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from SIAM News, Volume 33, Number 4

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa’l muqabalah devolved into today’s high school
algebra textbooks. Al-Khwarizmi stressed the importance of methodical procedures for solving problems. Were he around today,
he’d no doubt be impressed by the advances in his eponymous approach.

Some of the very best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, a joint publication of the American Institute of Physics and the IEEE Computer Society. Guest editors Jack Don-garra of the
University of Tennessee and Oak Ridge National Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences at the Institute for
Defense Analyses put togeth-er a list they call the “Top Ten Algorithms of the Century.”

“We tried to assemble the 10 al-gorithms with the greatest influence on the development and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. As with any top-10 list, their selections—and non-selections—are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Without further ado, here’s the CiSE top-10 list, in chronological order. (Dates and names associated with the algorithms should be read
as first-order approximations. Most algorithms take shape over time, with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis
algorithm, also known as the Monte Carlo method.

The Metropolis algorithm aims to obtain approximate solutions to numerical problems with unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for

deterministic calculation, it’s fitting that one of its earliest applications was the generation of  random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig’s algorithm is one of the most successful of all time: Linear

programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the “real” problems of industry are often nonlinear; the use
of linear programming is sometimes dictated by the computational budget.) The simplex method is an elegant
way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm
in practice is highly efficient—which in itself says something interesting about the nature of computation.

1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis
at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.

These algorithms address the seemingly simple task of solving equations of the form Ax = b. The catch,
of course, is that A is a huge n � n matrix, so that the algebraic answer x = b/A is not so easy to compute.
(Indeed, matrix “division” is not a particularly useful concept.) Iterative methods—such as solving equations of

the form Kxi + 1 = Kxi + b – Axi with a simpler matrix K that’s ideally “close” to A—lead to the study of Krylov subspaces. Named
for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial
“remainder” vector r0 = b – Ax0. Lanczos found a nifty way to generate an orthogonal basis for such a subspace when the matrix
is symmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systems that are
both symmetric and positive definite. Over the last 50 years, numerous researchers have improved and extended these algorithms.
The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and
Bi-CGSTAB premiered in SIAM Journal on Scientific and Statistical Computing, in 1986 and 1992,
respectively.)

1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach
to matrix computations.

The ability to factor matrices into triangular, diagonal, orthogonal, and other special forms has turned
out to be extremely useful. The decompositional approach has enabled software developers to produce
flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the big
bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in
London published a seminal paper in the Journal of the ACM, titled “Error Analysis of Direct Methods
of Matrix Inversion,” based on the LU decomposition of a matrix as a product of lower and upper
triangular factors.)

1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank as the single most important event in the history of computer programming: Finally, scientists
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(and others) could tell the computer what they wanted it to do, without having to descend into the netherworld of machine code.
Although modest by modern compiler standards—Fortran I consisted of a mere 23,500 assembly-language instructions—the early
compiler was nonetheless capable of surprisingly sophisticated computations. As Backus himself recalls in a recent history of
Fortran I, II, and III, published in 1998 in the IEEE Annals of the History of Computing, the compiler “produced code of such
efficiency that its output would startle the programmers who studied it.”

1959–61: J.G.F. Francis of Ferranti Ltd., London, finds a stable method for computing eigenvalues, known as the QR algorithm.
Eigenvalues are arguably the most important numbers associated with matrices—and they can be the trickiest to compute. It’s

relatively easy to transform a square matrix into a matrix that’s “almost” upper triangular, meaning one with a single extra set of
nonzero entries just below the main diagonal. But chipping away those final nonzeros, without launching an avalanche of error,
is nontrivial. The QR algorithm is just the ticket. Based on the QR decomposition, which writes A as the product of an orthogonal
matrix Q and an upper triangular matrix R, this approach iteratively changes Ai = QR into Ai + 1 = RQ, with a few bells and whistles
for accelerating convergence to upper triangular form. By the mid-1960s, the QR algorithm had turned once-formidable eigenvalue
problems into routine calculations.

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.
Putting N things in numerical or alphabetical order is mind-numbingly mundane. The intellectual challenge lies in devising ways

of doing so quickly. Hoare’s algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one
element as a “pivot,” separate the rest into piles of “big” and “small” elements (as compared with the pivot), and then repeat this
procedure on each pile. Although it’s possible to get stuck doing all N(N – 1)/2 comparisons (especially if you use as your pivot the first
item on a list that’s already sorted!), Quicksort runs on average with O(N log N) efficiency. Its elegant simplicity has made Quicksort
the pos-terchild of computational complexity.

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton
University and AT&T Bell Laboratories unveil the fast Fourier transform.

Easily the most far-reaching algo-rithm in applied mathematics, the FFT revolutionized
signal processing. The underlying idea goes back to Gauss (who needed to calculate orbits
of asteroids), but it was the Cooley–Tukey paper that made it clear how easily Fourier
transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer
strategy to reduce an ostensibly O(N 2) chore to an O(N log N) frolic. But unlike Quick- sort,
the implementation is (at first sight) nonintuitive and less than straightforward. This in itself
gave computer science an impetus to investigate the inherent complexity of computational
problems and algorithms.

1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integer relation detection algorithm.
The problem is an old one: Given a bunch of real numbers, say x1, x2, . . . , xn, are there integers a1, a2, . . . , an (not all 0) for which

a1x1 + a2x2 + . . . + anxn = 0? For n = 2, the venerable Euclidean algorithm does the job, computing terms in the continued-fraction
expansion of x1/x2. If x1/x2 is rational, the expansion terminates and, with proper unraveling, gives the “smallest” integers a1 and a2.
If the Euclidean algorithm doesn’t terminate—or if you simply get tired of computing it—then the unraveling procedure at least
provides lower bounds on the size of the smallest integer relation. Ferguson and Forcade’s generalization, although much more
difficult to implement (and to understand), is also more powerful. Their detection algorithm, for example, has been used to find
the precise coefficients of the polynomials satisfied by the third and fourth bifurcation points, B3 = 3.544090 and B4 = 3.564407,
of the logistic map. (The latter polynomial is of degree 120; its largest coefficient is 25730.) It has also proved useful in simplifying
calculations with Feynman diagrams in quantum field theory.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.
This algorithm overcomes one of the biggest headaches of N-body simulations: the fact that accurate calculations of the motions

of N particles interacting via gravitational or electrostatic forces (think stars in a galaxy, or atoms in a protein) would seem to require
O(N 2) computations—one for each pair of particles. The fast multipole algorithm gets by with O(N) computations. It does so by
using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant
group of particles on a local group. A hierarchical decomposition of space is used to define ever-larger groups as distances increase.
One of the distinct advantages of the fast multipole algorithm is that it comes equipped with rigorous error estimates, a feature that
many methods lack.

What new insights and algorithms will the 21st century bring? The complete answer obviously won’t be known for another
hundred years. One thing seems certain, however. As Sullivan writes in the introduction to the top-10 list, “The new century is not
going to be very restful for us, but it is not going to be dull either!”

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.

James Cooley John Tukey
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 Solving LP problems [Zionts, 1974] [4:]1 

 

 
File:  {LP_ZiontsB0308.doc} 

“An intuitive algebraic approach for solving 
Linear Programming problems” 

Source:  Zionts [1974] (or many others). 
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This has (always) an obvious, sure solution.  Let 
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Is this optimal ?  How to improve ? 

There does not appear (Dantzig) to be a systematic way of setting all the 
nonbasic variables simultaneously to optimal values —hence, an iterative2 method. 

Choose the variable that increases the objective function most per unit (this 
choice is arbitrary), in the example, x1, because its coefficient (0,56) is the largest. 

According to the constraints, x1 can be increased till: 
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The third equation (why ?) in {2} leads to x1 = 110 and x5 = 0.  The variable x1 will be 
the entering variable and x5 the leaving variable: 

                                                 
1  A, B, C identify the iteration, as summarized below. 
2 Iterative:  involving repetition;  relating to iteration.  Iterate (from Latin iterare), to say or do again 

(and again).  Not to be confused with interactive. 
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2[:4]    Solving LP problems [Zionts, 1974] 
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Substituting for x1 everywhere (except in its own constraint), we have 

 

[ ] ( )
( )

( )
110
1801105,1
2402110

42,011056,0max

51

425

325

25

=+
=++−
=++−

+−=

xx
xxx

xxx
xxz

 {8}

A  

[ ]
{ }

{ }
{ } 110

155,1
1302

6,6156,042,0max

51

542

532

52

=+
=−+
=−++

+−=

xx
xxx

xxx
xxz

 {9}

which is of course equivalent to Eq. {2}. 
We now have a new (equivalent) LP problem, to be treated as the original 

was.  The process can continue iteratively. 
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From Eq. {2} or Eq. {9}, respectively, 
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Now, x2 is the new entering variable.  According to the constraints, it can be 
increased till: 
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C  542 5,115 xxx +−=  {14}
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 Solving LP problems [Zionts, 1974] [4:]3 

 

Substituting for x2 everywhere (except its own constraint), we have 
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Now, x5 is the new entering variable.  According to the constraints, it can be 
increased till: 
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Substituting for x5 everywhere (except its own constraint), we have 
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Now, no variable produces an increase.  So, this is a maximum. 
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4[:4]    Solving LP problems [Zionts, 1974] 

 

In sum: 

A In the system of equations, find the identity matrix (immediate solution). 
B search for an entering variable (or finish) 
C consequently, find a leaving variable (if wrongly chosen, negative values will 

appear). 

