of the simple or variable
upper and lower bounds is performed, and variables are complemented in order to produce a
relaxation of the form (7). Third, a heuristic separation procedure is used to find mixed-integer
rounding inequalities valid for some such relaxation and violated by the current fractional solution.

Marchand and Wolsey [55] discuss the application of mixed-integer rounding inequalities in detail.

2.1.3 Reduced Cost Tightening

After the LP relaxation of MILP is solved, the reduced costs of nonbasic integer variables can be

used to tighten bounds on integer variables for the subtree rooted at that node. Although we

10

have assumed a problem given in standard form, upper and lower bounds on variable values are
typically present and are handled implicitly. Such bound constraints take the form [< x < u for
l,u € R for all x € P!. Even if no such bound constraints are initially present, they may be
introduced during branching. Let ¢; be the reduced cost of nonbasic integer variable j, obtained
after solving the LP relaxation of a given subproblem and let & € R™ be an optimal fractional
solution. If #; = I; € Z and v € Ry is such that c'd+ v¢; = B, where 3 is the objective function
value of the current incumbent, then z; < [; + |v] in any optimal solution, so we can replace the
previous upper bound w; with min(uj,l; + |v]). The same procedure can be used to potentially
improve the lower bounds. This is an elementary form of preprocessing, but can be very effective
when combined with other forms of logical preprocessing, especially when the optimality gap is
small. Note that if this tightening takes place in the root node, it is valid everywhere and can be
considered an improvement of the original model. Some MILP solvers store the reduced costs from
the root LP relaxation, and use them to perform this preprocessing whenever a new incumbent is

found.

2.1.4 Column Generation

A technique for improving the lower bound that can be seen as “dual” to the dynamic generation of
valid inequalities is that of column generation. Most column generation algorithms can be viewed
as a form of Dantzig-Wolfe decomposition, so we concentrate here on that technique. Consider a
relaxation of the original MILP with feasible set F O P!. We assume that F is finite and that it is
possible to effectively optimize over F, but that a minimal description of the convex hull of F is of
exponential size. Let Q = {x € R" | Dz = d,z > 0} D P! be a polyhedron representing the feasible
region of a second relaxation whose description is “small” and such that F N QNZP NR* P = P!,

We can then reformulate the original integer program as

min{ZcTs)\$] Z(Ds)AS:d,Aj1:1,Azo,Aer}, (8)
seEF seF

where 1 is a vector of all ones of conformable dimension. Relaxing the integrality restriction on A,
we obtain a linear program whose optimal solution yields the (possibly) improved bound

min_c¢'z > mine'z. 9)
zeFNQ zEP

Of course, this linear program generally has an exponential number of columns. It is therefore
necessary to generate them dynamically in much the same fashion as valid inequalities are generated
in branch and cut. If we solve the above linear program with a subset of the full set of columns to
obtain a dual solution u, then the problem of finding the column with the smallest reduced cost
among those that are not already present is equivalent to solving

min(c' — uD)s, (10)
seF

11

which is referred to as the column generation subproblem. Because this is an optimization problem
over the set F, it can be solved effectively, and hence so can the linear program itself. When
employed at each search tree node during branch and bound, the overall technique is called branch
and price.

Due to the often problem-specific nature of the column generation subproblem, branch and
price is frequently implemented using a solver framework. Recently two different groups have un-
dertaken efforts to develop generic frameworks for performing column generation. Vanderbeck [83]
is developing a framework for branch and price that will take care of many of the generic algorith-
mic details, allowing the solver to behave essentially as a black box. Galati and Ralphs [70] have
undertaken a similar effort in developing DECOMP, a general framework for computing bounds
using decomposition within a branch-and-bound procedure. Currently, however, implementing a
branch-and-price algorithm is a somewhat involved procedure requiring a certain degree of technical
expertise. Section 5.2 also describes the implementation of a branch-and-price algorithm using the
BCP framework.

2.2 Upper Bounding Methods

In branch and bound, upper bounds are obtained by discovering feasible solutions to the MILP.
Feasible solutions arise naturally if the branch-and-bound algorithm is allowed to run its full course.
However, accelerating the process of finding feasible solutions has three potential benefits. First,
the solution process may be terminated prematurely and in such a case, we would like to come
away with a solution as close to optimal as possible. Second, an improved upper bound 3 may lead
to fewer subproblems being generated due to earlier fathoming (depending on the search strategy
being employed). Third, a good upper bound allows the bounds on integer variables to be tightened
based on their reduced cost in the current relaxation (see Section 2.1.3). Such tightening can in
turn enable additional logical preprocessing and may result in significant improvement to the lower
bound as a result.

There are two ways of accelerating the process of finding feasible solutions during the search
procedure. The first is to influence the search order, choosing to evaluate and partition nodes that
are close to being integer feasible. This technique is further discussed in Section 2.4. The second is
to use a heuristic procedure, called a primal heuristic, to construct a solution. Primal heuristics are
applied during the search process and generally take an infeasible fractional solution as input. A
very simple heuristic procedure is to round the fractional components of the infeasible solution in an
attempt to produce a feasible solution. There are many ways in which to round the current solution
and determining a rounding that maintains feasibility with respect to the constraints Az = b may
be difficult for certain problem classes. A more sophisticated class of primal heuristics, called pivot
and complement, involves pivoting fractional variables out of the current linear programming basis

in order to achieve integrality [9, 59, 11]. Still other classes of primal heuristics use the solution

12

of auxiliary linear programs to construct a solution. One simple, yet effective example of such a
heuristic is known as the diving heuristic. In the diving heuristic, some integer variables are fixed
and the linear program re-solved. The fixing and re-solving is iterated until either the an integral
solution is found or the linear program becomes infeasible. Recent successful primal heuristics, such
as local branching [29] and RINS [22], combine solving auxiliary linear programs with methods for

controlling the neighborhood of feasible solutions that are being searched.

2.3 Branching

Branching is the method by which a MILP is divided into subproblems. In LP-based branch and
bound, there are three requirements for the branching method. First, the feasible region must be
partitioned in such a way that the resulting subproblem are also MILPs. This means that the are
usually defined by imposing additional linear inequalities. Second, the union of the feasible regions
of the subproblems must contain at least one optimal solution. Finally, since the primary goal of
branching is to improve the overall lower bound, it is desirable that the current fractional solution
not be contained in any of the members of the partition. Otherwise, the overall lower bound will
not be improved.

Given a fractional solution to the LP relaxation & € R"™, an obvious way to fulfill the above
requirements is to choose an index j < p such that Z; € Z and to create two subproblems, one
by imposing an upper bound of |Z;] on variable j and a second by imposing a lower bound of
[2;]. This is a valid partitioning, since any feasible solution must satisfy one of these two linear
constraints. Furthermore, Z is not feasible for either of the resulting subproblems. This partitioning
procedure is known as branching on a variable.

Typically, there are many integer variables with fractional values, so we must have a method
for deciding which one to choose. A primary goal of branching is to improve the lower bound of
the resulting relaxations. The most straightforward branching methods are those that choose the
branching variable based solely on the current fractional solution and do not use any auxiliary infor-
mation. Branching on the variable with the largest fractional part, the first variable (by index) that
is fractional, or the last variable (by index) that is fractional are examples of such procedures. These
rules tend to be too myopic to be effective, so many solvers use more sophisticated approaches.
Such approaches fall into two general categories: forward-looking methods and backward-looking
methods. Both types of methods try to choose the best partitioning by predicting, for a given
candidate partitioning, how much the lower bound will be improved. Forward-looking methods
generate this prediction based solely on locally generated information obtained by “pre-solving”
candidate subproblems. Backward-looking methods take into account the results of previous parti-
tionings to predict the effect of future ones. Of course, as one might expect, there are also hybrids
that combine these two basic approaches [2].

A simple forward-looking method is the penalty method of Driebeek [26], which implicitly per-

13

forms one dual simplex pivot to generate a lower bound on the bound improvement that could be
obtained by branching on a given variable. Tomlin [80] improved on this idea by considering the
integrality of the variables. Strong branching is an extension of this basic concept in which the
solver explicitly performs a fixed and limited number of dual simplex pivots on the LP relaxations
in each of the children resulting from branching on a given variable. This is called presolving and
again provides a bound on the improvement one might see as a result of a given choice. The
effectiveness of strong branching was first demonstrated by Applegate et al. in their work on the
traveling salesman problem [3] and has since become a mainstay for solving difficult combinatorial
problems. An important aspect of strong branching is that presolving a given candidate variable is
a relatively expensive operation, so it is typically not possible to presolve all candidates. The pro-
cedure is therefore usually accomplished in two phases. In the first phase, a small set of candidates
is chosen (usually based on one of the simple methods described earlier). In the second phase, each
of these candidates is presolved and the final choice is made using one of the selection rules to be
described below.

Backward-looking methods generally depend on the computation of pseudocosts [14] to maintain
a history of the effect of branching on a given variable. Such procedures are based on the notion
that each variable may be branched on multiple times during the search and the effect will be
similar each time. Pseudocosts are defined as follows. With each integer variable j, we associate
two quantities, P~ and P;r, that estimate the per unit increase in objective function value if we fix
variable j to its floor and ceiling, respectively. Suppose that Z; = |Z;] + f;, with f; > 0. Then by
branching on variable j, we will estimate an increase of D; =P/ fj on the “down branch” and an
increase of D; = P]-Jr(l — f;) on the “up branch”.

The most important aspect of using pseudo-costs is the method of obtaining the values P and
PjJr for variable j. A popular way to obtain these values is to simply observe and record the true
increase in objective function value whenever variable j is chosen as the branching variable. For
example, if a given subproblem had lower bound z;p and its children had lower bounds z; , and

zzrp after branching on variable j, then the pseudocosts would be computed as

P = ZZPJ:Z“’ P = sz__fZ,LP» (11)
J J

where f; is the fractional part of the value of variable j in the solution to the LP relaxation of
the parent. The pseudocosts may be updated using the first observation, the last observation, or
by averaging all observations. Because generating pseudo-cost estimates is inexpensive, they are

typically calculated for all variables.
Whether using a forward-looking or a backward-looking method, the final step is to select the
branching variable. The goal is to maximize the improvement in the lower bound from the parent
to each of its children. Because each parent has two (or more) children, however, there is no unique

metric for this change. Suggestions in the literature have included maximizing the sum of the

14

changes on both branches [35], maximizing the smaller of the two changes [12], or a combination
of the two [27].

More general methods of branching can be obtained by branching on other disjunctions. For
any vector a € Z" whose last n — p entries are zero, we must have o'z € Z for all z € P!. Thus,
if a ¢ 7, a can be used to produce a disjunction by imposing the constraint o'z < |a'#| in one
subproblem and the constraint a 'z > [aTaﬂ in the other subproblem. This is known as branching
on a hyperplane. Typically, branching on hyperplanes is a problem-specific method that exploits
special structure, but it can be made generic by keeping a pool of inequalities that are slack in the
current relaxation as branching candidates.

An example of branching on hyperplanes using special structure is GUB branching. If the MILP

ijzl,

where G C B, then a valid partitioning is obtained by choosing a nonempty subset G° of G, and

contains rows of the form

enforcing the linear constraint 3 .o z; = 0 in one subproblem and the constraint 3 ;o2 = 0
in the other subproblem. These are linear constraints that partition the set of feasible solutions,
and the current LP solution # will be excluded from both resulting subproblems if G is chosen
so that 0 < ZjeGO %; < 1. GUB branching is a special case of branching on special ordered sets
(SOS)! [13]. Special ordered sets of variables can also be used in the minimization of separable
piecewise-linear nonconvex functions.

