
Algorithm 750: CDT: A Subroutine for the
Exact Solution of Large-Scale, Asymmetric
Traveling Salesman Problems

G. CARPANETO

University of Modena

M, DELL’AMICO

Politecnico di Milano

and

P. TOTH

University of Bologna

The Fortran code CDT, implementing an algorithm for the asymmetrw traveling salesman

problem, m presented. The method is based on the Assignment Problem relaxation and on a

sub tour ellml nation branching scheme. The effectiveness of the implementation derives from
reduction procedures and parametric solutlon of the relaxed problems associated with the nodes

of the branch-decision tree,

Categories and Subject Descriptors: D.3 2 [Programming Languages] Language Classifica.

tions—Fortran; G.2.1 [Discrete Mathematics], Combmatorics-con-zbu-zatorLal algorithms; G.2.2

[Discrete Mathematics]: Graph Theory—graph algorithms; path and cu-cuzt problems

General Terms: Algorithms

Additional Key Words and Phrases: Assignment problem, asymmetric travehng salesman prob-

lem, branch and bound, reduction procedure, subtour elimination

1. INTRODUCTION

Consider a complete digraph G = (V, A) with vertex set V = {1, n}, arc

set A = {(i, ~“): i G V, ~“ G V}, and a cost al ~ associated with each arc

(i, j)~A (a,,= ~ V i ● V). The asymmetric traveling salesman problem

(ATSP) is to &zd a circuit visiting all vertices in V once (circuit) and such

that the sum z‘ of the costs of its arcs is minimum. Without loss of

This research was supported by MURST (Italy) and by the Human Capital and Mobility Project

CHRX-CT93-O087 of the European Community.

Authors’ addresses. G. Carpaneto, D,partimento di Econom,a, University of Modena, Italy; M.

Dell’Amlco, Dipartlmento di Elettronica e Informazione, Politecnico dl Milano, Italy: P. Toth,

Dipartimento di Elettronica Informatica e Slsternistica, Umversita degli Studi di Bologna, Vlale

Rlsor~mento 2, 40136 Bologna, Italy

Permission to make dlgitaI/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the pubhcation, and its date appear, and notice 1s

given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to hsts, requires prior specific permission and/or a fee,

@ 1995 ACM 0098-3500/95/1200-0410 $0350

ACM Transactions on Mathematical Software, Vol 21, No 4, December 1995, Pages 410-415

Algorithm 750: CDT . 411

generality, we will assume that costs are nonnegative integers. The problem

is known to be NP-hard. The code, implementing the lowest first branch-

and-bound algorithm CDT presented in Carpaneto et al. [1990], is based on

the Assignment Problem (AP) relaxation and a subtour elimination branch-

ing scheme. At each node h of the decision tree algorithm CDT solves a

Modified Assignment Problem (MAP~), that is, an AP with additional con-

straints associated with arc subsets Eh and 1~, where:

{Eh = (i, j) GA: arc (i, j) is excluded from the optimal solution};

{lk = (i, j) GA: arc (i, j) belongs to the optimal solution}.

If the optimal solution to MAP~ does not define a Hamiltonian circuit, and its

value LBh (giving the lower bound associated with node h) is less than the

current optimal solution value, say UB, then descending nodes are generated

from node h according to a subtour elimination branching scheme (see

Carpaneto and Toth [1980]) derived from that of Bellmore and Malone [1971].

There are two kinds of nodes in the decision tree: active nodes (i.e., nodes

not yet branched) and passive nodes (i.e., branched or fathomed). To store the

information associated with the nodes, a vector V and two matrices MF and

MV are used; vector V contains the scalar information, the matrices the

vectorial information. The former is used to describe the decision tree struc-

ture; the vectorial information associated with node h is used for the para-

metric solution of the MAPs corresponding to nodes descending from h.

To increase the effectiveness of the implementation, a reduction procedure

has been applied at the root node of the branch-decision tree so as to remove

from G the arcs which cannot belong to an optimal solution. In this way the

original digraph G can be transformed into a sparse one, say G = (V, A-),

allowing sparse cost matrix procedures to be used for the solution of the

MAPs associated with the nodes of the branch-decision tree.

2. PROGRAM

The algorithm was coded in American National Standard Fortran 77 and has

been checked for portability using the NAGWARE Fortran 77 portability

verifier [NAG 1992]. The code has been tested. on a CONVEX C 120, on a SUN

SPARC\2, on a VAX 6000/400, on a DECstation 5000/240, on an SGI

Challenge, and on a PC 486/33.