References: 
– ZIONTS, Stanley, 1974, “Linear and integer programming”, Prentice-Hall, 

Englewood Cliffs, NJ (USA), p 5.  (IST Library.)  ISBN 0-13-536763-8. 

– See others on the course webpage (http://web.ist.utl.pt/mcasquilho). 
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Linear Programming, an introduction 
MIGUEL A. S. CASQUILHO 

IST, Universidade Técnica de Lisboa, 
Ave. Rovisco Pais, IST; 1049-001 Lisboa, Portugal 

Linear Programming is presented at an introductory level, mainly from the book by Hillier and 
Lieberman [2005], abridged and adapted to suit the objectives of the “Operational Research” course. 

It begins with segments of its third chapter. 

Key words:  linear programming; simplex method. 

I. Fundamentals and scope 
Based on a prototype example, Linear Programming is presented, as well as 

the simplex method of resolution.  This method was first presented by G. B. Dantzig 
in 1947 [MacTutor, 2007].  The text is based on the book by Hillier and Lieberman 
[2005], and begins with segments of the third chapter of the book. 

II. Explanation of the simplex method 

3 Introduction to Linear Programming 
(H&L 25) 

The development of linear programming has been ranked among the most 
important scientific advances in the mid-20.th century, and we must agree with this 
assessment.  Its impact since just 1950 has been extraordinary.  Today it is a standard 
tool that has saved many thousands or millions of dollars for most companies or 
businesses of even moderate size in the various industrialized countries of the world;  
and its use in other sectors of society has been spreading rapidly. 

3.1 Prototype example 
(H&L 26) 

Table 1  Data for the Wyndor Glass Co. problem 
 Production time per batch (h) 
 Product 

Plant 1 2 

Production time 
available 

per week (h) 
A 1 0 4 
B 0 2 12 
C 3 2 18 

Profit per batch 3 000 5 000  
 

x1 = number of batches of product 1 produced per week 
x2 = number of batches of product 2 produced per week 
Z = total profit per week (in $1000) from producing these two 

products 
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2 MIGUEL CASQUILHO — "Operational Research" 

4 Solving Linear Programming problems: 
the simplex method 
(H&L 103) 

4.2 Setting up the Simplex Method 
(H&L 108) 
Original form of the model (“s.t.”, subject to): 
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and x1 ≥ 0, x2 ≥ 0. 
Augmented form of the model: 
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and xi ≥ 0, i = 1..5.  The new variables xi, i = 3..5, are the “slack variables”. 
 

A basic solution has the following properties: 
1. Each variable is designated as either a nonbasic variable or a basic variable. 
2. The number of basic variables equals the number of functional constraints 

(now equations).  Therefore, the number of nonbasic variables equals the total 
number of variables minus the number of functional constraints. 

3. The nonbasic variables are set equal to zero. 
4. The values of the basic variables are obtained as the simultaneous solution of 

the system of equations (functional constraints in augmented form).  The set 
of basic variables is often referred to as the basis. 

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is 
a basic feasible (BF) solution. 

Adjacent solutions: 
Two BF solutions are adjacent if all but one of their nonbasic variables are the 

same (so all but one of their basic variables also are the same, although 
perhaps with different numerical values). 

Consequently, moving from the current BF solution to an adjacent one involves 
switching one variable from nonbasic to basic and vice versa for one other variable 
(and then adjusting the values of the basic variables to continue satisfying the system 
of equations). 

It is convenient for the simplex method to rewrite the problem in the following 
equivalent way: 
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 Linear Programming, an introduction 3 

Maximize Z 
subject to 
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The model for the Wyndor Glass Co. problem fits our standard form, and all 
its functional constraints have nonnegative right-hand sides bi.  If this had not been 
the case, then additional adjustments would have been needed (see later). 

4.3 The algebra of the Simplex Method 
(H&L 111) 

Initialization 
The choice of x1 and x2 to be the nonbasic variables (the variables set equal to 

zero) for the initial BF solution is obvious (and it will always be so).  This choice 
eliminates the work required to solve for the basic variables (x3, x4, x5). 
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Optimality test 
The objective function is 
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As none of the basic variables (x3, x4, x5) have a nonzero coefficient in this objective 
function, the coefficients of each nonbasic variable (x1, x2) gives the rate of 

improvement —i.e., 
1x

Z
∂
∂

and 
2x

Z
∂
∂

— in Z if that variable were to be increased from 

zero (with adjustments in the basic variables).  These rates of improvement are 
positive.  Therefore, this solution is not optimal. 

Determining the direction of movement (Step 1 of an iteration) 
The choice of which nonbasic variable is increased is as follows: 

{6} 21 53 xxZ +=  
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 Increase x1 ?   Rate of improvement in Z = 
1x

Z
∂
∂

= 3  

 Increase x2 ?   Rate of improvement in Z = 
2x

Z
∂
∂

= 5  

5 > 3, so choose x2 to increase. 

We call x2 the entering variable for iteration 1 (it is entering the basis).  (For it to 
enter, another must leave… Mnemonic: the struggle in Darwin’s book1.) 

Determining where to stop (Step 2 of an iteration) 
Increasing the entering variable x2 increases Z, so we want to go as far as 

possible without leaving the feasibility region.  The requirement to satisfy the 
functional constraints in augmented form means that increasing x2 (while keeping 
nonbasic x1 = 0) changes the values of some of the basic variables as shown on the 
right. 

  x1 = 0, so 
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The other requirement for feasibility is that all the variables be nonnegative.  The 
nonbasic variables (including the entering variable) are nonnegative, but we need to 
check how far x2 can be increased without violating the nonnegativity constraints for 
the basic variables. 
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Thus, x2 can be increased just to 6, at which point x4 has dropped to 0.  Increasing x2 
beyond 6 would cause x4 to become negative. 

These calculations are referred to as the minimum ratio test. 
At any iteration of the simplex method, Step 2 uses the minimum test ratio to 

determine which basic variable drops to zero first as the entering variable is 
increased.  Decreasing this basic variable to zero will convert it to a nonbasic 
variable for the next BF solution.  Therefore, this variable is called the leaving 
variable for the current iteration (because it is leaving the basis). 

Thus, x4 is the leaving variable for iteration 1 of the example. 

Solving for the new BF solution (Step 3 of an iteration) 
Increasing x2 = 0 to x2 = 6 moves us from the initial BF solution on the left to 

the new BF solution on the right: 

                                                 
1 DARWIN, Charles, 1859, “On the origin of species by means of natural selection, or the preservation 

of favoured races in the struggle for life”, ed. John Murray, London [or 2006, Dover, Mineola, 
NY (USA)]. 
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 Linear Programming, an introduction 5 

 Initial BF solution  New BF solution  

Nonbasic variables x1 = 0, x2
E = 0  x1 = 0, x4 = 0  

Basic variables x3 = 4, x4
L = 12, x5 = 18 x3 = ?, x2 = 6, x5 = ? 

The purpose of Step 3 is to convert the system of equations to a more 
convenient form (proper form from Gaussian elimination) for conducting the 
optimality test and (if needed) the next iteration with this new BF solution.  In the 
process, this form also will identify the values of x3 and x5 for the new solution. 

To solve the original system of equations for Z, x2, x3, and x5, we need to 
perform some elementary algebraic operations (multiply or divide an equation by a 
nonzero constant; add or subtract a multiple of one equation to another equation) to 
reproduce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients 
of x2.  So, divide Eq. (2) by 2 to obtain 

{9} (2’) 6
2
1

42 =+ xx  

Next, add 5 times this new Eq. (2) to Eq. (0), and subtract 2 times this new Eq. (2) 
from Eq. (3).  The resulting complete new system of equations is 

{10} 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )223633

26
2
1

2

20141

2500
2
5

003300

541

42

31

54321

′−=+−

′=+

′−=+

′−+−+++=

>

>

>

>

xxx

xx

xx

xxxxxZ

 

Since x1 = 0 and x4 = 0, the equations in this form immediately yield the new BF 
solution, X = (0, 6, 4, 0, 6), which yields Z = 30. 

If the columns are written in “another” order everywhere, the identity matrix 
is —as promised— again recognized: 

{11a} 0000
2
5

330

5

2

3

4

1

=



























 −=−

x
x
x
x
x

z  

{11b} 















=







































− 6
6
4

10013
010210
00101

5

2

3

4

1

x
x
x
x
x

 

This procedure for obtaining the simultaneous solution of a system of linear 
equations is called the Gauss-Jordan method of elimination, or Gaussian elimination 
for short.  The key concept for this method is the use of elementary algebraic 
operations to reduce the original system of equations to proper form from Gaussian 
elimination, where each basic variable has been eliminated from all but one equation 
(its equation) and has a coefficient of +1 in that equation. 
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6 MIGUEL CASQUILHO — "Operational Research" 

Optimality test for the new BF solution 
The current Eq. (0) gives the value of the objective function in terms of just 

the current nonbasic variables 

{12} 











 −+=

4

1

2
5

330
x
x

Z  

Because x1 has a positive coefficient, increasing x1 would lead to an adjacent BF 
solution that is better than the current BF solution, so the current solution is not 
optimal. 

