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We discuss the need for devoting time in differential equations courses to
modelling and the completion of the modelling process with efforts to
estimate the parameters in the models using data. We estimate the
parameters present in several differential equation models of chemical
reactions of order n, where n¼ 0, 1, 2, and apply more general parameter
estimation approaches to an optimization problem involving the
production chemical reaction A!B!C.

Keywords: parameter estimation; modelling; differential equations; chem-
ical kinetics; optimization; linearization; sum of square errors

1. Introduction

When teaching differential equations to students we believe it is imperative to
motivate the study with rich applications in disciplines that relate to what students
are doing in other courses and to the real world beyond academe. Students have
difficulty with developing their own conceptual framework of what a differential
equation really represents. Indeed, in our teaching over the years (some 40 years) we
have found students to disparage the study of differential equations (1) in the
abstract and (2) in application. When studying differential equations in the abstract
students have a great deal of difficulty in answering their own internal questions,
‘Why do they want us to start with information about a derivative in order to get
information about a function? Why not just start with the function itself?’ or ‘Who
would ever start with a question when what we want is an answer?’ In application,
when given some data and asked to model the situation with a differential equation,
students really balk at building a differential equation to get to a relation or function
which will model the data. They say to themselves (and the brighter they are, the
more confident they seem in this belief and the more they balk), ‘Why not just go
right to the function and fit it to the data?’ for many of them have had some
modelling experience with data in which they put a least squares line through data or
jam an arbitrary degree polynomial through a data set. They just do not see a reason
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for the step that goes first to a differential equation and then to a solution, a function
or relation. Nor do students see a need to build a model with meaning in which
parameters have units and interpretation and then obtain estimates for these
parameters using the data and the differential equation model itself, either
analytically or numerically solved.

This effort to estimate parameters is one approach to validate the model itself, for
if the model can be fit to the data then that is part of validation and if the estimates
and units of the parameters fit our conception of the situation that too is a further
validation of our model.

Finally, we do not give our students sufficient practice in parameter estimation
in a differential equations course, nor do texts really offer encouragement or space
for such activities. However, parameter estimation is one way for completing the act
of modelling that gives feedback to the model formulation and solutions. This article
is about offering opportunities for parameter estimation. This failure on our part to
not discuss parameter estimation in more detail or to provide opportunities to do
just that – estimate parameters – would be forgivable if we really had to
concentrate on all the methods for solving differential equations we learned as
students ourselves. However, in the face of such tools as Mathematica and Maple
where we can get solutions to differential equations, either analytical or numerical,
with modest syntax learning and a push of a few keys, it is unforgivable that we do
not address the full modelling process in our introductory and advanced differential
equations studies.

One way to break students of this belief that they can go directly after a
function and not take the circuitous (it looks painful as well) route to a differential
equation and then a function is to start with a physical phenomenon and build
a mathematical model, a differential equation model. If the students have a
reasonable amount of physics background in the study of motion then one
can appeal to knowledge of Newton’s Second Law of Motion and produce a
differential equation using F¼m � a¼m � x00(t) and set it equal to the sum of all the
external forces acting on a body, e.g., gravity and media resistance. The same goes
for electrical circuit theory as a setting for differential equation modelling. Another
way to help students cope with a reasoned and student built differential equation is
to appeal to related disciplines of chemistry with attention to rates of reaction or
biology with its population rate models of ever increasing complexity. Notice the
implied notion of differential equation in the word rate in both situations. Often
chemistry and biology are easier to motivate than physics and the intrinsic value of
the application of differential equations has some spill over into the discipline itself
so as to keep students’ interest.

In this article, we show two different applications of differential equations, each
of which involves building a model, ‘solving’ these equations, estimating the
parameters involved from the data at some stage in the process, and then affirming
that our derived function model from the differential equation setting, with the
estimated parameters, does a good job of fitting and explaining the data. We do this
in two contexts:

. simple chemical reactions and order kinetics from chemistry text books used
by the students and

. more complex chemical reaction A!B!C with parameter estimation and
optimization.
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2. Simple chemical reaction order

A terrific and credible source for data is the introductory chemistry text book at your
school. Many of the students will be using or have used the text and taking material
from a text in another department certainly perks students’ interest.

