
 

Statistics Spotlight1213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
9154515413454

Solving quality quandaries through statistics
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Staying Relevant
PROBABILITY  

statistical analysis. It was first 
proposed by Abraham de Moivre in 
1733 when he discovered he could 
approximate binomial distribution 
probabilities from an integral of 
exp(-x2),1 although he did not name 
this integral. 

It wasn’t until 1920 that George 
Polya gave the name to the theo-
rem that we are now familiar with. 
There were several developments 
during the almost 200-year span 
from de Moivre to Polya to supple-
ment the theorem to the results 
we use today. Over the centuries, 
the proof of the theorem included 
contributions by Pierre-Simon 
Laplace, Siméon Denis Poisson, 
Peter Gustav Lejeune Dirichlet, Bes-
sel, Augustin Louis Cauchy, Pafnuty 
Chebyshev, Aleksandr Liapounov, 

Jarl Waldemar Lindeberg, Paul 
Lévy and W. Feller.2 Throughout 
all these contributions, the CLT 
was formulated as a theoreti-

cal probability theorem 
for the development 
of density functions of 

distributions.3 This is 
not how statisti-
cians apply this 
theorem. 
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The central limit theorem remains a  
key concept in probability theory

by Julia Seaman, I. Elaine Allen and Samuel Zetumer

In the beginning, there was the central limit theorem (CLT). We 
use it every day as the basis for our statistical analyses. We base the 
reproducibility of our analyses on what the CLT tells us about our data, 
and we make inferences from the results of our hypothesis tests based 
on the CLT. 

This theorem forms the basis for the majority of hypothesis testing 
and prediction models in statistics. In simplified terms, the CLT states 
that the sum of many different independent results tends toward a 
normal distribution and gives us a method to estimate 
sampling error.

But is this theorem—first postulated in 1733—still rele-
vant and appropriate in the age of big data? Specifically, 
was the theorem really proven to encourage 
us to perform parametric analyses with every 
sufficiently large data set? In its first formula-
tion, it was not.

Early origins
First and foremost, the CLT is a theorem 
proven in probability theory and not 
(initially) proposed to be used as 
a normal theory to approximate 
data from other distributions for 

http://qualityprogress.com
http://qualityprogress.com


Statistics Spotlight1213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262
124345464755497541275299949514654237204317
91545154134541213231315447133415341545721157945495241262

Statistical application
The theorem is derived under the 
assumption of an infinite popu-
lation with observations that are 
independent, and identically dis-
tributed with constant mean and 
variance. Using basic calculus, it is 
not difficult to prove and is often 
included in high school curricula. 
Further, for this infinite popula-
tion with mean, μ, and standard 
deviation, σ, there is the added 
assumption that for our sample to 
be normally distributed we must 
take sufficiently large random 
samples from the population with 
replacement. What de Moivre 
showed was that this will hold true 

regardless of the distribution of the source population. 
In its most familiar form, this theorem does not apply to sampling 

from a finite population—for example, the number of factories an 
organization owns or the number of transit subway riders per day.4 Two 
important modifications of the CLT were necessary before statisticians 
could apply the results to finite populations and sampling without 
replacement. Andrey Markov showed that the theorem can be relaxed 
for use with dependent sampling (without replacement) and Lévy 
showed that the same properties of the CLT with theoretical distribu-
tion can be applied to empirical distributions (that is, real data).5

In general, statisticians assume that whether the underlying distri-
bution is normal or skewed, provided the sample size is sufficiently 
large (usually n > 30), the sample will be normal. If the population is 
already normal, the theorem holds true even for samples smaller than 
30. In practice, this means we can use the normal probability model to 
quantify uncertainty when making inferences about a population mean 
based on the sample mean.

However, the essential component of the CLT is that it is referring to 
the distribution of our sample means approaching the normal distri-
bution, and the mean of our sample means will be the same as the 
population mean, not a specific mean from one specific sample—as 
how the CLT is used today.