Iteration 2 

Since it is 41 2
5

330 xxZ −+= , Z can be increased by increasing x1, but not x4.  

Therefore, Step 1chooses x1 to be the entering variable. 
For Step 2, the current system of equations yields the following conclusions 

about how far x1 can be increased (with x4 = 0): 

{13} 
036
006

04

15

12

13

≥−=
≥−=

≥−=

xx
xx

xx
 ⇒ 

min236
06

414

1

1

1

←=≤
∞=≤

=≤

x
x
x

 

Therefore, the minimum ratio test indicates that x5 is the leaving variable. 
For Step 3, with x1 replacing x5 as a basic variable, we perform elementary 

algebraic operations on the current system of equations to reproduce the current 
pattern of coefficients of x5 (0, 0, 0, 1) as the new coefficients of x1.  This yields the 
following new system of equations: 

{14} 

( )

( )

( )

( ) 2
3
1

3
1

3

6
2
1

2

2
3
1

3
1

1

36
2
3

0000

541

42

543

54321

=+−

=+

=−++

=+++++

xxx

xx

xxx

xxxxxZ

 

Therefore, the next BF solution is X = (2, 6, 2, 0, 0), yielding Z = 36.  To apply the 
optimality test to this new BF solution, we use the current Eq. (0) to express Z in 
terms of just the current nonbasic variables, 

{15} 











 −−+=

5

41
2
3

36
x
x

Z  

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good 
as the current one.  Therefore, the current BF solution must be optimal. 

In terms of the original form of the problem (no slack variables), the optimal 
solution is x1 = 2, x2 = 6, which yields Z = 36. 

The next section shows a more convenient tabular form. 
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 Linear Programming, an introduction 7 

4.4 The Simplex Method in tabular form 
(H&L 117) 

The tabular form of the simplex method records only the essential 
information, namely, (1) the coefficients of the variables, (2) the constants on the 
right-hand sides of the equations, and (3) the basic variable appearing in each 
equation. 

 
Table 3 compares the initial, algebraic form with a new, tabular form. 

Summary of the simplex method (and iteration 1 for the Example) 

INITIALIZATION:   Introduce slack variables.  Select the decision variables to be the 
initial nonbasic variables (set equal to zero). And the slack variables to be the initial 
basic variables.  (Adjust if the model is not in our standard form:  maximization, 
only ≤ functional constraints, all nonnegativity constraints, and if any bi values are 
negative.) 

For the Example:  the initial BF solution is (0, 0, 4, 12, 18). 

Table 3a  Initial system of equations for the Wyndor Glass Co. problem 
in algebraic form 

( )
( )
( )
( ) 18233

1222
41
0000530

521

42

31

54321

=++
=+
=+
=+++−−

xxx
xx

xx
xxxxxZ

 

Table 3b  Initial system of equations for the Wyndor Glass Co. problem 
in tabular form 
  Coefficient of  

Basic variable Eq. Z x1 x2 x3 x4 x5 
Right 
side 

Z (0) 1 –3 –5 0 0 0 0 
x3 (1) 0 1 0 1 0 0 4 
x4 (2) 0 0 2 0 1 0 12 
x5 (3) 0 3 2 0 0 1 18 

OPTIMALITY TEST:   The current BF solution is optimal if and only if every 
coefficient in row 0 is nonnegative (≥ 0).  If it is, stop;  otherwise, go to an iteration to 
obtain the next BF solution, which involves changing one nonbasic variable to a basic 
variable (Step 1) and vice versa (Step 2) and then solving for the new solution 
(Step 3). 

For the Example:  just as Z = 3x1 + 5x2 indicates that increasing either x1 or x2 
will increase Z, so the current BF solution is not optimal, the same conclusion being 
drawn from the equation Z – 3x1 – 5x2 = 0.  These coefficients of –3 and –5 are shown 
in row 0 of Table 3b. 

ITERATION 

Step 1: 

Determine the entering variable by selecting the variable (automatically 
nonbasic variable) with the negative coefficient having the largest absolute value (i.e., 
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8 MIGUEL CASQUILHO — "Operational Research" 

the “most negative” coefficient) in Eq. (0).  Mark the column below this coefficient, 
and call this the pivot column. 

For the Example:  the most negative coefficient is –5 for x2 (5 > 3), so x2 is to 
be changed to a basic variable.  (This change is indicated in Table 4 by marking the x2 
column below –5.) 

Table 4  Applying the minimum ratio test to determine the first leaving basic 
variable for the Wyndor Glass Co. problem 

Basic variable Eq. Z x1 x2 x3 x4 x5 
Right 
side Ratio 

Z (0) 1 –3 –5 0 0 0 0  
x3 (1) 0 1 0 1 0 0 4 ∞ 
x4 (2) 0 0 2 0 1 0 12 6 
x5 (3) 0 3 2 0 0 1 18 9 

Step 2: 

Determine the leaving basic variable by applying the minimum ratio test.  
Mark its row and call it the pivot row.  Also call the number that is in both cases the 
pivot number. 

Table 5  Simplex tableaux for the Wyndor Glass Co. problem after the 
first pivot row is divided by the first pivot number 

Basic variable Eq. Z x1 x2 x3 x4 x5 
Right 
side 

Z (0) 1 –3 –5 0 0 0 0 
x3 (1) 0 1 0 1 0 0 4 
x4 (2) 0 0 2 0 1 0 12 
x5 (3) 0 3 2 0 0 1 18 
Z (0) 1       
x3 (1) 0       
x4 (2) 0 0 1 0 ½ 0 6 
x5 (3) 0       

For the Example:  the calculations for the minimum ratio test are shown at the 
right of Table 4.  Thus, row 2 is the pivot row (shown in the first half of Table 5), and 
x4 is the leaving basic variable.  In the next simplex tableau (in Table 5), x2 replaces 
x4 as the basic variable for row 2. 

Step 3: 

Solve for the new BF solution by using elementary row operations to 
construct a new simplex tableau in proper form from Gaussian elimination below the 
current one, and then return to the optimality test. 

For the Example:  since x2 is replacing x4 as a basic variable, we need to 
reproduce the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in 
the second tableau’s column of x2.  To start, divide the pivot row (row 2) by the pivot 
number (2), which gives the new row 2 shown in Table 5.  Next, we add to row 0 the 
product, 5 times the new row 2.  Then we substract from row 3 the product, 2 times 
the new row 2 (or equivalently, subtract from row 3 the old row 2).  These 
calculations yield the new tableau shown in Table 6 for iteration 1.  Thus, the new BF 
solution is (0, 6, 4, 0, 6), with Z = 30.  We next return to the optimality test to check if 
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the new BF solution is optimal.  Since the new row 0 still has a negative coefficient 
( 3−  for x1), the solution is not optimal, and so at least one more iteration is needed. 

Table 6  Second simplex tableau for the Wyndor Glass Co. problem 

Basic variable Eq. Z x1 x2 x3 x4 x5 
Right 
side 

Z (0) 1 –3 0 0 25  0 30 
x3 (1) 0 1 0 1 0 0 4 
x2 (2) 0 0 1 0 21  0 6 
x5 (3) 0 3 0 0 –1 1 6 

Iteration 2 for the Example 
The second iteration starts anew from the second tableau of Table 6 to find the 

next BF solution.  Following the instructions for Steps 1 and 2, we find x1 as the 
entering basic variable and x5 as the leaving basic variable, as shown in Table 7. 

Table 7  Steps 1 and 2 of Iteration 2 for the Wyndor Glass Co. problem 

Basic variable Eq. Z x1 x2 x3 x4 x5 
Right 
side Ratio 

Z (0) 1 –3 0 0 25  0 30  
x3 (1) 0 1 0 1 0 0 4 4 
x2 (2) 0 0 1 0 21  0 6 ∞ 
x5 (3) 0 3 0 0 –1 1 6 2 

(See Table 8 for the whole process.) 

Table 8  Simplex tableaux for the Wyndor Glass Co. problem 

Basic variable Eq. Z x1 x2 x3 x4 x5 
Right 
side Ratio 

Z (0) 1 –3 –5 0 0 0 0  
x3 (1) 0 1 0 1 0 0 4 ∞ 
x4 (2) 0 0 2 0 1 0 12 6 
x5 (3) 0 3 2 0 0 1 18 9 
Z (0) 1 –3 0 0 25  0 30  
x3 (1) 0 1 0 1 0 0 4 4 
x2 (2) 0 0 1 0 1/2 0 6 ∞ 
x5 (3) 0 3 0 0 –1 1 4 34  

Z (0) 1 0 0 0 23  1 36  
x3 (1) 0 0 0 1 31  31−  2  
x2 (2) 0 0 1 0 21  0 6  
x1 (3) 0 1 0 0 31−  31  2  

4.5 Tie breaking in the Simplex Method 
(H&L 121) 

Tie for the entering basic variable 
The selection between two or more nonbasic variables having the largest 

coefficients is arbitrary.  The optimum will be reached eventually, although the path 
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10 MIGUEL CASQUILHO — "Operational Research" 

(and the number of iterations) will be different.  There is no convenient method for 
predicting which choice will lead there sooner. 