Because of their open nature, noncommercial software packages are often more flexible and
extensible than their commercial counterparts. This flexibility is perhaps most evident in the
array of advanced branching mechanisms that can be implemented using the open source and
noncommercial frameworks we describe in Section 4. Using a solver framework with advanced
customized branching options, it is possible, for instance, to branch directly on a disjunction, rather
than introducing auxiliary integer variables. An important example of this is semi-continuous
variables, in which a variable is constrained to take either the value 0 or a value larger than
a parameter K. Additionally, branching frameworks can make it easy for the user to specify
prioritization schemes for branching on integer variables or to implement complex partitioning

schemes based on multiple disjunctions.

2.4 Search Strategy

As mentioned in Section 2.3, branching decisions are made with the goal of improving the lower
bound. In selecting the order in which the candidate subproblems should be processed, however,
our focus may be on improving either the upper bound, the lower bound or both. Search strategies,

or node selection methods, can be categorized as either static methods, estimate-based methods,

'Some authors refer to GUBs as special ordered sets of type 1

15

two-phase methods, or hybrid methods.

Static node selection methods employ a fixed rule for selecting the next subproblem to process.
A popular static method is best-first search, which chooses the candidate node with the smallest
lower bound. Due to the fathoming rule employed in branch and bound, a best-first search strategy
ensures that no subproblem with a lower bound above the optimal solution value can ever be
processed. Therefore, the best-first strategy minimizes the number of subproblems processed and
improves the lower bound quickly. However, this comes at the price of sacrificing improvements to
the upper bound. In fact, the upper bound will only change when an optimal solution is located.
At the other extreme, depth-first search chooses the next candidate to be a node at maximum depth
in the tree. In contrast to best-first search, which will produce no suboptimal solutions, depth-
first search tends to produce many suboptimal solutions, typically early in the search process,
since such solutions tend to occur deep in the tree. This allows the upper bound to be improved
quickly. Depth-first search also has the advantage that the change in the relaxation being solved
from subproblem to subproblem is very slight, so the relaxations tend to solve more quickly when
compared to best-first search. Some solvers also allow the search tree to be explored in a breadth-
first fashion, but there is little advantage to this method over best-first search.

Neither best-first search nor depth-first search make any intelligent attempt to select nodes
that may lead to improved feasible solutions. Estimate-based methods such as the best-projection
method [31, 58] and the best-estimate method [14] are improvements in this regard. The best-
projection method measures the overall “quality” of a node by combining its lower bound with the
degree of integer infeasibility of the current solution. Alternatively, the best-estimate method com-
bines a node’s lower bound, integer infeasibility, and pseudocost information to rank the desirability
of exploring a node.

Since we have two goals in node selection—finding “good” feasible solutions (i.e., improving the
upper bound) and proving that the current incumbent is in fact a “good” solution (i.e., improving
the lower bound)—it is natural to develop node selection strategies that switch from one goal to the
other during the course of the algorithm. This results in a two-phase search strategy. In the first
phase, we try to determine “good” feasible solutions, while in the second phase, we are interested in
proving this goodness. Perhaps the simplest “two-phase” algorithm is to perform depth-first search
until a feasible solution is found, then switch to best-first search. A variant of this two-phase
algorithm is used by many of the noncommercial solvers that we describe in Section 4.

Hybrid methods also combine two or more node selection methods, but in a different manner.
In a typical hybrid method, the search tree is explored in a depth-first manner until the lower bound
of the child subproblem being explored rises above a prescribed level in comparison to the overall
lower or upper bounds, after which a new subproblem is selected by a different criterion (e.g.,
best-first or best-estimate), and the depth-first process is repeated. For an in-depth discussion of

search strategies for mixed-integer programming, see the paper of Linderoth and Savelsbergh [50].

16

3 User Interfaces

An important aspect of the design of software for solving MILPs is the user interface, which
determines the way in which the user interacts with the solver and the form in which the MILP
instance must be specified. The range of purposes for noncommercial MILP software is quite large,
so it stands to reason that the number of user interface types is also large. In this section, we
give a broad categorization of the software packages available. The categorization provided here
is certainly not a perfect one—some tools may fall between categories or into multiple categories.
However, it does represent the typical ways in which software packages for MILP are employed in

practice.

3.1 Black Box Solvers

Many users simply want a “black box” that takes a given MILP as input and returns a solution
as output. For such black box applications, the user typically interacts with the solver through a
command-line interface or an interactive shell, invoking the solver by passing the name of a file
containing a description of the instance to be solved. One of the main differences between various
black box solvers from the user’s perspective is the format in which the user can specify the model
to the solver. In the two sections below, we describe two of the most common input styles—raw
(uninterpreted) file formats and modeling language (interpreted) file formats. Table 1 in Section
4 lists the packages covered in this paper that function as black box solvers, along with the file
formats they accept and modeling languages they support. In Section 6, we provide computational

results comparing all of these solvers over a wide range of instances.

3.1.1 Raw File Formats

One of the first interfaces conceived for black box solvers was a standard file format for specifying a
single instance of a mathematical program. Such file formats provide a structured way of writing the
constraint matrix and rim vectors (objective function vector, right hand side vector, and variable
lower and upper bound vectors) to a file in a form that can be easily read by the solver. The oldest
and most pervasive file format is the long standing Mathematical Programming System (MPS)
format, developed by IBM in the 1970s. In MPS format, the file is divided into sections, each
specifying one of the elements of the input, such as the constraint matrix, the right-hand side, the
objective function, and upper and lower bounds on the variables. MPS is a column-oriented format,
meaning that the constraint matrix is specified column-by-column in the MPS file. Another popular
format, LP format, is similar to MPS in that the format consists of a text file divided into different
sections, each specifying one of the elements of the input. However, LP format is a row-oriented
format, so the constraint matrix is specified one row at a time in the file. This format tends to be

slightly more readable by humans.

17

Since MPS was adopted as the de facto standard several decades ago, there has not been much
deviation from this approach. MPS, however, is not an extensible standard, and is only well-suited
for specifying integer and linear models. Several replacements have been proposed based on the
extensible markup language (XML), a wide-ranging standard for portable data interchange. One
of the most well-developed of these is an open standard called LPFML [33]. The biggest advantage
of formats based on XML is that they are far more extensible and are based on an established

standard with broad support and well-developed tools.

3.1.2 Modeling Languages

Despite their persistent use, raw file formats for specifying instances have many disadvantages. The
files can be tedious to generate, cumbersome to work with, extremely difficult to debug, and not
easily readable by humans. For these reasons, most users prefer to work with a modeling language.
Generally, modeling languages allow the user to specify a model in a more intuitive (e.g., algebraic)
format. An interface layer then interprets the model file, translating it into a raw format that the
underlying solver can interpret directly. Another powerful feature of modeling languages is that
they allow for the separation of the model specification from the instance data.

Full-featured modeling languages are similar to generic programming languages such as C and
C++, in that they have constructs such as loops and conditional expressions. They also feature
constructs designed specifically to allow the user to specify mathematical models in a more natural,
human-readable form. Two modeling language systems that are freely available are ZIMPL [88]
and Gnu Mathprog (GMPL) [53]. ZIMPL is a stand-alone parser that reads in a file format similar
to the popular commercial modeling language AMPL [32] and outputs the specified math program
in either MPS or LP format. GMPL is the GNU Math Programming Language, which is again
similar to AMPL. The parser for GMPL is included as part of the GLPK package described in

Section 4.5, but it can easily be used as a free-standing parser as well.

3.2 Callable Libraries

A more flexible mechanism for invoking a MILP solver is through a callable library interface. Most
often, callable libraries are still treated essentially as a “black box,” but they can be invoked
directly from user code, allowing the development of custom applications capable of generating a
model, invoking the solver directly without user intervention, parsing the output and interpreting
the results. The use of a callable library also makes it possible to solve more than one instance
within a single invocation of an application or to use the solver as a subroutine within a larger
implementation. The interfaces to the callable libraries discussed in Section 4 are implemented
in either C or C++, with each solver generally having its own Application Programming Interface
(API). The column labeled Callable API in Table 1 of Section 4 indicates which of the software

packages discussed in this paper have callable library interfaces and the type of interface available.

18

The fact that each solver has its own API makes developing portable code difficult, as there must
be an inherent dependence on the use of a particular solver. Recently, however, two open standards
for calling solvers have been developed that remove the dependence on a particular solver’s API.

These are discussed below.

3.2.1 Open Solver Interface

The Open Solver Interface (OSI), part of the COIN-OR software suite mentioned earlier, is a
standard C++ interface for invoking solvers for LPs and MILPs [51]. The OSI consists of a C++
base class with containers for storing instance data, as well as a standard set of problem import,
export, modification, solution, and query routines. For each supported solver, there is a derived
class that implements the methods of the base class, translating the standard calls into native calls
to the solver in question. Thus, a code written using only calls from the OSI base class could
be easily interfaced with any supported solver without changing any of the code. At the time of
this writing, there are eleven commercial and noncommercial solvers with OSI implementations,

including several of the solvers reviewed in Section 4.

3.2.2 Object-Oriented Interface

In an object-oriented interface, there is a mapping between the mathematical modeling objects
that comprise a MILP instance (variables, constraints, etc.) programming language objects. With
this mapping, MILP models can be easily built in a natural way directly within C++ code. The
commercial package ILOG Concert Technology [45] was perhaps the first example of such an object-
oriented interface, but FLOPC++ [44] is an open source C++ object-oriented interface for algebraic
modeling of LPs and MILPs that provides functionality similar to Concert. Using FLOPC++, linear
models can be specified in a declarative style, similar to algebraic modeling languages such as GAMS
and AMPL, within a C++ program. As a result the traditional strengths of algebraic modeling
languages, such as the ability to declare a model in a human-readable format, are preserved,
while the user is still able to embed model generation and solution procedures within a larger
applications. To achieve solver independence, FLOPC++ uses the OSI to access the underlying
solver, and may therefore be linked to any solver with an OSI implementation. Another interesting

interface, allowing users to model LP instances in the python language is PuLP [74].

3.3 Solver Frameworks

A solver framework is an implementation of a branch-and-bound, branch-and-cut, or branch-and-
price algorithm with hooks that allow the user to provide custom implementations of certain aspects
of the algorithm. For instance, the user may wish to provide a custom branching rule or problem-
specific valid inequalities. The customization is generally accomplished either through the use of

C language callback functions, or through a C++ interface in which the user must derive certain

19

base classes and override default implementations for the desired functions. Not all frameworks are
black box solvers. Some frameworks function as black box solvers, but others, such as BCP and
ABACUS, do not include default implementations of certain algorithmic components. Table 1 in

Section 4 indicates the frameworks available and their style of customization interface.

4 MILP Software

In this section, we summarize the features of the noncommercial software packages available for
solving MILPs. Tables 1-3 are a summary of the packages reviewed here. In Table 1, the columns

have the following meanings.

e Version Number: The version of the software reviewed for this paper. Note that BCP does

not assign version numbers.

e LP Solver: The LP software used to solve the relaxations arising during the algorithm. The
MILP solvers listed as OSI-compliant can use any LP solver with an OSI interface. ABACUS
can use either CPLEX, SOPLEX, or XPRESS-MP.

e File Format: The file formats accepted by packages containing a black box solver. File

formats were discussed in Section 3.1.1.

e Callable API: The language in which the callable library interface is implemented (if the
package in question has one). Some packages support more than one interface. Two of the

solvers can also be called through their own OSI implementation.

e Framework API: For those packages that are considered frameworks, this indicates how the

callback functions must be implemented—through a C or a C++ interface.
o User’s Manual: Indicates whether the package has a user’s manual.