We are now analyzing large data sets from nonrandomized and 
from samples without replacement. The CLT, while very generalizable, 
was developed before the advent of computers and age of big data. 
Now, it’s too easy to have too much data and therefore be magnitudes 

TA B L E   1

Means of 3 from a 
uniform distribution of 
the numbers 1–10

Take samples of size 3 Average

1 2 3 2.0

1 2 4 2.3

1 2 5 2.7

1 2 6 3.0

1 2 7 3.3

1 2 8 3.7

1 2 9 4.0

1 2 10 4.3

… … … …

6 8 9 7.7

6 8 10 8.0

6 9 10 8.3

7 8 9 8.0

7 8 10 8.3

7 9 10 8.7

8 9 10 9.0
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F I G U R E  1

Uniform distribution of the numbers 1–10  
and mean 5.5
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F I G U R E  2

Histogram of the sample without replacement 
results showing a bell-shaped curve

2 2.7 3.4 4.1 4.8 5.5 6.2 6.9 7.6 8.3 More

Fr
eq

ue
nc

y

1 3

7

12

17

20 20

17

12

7

4

F I G U R E  3

Histogram of the sample with replacement 
results showing a smoother bell-shaped 
curve
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Editor’s note: The overall mean of the 1,000 means is 5.5, identical to the mean of the original 
distribution and the sample without replacement results.
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greater than the lower limit of 30 
samples. In these cases, the CLT 
may be valid, but other issues 
do arise when looking for the 
statistical signal in all the data that 
are not accounted for when the 
theorem and many parametric 
tests were developed. 

Extreme example
Suppose we have a simple distribu-
tion of data in which each number 
is equally likely and the data are the 
first 10 numbers: 1, 2, 3, 4, 5, 6, 7, 8, 
9 and 10. Note that the probability 
of taking a sample of size one from 
this group is 0.1, or 10%.

This is a small sample, but we 
can illustrate the power of the CLT 
by looking at the distribution of 
the means from all possible sam-
ples of size three. Table 1 shows 
the initial eight samples and the 
last seven samples for samples 
without replacement. Note that 
the means of each group of three 
are not necessarily close, varying 
from a mean of 2-9. 

Sampling without replacement, 
there are 120 unique combina-
tions of three numbers from the 
numbers 1-10. When all the com-
binations are counted together in 
a histogram, the average value of 
a sample of three approaches is a 
normal distribution (Figure 2) with 
an overall mean of 5.5. The overall 
mean of 5.5 is identical to the 
mean of the original distribution. 
While the original population con-
tains 10 possible values, because 
our sampled population is more 
than 30, the CLT is applicable.

Sampling with replacement 
would increase the combinations 
to 220 and add both lower means 
(1 from the sample 1, 1, 1) and 
higher means (10 from the sample 
10, 10, 10). The increased sample 
size shows a smoother normal 
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F I G U R E  4

Resale home prices in 2015 in Singapore 

F I G U R E  5

Sampling data approaching a normal distribution  
from the non-normal housing data
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Distribution of the resale public housing prices in 2015
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distribution curve than the previous histogram, as expected from the CLT 
(Figure 3, p. 55).

This extreme example may be unrealistic. Because one of the authors 
is a consultant, clients often share their data with the caveat that they 
know it is not normally distributed so parametric statistics based on the 
normal distribution should not be used. A good example of non-normally 
distributed data is housing prices. See Figure 4, which shows few homes 
are close to zero in cost and there are some expensive properties creating 
a highly skewed distribution (usually following a Weibull distribution).6

As discussed in a New York Times article, “…even when raw data does 
not fit a normal distribution, there is often a normal distribution lurking 
within it.”7,8

It is not the raw data that form the basis for our use of statistics based 
on the normal distribution, but our reliance on the theorem to assure to us 
that the distribution of our sample mean will be normally distributed. 