Tie for the leaving basic variable —degeneracy 
If two or more basic variables tie for being the leaving basic variable in an 

iteration, does it matter which one is chosen ?  Theoretically it does.  First, all the tied 
variables reach zero simultaneously as the entering basic variable is increased.  
Therefore, the one or ones not chosen to be the leaving basic variable also will have a 
value of zero in the new solution.  Note that basic variables with a value of zero are 
called degenerate, and the same term is applied to the correspondent solution.  
Second, if one of these degenerate basic variables retains its value of zero until it is 
chosen as leaving at a subsequent iteration, the corresponding entering variable also 
must remain zero, so the value of Z will remain unchanged.  Third, if Z may remain 
the same rather than increase at each iteration, the simplex method may then go 
around in a loop.  In fact, examples have been artificially constructed so that they do 
become entrapped in just such a perpetual loop. 

Fortunately, although a perpetual loop is theoretically possible, it has rarely 
been known to occur in practice.  If a loop were to occur, one could always get out by 
changing the choice of the leaving basic variable.  Furthermore, special rules have 
been constructed for breaking ties so that such loops are always avoided.  However, 
these rules frequently are ignored in actual application. 

No leaving basic variable —unbounded Z 
If the smallest nonnegative ratio does not exist, the solution for the objective 

function is unbounded (infinite).  Because even linear programming has not 
discovered a way of making infinite profit, the real message for practical problems is 
that a mistake has been made !  The model probably has been misformulated either by 
omitting relevant constraints or by stating them incorrectly.  Alternatively, a 
computational mistake may have occurred. 

In the matrix method of resolution (to be seen later), let it be said that, even 
making some mistakes during the resolution of a linear programming problem, the 
optimum will be reached. 

Multiple optimal solutions 
If the last solution shows a zero in the final row 0, at least one of the nonbasic 

variables has a coefficient of zero, and so increasing any such variable will not 
change the value of Z.  Therefore, the other optimal solutions can be identified (if 
desired) by performing additional iterations, each time choosing a nonbasic variable 
with a zero coefficient as the entering variable.  (An unbounded solution with the 
same Z can occur.) 

If there are more than one solution, any weighted average of two or more 
solutions is called a linear convex combination and is also an optimal solution.  
(There are, thus, infinite such solutions.) 

4.6 Adapting to other model forms 
(H&L 124) 

Equality constraints 
Instead of replacing an equality ( ( ) bf =x ) by two complementary inequalities 

( ( ) ( ) bfbf ≥≤ xx , ), which would increase the number of constraints, it is more 
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convenient to use the artificial-variable technique, attributing to this type of variable 
an “infinite” coefficient, usually called M —really, a very large number— whose sign 
will be opposite to the direction of the optimization:  –M for maximization and +M 
for minimization. 

When the artificial-variable technique is used, the presence of one or more 
artificial variables in the final solution means that the problem indeed has no solution.  
This situation implies no complication, so any problem “without” solution may be 
treated just like any other. 

Negative right-hand sides 
The usual solution is to multiply both sides by –1 and reverse the direction of 

the inequality.  An artificial variable will normally be needed. 

Variables allowed to be negative (free variables) 
Any variable allowed to be negative, or “free” variable, say xj, can be replaced 

by the difference of two nonnegative ones.  A usual notation (not adopted later) is 

{16} −+ −= jjj xxx  

Every occurrence of xj will, then, be replaced by this expression, including, of 
course, the objective function. 

III. Epilogue 
The simplex method for solving Linear Programming problems was presented, 

attempting to show its basic idea and features, from an essentially practical 
standpoint.  Special cases, easily reduced to the standard form, were also addressed. 
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Artificial variables in Linear Programming 

Adapted from H&L [2005] and Taha [1992] 

Equality constraints [H&L, p 125] 

Suppose a modification to the original Wyndor problem, as follows ({1}). 
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53max
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+=

xx
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xxz

 {1}

with x ≥ 0.  Thus, the third constraint is now an equality.  This can become 
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However, these equations do not have an obvious initial (basic feasible) solution.  
So, the artificial variable technique is applied.  With M a very high number (+∞) —
this is the Big M method*—, we can augment the system {2} to obtain 
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Converting equation 0 to proper form 

In {3}, the (obvious) initial basic variables are x3, x4 and 5x   (non-basic x1 = 0 
and x2 = 0).  However, this system is not yet in proper form for Gaussian elimination 
because a basic variable ( 5x ) has a non-zero coefficient in Eq. 0.  Indeed, all the 
basic variables must be (algebraically) eliminated from Eq. 0 before the simplex 
method can find the entering basic variable.  (This elimination is necessary so that the 
negative of the coefficient of each non-basic variable will give the rate at which z 
would increase if that non-basic variable were to be increased from 0 while adjusting 
the values of the basic variables accordingly.) 

To eliminate 5x  from Eq. 0, we need to subtract from Eq. 0 the product M 
times Eq. 3: 

 
( ) ( ) MxMxMz

xxxM
xMxxz

185233
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=+−−

 {4}

                                                 
* Another method to solve this matter is the “two-phase method”. 
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In this example, there is only one equation with an artificial variable.  If there 
were several equations with artificial variables, we would have to subtract 
accordingly. 

Application of the simplex method 

The new Eq. 0 gives z in terms of just the non-basic variables (x1, x2): 

 ( ) ( ) 21 523318 xMxMMz ++++−=  {5}

Since the coefficient of x1 is the best (greatest), this variable is chosen as the 
entering variable. 

The leaving variable, as always, will correspond to the smallest “positive” 
(non-negative) ratio (from the so-called “minimum ratio test”). 

Another (more general) example (Taha [1992], p 72) 
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with x ≥ 0.  The augmented standard form is 
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Mar-2011 H&L, Wyndor Probl.

X  = 2 6 Solver model

(0) 3 5 [max] z  = 36 36

(Constr.:) x 1 x 2 Value RHS 2

(1) 1 0 <= 4 2 <= 4 TRUE

(2) 0 2 <= 12 12 <= 12 100

(3) 3 2 <= 18 18 <= 18 100

Let's solve it manually. NOT USED

Structural—... Slack—... —--—--Artificial———- MAXIMIZE

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8

3 5 0 0 0 -1000 -1000 -1000 Ratio

0.1 x 3 1 0 1 0 0 1 0 0 4 -1

0.2 x 4 0 2 0 1 0 0 1 0 12 6 Smallest+Leaves

0.3 x 5 3 2 0 0 1 0 0 1 18 9

0.0 Coeffs 3 5 0 0 0 0 0 0

Enters z  = 0 30 = next z

1.1 x 3 1 0 1 0 0 4 4 b) {0.1} - {1.2} × 0

1.2 x 2 0 1 0 0,5 0 6 -1 a) Pivot {0.2} / 2

1.3 x 5 3 0 0 -1 1 6 2 c) {0.3} - {1.2} × 2

1.0 Coeffs 3 0 0 -2,5 0 Indep. term.: 30 d) {0.0} - {1.2} × 5

Enters z  = 30 36 = next z

2.1 x 3 0 0 1 0,33333 -0,3333 2 b) {1.1} - {1.3} × 1

2.2 x 2 0 1 0 0,5 0 6 c) {1.2} - {1.3} × 0

2.3 x 1 1 0 0 -0,3333 0,33333 2 a) Pivot {1.3} / 3

2.0 Coeffs 0 0 0 -1,5 -1 End Indep. term.: 36 d) {1.0} - {1.3} × 3

z  = 36 OPTIMUM

Now follow a different path !

Structural—... Slack—... MAXIMIZE

x 1 x 2 x 3 x 4 x 5

3 5 0 0 0 Ratio

0.1 x 3 1 0 1 0 0 4 4 Smallest+Leaves

0.2 x 4 0 2 0 1 0 12 -1

0.3 x 5 3 2 0 0 1 18 6

0.0 Coeffs 3 5 0 0 0

Enters z  = 0 12 = next z

1.1 x 1 1 0 1 0 0 4 -1 a) Pivot {0.1} / 1

1.2 x 4 0 2 0 1 0 12 6 b) {0.2} - {1.1} × 0

1.3 x 5 0 2 -3 0 1 6 3 c) {0.3} - {1.1} × 3

1.0 Coeffs 0 5 -3 0 0 Indep. term.: 12 d) {0.0} - {1.1} × 3

Enters z  = 12 27 = next z

2.1 x 1 1 0 1 0 0 4 4 b) {1.1} - {2.3} × 0

2.2 x 4 0 0 3 1 -1 6 2 c) {1.2} - {2.3} × 2

2.3 x 2 0 1 -1,5 0 0,5 3 -1 a) Pivot {1.3} / 2

2.0 Coeffs 0 0 4,5 0 -2,5 Indep. term.: 27 d) {1.0} - {1.3} × 5

Enters z  = 27 36 = next z

3.1 x 1 1 0 0 -0,3333 0,33333 2 b) {2.1} - {3.2} × 1

3.2 x 3 0 0 1 0,33333 -0,3333 2 a) Pivot {2.2} / 3

3.3 x 2 0 1 0 0,5 0 6 c) {2.3} - {3.2} × -1,5

3.0 Coeffs 0 0 0 -1,5 -1 End Indep. term.: 36 d) {2.0} - {3.2} × 4,5

z  = 36 OPTIMUM
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Path 1 (0, 0, z=0), (0, 6, z=30), (2, 6, z=36)

Path 2 (0, 0, z=0), (4, 0, z=12), (4, 3, z=27), (2, 6, z=36)

Try: 27 or 36

∆x  = 0,5 z  = ? 36

x y 1 y 2 y 3 y z

0 6 9 7,2

0,5 6 8,25 6,9

1 6 7,5 6,6

1,5 6 6,75 6,3

2 6 6 6

2,5 6 5,25 5,7

3 6 4,5 5,4

3,5 6 3,75 5,1

4 3 6 3 4,8

4,5 6 2,25 4,5

5 6 1,5 4,2

5,5 6 0,75 3,9

6 6 0 3,6

Feasible region

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7
x 1

x 2

36



Mar-2011 Modified NB:  in H&L, it is 3x 1+2x 2=18 (the 3.rd constraint) that changes,

H&L, Wyndor Probl.  yet quite unpedagogically, as the result is the same ! (Why ?)