Usually, in each text, there is a section on chemical kinetics with a good number
of data sets from documented reactions and lots of mathematical explanations
related to the rate (differential) equations which model the reactions. Often the
material is motivated by a statement something like, ‘The rate of reaction is
determined by the concentrations.’ This is sometimes referred to as The Law of Mass
Action. Either through direct collection of data (sometimes easy and sometimes
difficult, depending upon the reactants) or referencing a data set from another
collection of data one can use this data to model with differential equations. It is
known that, ‘The rate of decomposition is dependent on the temperature and
concentration of the peroxide, as well as the pH and the presence of impurities and
stabilizers’ [1]. Thus we consider reactions to be dependent upon the concentration of
a single reactant, say, A, where [A] is the number of moles of A present at time t. The
usual rates of reaction studied in the elementary texts are of the form,

d ½A�

dt
¼ �k½A�m , with ½A�ð0Þ ¼ ½A0�:

with k the rate constant (presumed to be positive). Usually the study at this level is
restricted to m¼ 0, 1 and 2, and these are called zeroth-, first- and second-order
reactions, respectively.

2.1. Zeroth-order reaction

Zero-order reactions are most often encountered when a substance, such as a metal
surface or an enzyme is required for the reaction to occur. For example, the
decomposition reaction of nitrous oxide,

2N2Oð gÞ �! 2N2ð gÞ þO2ð gÞ

occurs on a hot platinum surface. When the platinum surface is completely
covered with N2O molecules, an increase in the concentration of N2O has no
effect on the rate, since only those N2O molecules on the surface can react. Under
these conditions the rate is a constant because it is controlled by what happens on
the platinum surface rather than by the total concentration of N2O, . . . [2, p. 657].

When considering a generic reaction we shall use y(t)¼ [A]¼ [A(t)], the amount
of reactant A (often in moles or mol/L) at time t, usually in seconds. Here we see our
rate or differential equation is

dy

dt
¼ �ky0 ¼ �k:

The solution to this is rather easy, y(t)¼ y(0)� kt. Such reactions are self-evident
from the data, for if we plot y(t) versus t we would see a linear function starting at
y¼ y(0) with a negative slope, �k. We can easily enter the data in EXCEL and use
Trendline to pick off k. Since zeroth-order reactions are quite rare we move on to
first-order reactions.
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2.2. First-order reaction

Let us look at first-order reactions in general:

dy

dt
¼ �ky1 ¼ �k y with yð0Þ ¼ y0:

Using the separation of variables technique we obtain

1

y

dy

dt
¼ �k ,

from which we can integrate to see

lnð yÞ ¼ �k tþ c where c ¼ lnð yð0ÞÞ:

This gives us

lnð yÞ ¼ �k tþ lnð yð0ÞÞ: ð1Þ

Now we can actually solve this differential equation for y¼ y(t) and we do, but the

chemist really is interested in determining the nature (order) of the reaction as well as

the parameter k, called the rate constant, and often stops at this point. Chemists refer

to Equation (1) as the integrated form of the rate law. They quite often use this form

of the equation to do their parameter estimation and determination of the order of

the reaction. However, in mathematics we might wish to push further to a solution

that reads ‘y(t) is’ – certainly, our function driven students will want to go that far.

Thus, after taking anti-logarithms in Equation (1) we can produce a complete

solution of our differential equation,

y ¼ yðtÞ ¼ yð0Þe�k t

but not to our question of order and values for parameters which we address now in

several ways.
In the study of chemical reactions, one of the simplest reactions is that of a

decomposition of some substance, say hydrogen peroxide (H2O2). There is the

phenomena of going to the medicine chest to find the hydrogen peroxide (and

iodine!) to flush and clean a cut, only to find that what is in the bottle does not

produce a white froth when applied to the cut as the medicine is supposed to do while

it rids the cut of germs. The medicine is old and has lost its powers! This is an

example of decomposition of H2O2 into water and oxygen (2H2O2! 2H2OþO2)

and we use our basic law of mass action to conjecture a rate (differential) equation

for 2H2O2. This means for [H2O2] mol/L of hydrogen peroxide:

d ½H2O2�

dt
¼ �k � ½H2O2�

m ,

for some number m. We seek to determine if this reaction is first order, i.e. if m¼ 1.
We return to the task of determining order of the reaction and the parameter k.