Table 2 indicates the algorithmic features of each solver, including whether the solver has a pre-
processor, whether it can dynamically generate valid inequalities, whether it can perform column
generation, whether it includes primal heuristics, what branching strategies are built in, and what
search strategies are built in. For the column denoting branching methods, the letters stand for

the following methods:

e e: pseudo-cost branching

e f: branching on the variables with the largest fractional part
e h: branching on hyperplanes

e ¢g: GUB branching

i: branching on first or last fractional variable (by index)

20

Version LP File Format Callable Framework | User’s

Number | Solver API API Manual
ABACUS 2.3 C/S/X no none CH+ yes
BCP 11/1/04 | OSI no none Ct++ yes
bonsaiG 2.8 DYLP MPS none none yes
CBC 0.70 O8I MPS C++/C Ct+ no
GLPK 4.2 GLPK MPS/GMPL OSI/C none yes
Ip_solve 5.1 Ip_solve | MPS/LP/GMPL | C/VB/Java none yes
MINTO 3.1 OSI MPS/AMPL none C yes
SYMPHONY 5.0 O8I MPS/GMPL OSI/C C yes

e p: penalty method

e s: strong branching

Table 1: List of solvers and main features

e x: SOS(2) branching and branching on semi-continuous variables

For the column denoting search strategies, the codes stand for the following:

Finally, Table 3 indicates the classes of valid inequalities generated by those solvers that generate
valid inequalities. In the following sections, we provide an overview of each solver, then describe
the user interface, and finally describe the features of the underlying algorithm in terms of the four
categories listed in Section 2.

Solver performance can vary significantly with different parameters settings, and it is unlikely
that one set of parameters will work best for all classes of MILP instances. When deciding on a
MILP package to use, users are well-advised to consider the ability of a packages to meet their
performance requirements through customization and parameter tuning. An additional caveat
about performance is that MILP solver performance can be impacted by the speed with which the

LP relaxations are solved, so users may need to pay special attention to the parameter tuning of

b: best-first

d: depth-first

e: best-estimate

p: best-projection

r: breadth-first

h(x,z): a hybrid method switching from strategy 'x’ to strategy 'z’

2(x,z): a two-phase method switching from strategy 'x’ to strategy 'z’

the underlying LP solver as well.

21

Preproc | Built-in Cut Column Primal | Branching Search
Generation | Generation | Heuristic Rules Strategy

ABACUS no no yes no f.h,s b,r,d,2(d,b)
BCP no no yes no f.h,s h(d,b)
bonsaiG no no no no p h(d,b)
CBC yes yes no yes e,f,ghs x 2(d,p)
GLPK no no no no i,p b,d,p
Ip_solve no no no no e fix d,r.e,2(d,r)
MINTO yes yes yes yes e,f,g.p,s b,d,e,h(d,e)
SYMPHONY no yes yes no e,fh,p,s | br,d,h(d,b)

Table 2: Algorithmic features of solvers

Name Knapsack | GUB | Flow | Clique | Implication | Gomory | MIR
CBC yes no yes yes yes yes yes
MINTO yes yes yes yes yes no no
SYMPHONY yes no yes yes yes yes yes

Table 3: Classes of valid inequalities generated by black box solvers

4.1 ABACUS
4.1.1 Overview

ABACUS [46] is a pure solver framework written in C++. It has a flexible, object-oriented design
that supports the implementation of a wide variety of sophisticated and powerful variants of branch
and bound. The object-oriented design of the library is similar in concept to BCP, described be-
low. From the user’s perspective, the framework is centered around C++ objects representing the
basic building blocks of a mathematical model—constraints and variables. The user can dynam-
ically generate variables and valid inequalities by defining classes derived from the library’s base
classes. ABACUS supports the simultaneous generation of variables and valid inequalities for users
requiring this level of sophistication. Another feature of ABACUS worth noting is its very general
implementation of object pools for storing previously generated constraints and variables for later
use.

ABACUS was for some time a commercial code, but has recently been released open source
[79] under the GNU Library General Public License (LGPL). Because of the generality of its
treatment of dynamically generated classes of constraints and variables, it is one of the most full-
featured solver frameworks available. ABACUS does not, however, have a callable library interface

and it cannot be used as a black box solver. However, it can be called recursively. It comes

22

with complete documentation and a tutorial that shows how to use the code. Compared to the
similar MILP framework BCP, ABACUS has a somewhat cleaner interface, with fewer classes and
a more straightforward object-oriented structure. The target audience for ABACUS consists of
sophisticated users who need a powerful framework for implementing advanced versions of branch

and bound, but who do not need a callable library interface.

4.1.2 TUser Interface

There are four main C++ base classes from which the user may derive problem-specific implemen-

tations in order to develop a custom solver. The base classes are the following:
e ABA VARIABLE: The base class for defining problem-specific classes of variables.
e ABA_CONSTRAINT: The base class for defining problem-specific classes of constraints.
e ABA_MASTER: The base class for storing problem data and initializing the root node.
e ABA_SUB: The base class for methods related to the processing of a search tree node.

In addition to defining new template classes of constraints and variables, the latter two C++ classes
are used to implement various user callback routines to further customize the algorithm. The
methods that can be implemented in these classes are similar to those in other solver frameworks

and can be used to customize most aspects of the underlying algorithm.

4.1.3 Algorithm Control

ABACUS does not contain built-in routines for generating valid inequalities, but the user can
implement any separation or column generation procedure that is desired in order to improve
the lower bound in each search tree node. ABACUS does not have a default primal heuristic
for improving the upper bound, but again, the user can implement one easily. ABACUS has
a general notion of branching in which one may branch on either a variable or a constraint
(hyperplane). Several strategies for selecting a branching variable are provided. In addition, a
strong branching capability is also provided, in which case a number of variables or constraints
are selected and presolved before the final branching is performed. To select the candidates, a
sophisticated mechanism that allows for selection and ranking of candidates using multiple user-
defined branching rules is employed. The search strategies include depth-first, breadth-first,
best-first, and a strategy that switches from depth-first to best-first after the first feasible solution

is found.

23

4.2 BCP
4.2.1 Overview

BCP is a pure solver framework developed by Ladanyi. It is a close relative of SYMPHONY,
described below. Both frameworks were derived from the earlier COMPSys framework of Ralphs
and Laddnyi [47, 67]. BCP is implemented in C++ and has a design centered around problem-specific
template classes of cuts and variables, like ABACUS, but takes a more “function-oriented” approach
that is similar to SYMPHONY. The design is very flexible and supports the implementation of the
same variety of sophisticated variants of branch and bound that ABACUS supports, including
simultaneous generation of columns and valid inequalities. It is a pure solver framework and does
not have a callable library interface. The BCP library provides its own main function, which means
that it cannot easily be called recursively or as a subroutine from another code. Nonetheless, it is
still one of the most full-featured solver frameworks available, due to the generality with which it
handles constraint and variable generation, as well as branching.

Although BCP is not itself a black box solver, two different black box codes [56] have been built
using BCP and are available for download along with BCP itself as part of the COIN-OR software
suite [48]. BCP is open source software licensed under the Common Public License (CPL). BCP has
a user’s manual, though it is slightly out of date. However, the code itself contains documentation
that can be parsed and formatted using the Doxygen automatic documentation system [82]. A
number of applications built using BCP are available for download, including some simple examples
that illustrate its use. Tutorials developed by Galati describing the implementation of two problem-
specific solvers—one implementing branch and cut and one implementing branch and price—are
available for download [34]. The target audience for BCP is similar to that of ABACUS—
relatively sophisticated users who need a powerful framework for implementing advanced versions
of branch and bound without a callable library interface. BCP is also targeted at users who want

to solve MILPs in parallel.

4.2.2 User Interface

To use BCP, the user must implement application-specific C++ classes derived from the virtual base
classes provided as part of the BCP library. The classes that must be implemented fall broadly
into two categories: modeling object classes, which describe the variables and constraints associated
with the user’s application, and user callback classes, which control the execution of various specific
parts of the algorithm.

From the user’s point of view, a subproblem in BCP consists primarily of a core relaxation
present in every subproblem and modeling objects—the sets of extra constraints and variables that
augment the core relaxation. To define new template classes of valid inequalities and variables, the
user must derive the classes BCP_cut and BCP_var. The derivation involves defining an abstract

data structure for describing a member of the class and providing methods for expanding each

24

object, i.e., adding the object to a given LP relaxation.

To enable parallel execution, the internal library and the set of user callback functions are
divided along functional lines into five separate computational modules. The modular implemen-
tation facilitates code maintenance and allows easy, configurable parallelization. The five modules
are master, tree manager, node processor, cut generator, and variable generator. The master mod-
ule includes functions that perform problem initialization and input/output. The tree manager is
responsible for maintaining the search tree and managing the search process. The node processor
is responsible for processing a single search tree node, i.e., producing a bound on the solution to
the corresponding subproblem by solving a dynamically generated LP relaxation. Finally, the cut
and variable generators are responsible for generating new modeling objects for inclusion in the
current LP relaxation.

Associated with each module “xx” is a class named BCP_xx_user containing the user callbacks
for the module. For each module, the user must provide a derived class, overriding those methods
for which the user wishes to provide a customized implementation. Note that most, but not all,
methods have default implementations. Another important role of the user callback classes is that
they can contain data structures for storing the data needed to execute the methods in the class.
Such data could include the original input data, problem parameters, and instance specific auxiliary

information such as graph data structures.

4.2.3 Algorithm Control

As with ABACUS, BCP does not contain built-in routines for generating valid inequalities, but
the user can implement any separation or column generation procedure that is desired in order to
improve the lower bound. BCP tightens variable bounds by reduced cost and allows the user
to tighten bounds based on logical implications arising from the model. BCP does not yet have a
built-in integer preprocessor and also has no built-in primal heuristic to improve the upper bound.
The user can, however, pass an initial upper bound if desired. The default search strategy is a
hybrid depth-first /best-first approach in which one of the children of the current node is retained for
processing as long as the lower bound is not more than a specified percentage higher than the best
available. It is also possible for the user to specify a customized search strategy by implementing
a new comparison function for sorting the list of candidate nodes in the BCP_tm_user class.

BCP has a generalized branching mechanism in which the user can specify branching sets,
consisting of any number of hyperplanes and variables. The hyperplanes and variables in these
branching sets do not have to be present in the current subproblem. In other words, it is possible
to branch on any arbitrary hyperplane (see Section 2.3), whether or not it corresponds to a known
valid inequality. After the desired number of candidate branching sets have been chosen, each one
is presolved as usual by performing a specified number of simplex pivots to determine an estimate
of the bound improvement resulting from the branching. The final branching candidate can then

be chosen by a number of standard built-in rules. The default rule is to select a candidate for which

25

the smallest lower bound among its children is maximized.