X  = 4 3 Solver model

(0) 3 5 [max] z  = 27 27 See (next)

(Constr.:) x 1 x 2 Value RHS 2 "standard".

(1) 1 0 = 4 4 = 4 TRUE

(2) 0 2 <= 12 6 <= 12 TRUE

(3) 3 2 <= 18 18 <= 18 100

Big M  = 100

Structural—... Artif. Slack Slack MAXIMIZE

x 1 x 2 x 3 x 4 x 5

3 5 0 0 -100 Obtain zeros ! Ratio

0.1 x 5 1 0 0 0 1 4 4 Smallest+

0.2 x 3 0 2 1 0 0 12 -1 Leaves

0.3 x 4 3 2 0 1 0 18 6

0.0 Coeffs 103 5 0 0 0 Subtract {0.1}×M Ind. term.: -400

Enters z  = -400 12 = next z

1.1 x 1 1 0 0 0 1 4 -1 a) Pivot {0.1} / 1

1.2 x 3 0 2 1 0 0 12 6 b) {0.2} - {1.1} × 0

1.3 x 4 0 2 0 1 -3 6 3 c) {0.3} - {1.1} × 3

1.0 Coeffs 0 5 0 0 -103 Indep. term.: 12 d) {0.0} - {1.1} × 103

Enters z  = 12 27 = next z

2.1 x 1 1 0 0 0 1 4 b) {1.1} - {2.3} × 0

2.2 x 3 0 0 1 -1 3 6 c) {1.2} - {2.3} × 2

2.3 x 2 0 1 0 0,5 -1,5 3 a) Pivot {1.3} / 2

2.0 Coeffs 0 0 0 -2,5 -95,5 End Indep. term.: 27 d) {1.0} - {2.3} × 5

z  = 27 OPTIMUM

[ ]
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4tos.

53max
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1
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=

+=
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x
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Mar-2011 Zionts, "An intuitive algebraic approach for solving LP problems"

X  = 60 90 Solver model:     

(0) 0,56 0,42 [max] z  = 71,4 71,4

(Constr.:) x 1 x 2 Value RHS 2

(1) 1 2 <= 240 240 <= 240 TRUE

(2) 1,5 1 <= 180 180 <= 180 100

(3) 1 0 <= 110 60 <= 110 100

Let's solve it manually.

Structural—... Slack—... MAXIMIZE

x 1 x 2 x 3 x 4 x 5

0,56 0,42 0 0 0 Ratio

0.1 x 3 1 2 1 0 0 240 240

0.2 x 4 1,5 1 0 1 0 180 120

0.3 x 5 1 0 0 0 1 110 110 Smallest+Leaves

0.0 Coeffs 0,56 0,42 0 0 0

Enters z  = 0 61,6 = next z

1.1 x 3 0 2 1 0 -1 130 65 b) {0.1} - {1.3} × 1

1.2 x 4 0 1 0 1 -1,5 15 15 c) {0.2} - {1.3} × 1,5

1.3 x 1 1 0 0 0 1 110 -1 a) Pivot {0.3} / 1

1.0 Coeffs 0 0,42 0 0 -0,56 Indep. term.: 61,6 d) {0.0} - {1.3} × 0,56

Enters z  = 61,6 67,9 = next z

2.1 x 3 0 0 1 -2 2 100 50 b) {1.1} - {2.2} × 2

2.2 x 2 0 1 0 1 -1,5 15 -1 a) Pivot {1.2} / 1

2.3 x 1 1 0 0 0 1 110 110 c) {1.3} - {2.2} × 0

2.0 Coeffs 0 0 0 -0,42 0,07 Indep. term.: 67,9 d) {1.0} - {1.3} × 0,42

Enters z  = 67,9 71,4 = next z

3.1 x 5 0 0 0,5 -1 1 50 a) Pivot {2.1} / 2

3.2 x 2 0 1 0,75 -0,5 0 90 b) {2.2} - {3.1} × -1,5

3.3 x 1 1 0 -0,5 1 0 60 c) {2.3} - {3.1} × 1

3.0 Coeffs 0 0 -0,035 -0,35 0 End Indep. term.: 71,4 d) {1.0} - {1.3} × 0,07

z  = 71,4 OPTIMUM

[ ]

110

1805,1

2402tos.

42,056,0max
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(Blank page) 
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2010 — M. Casquilho (IST) 
File:  {LP_redund.doc} 

Redundant ? 

 

[ ]

20
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max

21

21
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≤+
≤+
−

xx
xx

xx
 {1}

 

 

[ ]

20
10tos.

max

21
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≤+
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+−=

xx
xx
xxz

 {2}

 

 

[ ]

20
10tos.

00max

421

321

4321

=++
=++

+++−=

xxx
xxx

xxxxz
 {3}

Solve: 
Go to http://web.ist.utl.pt/~mcasquilho/compute/or/Fx-lp-revised.php 
Supply: 

Opt. max 
Coefficients -1 1 0 0 

A | B 1 1 1 0 10 
 1 1 0 1 20 

Artificials 0 
Initial basis 3 4 

 
Redundant ?  No problem. 

v 
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2010 — M. Casquilho (IST) 
File:  {LP_imposs.doc} 

Impossible ? 

 

[ ]
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 {1}

 

 

[ ]
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10tos.
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 {2}

M  ≅  +∞ 

 

[ ]

20
10tos.

00max

5421
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xxxx
xxx

Mxxxxxz

+−+
=++

−+++−=
 {3}

Solve: 
Go to http://web.ist.utl.pt/~mcasquilho/compute/or/Fx-lp-revised.php 
Supply: 

Opt. max 
Coefficients -1 1 0 0 0 

A | B 1 1 1  0 0 10 
1 1 0 -1 1 20 

Artificials 5 
Big M 1+2 

Initial basis 3 5 

 
Impossible ?  No problem. 

v 
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In:  ECKER, Joseph G., Michael KUPFERSCHMID, 1988, “Introduction to Operations Research”, McGraw-Hill, 
ISBN 0-471-63362-3 
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 Scientific application (!) of LP [6:] 1 

_________________________________________________________________________________  

 
 
MC-IST  file={EckerK_sciSolved.doc} 

A “scientific application” (!) of Linear Programming 
In Ecker & Kupferschmid [1988], Ch. 2, “LP models and applications”, 2.3, “Some scientific 
applications of LP”, pp 24–25;  example problem from Guttman et al. [1982], Ch. 15, “Regression 
analysis”, 15.5, An example, pp 361–365 

A study was instituted to determine the percent of waste solids removed in a 
filtration system as a function of flow rate, x, of the effluentbeing fed into the system.  
It was decided to use flow rate of 2 (2) 14 gal/min and to observe ye (“experimental”), 
the percent of waste solid removed,when each of these flow rates was used.  The 
study yielded the data displayed in Table 1. 

The mathematical model ( ) baxxyE +=  was proposed. 
Find the parameters, a and b, of the model [Guttman, et al., 1982, p 361]. 

 Table 1 
i x ye 
1 2 24,3 
2 4 19,7 
3 6 17,8 
4 8 14,0 
5 10 12,3 
6 12 7,2 
7 14 5,5 

→  Resolution 

a) Classical solution 

(We will use only points 1, 4 and 7 of  Table 1.  With all the points, the source 
cited gives xy 55,181,26ˆ −= , “in the sense of least squares”.) 

As is well known, the parameters of the problem are obtained minimizing a 
sum of errors (squared, for convenience), of the form 

 ( )z y yi i
e

i

n

= −
=
∑ 2

1

 {1}

with 
z – measure (a sum) of the n errors.  ([z] = ψ2, see below) 
n – number of experiments 
yi – theoretical (or “calculated”) value, y ax b= + , of the measured 

variable, corresponding to xi  (i integer, i = 1..n) 
a, b – process parameters.  (With χ and ψ the dimensions of x and y, 

respectively, it is [a] = ψχ–1 and [b] = ψ.) 
yi

e  – experimental value (a constant, thus) of the measured variable, 
corresponding to xi 

So, z 1 is a function of only a and b, whose minimum is easy to find by differentiation, 

                                                 
1 The use of z, as may be concluded, would be more logical, although indifferent from the viewpoint 

of optimization. 