For samples of size five and size 50 from this distribution, the histo-
grams in Figure 5 show much less skewness. Therefore, some parametric 
tests may be appropriate with this data set. When the sample is small 
and the data are skewed, for example, a test based on the median rather 
than the mean may be appropriate. The median always will represent the 
center of the distribution while the mean will be influenced (pulled in the 
direction) by the extreme skewness of the data.

Caveats and conclusions
If our sample size exceeds 30, can we always assume the CLT and use our 
parametric statistical results? Probably, but not always. 

First, we should look at the data. If our key variable shows a strong 
bimodal distribution, using the normal distribution will mask the real 
differences in the two peaks in our data.

Next, if we are fitting models, look at the distributions of the inde-
pendent and dependent variables and how they are related. If we are 
predicting ordinal or categorical variables, the normal distribution may 
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not be appropriate regardless of the 
sample size.

Finally, with small samples, use 
parametric (based on the normal dis-
tribution) and nonparametric methods. 
Do they agree? Great! If not, look at 
your data more closely to understand 
these differences and which method 
assumptions are most accurate for the 
data.
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Marketplace
Newly released products and tools 
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PROTECTIVE VENTS

Venting in 
potentially 
explosive environments
W. L. Gore & Associates’ GORE PolyVent Ex+ is the latest addition to Gore’s pro-
tective vents screw-in series and is certified according to explosion-proof safety 
standards, IECEx and ATEX. With these certifications, PolyVent Ex+ is allowed in 
areas with potentially explosive atmospheres caused by combustible gases or dust. 

Materials selected for designing GORE PolyVent Ex+ were chosen to sup-
port the vent’s long-lasting behavior in the field. The vent body, cap and 
membrane-sealing technology use nonflammable, stainless steel. The GORE 
membrane, made of 100% ePTFE, delivers performance for pressure-equalization 
customers, while achieving the highest flammability rating in its category. The 
silicone O-ring with a flammability resistance rating of UL 94 V-0 adds another 
layer of safety. 

These materials, combined with the GORE PolyVent Ex+ construction, ensure 
flammability and corrosion resistance, and chemical robustness. The GORE 
membrane provides oleophobic and hydrophobic protection. With an airflow rate 
of 1,600 ml/min at 70 mbar and an ingress protection rating of IP68/IP69k, Poly-
Vent Ex+ reliably protects enclosures up to 20l for a wide range of temperatures.
gore.com/protectivevents | 410-506-3526

POWER TAKE OFF

PTOs for demanding 
work conditions

Twin Disc’s HP800, a hydraulically-actuated power 
take-off (PTO), is a middle horsepower range 
option for industrial applications. The HP800 has 
a maximum power rating of 800 hp at 1,800 rpm. 
It’s ideal for driving pumps, grinders, crushers, 
dredgers, chippers, shredders and heavy-duty 

drills. 
The key feature of the HP800 is the auxiliary 

drive pump towers 400 hp maximum capacity 
tower, or 450 hp maximum for both. They can 

rotate 0°, 45° and 90°, either clockwise or count-
er-clockwise, to allow for clearance in installations. 
www.twindisc.com | sales@twindisc.com

SOFTWARE

Mining 
platform 
includes 
blasting 
functionality 
ASI Mining has collaborated with Enaex to 
develop semi-autonomous blasting func-
tionality with ASI’s autonomous command 
and control software, Mobius.

ASI’s Mobius for Blasting application 
provides capability for teleoperation and 
autonomous navigation of blast vehicles, 
including mobile manufacturing unit and 
stemming vehicles. In addition, Mobius 
has the potential to coordinate drill and 
blasting, resulting in dynamically tailored 
blast processes based on actual “as-drilled” 
hole data, creating higher efficiency and 
increased fragmentation.

Steps were taken to ensure the autono-
mous blasting solutions meet all required 
safety, operational and availability stan-
dards, given the high risk of danger for 
workers and equipment.

This development is part of an ecosys-
tem of teleoperation and autonomous units 
that will improve workers’ safety by using 
technology to perform tasks in risky mine 
environments from a safe location.
www.asirobots.com | 866-881-2171 
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