4.3 BonsaiG
4.3.1 Overview

BonsaiG is a black box MILP solver available at [41]. BonsaiG comes with complete documen-
tation and descriptions of its algorithms and is available as open source software under the GNU
General Public License (GPL). BonsaiG does not have a documented callable library interface or
the customization options associated with a solver framework. It does, however, have two unique
features worthy of mention. The first is the use of a partial arc consistency algorithm proposed in
[78] to help enforce integrality constraints and dynamically tighten bounds on variables. Although
the approach is similar to that taken by today’s integer programming preprocessors, the arc con-
sistency algorithm can be seen as a constraint programming technique and is applied aggressively
for every subproblem. From this perspective, bonsaiG is perhaps one of the earliest examples of in-
tegrating constraint programming techniques into an LP-based branch-and-bound algorithm. The
integration of constraint programming and traditional mathematical programming techniques has
recently become a topic of increased interest among researchers. Achterberg is currently developing
a solver called SCIP that will also integrate these two approaches [1].

The second feature worthy of mention is the use of DYLP, an implementation of the dynamic LP
algorithm of Padberg [66], as the underlying LP solver. DYLP was designed specifically to be used
for solving the LP relaxations arising in LP-based branch and bound. As such, DYLP automatically
selects the subsets of the constraints and variables that should be active in a relaxation and manages
the process of dynamically updating the active constraints and variables as the problem is solved.
This management must be performed by all MILP solvers, but it can be handled more efficiently
if kept internal to the LP solver. The target audience for bonsaiG consists of users who need
a lightweight black box solver capable of solving relatively small MILPs without incurring the
overhead associated with advanced bounding techniques and who don’t need a callable library

interface.

4.3.2 User Interface and Algorithm Control

BonsaiG is a pure black box solver developed by Lou Hafer that can only be called from the
command-line. Instances must be specified in MPS format. Algorithm control in bonsaiG is
accomplished through the setting of parameters that are specified in a separate file. To improve
the lower bound for generic MILPs, bonsaiG aggressively applies the arc consistency algorithm
discussed earlier in combination with reduced cost tightening of bounds in an iterative loop called
the integrated variable forcing loop. No generation of valid inequalities or columns is supported.
BonsaiG does not have any facility for improving the upper bound. The default search strategy

is a hybrid of depth-first and best-first, but with a slight modification. Upon partitioning of a

26

subproblem, all children are fully processed and among those that are not fathomed, the best one,
according to an evaluation function that takes into account both the lower bound and the integer
infeasibility, is retained for further partitioning. The others are added to the list of candidates,
so that the list is actually one of candidates for branching, rather than for processing. When all
children of the current node can be fathomed, then the candidate with the best bound is retrieved
from the list and another depth-first search is initiated.

For branching, BonsaiG uses a penalty method strengthened by integrality considerations.
Only branching on variables or groups of variables is supported. The user can influence branching
decisions for a particular instance or develop custom branching strategies through two different
mechanisms. First, bonsaiG makes it easy to specify relative branching priorities for groups of
variables. This tells the solver which variables the user thinks will have the most effect if branched
upon. The solver then attempts to branch on the highest-priority fractional variables first. The
second mechanism is for specifying tours of variables. These are groups of variables that should
be branched on as a whole. The group of child subproblems (called a tour group) is generated
by adjusting the bounds of each variable in the tour so that the feasible region of the parent is

contained in the union of the feasible regions of the children, as usual.

4.4 CBC
4.4.1 Overview

CBC is a black box solver distributed as part of the COIN-OR software suite [30]. CBC was
originally developed by John Forrest as a lightweight branch-and-cut code to test CLP, the COIN-
OR LP solver. However, CBC has since evolved significantly and is now quite sophisticated, even
sporting customization features that allow it to be considered a solver framework. CBC has a
native Ct++ callable library API similar to the Open Solver Interface, as well as a C interface built
on top of that native interface. The CBC solver framework consists of a collection of C++ classes
whose methods can be overridden to customize the algorithm. CBC does not have a user’s manual,
but it does come with some well-commented examples and the source code is also well-commented.
It is distributed as part of the COIN-OR software suite and is licensed as open source software
under the Common Public License (CPL). The target audience for CBC consists of users who
need a full-featured black box solver with a callable library API and very flexible, yet relatively

lightweight, customization options.

4.4.2 User Interface

The user interacts with CBC as a black box solver either by invoking the solver on the command
line or through a command-based interactive shell. In either case, instances must be specified in
MPS format. The callable library API is a hybrid of the API of the underlying LP solver, which
is accessed through the Open Solver Interface, and the methods in the CbcModel class. To load

27

a model into CBC, the user creates an OSI object, loads the model into the OSI object and then
passes a pointer to that object to the constructor for the CbcModel object. CBC uses the OSI
object as its LP solver during the algorithm.

To use CBC as a solver framework, there are a number of classes that one can reimplement in
order to arrive at problem-specific versions of the basic algorithm. The main classes in the CBC

library are:

e CbcObject, CbcBranchingObject, CbcBranchDecision: The classes used to specify new
branching rules. CBC has a very general notion of branching that is similar to that of BCP.
CBC’s branching mechanism is described in more detail in Section 4.4.3.

e CbcCompare, CbcCompareBase: The classes used to specify new search strategies by specifying

the method for sorting the list of candidate search tree nodes.
e CbcHeuristic: The class used to specify new primal heuristics.

e CbcCutGenerator: The class that interfaces to the Cut Generation Library.

As seen from the above list, it is possible to introduce custom branching rules, custom search
strategies, custom primal heuristics, and custom generators for valid inequalities. Cut generator
objects must be derived from the Cut Generation Library base class and are created by the user
before being passed to CBC. Primal heuristic objects are derived from the CbcHeuristic class and

are also created before being passed to CBC.

4.4.3 Algorithm Control

CBC is one of the most full-featured black box solver of those reviewed here in terms of available
techniques for improving bounds. The lower bound can be improved through the generation of
valid inequalities using all of the separation algorithms implemented in the CGL. Problem-specific
methods for generation of valid inequalities can be implemented, but column generation is not
supported. CBC has a logical preprocessor to improve the initial model and tightens variable
bounds using reduced cost information. Several primal heuristics to improve the upper bound
are implemented and provided as part of the distribution, including a rounding heuristic and two
different local search heuristics. The default search strategy in CBC is to perform depth-first
search until the first feasible solution is found and then to select nodes for evaluation based on a
combination of bound and number of unsatisfied integer variables. Specifying new search strategies
can also be done easily.

CBC has a strong branching mechanism similar to that of other solvers, but the type of
branching that can be done is more general. An abstract CBC branching object can be anything
that has a feasible region whose degree of infeasibility with respect to the current solution can be
quantified, that has an associated action that can be taken to improve the degree of infeasibility in

the child nodes, and that supports some comparison of the effect of branching. Specifying a CBC

28

branching object involves implementing three methods: infeasibility(), feasibleRegion(),
and createBranch(). Using these methods CBC can perform strong branching on any sort of
branching objects. Default implementations are provided for branching on integer variables, branch-

ing on cliques, and branching on special ordered sets.

4.5 GLPK
4.5.1 Overview

GLPK is the GNU Linear Programming Kit, a set of subroutines comprising a callable library
and black box solver for solving linear programming and MILP instances [53]. GLPK also comes
equipped with GNU MathProg (GMPL), an algebraic modeling language similar to AMPL. GLPK
was developed by Andrew Makhorin and is distributed as part of the GNU Project, under the GNU
General Public License (GPL). Because GLPK is distributed through the Free Software Foundation
(FSF), it closely follows the guidelines of the FSF with respect to documentation and automatic
build tools. The build system relies on autoconf, which ensures that users can easily build the
library and executable on a wide variety of platforms. The documentation consists of the Reference
Manual and the description of the GNU MathProg language. The distribution includes examples
of using the callable library and models demonstrating the MathProg language.

GLPK is a completely self-contained package—it does not rely on external components to
perform any part of the branch-and-bound algorithm. In particular, GLPK includes the following

main components:

e revised primal and dual simplex methods for linear programming,

e a primal-dual interior point method for linear programming,

a branch-and-bound method,

a parser for GNU MathProg,

e an application program interface (API),

a black box LP/MILP solver.

The target audience for GLPK consists of users who want a lightweight, self-contained MILP

solver with both a callable library and modeling language interface.

4.5.2 User Interface

The default build of GLPK yields the callable library and a black box solver. The callable library
consists of nearly 100 routines for loading and modifying a problem instance, solving the loaded
instance, querying the solver, and getting and setting algorithm parameters. There are also utility
routines to read and write files in MPS format, LP format, and GMPL format. The subroutines
operate on a data structure for storing the problem instance that is passed explicitly, so the code

should be thread safe and it is possible to work on multiple models simultaneously.

29

4.5.3 Algorithm Control

Since GLPK was first and foremost developed as a solver of linear programs, it does not yet
contain advanced techniques for improving the lower bound, such as preprocessing techniques
and procedures for generating valid inequalities. It also does not include a primal heuristic for
improving the upper bound. The user can set a parameter (either through the callable library or
in the black box solver) to choose from one of three methods for selecting a branching variable—the
index of the first fractional variable, the index of the last fractional variable, or the penalty method
discussed in Section 2.3. The user can also change the search strategy to either depth-first-search,

breadth-first-search, or the best-projection method described in Section 2.4.

4.6 Ip_solve
4.6.1 Overview

Lpsolve is a black box solver and callable library for linear and mixed-integer programming. The
original solver was developed by Michel Berkelaar at Eindhoven University of Technology, and the
work continued with Jeroen Dirks, who contributed a procedural interface, a built-in MPS reader,
and fixes and enhancements to the code. Kjell Eikland and Peter Notebaert took over development
starting with version 4, and there is an active group of users. The most recent version bears little
resemblance to earlier versions and includes a number of unique features such as a modular LP
basis factorization engine and a large number of language interfaces. Lp_solve is distributed as
open source under the GNU Library General Public License (LGPL). The main repository for
Ip_solve information, including a FAQ, examples, the full source, precompiled executables, and a
message board, is at the YAHOO lp_solve group [15]. The target audience for Ip_solve is similar
to that of GLPK—users who want a lightweight, self-contained solver with a callable library API
implemented in a number of popular programming languages, including C, VB and Java, as well
as an AMPL interface.

4.6.2 User Interface

Lpsolve can be used as a black box solver or as a callable library through its native C API. The
Ip_solve API consists of over 200 functions for reading and writing problem instances, building
or querying problem instances, setting algorithm parameters, invoking solution algorithms, and
querying the results. The lp_solve API has methods that can read and write MPS files, LP format
files, and an XLI (External Language Interface) that allows users to implement their own readers
and writers. At present, XLI interfaces are in place for GNU MathProg, LPFML, and for the
commercial LP formats of CPLEX and LINDO. An interface to ZIMPL will be available in lp_solve
vb.2.

Of the noncommercial MILP software reviewed here, 1p_solve has interfaces to the largest num-

30

ber of different programming languages. With Ip_solve, there are examples that illustrate how to
call its API from within a VB.NET or C# program. Also, there exists a Delphi library and a Java
Native Interface (JNI) to Ip_solve, so Ip_solve can be called directly from Java programs. There are
also AMPL, MATLAB, R, S-Plus and Excel driver programs. Lp_solve supports several types of

user callbacks and an object-like facility for revealing functionality to external programs.