45



2 [:6]    Scientific application (!) of LP 

_________________________________________________________________________________  

giving for these parameters, as is known, 
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i

e
ii

ˆˆ

ˆ
2

 {2}

while the optimum of z is not relevant. 

 Table 2 

i xi yi
e  x xi −  ( )x x yi i

e−  ( )x xi − 2
 

1 2 24,3 -6 -145,8 36,00 
2 4 19,7    
3 6 17,8    
4 8 14,0 0 0,0 0,00 
5 10 12,3    
6 12 7,2    
7 14 5,5 6 33 36,00 

Sum 24 43,8 (0) -112,8 72,00 
Average x = 8 y = 14,6    

From Table 2, for the points selected, it is 

 â = –1,5(6) (% removed) / (gal/min) 
 =b̂  27,1(3) (% removed) 

(These values are near the values reported for the 7 points, â = –1,55 and =b̂  26,81.) 
The calculated y’s 2 give: y1 = 24 (“low”, vs. 24,3), y4 = 14,6 (“high”, vs. 

14,0), y7 = 5,2 (“low”, vs. 5,5). 

b) Solution by Linear Programming 

(We use the same points, 1, 4 e 7, from Table 1.) 
We propose, now, to obtain the parameters a and b, of the same model, by 

another criterion:  make the “errors” or deviations be small individually (not as a 
sum).  To this end, we will try to minimize the “worst” (largest) deviation, i.e., 

 [min]   ( )ii
dz max=  {3}

with 

 i
e
ii yyd −=  {4}

or, since (in this case) it is baxy += , 

                                                 
2 The plural in the form “x’s” seems appropriate (better than “xx”). 
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 Scientific application (!) of LP [6:] 3 

_________________________________________________________________________________  

 baxyd i
e
ii −−=  {5}

Remember that any value of z depends only of a and b, as all other values are 
constants (experimental values).  (This time, the physical dimensions of z are, of 
course, the same as those of the measured variable, y.) 

As z must be the maximum deviation, it has, equivalently, to satisfy each of 
the following inequalities 

 baxyz i
e
i −−≥  i = 1..n {6}

with n the number of points. 
The problem becomes, thus, to find a, b and z such that all the inequalities 

should be satisfied and z be as small as possible.  So, we need to find 

 [min] z  {7}

subject to 

 baxyz i
e
i −−≥  i = 1..n {8}

Now, this problem has the disadvantage of not being a linear programming, in this 
form, because, of course, the ‘absolute value’ 3 of a linear function is not a linear 
function [Ecker et al., 1988].  We can, however, convert it into a linear program 
through the following elementary fact: 

For any  z and w, 
z ≥ | |w  iff z ≥ w and z ≥ –w. 

So, let us replace each (non-linear) inequality by two linear inequalities, to get a linear 
program: 

 [min] z  {9}

subject to 

 ( )baxyz i
e
i −−+≥  i = 1..n {10a}

 ( )baxyz i
e
i −−−≥  i = 1..n {10b}

 z ≥ 0;   a, b: of free sign  

As is known, a and b can be replaced by differences of non-negative variables, say, 
′ − ′′a a  e ′ − ′′b b .  Incidentally, as we have (possibly good) approximations of the 

optimum values of a and b, from the previous section, we can simply just replace a by 
–a´ (a´ non-negative) —an artifice that must be verified in the end (and which would 
be under suspicion in case we obtained the boundary value a´ = 0). 

The problem then becomes: 

 [min] z  {11}

subject to 

                                                 
3 Or “modulus”. 
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 e
ii yzbax −≥+−′  i = 1..n {12a}

 e
ii yzbax ≥++′−  i = 1..n {12b}

or, finally, introducing the numerical values, 

 [min] z  {13}

subject to 

 

3,242 −≥+−′ zba  

0,148 −≥+−′ zba  

5,514 −≥+−′ zba  

3,242 ≥++′− zba  

0,148 ≥++′− zba  

5,514 ≥++′− zba  

 {14}

In matrix form, it is 

 
[ ]

0x
bAx

xc

≥
≥:subject to

=min Tw
  {15}

with 

 

[ ]Tzba′=x  

[ ]100T =c  
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−
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−

=

5,5
0,14
3,24
5,5
0,14
3,24

1114
118
112
1114
118
112

bA  

 {16}

i) Direct resolution 

The problem, as just formulated, has 3 structural variables and 6 constraints.  
Its manual resolution, thus, faces the practically unfeasible handling of square 
matrices of order 6, among others.  The computer resolution took 5 iterations and 
gave (as structural variables and objective function): 
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






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


=


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






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



 ′

45,0
9833,26

56667,1

z
b
a

 ( 45,0=z ) {17}

So, we have a = –a´ = –1,56667 and b = 26,9833.  Notice that it is a´ ≠ 0 (and, 
inevitably, a´ > 0), as expected, which validates the hypothesis made to ease the 
calculations, so this result is not “suspect”. 

It is not evident whether this set (a, b) is better or worse than the former 
(otherwise, it happens that one of the values coincides), a fact that depends on the 
finalities. 

ii) Resolution by the dual (brief note) 

The LP problems can be grouped in pairs, where one of the problems is the 
primal and the other the dual —an assignment that is arbitrary, although usually the 
primal corresponds to the original problem.  Duality —present in various areas of 
Mathematics— is important both theoretically and practically in LP, as both problems 
yield an identical optimum (if it exists) for the objective function.  Moreover:  
indeed, in the complete solution of one of the problems, the complete solution of the 
other can be read, with the advantage that, frequently, one of them is 
computationally (much) less difficult. 

The relationship between primal and dual, explored in the LP literature, may 
be shortly presented as follows, conveniently for theory and application: 

Primal Dual 

[ ]

0x
bAx

xc

≥
≥:subject to

=min Tz
 

[ ]

0y
cyA

yb

≥
≤T

T

:subject to
=max z

 

The case under study corresponds to the classification above;  in other cases, the 
descriptions under the titles primal and dual would be exchanged. 

Among other properties, it can be proved that: 

– If one of the problems has an optimum vector (solution), then the other also has 
one, and the optimum objective function is identical. 

– If one of the problems is possible but has no finite optimum, then the other is 
impossible. 

– Both problems can be impossible. 
– The optimum vector for the maximization has its elements equal to the 

coefficients of the slack variables of the optimum basis of the minimization, 
and reciprocally. 

Therefore, starting from the original problem under study, which has 3 structural 
variables and 6 constraints (two per each experimental point), its dual can be 
constructed, having 6 structural variables and only 3 constraints.  So, in this case, the 
dual  (a) evolves by much easier iterations (matrices of order 3, not 6),  and  (b) will 
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be, expectedly, less cumbersome, as it will yield about half the iterations (about 
proportional to 3, not 6).  Using the dual would still allow to easily consider all the 
experimental points, even if more numerous, as the number of iterations till the 
optimum depends essentially on the number of constraints. 

The dual would be: 

 [max] ( ) 654321 5,50,143,245,50,143,24 ssssssw −−−++=  {18}

subject to 
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 {19}

The result, in 4 iterations (instead of 5), is (of course) 

 z = 0 45,  {20}

and contains —in its so-called dual variables— the values 

 [ ]∆ = − − −1 567 26 98 0 45, , , T  {21}

Consequently, this vector (always negative —i.e., non-positive— in the optimum of a 
maximization, of course) has as elements the symmetrical of the results (a´, b, z) of 
the primal, already known. 

←  

References 
– ECKER, Joseph G., Michael KUPFERSCHMID, 1988, “Introduction to Operations 

Research”, John Wiley & Sons, New York, NY (USA), ISBN .3633624710 ---  

– GUTTMAN, Irwin, Samuel S. WILKS, J. Stuart HUNTER, 1982, “Introduction to 
Engineering Statistics”, 3.rd ed., John Wiley & Sons, New York, NY (USA), 
ISBN .2869564710 ---  
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Feb-2007 Bronson, Richard, 1982, "Operations Research",

"Solver" Schaum, McGraw-Hill, New York, NY (USA), 1.6, p 6

Wooden TV consoles X  = (x 1, x 2, x 3)

Maximize profit "Old" Model 2 (not manufactured) has been suppressed

n_Mod 1 n_Mod 2 n_Mod 3 Availability (h)

AssemT (h) 4 3 5 30

DecorT (h) 2 3 3 20

Profit ($) 7 6 9

X 1 = ? 5 0 3,333 → 64,997 [Two optimal (non-integer) solutions, with z max = 55000 $]

X 2 = ? 0 0 1,6666 14,9994

X  = 0 1,666667 5

7 6 9 55 = [max] z

n_Mod 1 n_Mod 2 n_Mod 3

AssemT (h) 4 3 5 30 <= 30 Profit ($)

DecorT (h) 2 3 3 20 <= 20 The cited 100%

This problem has 2 basic solutions, and therefore infinite non-basic solutions.
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The objective function plane has not been drawn. It would touch the line CD.
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Bronson & Naadimuthu, 1997, pp 56–57 
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«Inv. Ope.» • O Problema do Transporte •  • 2 •  9 

 

 

O «modelo matemático» do problema do transporte é, pois, 

[min]   z = ∑∑
= =

m

i

n

j
ijij xc

1 1

  

sujeito a i

n

j
ij ax =∑

=1

 i = 1..m 

 j

m

i
ij bx =∑

=1

 j = 1..n 

 0≥ijx  i = 1..m 
j = 1..n 

O último conjunto de constrangimentos, fisicamente necessário, relativo a 
não-negatividade, relembra o facto de que o problema do transporte é um caso 
particular da Programação Linear, na qual esta condição é imprescindível.  (A 
notação «[min]» significa, não que o mínimo de z iguala o 2.º membro, mas sim que 
se pretendem minimizar os dois membros.) 