The whole package is completely self-contained, and communication with it

is achieved solely through the parameter list of CDT. The package can be

invoked with the statement

CALL CDT (N,ORDX,X,MAXND,INF,ALPHA, ZEUR,ZSTAR,
FSTAR,LBO, LBC,NEXP,NPROBQ, NASS,
ACTIVE, LOPT,SPARS,AVSON, ERR)

The input parameters are:

N = number of vertices (n);

X = working array used to store all the information needed for the

branch-and-bound algorithm: in input it contains the original cost

ACM Transactions on Mathematical Software, Vol 21, No. 4, December 1995.

412 . G Carpaneto et al

matrix, stored column by column, so as to store al ,j in the k th

element of X, with k = (j – l)n + i;

ORDX = size of array X;

MAXND = maximum allowed number of MAPs considered (set to – 1 if no
limitation is imposed);

INF == very large positive integer (with INF + rnaz{a, ~ : (i, ~) G A} less

than the maximum integer value representable ‘in the computer);

ALPHA = parameter used to define an artificial upper bound UB:

if ALPHA > 0 then UB = Z(AP) X ALPHA

if ALPHA s O an upper bound is computed;

ZEUR == value used to define a true upper bound, if ALPHA <0:

if ZEUR > 0 then CDT uses as upper bound the minimum be-

tween ZEUR and the value provided by the patching heuristic;

if ZEUR < 0 then CDT uses the value given by the patching

heuristic.

The value of ORDX must satisfy:

ORDX> nz + 21n + 2 + IAI.

The output values are:

ZEUR = upper bound value used by CDT;

ZSTAR = value of the optimal solution (z* or value of the best solution so

far);

FSTAR = solution vector corresponding to ZSTAR (FSTAR(i) = j if arc (i,

.j) is in the optimal Hamiltonian circuit, i = 1,...,n);

LBO = value of the AP solved at the root node;

LBC = value of the highest lower bound found so far, when algorithm

stops, i.e., value of the lower bound associated with the last

problem extracted from the queue. This is a valid lower bound

for the original instance;

NEXP = number of explored nodes;

NPROBQ = number of problems stored in the queue;

NASS = number of completely solved MAPs;

ACTIVE = number of active nodes in the queue, when the program stops;

LOPT = level of the optimal solution in the branch-decision tree;

SPARS = percentage sparsity of the reduced matrix;

AVSON = average number of son nodes;

ERR = error condition; it can assume the following values:

– 1: an error condition occurred, and an explicative message

was printed on logical unit 6;

o: optimal solution found.

All the parameters are integer. After execution, all the input parameters

are unchanged, except the first n 2 elements of X. The program needs no

ACM TransactIons on Mathematical Software, VO1 21, NO 4, December 1995

Algorithm 750: CDT . 413

additional internal arrays; hence its global core memory requirements are

ORDX + n elements.

When the program terminates, two situations may occur: (1) the number of

solved A&Ws is less then the input parameter MAXND (or MAXND was set

to – 1); (2) the number of solved iMAPs is equal to MAXND. In case (1) two

subcases must be distinguished. If the value ZSTAR is equal to the input

value of ZEUR, then the upper bound ZEUR is optimal, and the solution in

vector FSTAR does not correspond to the optimal one. Otherwise (ZSTAR less

than the input value of ZEUR), the optimal solution is defined by vector

FSTAR. In case (2), if ZEUR is less than its input value, and ALPHA s O,

then vector FSTAR defines a heuristic solution for the instance; otherwise

FSTAR has no meaning. In any case the value LBC is a valid lower bound for

the instance.

Finally we note that the CPU time required to solve a single instance may

be very large, so periodic printings have been introduced to monitor the

correct running of the program. At the root node, when the first assignment

problem has been solved and an upper bound has been determined, CDT

prints the following message:

ROOT NODE: ZSTAR = XXX LBO = yyy

where xxx is the current best solution value (possibly artificial if ALPHA > O),

and yyy is the lower bound value at the root node. During the exploration of

the branch-decision tree, CDT prints the following message, every 1000 nodes

inserted in the queue:

ZSTAR = XXX LBC = yyy NPROBQ = ZZZ ACTIVE== WWW

where xxx is the current best solution value; yyy is the value of the lower

bound associated with the last problem extracted from the queue; zzz is the

number of nodes currently inserted in the queue; and www is the number of

active problems in the queue. The same printing is made when a new (better)

solution is found or value LBC is updated.