4.6.3 Algorithm Control

Lp_solve does not have any special procedures for improving the upper bounds or lower bounds.
Users can set parameters either from the command line or through the API to control the branch-
and-bound procedure. The search strategy is one of depth-first search, breadth-first search, or
a two-phase method that initially proceeds depth-first followed by breadth-first. Lp_solve contains
a large number of built-in branching procedures and can select the branching variable based
on the lowest indexed non-integer column (default), the distance from the current bounds, the
largest current bound, the most fractional value, a simple, unweighted pseudocost of a variable, a
pseudocost strategy for minimizing the number of integer infeasibilities, or an extended pseudocost
strategy based on maximizing the normal pseudocost divided by the number of infeasibilities.
The algorithm also allows for GUB branching and for branching on semi-continuous variables
(variables that have to take a value of zero or a positive value above some given lower bound).
The branching rule and search strategy used by Ip_solve is set through a call to set_bb_rule(),
and there are even ways in which the branching rule can be modified using the parameter values
beyond what are listed here. MILP performance can be expected to vary significantly based on
parameters settings and model class. The default settings in lp_solve are inherited from v3.2, and
tuning is therefore necessary to achieve desirable results. The developers have indicated that MILP

performance and more robust general settings will be a focus in Ip_solve v5.3.

4.7 MINTO
4.7.1 Overview

MINTO (Mixed INTeger Optimizer) is a black box solver and solver framework for MILP. The
chief architects of MINTO were George Nemhauser and Martin Savelsbergh, and a majority of the
software development was done by Savelsbergh. MINTO was developed at the Georgia Institute
of Technology and is available under terms of an agreement created by the Georgia Tech Research
Institute. The current maintainer of MINTO is Jeff Linderoth of Lehigh University. MINTO is
available only in library form for a number of platforms [60]. MINTO relies on external software
to solve the linear programming relaxations that arise during the algorithm. Since version 3.1,
MINTO has been equipped to use the OSI, so any of the linear programming solvers for which
there is an OSI interface can be used with MINTO. MINTO can also be built to directly use the
commercial LP solvers CPLEX, XPRESS-MP, or OSL. MINTO comes with a user’s manual that

31

contains instructions for building an executable, and a description of the API for user callbacks that
allow it to be used as a solver framework, along with examples of using each routine. The target
audience for MINTO are users who require the power of a sophisticated solver framework for
implementing advanced version of branch and bound, but with a relatively simple C-style interface,

or who need a full-featured black box solver without a callable API.

4.7.2 TUser Interface

MINTO can be accessed as a black-box solver from the command line with parameters through
a number of command-line switches. The most common interface to MINTO is to pass problem
instances in MPS file format. However, beginning with version 3.1, MINTO can also be used
directly with the AMPL modeling language. MINTO can be customized through the use of “user
application” functions (callback functions) that allow MINTO to operate as a solver framework.
At well-defined points of the branch-and-cut algorithm, MINTO will call the user application
functions, and the user must return a value that signals to MINTO whether or not the algorithm
is to be modified from the default. For example, consider the MINTO user application function
appl-_constraints(), which is used for generating user-defined classes of valid inequalities. The
input to appl_constraints() is the solution to the current LP relaxation. The outputs are arrays
describing any valid inequalities that the user wishes to have added to the formulation. The return
value from appl_constraint() should be SUCCESS or FAILURE, depending on whether or not the
user-supplied routine was able to find inequalities violated by the input solution. If so, MINTO

will add these inequalities and pass the new formulation to the linear programming solver.

4.7.3 Algorithm Control

To strengthen the lower bound during the course of the algorithm, MINTO relies on advanced
preprocessing and probing techniques, as detailed in the paper of Atamtiirk, Nemhauser, and
Savelsbergh [5], and tightens bounds based on reduced costs. MINTO also has separation routines
for a number of classes of valid inequalities, including clique inequalities, implication inequalities,
knapsack cover inequalities, GUB cover inequalities, and flow cover inequalities. The user can
perform dynamic column generation by implementing the callback function appl_variables().
For improving the upper bound, MINTO has a primal diving heuristic. There are a number
of built-in branching methods, such as branching on the most fractional variable, the penalty
method strengthened with integrality considerations, strong branching, a pseudocost-based method,
a dynamic method that combines both the penalty method and pseudocost-based branching, and
a method that favors branching on GUB constraints. For search strategies, the user can choose
best-bound, depth-first, best-projection, best-estimate, or an adaptive mode that combines depth-
first with the best-estimate mode. Of course, by using the solver framework, any of the branching

or node selection methods can be overridden by the user.

32

4.8 SYMPHONY
4.8.1 Overview

SYMPHONY is a black box solver, callable library, and solver framework for MILPs that evolved
from the COMPSys framework of Ralphs and Ladényi [47, 67]. The source code for packaged re-
leases, with full documentation and examples, is available for download [68] and is licensed under the
Common Public License (CPL). The latest source is also available from the CVS repository of the
COIN-OR Foundation [19]. SYMPHONY is fully documented and seven different specialized solvers
built with SYMPHONY are available for download as examples of how to use the code. There is
a step by step example showing how to build a simple branch-and-cut solver in SYMPHONY for
the matching problem [81], which is summarized in Section 5. The core solution methodology of
SYMPHONY is a customizable branch, cut, and price algorithm that can be executed sequentially
or in parallel [73]. SYMPHONY calls on several other open source libraries for specific function-
ality, including COIN-OR’s Cut Generation Library, Open Solver Interface, and MPS file parser
components, GLPK’s GMPL file parser, and a third-party solver for linear-programming problems
(LPs), such as COIN-OR’s LP Solver (CLP).

There are several unique features of SYMPHONY that are worthy of mention. First, SYM-
PHONY contains a generic implementation of the WCN algorithm described in [72] for solving
bicriteria MILPs, and methods for approximating the set of Pareto outcomes. The bicriteria solver
can be used to examine tradeoffs between competing objectives, and for solving parametric MILPS,
a form of global sensitivity analysis. SYMPHONY also contains functions for local sensitivity anal-
ysis based on ideas suggested by Schrage and Wolsey [76]. Second, SYMPHONY has the capability
to warm start the branch-and-bound process from a previously calculated branch-and-bound tree,
even after modifying the problem data. These capabilities are described in more detail in the
paper of Ralphs and Guzelsoy [71]. The target audience for SYMPHONY is similar to that of
MINTO-—users who require the power of a sophisticated solver framework, primarily for imple-
menting custom branch and cut algorithms, with a relatively simple C-style interface, or users who
require other advanced features such as parallelism, the ability to solve multi-criteria instances, or

the ability to warm start solution procedures.

4.8.2 User Interface

As a black box solver, SYMPHONY can read GMPL files using an interface to GLPK'’s file parser
or MPS files using COIN-OR’s MPS file reader class. It can also be used as a callable library
through the API described below. SYMPHONY’s callable library consists of a complete set of
subroutines for loading and modifying problem data, setting parameters, and invoking solution
algorithms. The user invokes these subroutines through the native C API, which is exactly the
same whether invoking SYMPHONY sequentially or in parallel. The choice between sequential and
parallel execution modes is made at compile-time. SYMPHONY has an OSI implementation that

33

allows solvers built with SYMPHONY to be accessed through the OSI.

The user’s main avenues for customization are the tuning of parameters and the implementation
of SYMPHONY’s callback functions. SYMPHONY contains over 50 callback functions allowing
the user to override SYMPHONY’s default behavior for branching, generation of valid inequalities,
management of the cut pool, management of the LP relaxation, search and diving strategies,
program output, etc. Each callback function is called from a SYMPHONY wrapper function that
interprets the user’s return value and determines what action should be taken. If the user performs
the required function, the wrapper function exits without further action. If the user requests that
SYMPHONY perform a certain default action, then this is done. Files containing default function
stubs for the callbacks are provided along with the SYMPHONY source code. These can then be
modified by the user as desired. Makefiles and Microsoft Visual C++ project files are provided for
automatic compilation. A full list of callback functions is contained in the user’s manual [69]. For
an example of the use of callbacks, see the SYMPHONY case study in Section 5.1.

4.8.3 Algorithm Control

To improve the lower bound for generic MILPs, SYMPHONY generates valid inequalities using
COIN-OR’s Cut Generation Library (CGL) described in Section 2.1.2. The user can easily insert
custom separation routines and can perform column generation, though the implementation is
not yet fully general and requires that the set of variables be indexed a priori. This limitation
makes the column generation in SYMPHONY most appropriate for situations in which the set
of columns has a known combinatorial structure and is of relatively small cardinality. In each
iteration, SYMPHONY tightens bounds by reduced cost and also allows the user to tighten bounds
based on logical implications arising from the model. SYMPHONY does not yet have its own
logical preprocessor or primal heuristics to improve the upper bound, though it is capable of
using CBC’s primal heuristic if desired. The user can also pass an initial upper bound.

SYMPHONY uses a strong branching approach by default. Branching candidates can be
either constraints or variables and are chosen by any one of a number of built-in rules, such as
most fractional, or by a customized rule. After the candidates are chosen, each one is presolved to
determine an estimate of the bound improvement resulting from the branching. The final branching
candidate can then be chosen by a number of standard built-in rules. There is also a naive version
of pseudo-cost branching available.

The default search strategy is a hybrid depth-first/best-first approach in which one of the
children of the current node is retained for processing as long as the lower bound is not more
than a specified percentage higher than the best available. Another option is to stop diving when
the current node is more than a specified percentage of the gap higher than the best available.
By tuning various parameters, one can obtain a number of different search strategies running the

gamut between depth-first and best-first.

34

typedef struct MATCH_DATA{

int numnodes;

int cost [MAXNODES] [MAXNODES] ;

int endpoint1 [MAXNODES* (MAXNODES-1) /2] ;
int endpoint2 [MAXNODES* (MAXNODES-1) /2] ;
int index [MAXNODES] [MAXNODES] ;

Jmatch_data;

Figure 1: Data structure for matching solver

5 Case Studies

In this section, we describe two examples that illustrate the power of solver frameworks for devel-
oping custom optimization codes. The first is a custom branch-and-cut algorithm for solving the
matching problem developed using SYMPHONY. The second is a custom branch-and-price algo-
rithm for the axial assignment problem developed using BCP. Full source code and more detailed

descriptions of both solvers are available [34, 81].

5.1 Branch and Cut

The Matching Problem. Given a complete, undirected graph G = (V, E), the Matching Prob-

lem is that of selecting a set of pairwise disjoint edges of minimum weight. The problem can be

min E CeTe

ecE

formulated as follows:

Yo me =1 VieV, (12)
jEVie={i,j}€F
e > 0 Ve € F, (13)

Te € 7 Ve € E,

where . is a binary variable that takes value 1 if edge e is selected and 0 otherwise.

Implementing the Solver. The first thing needed is a data structure to store the description
of the problem instance and any other auxiliary information. Such a data structure is shown in
Figure 1. We assume a complete graph, so a problem instance can be described simply by the
objective function coefficients, stored in the two-dimensional array cost. Each primal variable is
identified by an index, so we must have a way of mapping the edge {i,j} to the index that iden-

tifies the corresponding variable and vice versa. Such mappings between problem instance objects

35

and variable indices are a common construct when using solver frameworks. Recent commercial
modeling frameworks such as Concert [45] and Mosel [20] and the noncommercial modeling system
FLOPC++ [44] have an interface that allows for a more explicit coupling of problem objects and
instance variables. In the data structure shown, endpoint1[k] returns the first endpoint of the
edge with index k and endpoint2 [k] returns the second endpoint. On the other hand index [i] [j]
returns the index of edge {1, j}.