 
Figura 1 – Representação dum «problema do transporte» 

Qualquer outro problema que apresente esta mesma estrutura —isto é, seja 
representável por estas relações matemáticas— pertence também à classe dos 
problemas de Programação Linear designada por Problema do Transporte. 

n Exemplo 1 (protótipo) 

Uma firma (Figura 1) dispõe de 3 centros de produção —fábricas F, G e H— 
situados em diferentes localidades, com capacidades de produção, respectivamente, 
de 100, 120  e 120 unidades (t / dia) de determinado produto, com que abastece 
5 centros de distribuição seus —armazéns P, Q, R, S e T— também situados em 
diferentes locais, que movimentam, respectivamente, 40, 50, 70, 90 e 90 uni-
dades (t / dia). 
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10  • 2 •  • O Problema do Transporte • «Inv. Ope.» 

 

 

Quadro 3 – Custos unitários (conto / t) de transporte fábrica-armazém, 
produções e consumos (t) 

 P Q R S T  
F 4 1 2 6 9 100 
G 6 4 3 5 7 120 
H 5 2 6 4 8 120 
 40 50 70 90 90  

Os custos unitários (conto / t) de transporte entre fábricas e armazéns 
(consequência das suas localizações geográficas e preços disponíveis) são dados no 
Quadro 3 (problema de Kaufmann [1970]). 

Pretende-se estabelecer o «plano» (ou «programa») mais económico de 
distribuição do produto, desde as fábricas até aos armazéns. n 

Propõem-se os seguintes passos: 

a) Tome uma decisão prévia (ache uma solução) quanto à repartição das 
unidades fabricadas pelos vários armazéns. 

b) Procure, por tentativas metódicas, uma nova solução, próxima da óptima.  
Verifique se a solução achada é óptima. 

c) Proceda iterativamente à melhoria da solução, até atingir o óptimo. 

Nota 1:  Como achar uma «solução inicial» 

Eis seis maneiras para tal. 

Matriz do custo, C (custo unitário de transporte, por exemplo, $ / peça) 
(custo de transporte desde cada uma das 3 origens para cada um dos 5 destinos) 

4 1 2 6 9 100  
6 4 3 5 7 120  
5 2 6 4 8 120  

40 50 70 90 90   

(Está «orlada» com as quantidades disponíveis nas origens — produções, ofertas — e 
requeridas nos destinos — consumos, procuras.) 

1) Uma solução inadmissível — matriz do transporte, X 

20 25 35 40 –20 100  
–25 30 40 45 30 120  
45 –5 –5 5 80 120  
40 50 70 90 90  z = 1605 

2) Uma solução admissível («não-básica») 

10 20 30 20 20 100  
5 20 0 50 45 120  
25 10 40 20 25 120  
40 50 70 90 90  z = 1760 
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3) Uma solução admissível básica — uma solução básica resulta de preenchimentos 
máximos.  (Os expoentes mostram a ordem de preenchimento.) 

0 0 701 303 0 100  
40 0 0 60 20 120  
0 502 0 0 704 120  

40 50 70 90 90  z = 1660 

Não demonstraremos, mas só interessa manusear soluções admissíveis e básicas. 

4) Uma solução (¿ cara ?) 

0 0 0 60 40 100  
40 50 0 30 0 120  
0 0 70 0 50 120  

40 50 70 90 90  z = 2130 

Esta solução é, com efeito, a mais cara, resultante de se ter resolvido o problema «ao 
contrário».  Seguem-se soluções (admissíveis básicas) sistemáticas, as únicas que 
realmente interessam para iniciar a procura do óptimo. 

5) Solução (a. b.) pela «regra ou método do canto noroeste» (“NW corner rule”), 
sendo os sentidos indicados inerentes à regra. 

40→ 50→ 10↓ 0 0 100  
0 0 60→ 60↓ 0 120  
0 0 0 30→ 90 120  

40 50 70 90 90  z = 1550 

6) Solução pelo «método de Vogel» ou «das diferenças» (— modificado). 

30 0 70 0 0 100  
10 0 0 20 90 120  
0 50 0 70 0 120  

40 50 70 90 90  z = 1430 

n 

Para obtenção de uma solução num problema do transporte, conforme se pede 
na alínea a) do Exemplo 1 (protótipo), poderá proceder-se por tentativas.  Para 
responder à alínea b), existem vários métodos, dos quais o mais simples é certamente 
o do canto noroeste.  É possível obter uma solução de muitas maneiras (incluindo por 
tentativas), mas um método como o do canto NW tem a vantagem de fornecer uma 
solução com as duas propriedades fundamentais (como se verá) de ser «admissível» 
(ou «aceitável») e «básica» (ou «de base»): 

­ Solução admissível (ou aceitável, ou viável) é uma solução que respeita todos os 
constrangimentos do problema. 

­ Solução básica (ou de base) é uma solução com m + n – 1 posições 
«preenchidas» (positivas ou, no limite, nulas) que não formam «ciclos». 
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  X       C’   ui   C–C’  

30+ 0 70– 0 0   4 1 2 3 5 –2  0 0 0 3 4 
10– 0 0+ 20 90   6 3 4 5 7 0  0 1 –1 0 0 
0 50 0 70 0   5 2 3 4 6 –1  0 0 3 0 2 
 θ = (10)   z = 1430 vj 6 3 4 5 7    δ = –1   

 
40 0+ 60–     4 2 2 4 6 –1  0 –1 0 2 3 
  10+ 20– 90   5 3 3 5 7 0  1 1 0 0 0 
 50–  70+    4 2 2 4 6 –1  1 0 4 0 2 
  (20)   z = 1420  5 3 3 5 7     –1   

 
40– 20+ 40     4 1 2 3 6 0  0 0 0 3 3 

  30  90   5 2 3 4 7 1  1 2 0 1 0 
0+ 30–  90  Opt  5 2 3 4 7 1  0 0 3 0 1 
  (30)   z = 1400  4 1 2 3 6     0   

 
10+ 50– 40     4 1 2 3 6 0  0 0 0 3 3 

  30  90   5 2 3 4 7 1  1 2 0 1 0 
30– 0+  90  Opt  5 2 3 4 7 1  0 0 3 0 1 

  (30)   z = 1400  4 1 2 3 6     0   

n 

Outra heurística: método de Vogel 
Convirá ainda referir mais um método heurístico para obter uma solução 

inicial próxima do óptimo, o de Vogel propriamente dito, aparentado ao anterior 
(talvez mais eficiente, mas mais trabalhoso).  É o método tipicamente proposto na 
literatura. 

Passo 1 – Calcule, na matriz C restante, a diferença entre os dois valores menores em 
cada fila (linha ou coluna) e seleccione a fila que tiver a diferença máxima. 

Passo 2 – Atribua, na matriz X, a quantidade maior possível ao elemento mais barato 
da fila seleccionada. 

Passo 3 – Se a atribuição feita saturou a oferta da linha, elimine a linha de C; se 
saturou a procura da coluna, elimine a coluna de C.  (Se saturou ambas e esta não é 
a última atribuição, a solução é degenerada.)  Volte ao Passo 1. 
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Nota 3:  Tratamento da degenerescência (exemplo) 

Técnica de resolução 

         C          
       I    IV        
       38 39 31 33 32 17 1      
      III 29 36 38 35 31 32 1 4     
       37 35 34 32 38 15 2      
      II 38 39 31 38 39 36 7      
       24 14 22 15 25 (100)       
       8 1 0 1 1        
        4 3  6        

 
(0)  X       C’   ui   C–C’  
0 0 0 0 17 17  30 34 24 31 32 –1  8 5 7 2 0 
24 0 0 0 8 32  29 33 23 30 31 –2  0 3 15 5 0 
0 14– 0 1+ 0 15  31 35 25 32 33 0  6 0 9 0 5 
0 0+ 22 14– 0 ε 36  37 41 31 38 39 6  1 –2  0 0 0 

24 14 22 15 25  vj 31 35 25 32 33        
 θ = (14)   z = 3224          δ = –2   

Na «reacção em cadeia», só uma das casas que diminuem se anula (qualquer 
—v. g., a mais barata); todas as restantes ficam com uma arbitrariamente pequena 
quantidade, ε.  Introduzindo-a, substituímos o problema original por outro —«pertur-
bado»—, arbitrariamente próximo dele.  Quando pudermos, fazendo ε → 0 , 
regressaremos ao problema original.  (Rigorosamente, com vários ε, poderíamos fazer 
ε’, ε”, etc..) 