3. EXAMPLE

The subroutine CDT can be invoked by means of the following main program:

PROGRAM MAIN
c
c SAMPLE CALLING PROGRAM FOR CDT
c

INTEGER ERR,ORDX,ZSTAR,ZEUR,ACTIVE
INTEGER X(I 0000) ,FSTAR(l 00)
ORDX = 10000
INF = 99999999
ALPHA = – 1
MAXND = – 1
ZEUR = –1

c READ N (WITH N .LE. I 00) AND THE COST MATRIX
OPEN(UNIT = 1,FILE = ‘INP.DAT’,STATUS = ‘OLD’)
READ(1, *) N
CALL READA(N,X(l))
CLOSE(1)

ACM Transactions on Mathematical Software, Vol. 21, No 4. December 1995.

414 .

c

1
c

10
1

1
1

c

10

G. Carpaneto et al,

CALL CDT(N,ORDX,X, MWND,lNF,ALPHA, ZEUR,ZSTAR, FSTAR,LBO, LBC,
NEXP, NPROBQ,NASS,ACTIVE, LOPT,SPARS,AVSON, ERR)

IF (ERR, EQ.0) GoTo 10
WRITE(6,’(” SOLUTION NOT OPTIMAL “)’)

WRITE(6,’(” ZSTAR = “,18,” LBO – “,18,” LBC = “,18,
“ SPARS = “,F8.4)’) ZSTAR,LBO,LBC;SPARS
WRITE(6,’(” N,EXP = “,18,” N.PROB.Q = “,18,” N.ASS = “,18,
“ ACTIVE = “,18,” AV,SON = “,F8.2)’)NEXP,NPROBQ, NASS,ACTIVE,
AVSON
WRITE(6,’(2014)’) (FSTAR(I),I = I ,N)
STOP
END

SUBROUTINE READA(N,A)
INTEGER A(N,N)
DOIOI=l, N
READ(I , *) (A(I,J),J = 1,N)
RETURN
END

The program reads all input data from logical unit 1 and writes the output

on logical unit 6. To read the problem costs easily in matricial form, instead of

explicitly defining the entries of vector X, subroutine READA was introduced.

A problem with 10 vertices was considered as an example; the following

data define the instance:

10

9999 964 786 990 345 63 386 999 361 126

943 9999 961 706 800 488 482 198 743 190

224 472 9999 326 695 362 420 193 203 0

853 605 499 9999 963 781 179 370 531 289

99 386 770 634 9999 420 295 487 355 36

919 864 123 455 482 9999 156 585 350 812

618 711 810 20 160 180 9999 129 897 245

438 488 750 21 620 631 251 9999 233 156

60 524 203 944 281 167 22 880 9999 734

417 750 470 474 98 314 866 714 841 9999

The output of the program is:

ROOT NODE: ZSTAR = 1695
ZSTAR = 1695 LBC = 1452
ZSTAR = 1574 LBC = 1452
ZSTAR = 1574 LBC = 1461
ZSTAR = 1553 LBC = 1461
ZSTAR = 1553 LBO = 1360 LBC

LBO = 1360
NPROBQ = 3 ACTIVE = 1
NPROBQ = 3 ACTIVE = 1
NPROBQ = 3 ACTIVE = O
NPROBQ = 3 ACTIVE = O
=1461 SPARS =51.1111

N,EXP = 3 N.PROB.Q = 3 N.ASS = 5 ACTIVE = O AV,SON = 3,00
6 109213847 5

The corresponding branch-decision tree is given in Figure 1: the numbers

inside the circles represent the lower bounds; those near the circles give the

ACM Transactions on Mathematical Software, Vol. 21, No 4. December 1995

Algorithm 750: CDT . 415

Fig. 1. Branch-decision tree of the example.

order in which subproblems were generated. The initial upper bound com-

puted at the root node is 1695. The crossed nodes correspond to subproblems

fathomed by the current upper bound. The solution of the assignment prob-

lem associated with node 8 is a Hamiltonian Circuit and corresponds to the

optimal solution.

REFERENCES

BELLMORE, M. AND MALONE, J. C. 1971. Pathology of traveling salesman subtour elimination

algorithms. Oper. Res. 19, 278–307.

CARPANETO, G. AND TOTH, P. 1980. Some new branching and bounding criteria for the asymmet-

ric traveling salesman problem. Manage. Sci. 26, 736-743.

CARPANETO, G., DELL’AMICO, M., AND TOTH, P. 1990. Exact solution of large-scale asymmetric

traveling salesman problems. Tech. Rep., Dept. di Economic Politics, Univ. of Modena, Italy.

NAG. 1992. NAGW&E F77 Tools Manual. 2nd ed. Tlbe Numerical Algorithms Group, Ltd.,
Oxford, U.K.

Received January 1990; revised May 1993; accepted December 1994

ACM Transactions on Mathematical Software, Vol. 21, No. 4, December 1995