Next, functions for reading in the problem data and creating the instance are needed. The func-
tion match_read_data() (not shown) reads the problem instance data (a list of objective function
coefficients) in from a file.

The function match_load problem(), shown in Figure 2, constructs an integer program in
column-ordered format. In the first part of this routine, a description of the MILP is built,
while in the second part, this representation is loaded to SYMPHONY through the subroutine
sym_explicit_load_problem().

The main() routine is shown in Figure 3. In this routine, a SYMPHONY environment and a
user data structure are created, the data is read in, the MILP is created and loaded into SYM-
PHONY and then solved. Results are automatically printed, but we could also implement a custom
subroutine for displaying these if desired.

We next show how to add the ability to generate some simple problem-specific valid inequalities.

The odd-set inequalities

> w< 2l ocviofoa (14)
ecE(O)
with E(O) ={e={i,j} € E |1 € O, j € O} are satisfied by all matchings. Indeed, Edmonds [28]
showed that the inequalities (12), (13), and (14) define the convex hull of matchings, so the matching
problem can be solved as a linear program, albeit with an exponential number of constraints.

The textbook of Grétschel, Lovasz, and Schrijver [37] describes how to efficiently separate the
odd-set inequalities in full generality, but for simplicity, we show how to implement separation for
odd-set inequalities for sets of size three. We do this by brute force enumeration of triples, as shown
in Figure 4. The function user_find cuts() is the SYMPHONY callback for generating valid
inequalities. The user is provided with the current fractional solution in a sparse vector format
and asked to generate violated valid inequalities. The call to cg_add_explicit_cut(), informs
SYMPHONY of any inequalities found. Even this simple separation routine can significantly reduce

the number of nodes in the branch-and-cut tree.

5.2 Branch and Price

The Three-Index Assignment Problem. The Three-Index Assignment Problem (3AP) is that
of finding a minimum-weight clique cover of the complete tri-partite graph K, , ,, where n is

redefined here to indicate the size of the underlying graph. Let I,J and K be three disjoint sets

36

int match_load_problem(sym_environment *env, match_data *prob){
int i, j, index, n, m, nz, *column_starts, *matrix_indices;
double *matrix_values, *1b, *ub, *obj, *rhs, *rngval;

char *sense, *is_int;

n = prob->numnodes* (prob->numnodes-1)/2; /* Number of columns */
= 2 * prob->numnodes; /* Number of rows */
nz = 2 * n; /* Number of nonzeros */

/* Normally, allocate memory for the arrays here (left out to save space) */
for (index = 0, i = 0; i < prob->numnodes; i++) {

for (j = i+l; j < prob->numnodes; j++) {

prob->matchl [index] i; /*The 1st component of assignment ’index’*/

prob->match2[index] = j; /*The 2nd component of assignment ’index’*/
prob->index[i] [j] = prob->index[j][i] = index; /*To recover later*/
objlindex] = prob->cost[i][j]; /* Cost of assignment (i, j) */
is_int[index] = TRUE; /* Indicates the variable is integer */
column_starts([index] = 2*index;

matrix_indices[2*index] = i;

matrix_indices[2*index+1] = j;

matrix_values[2*index] = 1;

matrix_values[2*index+1] = 1;

ub[index] = 1.0;

index++;

}
column_starts[n] = 2 * n; /* We have to set the ending position */
for (i = 0; i < m; i++) { /* Set the right-hand side */
rhs[i] = 1;
sense[i] = ’E’;
}
sym_explicit_load_problem(env, n, m, column_starts, matrix_indices,
matrix_values, 1lb, ub, is_int, obj, O, sense, rhs,
rngval, true);
return (FUNCTION_TERMINATED_NORMALLY);

Figure 2: Function to load the problem for matching solver

37

int main(int argc, char **argv)
{
int termcode;

char * infile;

/* Create a SYMPHONY environment */

sym_environment *env = sym_open_environment () ;

/* Create the data structure for storing the problem instance.*/

user_problem *prob = (user_problem *)calloc(l, sizeof (user_problem));

sym_set_user_data(env, (void *)prob);
sym_parse_command_line(env, argc, argv);
sym_get_str_param(env, "infile_name", &infile);
match_read_data(prob, infile);
match_load_problem(env, prob);

sym_solve(env) ;

sym_close_environment (env) ;

return(0) ;

Figure 3: Main function for the matching solver

with |[I| = |J| = |K|=n and set H =1 x J x K. Then, 3AP can be formulated as follows:

min E Ci]’kl‘ijk,

Y =1 Viel (15)
(J,k)eJx K

Z Tijk = 1 Vj € J,
(i,k)eIx K

> apr =1 Vk € K, (16)
(i,5)€IxJ

Tijk € {071} V(Z,j,k),e H.

In [10], Balas and Saltzman consider the use of the classical Assignment Problem (AP) as

a relaxation of 3AP in the context of Lagrangian relaxation. We use the same relaxation to

38

int user_find_cuts(void *user, int varnum, int iter_num, int level,
int index, double objval, int *indices, double *values,
double ub, double etol, int *num_cuts, int *alloc_cuts,

cut_data ***cuts)

{
user_problem *prob = (user_problem *) user;
double cut_val[3], edge_val[200] [200]; /* Matrix of edge values */
int i, j, k, cutind[3], cutnum = O;
/* Allocate the edge_val matrix to zero (we could also just calloc it) */
memset ((char *)edge_val, 0, 200*%200*ISIZE);
for (i = 0; i < varnum; i++) {
edge_val [prob->nodel[indices[i]]] [prob->node2[indices[i]]] = values[i];
}
for (i = 0; i < prob->nnodes; i++){
for (j = i+1; j < prob->nnodes; j++){
for (k = j+1; k < prob->nnodes; k++) {
if (edge_valli] [jl+edge_vall[j] [k]+edge_vall[i]l[k] > 1.0 + etol) {
/* Found violated triangle cut */
/* Form the cut as a sparse vector */
cutind[0] = prob->index[i] [j];
cutind[1] = prob->index[j] [k];
cutind[2] = prob->index[i] [k];
cutval[0] = cutval[l] = cutvall[2] = 1.0;
cg_add_explicit_cut(3, cutind, cutval, 1.0, 0, °L’,
TRUE, num_cuts, alloc_cuts, cuts);
cutnum++;
}
}
}
}
return (USER_SUCCESS) ;
}

Figure 4: Cut generator for matching solver

39

reformulate the 3AP using a Dantzig-Wolfe decomposition (see Section 2.1.4 for a discussion of this
technique). The AP is a relaxation of the 3AP obtained by relaxing constraint (15). Let F be the
set of feasible solutions to the AP. The Dantzig Wolfe (DW) reformulation of 3AP is then:

min g CsAs,

seF

> D sipAs | =1 Viel,

s€F \(j,k)eJxK
Sa=t
seF

\s € Z. Vs € F,

where ¢ = Z(i,j,k)eH cijkSijr for each s € F. Relaxing the integrality constraints of this
reformulation, we obtain a relaxation of 3AP suitable for use in an LP-based branch-and-bound
algorithm. Since there are an exponential number of columns in this linear program, we use a

standard column generation approach to solve it.

Implementing the Solver. The main classes to be implemented are the BCP_xx_user classes

mentioned earlier and a few problem-specific classes. We describe the problem-specific classes first.

e AAP: This class is a container for holding an instance of 3AP. Data members include the

dimension of the problem n and the objective function vector.

e AAP user data: This class is derived from BCP_user_data and is used to store problem-
specific information in the individual nodes of the search tree. Since we branch on the
original variables x;;; and not the master problem variables A, we need to keep track of
which variables have been fixed to 0 or 1 at a particular node, so that we can enforce these

conditions in our column generation subproblem.

e AAP_var: Each variable in the Dantzig-Wolfe reformulation represents an assignment between
members of sets J and K. In each instance of the class, the corresponding assignment is

stored using a vector containing the indices of the assignment along with its cost.

Note that because BCP is a parallel code, every data structure must be accompanied by a
subroutine that can both pack it into and unpack it from a character buffer for the purposes of
communicating the contents to other parallel processes. For most built-in types, default pack and
unpack routines are predefined. For user-defined data structures, however, they must be provided.

Typically, such routines consist simply of a collection of calls to either BCP_buffer: :pack() or

40

BCP_buffer: :unpack(), as appropriate, packing or unpacking each data member of the class in

turn. The user callback classes that must be modified are as follows.

e AAP_tm: Derived from BCP_tm_user, this class contains the callbacks associated with initial-
ization and tree management. The main callbacks implemented are initialize _core() and
create_root (). These methods define the core relaxation and the initial LP relaxation in

the root node.

e AAP 1p: Derived from BCP_lp_user, this class contains the callbacks associated with the

solution of the LP relaxations in each search tree node. The main methods implemented are

generate vars_in 1p(): the subroutine that generates new variables,

compute_lower_bound(): returns a true lower bound in each iteration (the LP relaxation
does not yield a true lower bound unless there exist no variables with negative reduced

cost),

restore_feasibility(): a subroutine that tries to generate columns that can be used to

restore the feasibility of a relaxation that is currently infeasible,

vars_to_cols(): asubroutine that generates the columns corresponding to a set of variables,

so that they can be added to the current relaxation,

select_branching candidates(): a subroutine that selects candidates for strong branch-
ing. We branch on the original variables x;;;,. Candidates are selected by the usual
“most fractional” rule using the helper function branch_close_to_half(). A second

function, append_branching vars(), is called to create the branching objects, and

set_user _data_for_children(): Stores the appropriate data regarding what original vari-

ables were branched on in each child node.

In addition to defining these classes, there are a few important parameters to be set. We have glossed
over a few details here, but the source code and a more thorough description of this example are
available for download [34].

6 Benchmarking

In this section, we present computational results showing the relative performance of the black box
solvers reviewed in Section 4. Each solver was built with gcc 3.3 using the default build parameters.
The experiments were run under Linux RedHat v7.3 on an Intel Pentium IIT with an 1133MHz
clock speed and 512MB of memory. The maximum CPU time allowed for each solver and each

instance was two hours. For each of the codes, the default parameter settings were used on the

41

Name m n n—p | |Bl | p—|B| Name m n n—p |B| | p—|B|
22433 198 429 198 231 0 23588 137 368 137 231 0
aligning 340 1831 1 1830 0 bcl 1913 1751 1499 252 0
bienst1 576 505 477 28 0 bienst2 576 505 470 35 0
dano3_3 3202 | 13873 | 13804 69 0 dano3.4 | 3202 13873 13781 92 0
dano3_5 3202 | 13873 | 13758 115 0 fiball 3707 34219 1 33960 258
mcsched 2107 1747 2 1731 14 mkcl 3411 5325 2238 3087 0
neos10 46793 | 23489 0 23484 5 neos11 2706 1220 320 900 0
neos12 8317 | 3983 847 3136 0 neosl3 | 20852 1827 12 1815 0
neosl4 552 792 656 136 0 neoslb 552 792 632 160 0
neos16 1018 377 0 336 41 neos17 486 535 235 300 0
neosl8 11402 | 3312 0 3312 0 neosl 5020 2112 0 2112 0
neos20 2446 1165 198 937 30 neos2 1103 2101 1061 1040 0
neos3 1442 2747 1387 1360 0 neos4 38577 | 22884 5712 17172 0
neosb 63 63 10 53 0 neos6 1036 8786 446 8340 0
neos’7 1994 1556 1102 434 20 neos8 46324 | 23228 0 23224 4
neos9 31600 | 81408 | 79309 | 2099 0 npmv07 | 76342 | 220686 | 218806 | 1880 0
nsa 1297 388 352 36 0 nug08 912 1632 0 1632 0
pgH_34 225 2600 2500 100 0 pg 125 2700 2600 100 0
qapl0 1820 4150 0 4150 0 ramos3 2187 2187 0 2187 0
ranl4x18_1 284 504 252 252 0 Toy 162 149 99 50 0
sp97ic 2086 1662 0 718 944 sp98ar 4680 5478 0 2796 2682
sp98ic 2311 2508 0 1139 1369 sp98ir 1531 1680 0 871 809
Test3 50680 | 72215 | 39072 | 7174 25969

Table 4: Characteristics of (non MIPLIB) problem instances

instances, the sole exception being Ip_solve, in which the default branching and node selection rule
was changed to a pseudocost-based rule?.