From Equation (1) we can see that a first-order reaction will produce a linear

relationship between ln(y) and t. In Figure 1(b) we see that there is, indeed, a linear

relation between ln(y) and t. Using EXCEL’s Trendline function we find the
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following relation

lnð yÞ ¼ �:0008 t� 0:0049, ð2Þ

and from here we can, together with Equation (1), determine that k¼ 0.0008 and so
our reaction is first order with parameter k¼ 0.0008.

We can solve Equation (1) with these parameters to produce

½H2O2� ¼ yðtÞ ¼ e�:0049e�:0008t ¼ 0:99512e�:0008t:

In Table 1, we can see how good our model [H2O2] does compared to [H2O2] (mol/L).
(See Figure 2.) In Table 2 we see the data for Equation (2).

2.3. Second-order reaction

Now let us look at second-order reactions in general:

dy

dt
¼ �ky2 with yð0Þ ¼ y0:

Figure 1. Plots of (a) [H2O2] vs. t from Table 2 and (b) ln([H2O2]) vs. t from Table 1, the latter
showing the linear relationship between ln([H2O2]) and t, thus confirming that the
decomposition of hydrogen peroxide is a first-order reaction.
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Figure 2. Data for examination of the order of reaction for the decomposition of N2O5

[1, p. 542]. Here the reaction is first order.
Source: Ref. [5].

Table 1. Collected data and model predicted data on our reaction
2H2O2(g)! 2H2OþO2(g).

Time (s) [H2O2] (mol/L) Model [H2O2]

0 1.00 0.995111985
120 0.91 0.904023431
300 0.78 0.782782813
600 0.59 0.615758770
1200 0.37 0.381021300
1800 0.22 0.235769652
2400 0.13 0.145890345
3000 0.08 0.090274523
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Using the separation of variables technique we obtain

1

y2
dy

dt
¼ �k ,

from which we can integrate to see

1

y
¼ k tþ c where c ¼

1

yð0Þ
:

This gives us

1

y
¼ k tþ

1

yð0Þ
: ð3Þ

Now we can actually solve this differential equation for y¼ y(t) and we do, but again
the chemist really is interested in determining the nature (order) of the reaction and
the parameter k and will often stop at this point. For those of us interested in a
function for a solution to our rate equation differential equation, after inverting both
sides in Equation (3) we have a complete solution of our differential equation,
but not our question of order and values for parameters.

y ¼ yðtÞ ¼
1

k tþ 1
yð0Þ

¼
yð0Þ

yð0Þk tþ 1
:

In Figure 3 we show a reaction, the decomposition of NO2, which is second-order
[3, p. 486]. We obtain the rate constant k ¼ 32:644 mol=Lð Þ

�1s�1. We confirm the
model by computing the predicted model values for [NO2] for the observed times. We
leave this as an activity for the reader using our estimated parameter value for k.

Let us revisit the decomposition of hydrogen peroxide and show it is not a
second-order reaction. From Figure 4 we can see that there is no linear
relation between 1

½H2O2�
and t and hence that the decomposition of [H2O2] is not a

second-order reaction.
We reiterate that any first-year chemistry college level text has a myriad of

kinetics problems with data and one can motivate the study of differential equations
as mathematical models of these order reactions and study the estimations
of parameters in the reaction and differential equation with meaning.

Table 2. Collected data and logged data on our reaction
2H2O2(g)! 2H2OþO2(g).