(1) 
    17   30 32 24 29 32 24  8 7 7 4 0 

24    8   29 31 23 28 31 23  0 5 15 7 0 
 ε  15    33 35 27 32 35 27  4 0 7 0 3 
 14 22  ε Opt  37 39 31 36 39 31  (1) 0 0 2 0 
     z = 3196  6 8 0 5 8     1   

A solução (matemática) do problema é degenerada.  A solução física tem, 
então (com ε = 0), apenas 6 posições preenchidas (em vez de 4 + 5 – 1 = 8). 

O critério de optimalidade do “stepping-stone” (tal como é característico da 
Programação Linear, de que é um caso particular) é condição suficiente, mas não 
necessária.  Assim, podemos já ter uma solução que é óptima (fazendo ε → 0 ) mas 
só nos apercebermos do facto após mais iterações.  Naturalmente, esta situação só 
afecta casos degenerados, em que o progresso numa iteração seja «nulo» (infinite-
simal), podendo mesmo o algoritmo (na forma simples apresentada) entrar em ciclo. 

n 

59



16  • 2 •  • O Problema do Transporte • «Inv. Ope.» 

 

 

Nota 4:  Grelha para o “stepping-stone” 

         C          
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n 

60



61



62



63



«Inv. Ope.» • Problemas redutíveis a TP •  • 3 •  23 

 

3) Verificar se há entrepostos. 
a) Se não há entrepostos, o problema final é o problema base.  Terminar. 
b) Se há entrepostos, passar a 4). 

4) Classificar os entrepostos como primitivos ou suplementares: um entreposto é 
primitivo se coincide com uma origem e ou um destino do problema base; é 
suplementar se não coincide com nenhum deles. 
a) Cada entreposto suplementar constituirá uma nova origem e um novo destino.  

Na matriz dos custos assim aumentada, são acrescentadas: colunas de custos 
dos trajectos entre as origens e os entrepostos suplementares; e linhas de 
custos dos trajectos entre os entrepostos suplementares e os destinos. 

b) Todos os entrepostos (tanto primitivos como suplementares) terão a sua 
capacidade aumentada de KQ. 

n 

O problema de «planeamento de produção» 
Inclui-se o Exemplo 3 [Hillier & Lieberman, 1995, p 310], acerca do chamado 

“production scheduling”*, ou planeamento de produção.  O «transporte» pode ser 
imaginado, porém é não no espaço mas no tempo; há limites de produção e não 
produções fixadas; e têm de se impedir todos os «caminhos» que levem dum período 
de produção a um período de consumo que lhe seja anterior. 
* [(BrE) '�edju:l; (AmE) 'skedju:l] De sedule (Ingl. méd.), tira de pergaminho ou de papel < cedule (Fr. antigo) < 

schedula (Lat. mod.), dim. de scheda, variante de (Lat.) scida, tira de papiro < skhida, skhede (Gr.), talvez afim 
de skhizein, separar.  “κ” (Gr.) pode dar c: kinema (Gr.) > cinéma (Fr.)  1. Lista de tempos de partidas e chega-
das; horário (a bus schedule).  2. Plano para executar trabalho ou atingir um objectivo, especificando a ordem e 
tempo atribuído a cada parte (we finished the project on schedule).  3. Lista escrita de itens em forma tabular (a 
schedule of postal rates).  4.a. Programa de acontecimentos ou encontros; b. Programa de aulas (horário) dum 
estudante. 

n Exemplo 3 

Uma empresa4 produz motores de avião e pretende planear a produção destes 
nos próximos 4 meses, segundo os dados do Quadro 6 [Hillier & Lieberman, 1995, 
p 310].  Nos vários meses, há diferentes números de montagens de motores previstas, 
produções máximas e custos unitários (em $ 106) de produção e de armazenagem. 

Quadro 6 

Mês Montagens 
previstas 

Produção 
máxima 

Custo unit. de 
produção 

Custo unit. de 
armazenagem 

1 10 25 1,08 0,015 
2 15 35 1,11 » 
3 25 30 1,10 » 
4 20 10 1,13 — 

                                                 
4 Ficheiro tp-prodsch.dat. 
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Pretende-se o planeamento de custo total (produção e armazenagem) mínimo. 

Fazendo xij o número de motores fabricados no mês i para montagem no mês j 
e cij o custo associado, podemos criar o problema de transporte do Quadro 6 A, ainda 
incompleto. 

Quadro 6 A 

  Mês destino  
  1 2 3 4 Produção 

1 1,080 1,095 1,110 1,125  25 
2  1,110 1,125 1,140  35 
3   1,100 1,115  30 

Mês 
origem 

4    1,130  10 
 Consumo 10 15 25 20 ( 100) 

O artifício para conduzir este problema a um TP (Quadro 6 B) é, após 
«proibir» os percursos impossíveis (custo infinitamente grande, M), criar um destino 
fictício, F, que receberá, a custo zero, a produção não utilizada. 

Quadro 6 B 

 1 2 3 4 F Produção 
1 1,080 1,095 1,110 1,125 0 25 
2 M 1,110 1,125 1,140 0 35 
3 M M 1,100 1,115 0 30 
4 M M M 1,130 0 10 

Consumo 10 15 25 20 30 (100) 

O custo óptimo será $ 77,3 × 106 (com solução não única). n 

O problema da Afectação 
[Hillier & Lieberman] 
 

n Exemplo 4 

Um grupo de amigos5, raparigas e rapazes em igual número, decide formar 
casais, atribuindo-se preferências (de 0 a 20), como segue.  (Neste caso, para ter uma 
classificação única, conviria sortear o «lado» que atribui as preferências, v. g., as 
raparigas.) 

                                                 
5 Ficheiro tp-casais.dat. 
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Preferências Ana Helena Deolinda Maria Ofertas: 
Joel 15 16 14 14 1 
Pedro 14 14 13 15 1 
Fernando 13 15 13 14 1 
Luís 15 16 14 14 1 
Procuras: 1 1 1 1  

Determine a «melhor» formação de casais, supondo um critério de preferência 
total máxima, recorrendo ao problema do transporte.  (As classificações, todas 
«parecidas», entre 13 e 16, pretendem provocar multiplicidade de soluções.) 

É um problema de afectação.  Se se quiser prescindir do algoritmo próprio —
método húngaro— e torná-lo num TP típico, começar-se-á por transformar as 
preferências em custos.  Se se substituir cada preferência pelo seu complemento para 
um máximo conveniente (v. g., 20), vem 

Custos: Ana Helena Deolinda Maria Ofertas: 
Joel 5 4 6 6 1 
Pedro 6 6 7 5 1 
Fernando 7 5 7 6 1 
Luís 5 4 6 6 1 
Procuras: 1 1 1 1  

A solução é JH, PM, FD e LA, a custo de 21.  (Este método de formar casais 
pode ter consequências nefastas.) 

Verifique se se obteria a mesma afectação substituindo cada preferência pelo 
seu complemento para o máximo das preferências. n 
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Transshipment problem [Bronson, 1982, Pr. 9.3, p 89]   ROUTINE  
Sources (they only send):  1, 2  Give as positive quantities (supply) 
Destinations (they only receive):  5, 6 Give as negative quantities (demand) 

   Destin.s Capacity 
  5 6  
Sources 1 8 M 95 
 2 M M 70 
Capacity  30 45 75 \ 165 

A)  Insert junctions — Transshipment points or depots or junctions (remaining):  
3, 4.  Each becomes source and destination.  Transform to transportation problem.  
 Insert junctions appropriately with their capacities   M is infinity, to mean “no path”. 

    Destin.s   
  3 4 5 6  
Sources 1 3 M 8 M 95 
 2 2 7 M M 70 
 3 0 3 4 4 15 
 4 M 0 M 2 0 
  0 30 30 45 105 \ 180 

B)  Balance — If the transportation problem is not balanced,  insert one fictitious 
source or destination  with the capacity difference (and 0 transportation costs). 
    Destin.s    
  3 4 5 6 7  
Sources 1 3 M 8 M 0 95 
 2 2 7 M M 0 70 
 3 0 3 4 4 0 15 
 4 M 0 M 2 0 0 
  0 30 30 45 75 180 \ 180 

C)  Convert — Let T be the total capacities.  (Here, T = 180.)  To convert to aTP 
equivalent to the transshipment problem,  add T to every junction’s capacity . 
    Destin.s    
  3 4 5 6 7  
Sources 1 3 M 8 M 0 95 
 2 2 7 M M 0 70 
 3 0 3 4 4 0 195 
 4 M 0 M 2 0 180 
  180 210 30 45 75 540 \ 540 

Solve as an ordinary TP.  Solution: 
    Destin.s    
  3 4 5 6 7  
Sources 1 20    75 95 
 2 70     70 
 3 90 30 30 45  195 
 4  180    180 
  180 210 30 45 75  

(This solution is non-degenerate:  4 + 5 – 1 = 8 full cells, as expected)  At junctions 
—points (i, i)—, interpret the quantity as complement to T.  (So, here:  90 units pass 
by 3;  and 4 is not used.) 

v 
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