There were 122 problem instances included in the test: the instances of miplib3?[16], mi-
plib2003 [57], and 45 instances collected by the authors from various sources. The instances collected
by the authors are available from the Computational Optimization Research at Lehigh (CORQL)
Web site [49]. Table 4 shows the number of rows m, number of variables n, number of continuous
variables n — p, number of binary variables |B|, and number of general integer variables p — |B| for
each of the instances of the test suite that are not already available through MIPLIB.

In order to succinctly present the results of this extensive computational study, we use perfor-
mance profiles, as introduced by Dolan and Moré [24]. A performance profile is a relative measure
of the effectiveness of a solver s when compared to a group of solvers § on a set of problem instances

P. To completely specify a performance profile, we need the following definitions:

® 7ps is a quality measure of solver s when solving problem p,

® T'ps = Vps/(minses '7ps)7 and

2The Ip_solve command line was: 1p_solve -mps name.mps -bfp ./bfp_LUSOL -timeout 7200 -time -presolve
-presolvel -piva -pivla -piv2 -ca -B5 -Bd -Bg -si -s5 -se -degen -S1 -v4.

3Save for the simple instances air03, blend2, egout, enigma, flugpl, gen, khb05250 lseu misc03 misc06, mod008,
mod010, p0033, p0201, p0282, rgn, stein27, vpm1, which at least 5 of the six solvers were able to solve in less than 2

minutes.

42

o ps(T)=|{p € P |rps <7} /|P|.

Hence, ps(7) is the fraction of instances for which the performance of solver s was within a factor
of 7 of the best. A performance profile for solver s is the graph of ps(7). In general, the “higher”
the graph of a solver, the better the relative performance.

Comparing MILP solvers directly on the basis of performance is problematic in a number of
ways. By compiling these codes with the same compiler on the same platform and running them
under identical conditions, we have eliminated some of the usual confounding variables, but some
remain. An important consideration is the feasibility, optimality, and integrality tolerances used
by the solver. Dolan, Moré, and Munson [25] performed a careful study of the tolerances used
in nonlinear programming software and concluded that trends of the performance profile tend to
remain the same when tolerances are varied. The differences in solver tolerances for these tests
were relatively minor, but it is possible that these minor difference could lead to large differences in
runtime performance. Another potential difficulty is the verification of solvers’ claims with respect
to optimality and feasibility of solutions. The authors made little attempt to verify a posteriori
that the solutions claimed as optimal or feasible were indeed optimal or feasible. The conclusions
drawn here about the relative effectiveness of the MILP solvers must be considered with these
caveats in mind.

For instances that were solved to provable optimality by one of the six solvers, the solution
time was used as the quality measure 7,s. Under this measure, ps(1) is the fraction of instances
for which solver s was the fastest solver, and ps(oo) is the fraction of instances for which solver
s found a provably optimal solution. Figure 6 shows a performance profile of the instances that
were solved in two CPU hours by at least one of the solvers. The graph shows that bonsaiG and
MINTO were able to solve the largest fraction of the instances the fastest. The solvers MINTO
and CBC were able to find a provably optimal solution within the time limit for the largest largest
fraction of instances, most likely because these two solvers contain the largest array of specialized
MILP solution techniques.

For instances that were not solved to optimality by any of the six solvers in the study, we
used the value of the best solution found as the quality measure. Under this measure, ps(1) is the
fraction of instances for which solver s found the best solution among all the solvers, and ps(o0)
is the fraction of instances for which solver s found at least one feasible solution. In Figure 6, we
give the performance profile of the six MILP solvers on the instances for which no solver was able
to prove the optimality of the solution. SYMPHONY was able to obtain the largest percentage
of good feasible solutions, and the performance of GLPK was also laudable in this regard. This
is a somewhat surprising conclusion in that neither SYMPHONY nor GLPK contain a specialized
primal heuristic designed for finding feasible solutions. This seems to indicate that the primal
heuristics existing in these noncommercial codes are relatively ineffective. Implementation of a

state-of-the-art primal heuristic in a noncommercial code would be a significant contribution.

43

0.8 -

02 remdet 5----'-_ p—— bonsaiG ——

. . . SYMPHONY === .
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 10 100 1000 10000 100000

Figure 5: Performance Profile of MILP Solvers on Solved Instances

7 Future Trends and Conclusions

In closing, we want to mention the work of two groups that have been strong supporters and
developers of open code and are well-positioned to support such development for many years into
the future. The first is the COIN-OR Foundation, a non-profit foundation mentioned several times
in this paper, part of whose mission it is to promote the development of open source software
for operations research [52]. This foundation, originally a loose consortium of researchers from
industry and academia founded by IBM, has become a major provider of open source optimization
software and is poised to have a large impact on the field over the coming decade. The second is
the NEOS (Network Enabled Optimization System) project [21, 23]. NEOS provides users with
the ability to solve optimization problems on a remote server using any of a wide range of available
solvers. At current count, there are 55 different solvers for a variety of different optimization
problem types available for use. Interfaces to the noncommercial MILP solvers CBC, GLPK,
and MINTO are available on NEOS. To use NEOS, the user submits a problem represented in a
specified input format (e.g., MPS, AMPL, GMPL, or LP) through either an e-mail interface, a web

interface, or a specialized client program running on the user’s local machine. The instance is sent

44

0.8 -

0.6 F ¥ el qrenees ’ =

02 bonsaiG —

!E:
H

SYMPHONY =i=:=:=-

1 10

Figure 6: Performance Profile of MILP Solver on Unsolved Instances

to the NEOS server, which locates resources to run the instance and sends the results back to the
user. Because the job runs remotely, this provides the user with ability to test multiple solvers
without downloading and installing each of them individually. The NEOS project has been solving
optimization problems on-line since 1991, and currently handles over 10,000 optimization instance
per month.

As for the future, we see no slowing of the current trend toward the development of competitive
noncommercial software for solving MILPs. A number of exciting new open source projects are
currently under development and poised to further expand the offerings to users of optimization
software. One of these is the Abstract Library for Parallel Search (ALPS), a Ct++ class library
for implementing parallel search algorithms planned that is the planned successor to BCP [87].
ALPS will further generalize many of the concepts present in BCP, providing the ability to im-
plement branch-and-bound algorithms for which the bounding procedure is not necessarily LP-
based. A second framework, called DECOMP, will provide the ability to automate the solution
of decomposition-based bounding problems, i.e., those based on Lagrangian relaxation or Dantzig-
Wolfe decomposition [70]. Both of these frameworks will be available as part of the COIN-OR

45

software suite. A new generation of the Open Solver Interface supporting a much wider range
of problem types and with better model building features is under development by COIN-OR,
along with a new open standard based on LPFML for describing mathematical programming in-
stances [33]. Finally, a MILP solver integrating techniques from constraint programming with those
described here is also under development and due out soon [1].

On the whole, we were impressed by the vast array of packages and auxiliary tools available,
as well as the wide variety of features exhibited by these codes. The most significant features
still missing in open codes are effective logical preprocessors and primal heuristics. More effort is
needed in developing tools to fill this gap. While noncommercial codes will most likely continue to
lag behind commercial codes when it comes to raw speed in solving generic MILPs out of the box,
they generally exhibit a much greater degree of flexibility and extensibility. This is especially true
of the solver frameworks, which are designed specifically to allow the development of customized
solvers. A number of features appearing in noncommercial codes, such as parallelism, the ability
to support column generation, and the ability to solve multi-criteria MILPs, simply do not exist
in most commercial codes. Although the noncommercial codes are in general slower than the
best commercial codes, we believe that many users will be genuinely satisfied with the features
and performance of the codes reviewed here and we look forward to future developments in this

fast-growing area of software development.

Acknowledgment

The authors would like to thank Kjell Eikland, John Forrest, Matthew Galati, Lou Hafer, and

Matthew Saltzman for their insightful comments that helped to improve the presentation.

References

[1] ACHTERBERG, T. SCIP—a framework to integrate constraint and mixed integer programming.
Tech. Rep. ZIB-Report 04-19, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Takustr.
7, Berlin, 2004.

[2] ACHTERBERG, T., KocH, T., AND MARTIN, A. Branching rules revisited. Operations Re-
search Letters 33 (2004), 42-54.

[3] APPLEGATE, D., BIxBY, R., Cook, W., AND CHVATAL, V., 1996. Personal communication.

[4] ATAMTURK, A., NEMHAUSER, G., AND SAVELSBERGH, M. W. P. Conflict graphs in integer
programming. Technical Report LEC-98-03, Georgia Institute of Technology, 1998.

[5] ATAMTURK, A., NEMHAUSER, G., AND SAVELSBERGH, M. W. P. Conflict graphs in solving
integer programming problems. FEuropean J. Operational Research 121 (2000), 40-55.

46

[6]

[13]

[14]

ATAMTURK, A., AND SAVELSBERGH, M. Integer-programming software systems. Annals
of Operations Research (2004). Forthcoming, available at http://www.isye.gatech.edu/
faculty/Martin Savelsbergh/publications/ipsoftware-final.pdf.

Baras, E. Facets of the knapsack polytope. Mathematical Programming 8 (1975), 146-164.

Baras, E., CERIA, S., CORNUEJOLS, G., AND NATRAJ, N. Gomory cuts revisited. Opera-
tions Research Letters 19 (1999).

BAras, E., AND MARTIN, R. Pivot and complement: a heuristic for 0-1 programming.
Management Science (1980), 86-96.

Bavras, E., AND SALTZMAN, M. An algorithm for the three-index assignment problem.
Operations Research 39 (1991), 150-161.

BALAS, E., SCHMIETA, S., AND WALLACE, C. Pivot and shift—A mixed integer programming
heuristic. Discrete Optimization 1 (2004), 3-12.

BEALE, E. M. L. Branch and bound methods for mathematical programming systems. In
Discrete Optimization IT (1979), P. L. Hammer, E. L. Johnson, and B. H. Korte, Eds., North
Holland Publishing Co., pp. 201-219.

BEALE, E. W. L., AND TOMLIN, J. A. Special facilities in a general mathematical program-
ming system for non-convex problems using ordered sets of variables. In Proceedings of the 5th

International Conference on Operations Research (1969), J. Lawrence, Ed., pp. 447-454.

BENICcHOU, M., GAUTHIER, J. M., GIRODET, P., HENTGES, G., RIBIERE, G., AND VIN-
CENT, O. Experiments in mixed-integer linear programming. Mathematical Programming 1
(1971), 76-94.

BERKELAAR, M. Ip_solve 5.1, 2004. Available from http://groups.yahoo.com/group/lp_

solve/.