Time (s) [H2O2] (mol/L) ln([H2O2])

0 1.00 0
120 0.91 �0.040958608
300 0.78 �0.107905397
600 0.59 �0.229147988
1200 0.37 �0.431798276
1800 0.22 �0.657577319
2400 0.13 �0.886056648
3000 0.08 �1.086186148
3600 0.05 �1.301029996
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3. Chemical reaction and optimization

Under a grant from the National Science Foundation1 a number of complex
problems for calculus instruction using technology were offered. These were posted
on the web [4]. We discuss one of them here and how it relates to our current
discussion of parameter estimation.

The goal here is to make use of kinetics in formulating a mathematical model for
a specified chemical reaction, to determine the parameters of the reaction, to confirm
the model by comparing its predictions to the data, to formulate the profit function
based on the obtained functions for the amounts of the chemicals present at time t

Figure 3. The plot of 1
½NO2�

vs. t shows there is a linear relation between 1
½NO2�

and t and

hence that the decomposition of [NO2] is a second-order reaction.

Source: Ref. [3].
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and to optimize profit. Thus, the kinetics and the differential equations are put in the
context of a larger applied problem and this makes the problem complex and
technology-based. We take a look at the problem in detail.

3.1. Statement of the problem

A laboratory experiment is going on in the Projects Lab of your company.
A colleague, a production chemist, comes to you for advice.

Compound A is heated to 120�C in order to produce compounds B and C.
The temperature of the pot containing all of these compounds is kept at 120�C in
order to keep the reaction going.

It is believed the reaction is a simple first-order reaction where the
reaction rate of converting compound A to B is k1 1/min and the reaction
rate of converting compound B to C is k2 1/min. The observed data is presented
in Table 3.

Figure 4. The plot of 1
½H2O2 �

vs. t shows there is no linear relation between 1
½H2O2�

and t and hence

that the decomposition of [H2O2] is not a second-order reaction.

Table 3. Collected data on our reaction A!B!C.

Time (min) A (mol) B (mol) C(mol)

0 1.00 0.00 0.000
2 0.88 0.12 0.003
6 0.69 0.29 0.030

10 0.53 0.42 0.050
20 0.28 0.56 0.16
30 0.15 0.57 0.28
50 0.043 0.46 0.50
70 0.012 0.33 0.66
90 0.22 0.78
120 0.12 0.88
150 0.06 0.94
200 0.02 0.98
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The goal is to produce compound B for marketing. Thus we seek a mathematical

model as an aid in telling us the best time to stop the process and extract compound

B for the market. A measure of best is most profit. We are told that A costs $0.50 per

mol and B sells for $3.50 per mol. Our production engineer friend has found that for

compound C we can expect a return of $0.25 per mol from the recovered C and $0.05

per mol from the recovered A. You also have to consider the optimization in view of

the energy costs to run the process and it is known that the energy costs to run this

process are $0.005/min. We seek the shutoff time for this process in order to

maximize the profit on this process.
Form a mathematical model. Be sure to state your assumptions –

mathematical and chemical. Use this mathematical model to tell your corporate

friend just when to shut off the process and just how much profit they can expect

on this process.

3.2. Solution strategies

The first thing students do with data is plot it, obtaining Figure 5. They look at it

and see that it makes sense. The reaction starts with only chemical A. B picks up

and peaks and the reaction ‘goes to’ C. Using knowledge of first-order kinetics

students define variables a(t), the number of moles of A present at time t; b(t), the

number of moles of B present at time t; and c(t), the number of moles of C present

at time t.

A����!
k2

B����!
k2

C :

They usually build a system of differential equations based on the chemical

kinetics of the reaction so they can predict the amount of each chemical present at

time t min. From this model they can then run an optimization model in which they

seek the time t at which to shut off the reaction in order to optimize their profit.

a 0ðtÞ ¼ �k1 aðtÞ,

b 0ðtÞ ¼ �k2 bðtÞ þ k1 aðtÞ,

c 0ðtÞ ¼ k2 bðtÞ,

We use Mathematica’s DSolve command to obtain solutions:

aðtÞ ¼ e�k1t,

bðtÞ ¼ �
k1 e�k1t � e�k2t
� �

k1 � k2
,

cðtÞ ¼
k1 � e�k2tk1 þ e�k1t � 1

� �
k2

k1 � k2
:

We seek to determine the parameters of the chemical reaction, k1 and k2, that

make the solution fit the data best. Thus we enter the data into Mathematica. Here is

the entering of A’s data. We do the same for B and C data.

adata¼ {{0,1}, {2,.88}, {6,.69}, {10,.53}, {20,.28}, {30,.15},

{50,.043}, {70,.012}, {90,0}, {120,0}, {150,0}, {200,0}}.
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From each solution (for a(t), b(t), and c(t)) we form a sum of square error terms
as a function of the parameters k1 and k2. We show this sum for a(t).

SSa[k1_,k2_]¼ Sum[(a[adata[[n,1]]]-adata[[n,2]])2, {n,1, Length[adata]}].

Here a[adata[[n,1]]] (first number in the nth data point of adata) is actually
a(tn) for the solution at time tn and adata[[n,2]] (second number in the nth data
point of adata) is the observed amount of A at time tn. These are then summed over
all the observations from n¼ 1 to n¼ Length[adata] to form a sum of square error
function.

Having formed a sum of square error function for each of the three data sets
(we also compute SSb[k1_,k2_] and SSc[k1_,k2_]) we then compute a total sum of
square error terms using all the data for A, B and C:

SS[k1_,k2_]¼ SSa[k1,k2]þ SSb[k1,k2]þ SSc[k1,k2].

Here is where the power of technology really comes in. We seek to determine the
values of our parameters k1 and k2 which will minimize SS[k1,k2]. The command
for this is a one liner:

solk¼ FindMinimum[SS[k1,k2], {k1,.1}, {k2,.2}],

and we can extract the information we want easily with Mathematica reporting back,

{1.00038, {k1!0.0629595, k2!0.0211523}}.

This means the sum of the square errors has a minimum value of 1.0038 when
k1¼ 0.0629595 and k2¼ 0.0211523. If we put these values of k1 and k2 back into our
differential equation model and solve it with given initial conditions we see the plot
of the solution over that of the data in Figure 6.

Of course, since a(t)þ b(t)þ c(t)¼ 1 we could use only A and B data or only B
and C data to obtain our parameter estimates for k1 and k2. Our results are, in fact,
slightly different in these cases. For example, if we used only A and B data we obtain

50 100 150 200
t min

0.2

0.4

0.6

0.8

1.0

mole

Figure 5. A plot of the amounts of A (f), B (g) and C (˙) as a function of time in
minutes. We see the shapes of A declining to zero, B rising and then falling and C rising
and levelling off.
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the following parameter values k1¼ 0.0628918 and k2¼ 0.0210947, and we note the
slight difference in these values as compared to those obtained when using all three
sums for A, B and C data. Such variations in parameters give essentially the same
fit and plots for Figure 6.

3.3. Sensitivity of parameters

In Figure 7, we show the results of solving the differential equation system describing
our chemical reaction in two cases, using values of our estimated parameters which
are (1) 20% higher and (2) 20% lower than our optimal estimates. We note the band
surrounding the actual observations and suggest that even a 20% error in our
parameter estimates renders a reasonable prediction for the reaction.

Another examination of sensitivity is to consider the fact that there could be
‘noise’ in the data and we should determine how sensitive our algorithm is to
estimating our parameters k1 and k2 in light of this noise. We run 2000 simulations in
which we put random noise into our data. We do this by taking each observation, say
x(t) to represent one of a(t), b(t), or c(t), at each time, t, and converting x(t) to a data
point x(t)*(1þ "(t)) where "(t) is a random number from a normally distributed
random variable with mean �¼ 0 and variance �2¼ 0.01.

In each of these simulations we obtain best values for k1 and k2 using our sum of
square error over all three chemical observations for the time observations we have.
We plot our 2000 results for k1 and k2 in a histogram in Figures 8 and 9, respectively.
The average k1 value for the 2000 estimates is k̂1 ¼ 0:0636118 which is very close to
our initial estimate, k1¼ 0.0629595, and in the case of k2 we obtain an average
k̂2 ¼ 0:0212466 which is very close to our initial estimate, k2¼ 0.0211523. This
suggests that if we were to do this parameter estimate process with noisy data (we call
this real-life!) that we would get parameters quite close to our original optimal values
of k1 and k2. Of course, if we were to have exceptionally noisy data, say �2¼ 0.1 we
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Figure 6. A plot of the amounts of A (f), B (g) and C (˙) as a function of time in minutes
with the solution to the differential equations model using the parameters k1¼ 0.0629595 and
k2¼ 0.0211523 obtained from the least square approach. We see an excellent fit.
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would have a much wider spread in our histograms and thus the chance of greater
variation in our estimates.

We see our method gives a robust approach to estimating the parameters k1 and
k2 successfully when the observational data offered up is not too noisy. Moreover,
there is only slight sensitivity in our estimates for k1 and k2 to small changes in the
values in the observed data.
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Figure 7. A plot of the amounts of A (f), B (g) and C (˙) as a function of time in minutes
with the solution to the differential equations model using both a 20% increase and a 20%
decrease in the parameters k1¼ 0.0629595 and k2¼ 0.0211523 obtained from the least square
approach. We see for each chemical a reasonable band about the actual observations reflecting
these changing parameter values.

Figure 8. A histogram of best values of parameter k1 from 2000 simulations in which we
added random noise to the values of our chemical observations for A, B and C for each data
point in the form of a deviate from a normally distributed random variable with mean, �¼ 0
and variance, �2¼ 0.01.
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3.4. Optimizing profit

Thus far we have solved the kinetics portion of the effort and we turn to the

optimization problem. We seek to maximize profit given running time costs,

purchase costs and recovered material revenue (see Figure 10).

ProfitðtÞ ¼ 0:75� 0:005tþ 0:05aðtÞ þ 3:5bðtÞ þ 0:25cðtÞ

¼ 1� 0:005t� 5:19434e�0:0629595t þ 4:89434e�0:0211523t:

Figure 9. A histogram of best values of parameter k2 from 2000 simulations in which we
added random noise to the values of our chemical observations for A, B and C for each data
point in the form of a deviate from a normally distributed random variable with mean, �¼ 0
and variance, �2¼ 0.01.
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Figure 10. A plot of the profit function using the recovered functions for the amounts
of A, B and C, at time t and the running cost of operating the reaction.
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Using calculus we recall that the optimum for Profit(t) occurs when Profit0(t)¼ 0,

so we have Mathematica do this for us:

solMaxProfit¼ FindRoot[Profit0[t]¼¼0, {t,25}]

to obtain tmax¼ 25.6053 with a maximum value of Profit(tmax)¼ 2.68344. We have

now completely solved our kinetics problem and our optimization problem.

4. Conclusion

We have shown how the study of differential equations can be motivated and the

modelling process for building differential equations which describe chemical

kinetics according to the law of mass action can permit parameter estimation studies

and thus a completion of the modelling cycle with validation of our model for our

given data for differential equation activities involving data and realistic situations.

We have used this approach in courses in which we have just introduced differential

equations, indeed, before solution strategies for differential equations have been

addressed as we have the benefit of Mathematica’s DSolve command. We have used

these approaches and problems in every modelling course we have taught. In all cases

we found the students fascinated by the application of the mathematics they were

studying to a course they took, often concurrently. Moreover, students became

familiar with several processes which would enable them to estimate parameters in

differential equations models, something they might not experience until much later

in their education, if ever at all! We highly recommend you make every effort to

incorporate such parameter estimation strategies in your course for the sake of your

students, for they need to see the ‘end game’ of modelling as well as the model

formulation and the techniques associated with solving differential equations.

Note

1. The production of this material was supported by the National Science Foundation under
Division of Undergraduate Education grant DUE-9352849: Development Site for
Complex, Technology-Based Problems in Calculus with Applications in Science and
Engineering.
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