BixBy, R. E., CERIA, S., McZEAL, C. M., AND SAVELSBERGH, M. W. P. An updated
mixed integer programming library: MIPLIB 3.0. Optima 58 (1998), 12-15.

BORNDORFER, R., AND WEISMANTEL, R. Set packing relaxations of some integer programs.
Mathematical Programming 88 (2000), 425 — 450.

CHVATAL, V. Linear Programming. W. H. Freeman and Co., New York, 1983.

COIN-OR: Computational Infrastructure for Operations Research, 2004. http://www.

coin-or.org.

47

[20]

[26]

[27]

COLOMBANI, Y., AND HEIPCKE, S. Mosel: An extensible environment for modeling and
programming solutions. In Proceedings of the Fourth International Workshop on Integration of
Al and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems

(CP-AI-OR’02) (2002), N. Jussien and F. Laburthe, Eds., pp. 277-290.

CzyzYK, J., MESNIER, M., AND MORE, J. The NEOS server. IEEE Journal on Computa-
tional Science and Engineering 5 (1998), 68-75.

Danna, E., ROTHBERG, E., AND LEPAPE, C. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming (2004). To appear.

DoLraN, E., FOURER, R., MORE, J., AND MUNSON, T. Optimization on the NEOS server.
SIAM News 35 (2002), 8-9.

DoLAN, E., AND MORE, J. Benchmarking optimization software with performance profiles.
Mathematical Programming 91 (2002), 201-213.

DoLAN, E., MORE, J., AND MUNSON, T. Optimality measures for performance profiles.
Preprint ANL/MCS-P1155-0504, Mathematics and Computer Science Division, Argonne Na-
tional Lab, 2004.

DrIEBEEK, N. J. An algorithm for the solution of mixed integer programming problems.
Management Science 12 (1966), 576-587.

ECKSTEIN, J. Parallel branch-and-bound methods for mixed integer programming. SIAM
News 27 (1994), 12-15.

EbpMONDS, J. Maximum matching and a polyhedron with 0-1 vertices. Journal of Research
of the National Bureau of Standards 69B (1965), 125-130.

FiscHETTI, M., AND LODI, A. Local branching. Mathematical Programming 98 (2002),
23-47.

Forrest, J. CBC, 2004. Available from http://www.coin-or.org/.

Forrest, J. J. H., HirsT, J. P. H., AND TOMLIN, J. A. Practical solution of large scale
mixed integer programming problems with UMPIRE. Management Science 20 (1974), 736—
773.

FOURER, R., GAay, D. M., AND KERNIGHAN, B. W. AMPL. A Modeling Language for
Mathematical Programming. The Scientific Press, 1993.

FOURER, R., LopPEs, L., AND MARTIN, K. LPFML: A W3C XML schema for linear pro-
gramming, 2004. Available from http://www.optimization-online.org/DB_HTML/2004/02/
817 .html.

48

[41]

[42]

[43]

[44]

[45]

[46]

GaraTi, M. COIN-OR tutorials, 2004. Available from http://coral.ie.lehigh.edu/

~coin/.

GAUTHIER, J. M., AND RIBIERE, G. Experiments in mixed-integer linear programming using
pseudocosts. Mathematical Programming 12 (1977), 26-47.

GoMORY, R. E. An algorithm for the mixed integer problem. Tech. Rep. RM-2597, The
RAND Corporation, 1960.

GROTSCHEL, M., LOVASZ, L., AND SCHRIJVER, A. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, New York, 1988.

Gu, Z., NEMHAUSER, G. L., AND SAVELSBERGH, M. W. P. Cover inequalities for 0-1 linear
programs: Computation. INFORMS Journal on Computing 10 (1998), 427-437.

Gu, Z., NEMHAUSER, G. L., AND SAVELSBERGH, M. W. P. Lifted flow covers for mixed 0-1
integer programs. Mathematical Programming 85 (1999), 439-467.

Gu, Z., NEMHAUSER, G. L., AND SAVELSBERGH, M. W. P. Sequence independent lifting.
Journal of Combinatorial Optimization 4 (2000), 109-129.

HAFER, L. bonsaiG 2.8, 2004. Available from http://www.cs.sfu.ca/~lou/BonsaiG/
dwnldreq.html.

HaMmMER, P. L., JounsoN, E. L., AND PELED, U. N. Facets of regular 0-1 polytopes.
Mathematical Programming 8 (1975), 179-206.

HorrMmAN, K., AND PADBERG, M. Solving airline crew-scheduling problems by branch-and-
cut. Management Science 39 (1993), 667-682.

HuLTBERG, T. FlopC++, 2004. Available from http://www.mat.ua.pt/thh/flopc/.

ILOG concert technology. http://www.ilog.com/products/optimization/tech/concert.

cfm.

JUNGER, M., AND THIENEL, S. The ABACUS system for branch and cut and price algorithms

in integer programming and combinatorial optimization. Software Practice and Ezxperience 30
(2001), 1325-1352.

LADANYT, L. Parallel Branch and Cut and Its Application to the Traveling Salesman Problem.
PhD thesis, Cornell University, May 1996.

LADANYI, L. BCP, 2004. Available from http://www.coin-or.org/.

LINDEROTH, J. Mip instances, 2004. Available from coral.ie.lehigh.edu/mip-instances.

49

[50]

[51]

[52]

[53]

[57]

[58]

[59]

[63]

[64]

LINDEROTH, J. T., AND SAVELSBERGH, M. W. P. A computational study of search strategies
in mixed integer programming. INFORMS Journal on Computing 11 (1999), 173-187.

LOUGEE-HEIMER, R. The Common Optimization INterface for Operations Research. IBM
Journal of Research and Development 47 (2003), 57-66.

LOUGEE-HEIMER, R., SALTZMAN, M., AND RALPHS, T. ‘COIN’ of the OR Realm. OR/MS
Today (October 2004).

MAKHORIN, A. GLPK 4.2, 2004. Available from http://www.gnu.org/software/glpk/
glpk.html.

MARCHAND, H. A Study of the Mized Knapsack Set and its Use to Solve Mized Integer
Programs. PhD thesis, Facult’e des SciencesAppliquées, Université Catholique de Louvain,
1998.

MARCHAND, H., AND WOLSEY, L. Aggregation and mixed integer rounding to solve MIPs.
Operations Research 49 (2001), 363-371.

MARrcoT, F. BAC: A BCP based branch-and-cut example. Report RC22799, IBM Research,
2004.

MARTIN, A., ACHTERBERG, T., AND KocH, T. MIPLIB 2003. http://miplib.zib.de.

MiTRA, G. Investigation of some branch and bound strategies for the solution of mixed integer

linear programs. Mathematical Programming 4 (1973), 155-170.

NEDIAK, M., AND ECKSTEIN, J. Pivot, cut, and dive: A heuristic for mixed 0-1 integer
programming. Tech. Rep. RUTCOR Research Report RRR 53-2001, Rutgers University, 2001.

NEMHAUSER, G., AND SAVELSBERGH, M. MINTO 3.1, 2004. Available from http://coral.
ie.lehigh.edu/minto/.

NEMHAUSER, G., AND WOLSEY, L. A recursive procedure for generating all cuts for 0-1
mixed integer programs. Mathematical Programming 46 (1990), 379-390.

NEMHAUSER, G., AND WOLSEY, L. A. Integer and Combinatorial Optimization. John Wiley
and Sons, New York, 1988.

NEMHAUSER, G. L., AND S1GISMONDI, G. A strong cutting plane/branch-and-bound algo-
rithm for node packing. Journal of the Operational Research Society 43 (1992), 443-457.

NEMHAUSER, G. L., AND TROTTER JR., L. E. Properties of vertex packing and independence
system polyhedra. Mathematical Programming 6 (1974), 48-61.

50

[65]

[66]

[67]

[72]

PADBERG, M. On the facial structure of set packing polyhedra. Mathematical Programming
5 (1973), 199-215.

PADBERG, M. Linear Optimization and Extensions. Springer-Verlag, New York, 1995.

Ravpus, T. Parallel Branch and Cut for Vehicle Routing. PhD thesis, Cornell University,
May 1995.

Rarpus, T. SYMPHONY 5.0, 2004. Available from http://www.branchandcut.org/
SYMPHONY/.

Rarpus, T. SYMPHONY Version 5.0 User’s Manual. Technical Report 04T-020, Lehigh
University Industrial and Systems Engineering, 2004.

RaLpus, T., AND GALATI, M. Decomposition in integer programming. Industrial and Systems
Engineering Technical Report 04T-019, Lehigh University, 2004.

Rarpus, T., AND GUZELSOY, M. The SYMPHONY callable library for mixed integer pro-
gramming. To appear in the Proceedings of the Ninth Conference of the INFORMS Computing
Society, 2004.

RaLpHs, T., SALTZMAN, M., AND WIECEK, M. An improved algorithm for biobjective
integer programming and its application to network routing problems. To appear in Annals
of Operations Research, 2004.

RaLpHs, T. K., LADANYI, L., AND SALTZMAN, M. J. Parallel branch, cut, and price for
large-scale discrete optimization. Mathematical Programming 98 (2003), 253-280.

Roy, J.-S. PuLP : A linear programming modeler in Python. http://www.jeannot.org/
~js/code/index.en.html#PuLP.

SAVELSBERGH, M. W. P. Preprocessing and probing techniques for mixed integer program-
ming problems. ORSA Journal on Computing 6 (1994), 445-454.

SCHRAGE, L., AND WOLSEY, L. A. Sensitivity analysis for branch and bound linear pro-
gramming. Operations Research 33 (1985), 1008-1023.

SCHRIJVER, A. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

SIDEBOTTOM, G. Satisfaction of constraints on non-negative integer arithmetic expressions.
Open File Report 1990-15, Alberta Research Council, 6815 8th Street, Calgary, Alberta, CA
T2E 7H7, 1990.

THIENEL, S. ABACUS 2.3, 2004. Available from http://www.informatik.uni-koeln.de/

abacus/.

o1

[83]

ToMLIN, J. A. An improved branch-and-bound method for integer programming. Operations
Research 19 (1971), 1070-1075.

TRICK, M., AND GUZELSOY, M. Simple walkthrough of building a solver with symphony, 2004.
Available from ftp://branchandcut.org/pub/reference/SYMPHONY-Walkthrough.pdf.

VAN HEESCH, D. Doxygen documentation system, 2004. Available from http://www.
doxygen.org/.

VANDERBECK, F. A generic view of Dantzig-Wolfe decomposition in mixed integer program-
ming. Working paper, Laboratoire de Mathématiques Appliquées Bordeaux, Université Bor-
deaux, 2003. Available at http://www.math.u-bordeaux.fr/~fv/papers/dwcPap.pdf.

WoLSEY, L. A. Faces for a linear inequality in 0-1 variables. Mathematical Programming 8
(1975), 165-178.

WoLseEy, L. A. Valid inequalities for mixed integer programs with generalized and variable
upper bound constraints. Discrete Applied Mathematics 25 (1990), 251-261.

WoLsey, L. A. Integer Programming. John Wiley and Sons, New York, 1998.

Xu, Y., Rarpras, T., LADANYI, L., AND SALTZMAN, M. ALPS: A framework for imple-

menting parallel search algorithms. to appear in the Proceedings of the Ninth Conference of
the INFORMS Computing Society, 2004.

Zimpl. http://www.zib.de/koch/zimpl/.

52

